
 
 
 
 
 
 
 
 
 
 

Charity Auctions for the Happy Few 
 
 
 

OLIVIER BOS 
 
 

CESIFO WORKING PAPER NO. 2398 
CATEGORY 2: PUBLIC CHOICE 

SEPTEMBER 2008 
 

PRESENTED AT CESIFO VENICE SUMMER INSTITUTE 2008, WORKSHOP ON 
‘ADVANCES IN THE THEORY OF CONTESTS AND ITS APPLICATIONS’ 

 
 
 
 
 
 

An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.org/wp T 



CESifo Working Paper No. 2398 
 
 
 

Charity Auctions for the Happy Few 
 
 

Abstract 
 
Recent literature has shown that all-pay auctions raise more money for charity than winner-
pay auctions. We demonstrate that the first and second-price winner-pay auctions generate 
higher revenue than first-price all-pay auctions when bidders are sufficiently asymmetric. To 
prove it, we consider a framework with complete information. This analysis is relevant for 
two main reasons. On the one hand, complete information is more realistic and corresponds to 
events which occur for instance in a local service club (like in a voluntary organization) or in 
a show business dinner. Potential bidders are acquaintances or know one another well. On the 
other hand, our model keeps the qualitative predictions of a private value model under 
incomplete information in which bidders are ex ante asymmetric, which means that bidders’ 
values are drawn from different distributions. Furthermore, we also analyze second-price all-
pay auction. Finally, we show that individual minimum bids could improve the relative 
revenue performance of first-price all-pay compared to first-price winner-pay auction. 
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1 Introduction

More and more voluntary organizations wish to raise money for charity purposes through a

partnership with firms. Charity auctions have been held in the United States for many years

now. However, in China this phenomenon has emerged recently and is in strong progress.1 In

this kind of auction, an object (for example a key case with a zero value or an item given by

a luxury brand) is sold. The proceeds then go to charity. Most of these auctions are planned

and organized in charity dinners where only wealthy or famous people can participate. Beyond

the item value, the valuations of potential bidders depend on their interest for this voluntary

organization (their altruism or philanthropy) and also show some kind of conformism “to be

seen as the most wealthy and generous”. For instance, in China’s traditional society, charity

auctions were not put forward. The participants preferred to keep a low profile about their

bids. However, time has changed: the rich and famous now show their wealth through their

involvement in charity auctions. According to the Beijing Review :

With the development of society, more rich people are emerging. They have

their own lifestyle [...] Some day, behind the rich lifestyle, people will find that

it is only by offering their love and generosity that they can realize their true

class.

Thus, through charity auctions, potential bidders can build their position in their social class.

Everybody wishes, independently of the winner’s identity, to raise the highest revenue. Potential

bidders make a trade-off between giving money for the fund-raising and keeping it for another

personal use. Contrary to non-charity auctions, here the amount paid is “never lost”. A wealthy

investor, who bought a Dior perfume for 60 000 yuans (about 6 000 euros or 7 700 dollars) –

with a reserve price of 20 000 yuans – recently said in the Beijing Review :

I would never buy perfume for this amount normally, but this time it is for

charity. I feel very happy.

In fact, the money raised will be used to finance a public good. Every participant of the charity

auction may take advantage of it, independently of the winner’s identity. More precisely, the

money raised by each potential bidder impacts the utility of all participants as they take ad-

vantage of an externality of the amount of the money raised for the public good or the charity

purpose.

Under complete information, these kinds of auctions can be compared to the work of Ettinger

(2002) who analyzed a general winner-pay auction framework with two kinds of externalities.2

One of them does not depend on the winner’s identity and can be applied to charity auctions

where only the winner pays. Moreover, he shows that there is no “revenue equivalence” with these

externalities. Maasland and Onderstal (2006) investigate winner-pay auctions with this kind of

linear externalities in an independent private signals model. Their paper can also be applied to

charity. They find similar qualitative predictions as Ettinger (2002): the second-price winner-

pay auction can outperform3 the first-price winner-pay auction. In their recent paper, Goeree

et al. (2005) analyze charity auctions in the symmetric independent private values model. They

1For example, in 2004, at the Formula One Grand Prix opening dinner party in Shanghai (China), an auction

was held of racing suits and crash helmets used by famous racing drivers (Beijing Review, 2005).
2To the best of our knowledge, Ettinger (2002) is the only one to consider general externalities which could

be non-linear.
3In the following, outperform means generate higher revenue.
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show that, given the externality, all-pay auctions raise more money for charity than winner-pay

auctions (second-price outperforms first-price) and lotteries. In particular, they determine that

the optimal fund-raising mechanism is given by the lowest-price all-pay auction with an entry

fee and a reserve price. Engers and McManus (2007) also find closely results to Goeree et al.

(2005).4 Contrary to Goeree et al. (2005), a psychological effect comes into play: the winner

benefits from a higher externality with his own bid, the others’ bids having a lower effect on

him. In their setting, as in Goeree et al. (2005), first-price all-pay auctions and second-price

winner-pay auctions are better to raise money than first-price winner-pay auctions. Moreover,

first-price all-pay auctions outperform each winner-pay auction only for a sufficiently high num-

ber of bidders. Additionally, Engers and McManus (2007) show that there are many optimal

charity auctions, among them for example a first-price winner-pay auction with the suitable fees

and cancelling threat.

The predictions of Goeree et al. (2005) and Engers and McManus (2007) have been tested

experimentally with contradictory results. Onderstal and Schram (2008) have experimented the

Goeree et al. (2005)’s result in a laboratory. They are the first to conduct a lab experiment for

charity auctions in an independent private value setting. Their results are close to the theoret-

ical predictions: in charity auction, first-price all-pay auction raises higher revenues than other

mechanisms (first-price winner-pay auction and lotteries). Carpenter et al. (2008) have tested

the predictions of Engers and McManus (2007) and Goeree et al. (2005) in a field experiment.

Similar objects are sold in four American pre-schools through three different mechanisms which

are first-price all-pay auction, first-price and second-price winner-pay auctions. They study the

determinants of the bidders’ behavior and the revenue raised. Contrary to the theoretical predic-

tions, first-price all-pay auctions do not produce higher revenues than the winner-pay auctions.

Therefore, if auction theory about charity is confirmed in the laboratory, it is not the case in

the field. The main explanation for the gap between theory and field experiment can be a non-

participation effect, due to the unfamiliarity with these mechanisms and their complexity: the

participants didn’t know the all-pay design and few took part in second-price auctions on the

Internet.

The purpose of this paper is to determine whether or not all-pay auctions can raise higher

revenue for charity than winner-pay auctions when the asymmetry between bidders is strong.

We consider a complete information framework. As we said before, a lot of charity auctions are

conducted among rich people during charity dinners. These events could occur in a local service

club (like the Rotary club5 or another type of voluntary organization) or during a show business

dinner. Potential bidders are acquaintances or know one another well. Consequently, a complete

information environment is well suited for these kinds of situation. Thus, the paper of Goeree

et al. (2005) is revisited with asymmetric bidders in a complete information framework. Our

model keeps the qualitative predictions of a private value model under incomplete information

in which bidders are ex ante asymmetric, which means that bidders’ values are drawn from

different distributions.
4Besides, Engers and McManus (2007) also introduce fees and reserve prices. Then distinguish the issues

where the auctioneer can or cannot threaten to cancel the auction, which change their results.
5The Rotary club is a worldwide organization of business and professional leaders that provides humanitarian

services, encourages high ethical standards in all vocations, and helps build goodwill and peace in the world. There

are about 32 000 clubs in 200 countries and geographical areas and 1,000 clubs in France like Paris, but also in

small town like Niort. http://www.rotary.org/
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Following the work of Vartiainen (2007), we analyze all-pay auctions for charity as a mecha-

nism. This approach relies on a general model which can be applied to both first and second-price

all-pay auctions. In our setting, every bidder takes as much advantage of his own bid as of her

rival’s bid thanks to the externalities. Additionally, we defined the bidder i’s adjusted-value as

the ratio of her value for the item sold and the fraction of her payment which she perceives as a

cost given her altruism for the charity purpose. Then, we arrange bidders such as adjusted-values

and the valuations are ranked in the same order. We discuss this ranking and its consequences.

First-price all-pay auction equilibrium is characterized and the expected revenue computed;

but there is no pure strategy Nash equilibrium. As in a case without externality, only the two

bidders with the highest adjusted-values are active. In order to raise money for charity, we

set up an optimal lobbying policy based on two steps. We also show the existence of a Nash

equilibrium with non-linear externality.

The equilibrium is also characterized and the expected revenue computed for the second-

price all-pay auction. In that case, the pure strategy Nash equilibria are degenerated. That is

why we determine the mixed strategy Nash equilibrium. We discuss our results by comparing

them to Ettinger (2002) who analyzes winner-pay auctions with externalities that do not depend

on the identity of the winner and which could be applied to charity auctions.

The second-price all-pay auction can raise more money than other auction designs as long

as the bidder with the highest adjusted-value takes part in the auction. Moreover, the revenue

of the first-price all-pay auction can be dominated by the winner-pay auctions contrary to the

results of Goeree et al. (2005). Indeed, above a certain threshold of asymmetry in the bidders’

valuations, winner-pay auctions raise more money for charity than the first-price all-pay auctions.

We can also revisit this result by an analysis of the bidders’ altruism.

In the last section, we evaluate the impact of individual minimum bids on first-price all-pay

and first-price winner-pay auctions. We assume the auctioneer knows the bidders’ valuations.

This assumption is relevant in a charity dinner which takes place in an isolated environment or

in a local service club. The auctioneer gets information through the board of directors of the

service club as he does not belong to this environment. Minimal bids could improve the relative

revenue performance of the first-price all-pay auction compared to winner-pay auctions. Indeed,

minimal bids can offset the effects of asymmetry in the bidders’ valuations.

2 The model

Following the work of Vartiainen (2007) with linear cost functions, we analyze all-pay auctions

for charity as a mechanism. This approach relies on a general model which can be applied to

both first and second-price all-pay auctions. Yet, our approach is different. Moreover, in our

case, every bidder takes as much advantage of her own bid as of her rival’s bid thanks to intro-

duction of the externalities.

In a charity dinner, an indivisible object (or prize) is sold through an all-pay auction. This

prize is allocated to one of the potential bidders N = {1, ..., n} contingents upon their bids

x = (x1, ..., xn) ∈ Rn
+. As the bidders usually meet each other in these kinds of events, the

willingness to pay and the valuation ranking of each bidder, v1 > v2 > ... > vn, are common

knowledge. An all-pay auction is a pairwise (a, t), a being the allocation rule and t the payment

rule.
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Allocation Rule. The allocation rule a = (a1, ..., an) : Rn
+ −→ [0, 1]n is such that the winner

i gets the object if and only if ai(x) = 1 given the bids and
∑n

i=1 ai(x) = 1 for all x. The object

is allocated to the highest bidder such that

{

ai(x) = 1
#Q(x) if i ∈ Q(x)

ai(x) = 0 otherwise

where Q(x) := {j|j = arg max{xk, k ∈ N}} is the collection of the highest bids.

Payment Rule. The payment rule t = (t1, ..., tn) : Rn
+ −→ Rn

+ represents for each bidder

i her transfer ti(x) to the charity organization for the vector of bids x. This payment rule is

contingent upon the all-pay design. In fact, in a first-price all-pay auction, each bidder pays her

own bid

ti(x) = xi ∀i ∈ N

while in the second-price all-pay auction the winner pays the second highest bid and the losers

their own bid
ti(x) = x(2) if i ∈ Q(x)

ti(x) = xi otherwise

with x(2) the second order statistic of the sample (x1, ..., xn).

The bidders wish to raise the maximum of money for charity. Every bidder takes advantage

of her own participation in the charity auction and of the others’ participations as well. In other

words, the money raised by each potential bidder impacts the utility of all of the participants

including herself. Thus, the bidder’s utility function includes an externality which depends on

the amount of money raised for the public good or the charity purpose. Denote hi(t(x)) the

externality that the bidder i takes advantage of.6 We could also consider the externality as a

function with only one argument
n∑

j=1

tj(x). Indeed, the externality is independent of the winner’s

identity and only takes into account the amount raised. Like Goeree et al. (2005) and other

papers about charity auctions, we make a linearity assumption on the form of the externality

price:

hi(t(x)) = hi





n
∑

j=1

tj(x)



 = αi

n
∑

j=1

tj(x)

where αi ≥ 0 is the coefficient of the bidder i’s altruism for the charity purpose. Thus, the

bidder i’s utility is given by

Ui(x) = Ũi(ai, t) = viai(x) − ti(x) + αi

n∑

j=1

tj(x)

Assumption 1 (A1). Ũi(ai, t) is a continuous and differentiable function in the transfer func-

tions tj for all j.

Thus, hi(t(x)) is continuous and differentiable in all of its arguments.

Assumption 2 (A2). ∀xi ≥ 0
∂Ũi

∂ti(x)
(ai, t) < 0 equivalent to αi

n∑

j=1

dtj(x)

dti(x)
< 1.

6The vectors (t1(y), ..., tn(y)) and (t1(z), ..., tn(z)) are denoted t(y) and t(z).
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This assumption reminds that the bidder has a strict preference to keep one euro for her

own use rather than to give it to the charity auction. This is the limit to the bidders’ altruism

to give money for charity.7 The limit of the bidders’ altruism is affected by the payment rule.

Indeed, the bidder i’s transfer can be a function of her opponents’ bid. Thus, a change in the

payment rule leads to a new limit of the bidders’ altruism: in first-price it is αi < 1 while in

second-price αi < 1/2.

Denote Fi(x) ≡ P(Xi ≤ x) the cumulative distribution functions such as the bidder i decides to

take a bid inferior to x. We denote Fi(0) the probability that bidder i bids 0. When Fi(0) )= 0,

bidder i bids zero with a strictly positive probability. When Fi(0) = 1, bidder i always bids zero

which means that she does not participate to the auction. F1, ..., Fn can be interpreted as the

bidding strategies where the support is R+. Thus, the expected utility of bidder i is given by:

EUi(xi,X−i) =

∫

R
n−1
+

(

viai(x) − (1 − αi)ti(x) + αi

n
∑

j=1
j "=i

tj(x)

)
∏

j "=i

dFj(xj) (1)

= vi

∏

j "=i

Fj(xj) − (1 − αi)

∫

R
n−1
+

ti(x)
∏

j "=i

dFj(xj)

+ αi

∫

R
n−1
+

n
∑

j=1
j "=i

tj(x)
∏

j "=i

dFj(xj)
(2)

with X−i = (X1, ...,Xi−1,Xi+1, ...,Xn). To go from (1) to (2) we can notice that {#Q(x) = 1}

and {#Q(x) > 1} are disjoints. Thus, when #Q(x) > 1 the value of the integral is zero. Indeed,

a tie is a zero measure event.

Let us denote vi
1−αi

the bidder i’s adjusted-value. The bidders i’s adjusted-value is defined

as the ratio of her value for the item sold and the fraction of her payment which she perceives

as a cost given her altruism for the charity purpose. We can observe this adjusted-value in

the expected utility with a normalisation by dividing it by 1 − αi. As bidders are ex ante

asymmetric, we arrange bidders such that vi
1−αi

decreases with the suffix i and without equality.

This is common knowledge. Thus,

v1

1 − α1
>

v2

1 − α2
> ... >

vn

1 − αn

3 First-Price All-Pay Auction

In this section, we study the most popular all-pay auction design, i.e. the first-price all-pay

auction. Every bidder pays her own bid, but only the one with the highest bid wins the object.

Given assumption A2, there is no pure strategy Nash equilibrium. This is a well known

result when there is no externality. We only give a sketch proof of this result with two bidders

for the first-price all-pay auction with externalities.

7If αi

n
X

j=1

dtj(x)
dti(x)

= 1 then the bidder is indifferent between giving one euro for charity or investing it in an

another activity.
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Let us assume that xi ≥ xj and consider some general externality (not necessarily linear) given

by hi(xi, xj). In such a framework, two cases can occur. First, if bidder j can overbid, then

her best reply is xi + ε, for ε > 0 such that vj − (xi + ε) + hj(xi, xi + ε) ≥ −xj + hj(xi, xj).

Hence, it is impossible that xi ≥ xj . Second, if j cannot overbid, then his best reply consists

in offering zero since, given assumption A2, hj(xi, 0) > −xj + hj(xi, xj). Consequently, i’s best

reply is to offer ε > 0. As a result, the equilibrium is unstable and there is no pure strategy

Nash equilibrium.

3.1 Linear Externalities

As we noticed in the last section, assumption A2 implies that αi < 1. If bidder i offers xi, then j

will offer less with probability Fj(xi) and will offer more with probability 1− Fj(xi). Whatever

the outcome, bidder i benefits from the sum of all bids, including her. We call an externality

the amount that bidder i benefits from one bid. When computing her expected utility, she takes

the amount payed by each opponent into account. Bidder i’s expected utility with n potential

competitors is given by

EUi(xi,X−i) =
∏

j "=i

Fj(xi)vi − (1 − αi)xi + αi

∑

j "=i

EXj

A potential bidder takes part in the auction if for some bids her expected utility is equal to or

higher than the externalities she enjoys when her bid is zero. Formally, a bidder takes part in

the auction if

∃ x such that EUi(x,X−i) ≥ αi

∑

j "=i

EXj

with αi
∑

j "=i EXj bidder i’s expected reservation utility when she takes part in the auction.

We call the highest price at which a given bidder is ready to take part in the auction her

indifference pricing. i’s indifference pricing is noted x̃i and satisfies EUi(x̃i) = αi
∑

j "=i EXj .

Proposition 1. There is a unique Nash equilibrium and the mixed strategies are given by

F1(x) =
1 − α2

v2
x ∀x ∈

[

0,
v2

1 − α2

]

and F2(x) = 1 −
1 − α1

1 − α2

v2

v1
+

1 − α1

v1
x ∀x ∈

(

0,
v2

1 − α2

]

All other bidders use the pure strategy of zero and do not take part in the auction: Fj(0) = 1 for

j ∈ {3, ..., n}.The expected revenue is given by ER =
1

2

v2

1 − α2

(
1 − α1

1 − α2

v2

v1
+ 1

)

.

Proof. See in Appendix.

At the Nash equilibrium, only two bidders are active: these bidders have the two high-

est adjusted-values. i’s indifference pricing defines her adjusted-value and the second highest

adjusted-value specifies the bidders’ maximum bid. Hence, the bidders’ mixed strategies are

represented by uniform distributions and are supported on [0, v2

1−α2
] given that bidder 2 (the

bidder with the second highest adjusted-value) takes part in the auction with probability

1 − F2(0) =
1 − α1

1 − α2

v2

v1

Corollary 1. All bidders obtain a positive payoff. Indeed, the bidders with the two highest

adjusted-value obtain a positive payoff U"
1 = v1 −

1−α1

1−α2
v2 + α1

2
1−α1

v1

(
v2

1−α2

)2
and U"

2 = v2

2
α2

1−α2

and their competitors get U"
i = αi

2
v2

1−α2

(
1−α1

v1

v2

1−α2
+ 1

)

for i ∈ {3, ..., n}.
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Proof. Computations. !

Contrary to the case with no externality, the opponents of the highest bidder get a positive

payoff. That is a consequence of externalities: bidders take an advantage of the competitors’

behavior.

Remark 1. Let us assume the difference between α1 and α2 is high enough for bidder 1’s

adjusted-value to be ranked second such that the two highest adjusted-values would be permuted.

Then bidder 1 can get a lower payoff than in the case with no externality if and only if her

altruism level is lower than α̃ ≡ 2 v1−v2

3v1−2v2
. We notice that this threshold does not depend on her

rival’s altruism level, while the changes in the ranking of the adjusted-values is only due to the

difference between the players’ altruism levels.

We can notice here that there are two opposite effects. Because of the externalities, the

value of one euro that is invested in the auction is less than one euro. Thus, it is possible that

the bidders choose more aggressive offers. However, every bidder knows that her competitor is

more agressive and that this will affect one’s probability of winning. Given an increasing of her

competitor’s aggressiveness, the bidder’s best reply can be increasing or decreasing.

Example 1. Let us consider two bidders with external effects α1 = α2 = 1
2min x̃i

with x̃i = xi
1−αi

.

Notice that A1 − A2 are satisfied. Furthermore, x̃1 > x̃2, x̃1 = v1

v2

(

v2 + 1
2

)

et x̃2 = v2 + 1
2 .

Thus, we can determine

F1(x) =
2

2v2 + 1
x, F2(x) = 1 −

v2

v1
+

2v2

(2v2 + 1)v1
x,ER =

2v2 + 1

4

(
v2

v1
+ 1

)

The bidders’ payoffs are U"
1 = v1 − v2 + 1

2
v2

v1
and U"

2 = 1
4

In order to raise money for charity, we set up an optimal lobbying policy based on two steps.

The first step consists in making the low8 bidder aware of the charity auction and increases her

adjusted-value. It is well known reducing the asymmetry that exists between bidders tends to

increase competition, and thus leads to a higher rent for the auction. Once the updated-value

of the low bidder is equal to the adjusted-value of the high bidder, the second step is to make

both agents sensitive to the auction so as to keep their adjusted-values equal. It is important

not to work only on the sensitiveness of the bidder with the highest valuation in order to avoid

disastrous consequences in terms of revenue.

When the bidders have the same adjusted-value, they get an identical probability to win

F (x) =
x

v
for x ∈ [0, v]. Finally, the optimal level of altruism (α1,α2) that gives the maximum

revenue for the auction is given by α2 = 1 −
v2

v1
(1 − α1).

Thus, as opposed to Baye et al. (1993), in charity auctions it is not conceivable to exclude

bidders with higher values.

3.2 Non-Linear Externalities

We extend our result to non-linear externalities. We consider two bidders only, such that the

expected utility is given by,

EU1(x1,X2) = F2(x1) (v1 + EX2
(h1(x1,X2)\X2 ≤ x1) − x1) + (1 − F2(x1))(EX2

(h1(x1,X2)\X2 ≥ x1) − x1)

EU2(x2,X1) = F1(x2) (v2 + EX1
(h2(X1, x2)\X1 ≤ x2) − x2) + (1 − F1(x2))(EX1

(h2(X1, x2)\X1 ≥ x2) − x2)

8The low and high bidders are respectively the active bidders with the second and the first highest adjusted-

values.
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with EX2
(h1(x1,X2)\X2 ≤ x1) =

1

F2(x1)

∫ x1

0
h1(x1, x2)dF2(x2)

It can also be written as

{

EU1(x1,X2) = F2(x1)v1 − x1 + EX2
h1(x1,X2)

EU2(x2,X1) = F1(x2)v2 − x2 + EX1
h2(X1, x2)

Bidder i takes part in the auction if her expected utility is higher than her reservation utility:

∃ xi such that EUi(xi,Xj) ≥ EXjhi(0,Xj)

Proposition 2. Given assumptions A1 − A2 and that the two bidders have a common support

[0, b], the mixed strategy equilibrium exists.

Proof. See in Appendix. !

The expected utility’s derivative is a Fredholm equation of the second type. The existence

of a solution depends on a condition made on the kernel (the kernel being the externality here).

Nonetheless, given that the solution is a distribution function defined on a closed and convex

set of continuous distribution functions, we are able to show its existence by using the second

Schauder’s theorem without this standard condition. The solution seems to be unique only in

very specific cases, as said in the literature about Fredholm equations.9

4 Second-Price All-Pay Auction

In a second-price all-pay auction, the payment rule is the following: the winner pays the second

highest bid and others pay their own bid. Our purpose is now to determine bidders’ strategies

and revenues. In the next section, we will compare the rents obtained in first-price and second-

price auctions, as well as winner-pay and all-pay auctions. As a result, we will know which of

these designs is the best to raise money for charity.

It is not necessary to find each agent’s probability distribution’s support in order to deter-

mine the mixed strategy Nash equilibrium. Actually, we only need to assume that each bidder

i’s offer, xi belongs to a strategy space Xi ⊆ [0,+∞). For the same reasons as in the first-price

auction, the bidders’ minimum valuations is zero. As noticed before, assumption A2 allows us

to write that αi < 1/2.

As for now, we have exclusively studied mixed strategy equilibria. Yet, there are also pure

strategy Nash equilibria. Note that these equilibria are degenerated as in the situations without

externalities. We give only an intuitive argument for the two bidder case. Bidder i’s expected

utility is given by

Ui(x) =








vi + (2αi − 1)xj if xi > xj
vi

2
+ (2αi − 1)xi if xi = xj

(2αi − 1)xi if xi < xj

As before, we note x̃i bidder i’s indifference price, such that x̃1 > x̃2. Let xi be bidder i’s offer.

There are two pure strategy Nash equilibria,

(0,β1) with β1 ∈ (x̃1,+∞)

(β2, 0) with β2 ∈ (x̃2,+∞)

9Kanwal (1971) has written a very complete book about these questions while Ledder (1996) gives a simple

method and finds another condition to prove the solution’s uniqueness.
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The revenue earned for the auction is zero.

4.1 Two Bidders

The strategies’ supports are no mass points and are continuous. If two bidders have a mass

point, a deviation increases their probability to win. Furthermore, if one bidder has a mass

point, his rival will never choose an action below this point. Thus, this bidder’s mass point can

only be zero. The expected utility given by (2) is

EUi(xi,X−i) =

∫ xi

0
(vi − (1 − 2αi)x)dFj(x) − (1 − 2αi)xi(1 − Fj(xi))

In the second-price all-pay auction with two bidders, the payment rule leads to t1(x) = t2(x).

Thus, when a bidder wins she pays his rival’s bid. Additionally, each bidder benefits from two

externalities, one of which is associated to her own bid, and this other one of which is associated

to her rival’s bid.

Proposition 3. There is a unique mixed strategy Nash equilibrium. Bidder i’s strategy is given

by an exponential distribution defined as follows,

Fi ∼ E

(
1 − 2αj

vj

)

and ER =
v1

1 − 2α1
+

v2

1 − 2α2

Proof. See in Appendix. !

4.2 n Bidders

It is more difficult to find the equilibrium with n bidders. We note Gi(x) =
∏

j "=i Fj(x). It

follows that the expected utility (2) can be written

EUi(xi,X−i) =

∫ xi

0
(vi − (1 − αi)x)dGi(x) − (1 − αi)xi(1 − Gi(xi))

+ αi

∑

l "=i

∫

R+

xl

(

1 − 1xi≤xl

∏

k "=l,i

Fk(xl)

)

dFl(xl) (3)

+ αi

∑

l "=i

(∫

R+

∫ xl

xi

∑

k "=l,i

xk

∏

m"=i,k,l
k "=l

Fm(xk)dFk(xk)dFl(xl) + xi

∏

m"=i,l

Fm(xi)(1 − Fl(xi))

)

The transition from (2) to (3) is explained in the proof of the proposition 4 given in appendix.

The first line’s two terms represent bidder i’s payoff condition to her winning or losing the

auction, given the externality that arises from her own action. The other lines represent the

externalities that come from her competitors’ actions (whether they lose or win).

The first of those two lines describes the situation when bidder l (l )= i) loses the auction. In the

last line bidder l wins the auction; we distinguish situations where bidder i’s bid is the second

highest offer from situations in which it is not. Each bidder’s offer can be the second highest bid

and we hold account of it (sign sum under the integral). The bidder who makes an offer between

bidder i and bidder l’s offers puts forward the second highest bid. The other part gives the

amount of money that bidder l will have to paid when i offers the second highest bid. Indeed,
∏

m"=i,l

Fm(xi)(1 − Fl(xi)) is the probability that every bidder except l makes a lower bid than i .

This probability is multiplied by the sum offered by the bidder i.

10



Note that this expression of expected utility is not valid unless there are at least four bidders.

In order to study the three bidders case, it is necessary to (slightly) change the third line. To do

this, we must stop computations to the second line of term BI in the appendix. Thus, this term

is writing αi

∑

l "=i

(∫

R+

∫ xl

xi

xkdFk(xk)dFl(xl) + xiFk(xi)(1 − Fl(xi))

)

, where k is not i, neither

l. We do not explain this calcul more.

Proposition 4. ∀i > 2 and suppose assumptions A1 − A2 hold, only two bidders among n

participate actively to the auction.

Proof. See in Appendix !

The bidders’ mixed strategies are given by the proposition 3. The weakness of this result is

we do not know which bidders are going to participate. Thus, it could happen that the two

bidders with the highest values participate or the ones with the lowest values. There are some

consequences on the expected revenue.

5 Revenue Comparisons

In this section, we investigate the performance of the revenues and the expected revenues ob-

tained with the different designs.

We consider here that the two bidders have the same altruism level i.e. α1 = α2 = α. Hence,

the bidder with the highest value is also the one with the highest adjusted-value. The expected

revenue becomes

ERAP1 =
1

2

v2

1 − α

(
v2

v1
+ 1

)

et ERAP2 =
vi + vj

1 − 2α
i, j ∈ N

Indexes APi and WPi correspond to ist-price all-pay and winner-pay auctions. If bidders are

complete altruists, i.e. αAP1 −→ 1 and αAP2 −→ 1/2, the expected revenues diverge as Goeree

et al. (2005) predicted. Thus, the altruism level is an essential element to determine the expected

revenue. When bidders’ altruism levels are the same, the rent for the auction is at least equal

to the rent one would obtain with non-altruistic bidders.

In the following, we use Ettinger (2002)’s results about winner-pay auctions with externality

to compare the ones with our results about all-pay auctions with externality. These results are

sum up in this table:

v1 > v2 > v3 > vi ∀i > 3 RWP1 RWP2
ERAP1

ERAP2

α > 0 v2 v1

1
2

v2

1 − α

„

v2

v1

+ 1

«

v1 + vi

1 − 2α
, i #= 1

α = 0 v2 v2

v2

2

„

v2

v1

+ 1

«

v1 + vi, i #= 1

Table 1: Revenues and expected revenues for every design

Let us consider homogeneous values. Then, we find the same qualitative results as Goeree

et al. (2005) does. In particular, the second-price all-pay auctions rent dominates the first-price

all-pay auctions rent which dominates the winner-pay auctions rent.

We can notice that the second-price all-pay auction gives a higher rent than other auction

designs as long as the bidder with the highest adjusted-value takes part in the auction. On

the contrary, when this bidder does not take part in the auction, the ranking of the expected

11



revenue raised in the second-price all-pay auction depends on the asymmetry between bidders’

valuations. Moreover, if our setting is suited to charity dinners with complete information (for

example dinners organized by a local Rotary Club) first-price all-pay auction contradicts Goeree

et al. (2005)’s qualitative results. In order to analyze the impact of asymmetry on rents, we use

the following definition.

Definition. The level of asymmetry between bidders’ valuations will be considered “high” if

v1 − v2 > 2αv1, “medium” if 2αv1 > v1 − v2 > 2αv1 − v1 + v2
v2

v1
and “low” if v1 − v2 <

2αv1 − v1 + v2
v2

v1
.

Proposition 5. We assume that αi = α ∀i and that the bidder with the highest value takes part

in the second-price all-pay auction. Then, this design gives the highest revenues:

ERAP2 > RWP2 ≥ RWP1 and ERAP2 > ERAP1

All other things being equal, ERAP1 > RWP2 if and only if the level of asymmetry between

valuations is “low”, RWP2 > ERAP1 > RWP1 if and only if this level is “medium”, and RWP1 >

ERAP1 if and only if it is “high”.

Proof. Computations. !

The second part of this proposition can be interpreted in two independent ways.

• First of all, given α, the (first-price) all-pay auction is dominated by the first-price winner-

pay auction when asymmetry is “high”. Furthermore, this all-pay auction raises more

money than the second-price winner-pay auction when asymmetry is “low”. Thus, in order

to determine which design is better to raise money for charity, we need to know the level

of asymmetry between bidders.

• Given v1 and v2, the (first-price) all-pay auction is dominated by first and second-price

winner-pay auctions when the bidders’ altruism level is less than 1
2 (1 − v2

v1
). Moreover,

the all-pay auction outperforms the first-price auction and is dominated by the second-

price auction if the bidders’ altruism level is inferior to 1 − 1
2

v2

v1
(v2

v1
+ 1) and superior to

1
2(1− v2

v1
). In particular, the threshold above which this all-pay auction raises more money

than the first-price winner-pay auction is less than 1
2 . Finally, the first-price all-pay auction

outperforms the winner-pay auctions when α > 1 − 1
2

v2

v1
(v2

v1
+ 1).

The more asymmetry increases, the more the level of the altruism must also increase for

the first-price all-pay auction to give a higher rent than winner-pay auctions. The two graphs

below show the limits (in terms of rent domination) for the first-price all-pay auction. We use

two parameters: altruism level and the asymmetry among bidders’ values (from left to right,
v2

v1
varies from 0.9 to its limit in zero with a 0.1 step).

12
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Figure 1: ERAP1 > RWP2
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Figure 2: ERAP1 > RWP1

As a consequence, in order to determine which design is better to raise money for charity

we need to know both the level of asymmetry and altruism. Contrary to the results of Goeree

et al. (2005), here the first-price all-pay auction does not outperform the winner-pay auctions

every time.

6 Individual Reserve Price

In this section, we determine the impact of minimum bids imposed on rent for two auction

designs: first-price all-pay and winner-pay auction.10 In the rest of the paper, we will note

ti(x) = xi for all i ∈ N . Moreover, we analyze only the two bidders case (who have the highest

valuations). Indeed, only these two bidders participate in all-pay auction as in the third section.

The charity auction organizer imposes an individual bid on everybody: bidder i has to offer

a bid at least equal to tvi so as to take part in the auction. This implies that the auctioneer

also knows the bidders’ value, so that she can impose a rate t on them. This assumption is

not unrealistic. This phenomenon could occur in a local service club (like a local Rotary club)

or during a show business dinner. Indeed, the auctioneer could obtain this kind of information

through the staff of the local community or because she is herself a member or a friend of the

participants.

As expected, there is no pure strategy Nash equilibrium.11 In order to find the strategies

and the probability of entry, we focus on the situation where every bidder wants to participate.

Lemma 1. At equilibrium, the bidders’ minimum bids are asymmetric. They are tv1 for bidder

1 and tv2 for bidder 2. In fact, the latter’s density is equal to zero on the support (tv2, tv1].

With probability one, bidder i’s offer will be at least equal to tvi. We conclude that min xi ≥

tvi. Now, let us assume that min x1 = x > tv1. Then P(X1 < {x}) = 0, because bidder 1 never

makes any offer in the interval (tv1, x). His competitor offers either tv2 or x + ε for ε > 0, a bid

between these two values being strictly dominated. Then, if bidder 1 bids x − ε her probability

of winning is not affected. Thus, his minimum bid is tv1. Moreover, bidding in the interval

(tv2, tv1] is strictly dominated for bidder 2. Hence, P(tv2 < X2 ≤ tv1) = 0 and if she bids

tv2 < x ≤ tv1 he loses for sure. When she offers x = tv2 she does not affect his probability of

10We would have similar results with the second-price winner-pay auction instead of the first-price. As the

latter is more used than the former for charity auctions, we investigate this one.
11To see this, let us assume that x1 ≥ x2. As before, we have to consider two situations. First, bidder 2 can

overbid. It contradicts the initial assumption. If she cannot overbid, given A2, her best reply is to offer tv2.

Hence, bidder 1 bids tv1. The equilibrium is unstable.
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winning but increases her payoff by A2. Furthermore, she increases her probability of winning

by bidding x = tv1 + ε for ε > 0. Bidder 2’s density function is zero on the interval (tv2; tv1].

Lemma 2. At equilibrium, bidders offer the same maximum bid x̄ = (1 − α2t)x̃2. Every bidder

has a mass point for his minimum bid and a mass point can never be on (tv1, x̄].

Even if the payoff functions are the same that the ones pointed out in section 3, that is to

say

EU1(x,X2) = F2(x)v1 − (1 − α1)x + α1EX2, EU2(x,X1) = F1(x)v2 − (1 − α2)x + α2EX1

the expected level of the bidders’ reservation utilities are changed. Indeed, as the minimum bids

are positive, bidder i’s reservation utility is αiEXj + αitvi: he participates to the auction if she

gets at least αiEXj (as before) plus the reward of her own minimum bid. Hence, the maximum

bid is equal to the lowest of the two bidders’ indifference pricing. At her indifference pricing,

bidder i is indifferent between taking part in the auction or not, that is to say to offer tvi. Thus,

the maximum bid is x̄ = (1 − α2t)x̃2.

Given the former analysis, bidder 2 has a mass point on tv2. Bidder 2’s strategy space is

{tv2} ∪ (tv1; x̄]. For similar reasons as in section 3 and for the case without externality, having

a mass point on the bidders’ common strategy set is dominated for every bidder (since they

deviate).12

For now, we only consider the bidders’ common strategy set, that is to say (tv1; x̄]. A bidder’s

equilibrium payoff is a constant function on her whole strategy set.13 Hence,

F2(x)v1 − (1 − α1)x + α1EX2 = v1 − (1 − α1)x̄ + α1EX2 (4)

for all x ∈ (tv1; x̄]. The left member of this equation is the bidder 1’s expected utility for all

bids in (tv1; x̄], while the right member is bidder 1’s payoff when he bids x̄. In the same way,

bidder 2’s bid is such that

F1(x)v2 − (1 − α2)x + α2EX1 = v2 − (1 − α2)x̄ + α2EX1 (5)

and thus belongs to the interval {tv2} ∪ (tv1; x̄].

In particular, for all bids in the interval (tv1, x̄] and for α1 = α2, we find that

v2(1 − F1(x)) = v1(1 − F2(x))

As bidder 2 has a mass point on tv2, the limit in tv1 gives us the following result14

F1(tv1) = 1 −
v1

v2
+

v1

v2
F2(tv1)

Using (4) and (5), it is easy to determine the bidders’s distribution functions. We specify

them in proposition 6 below. As F2(tv1) is not equal to 1 − v2

v1
(the value in zero without any

externality and minimum bids imposed) bidder 1 has indeed a mass point on tv1. The bidders’

distribution functions are drawn below.
12We give here a well-known argument (see for instance Che and Gale (1998)) to support this idea. If only

one bidder has a mass point on the support that is common to both bidders, her competitor’s density function

below this mass point is equal to zero. Hence, she is going to move and her mass point will be the support’s

lower bound. This action does not affect his probability of winning, but it increases her payoff if she wins. In

a similar way, if bidders have a mass point, deviating increases their probability of winning. Consequently, the

result follows.
13In the following we use similar technical arguments than Che and Gale (1998).
14As P(tv2 < X2 ≤ tv1) = 0 it follows that lim

x→tv1

F2(x) = F2(tv1) = F2(tv2).
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Figure 3: Cumulative distribution functions at the equilibrium

Proposition 6. Given the bidders’ adjusted-values, (1 − α1t)x̃1 and (1 − α2t)x̃2, there is a

unique Nash equilibrium. The bidders’ strategies for all x ∈ (tv1; x̄] are

F1(x) = α2t +
x

x̃2
and F2(x) = 1 +

x − x̄

x̃1
.

Every bidder has one point mass: it is tv1 for bidder 1 and tv2 for bidder 2.

A bidder’s decision is given by her probability to participate,

1 − F1(tv1) = 1 − α2t −
tv1

x̃2
and 1 − F2(tv2) =

x̄ − tv1

x̃1

Additionally, if the maximum bid x̄ is inferior to bidder 1’s minimum bid x̄ ≤ tv1, offering a

higher bid than their minimum bid is dominated for all bidders. Hence, ER = t(v1 + v2) for all

t ≥ t̄ where t̄ ≡
x̃2

v1 + α2x̃2
.

Here, we consider the case where 0 ≤ t < 1 only.15

Proposition 7. Given the distribution functions F1(.), F2(.) at equilibrium, the expected revenue

raised for charity is

ER =







x̄2 x̃1 + x̃2

2x̃1x̃2
+ (tv1)

2 x̃1 − x̃2

2x̃1x̃2
+ t2v1α2 + tv2

(

1 +
tv1 − x̄

x̃1

)

if t < t̄

t(v1 + v2) otherwise

15t > 1 is not appropriate here. Indeed, the minimum bid of one bidder could be higher than the maximum

bid.
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Proof. We only have to compute the expected revenue associated to every bidder when t < t̄:

ERi =

∫ x̄

tv1

xfi(x)dx + tviFi(tv1)

= x̄

∫ x̄

tv1

fi(y)dy −

∫ x̄

tv1

∫ x

tv1

fi(y)dydx + tviFi(tv1)

= x̄(Fi(x̄) − Fi(tv1)) −

∫ x̄

tv1

Fi(x) − Fi(tv1)dx + tviFi(tv1)

= x̄ −

∫ x̄

tv1

Fi(x)dx + (tvi − tv1)Fi(tv1)

Hence, ER1 =
x̄2 + (tv1)2

2x̃2
+ t2v1α2 and ER2 =

x̄2 − (tv1)2

2x̃1
+ tv2

(

1 +
tv1 − x̄

x̃1

)

!

We must analyze the impact of t on the rent. This will allow us to determine whether impos-

ing a minimal bid to every bidder permits to improve the first-price all-pay auction’s efficiency

compared to the first-price winner-pay auction or not. In order to do so, we assume that bidders

have the same altruism attitude, such that α = α1 = α2. We analyze only the revenue achieve-

ment for t ≤ t̄. After an increase in t, there are two contradictory effects. The bidders’ support’s

lower bound increases while its upper bound decreases. As a consequence, the expected revenue

can increase or decrease. The result depends on which effect dominates the other.

First of all, let us assume that the asymmetry between the bidders’ values is considered “high”

such that v1 − v2 > 2αv1. As a consequence, the all-pay auction expected revenue is increasing

in t. The low altruism level of the bidders offsets the impact of t on the bidders’ maximum

bid, so that the effect on the lower bound dominates.16 As was pointed out before, when t = 0

the all-pay auction expected revenue is strictly dominated by the first-price winner-pay auction

revenue.17 Given this result, the all-pay auction gives a higher revenue than the winner-pay

auction for a value of t that offsets the impacts of asymmetry. The graph below illustrates this

result for v1 = 20 and v2 = 5. Each curve is the expected revenue when asymmetry is considered

“high” and for a specific value of t. The lower envelope curve is given by t(v1+v2). The first-price

winner-pay auction revenue is given by the dashed curve.

0.05 0.1 0.15 0.2 0.25 0.3
t

2

4

6

8

Figure 4: Expected revenue with a “high” asymmetry

16We saw in section 5 that v1 − v2 > 2αv1 could also be interpreted as a low altruism level.
17The first-price winner-pay auction gives a revenue v2 with a rate t inferior to v2

v1
< t̄. For higher rates, the

revenue becomes tv1 < t(v1 + v2).
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It is obvious that situations where asymmetry is “medium” or “low” give the same result:

all-pay auction raises more money than winner-pay auction. Yet, it is interesting to draw the

expected revenues associated to those asymmetry levels. Here, the decreasing effect of the

support’s upper bound is higher than the increasing effect of the lower bound below a given

value of t, where dynamics is reversed.

!

"
t̄ t

ERt=0

ERt=t̄

ER

Figure 5: ER for α > max{ v1

v1+v2
, v1−v2

2v1
}

!

"
t̄ t

ERt=0

ERt=t̄

ER

Figure 6: ER for v1

v1+v2
> α > v1−v2

2v1

Proposition 8. Imposing a minimal bid to every bidder permits to improve the first-price all-

pay auction’s efficiency compared to the first-price winner-pay auction. There is a threshold t

above which the all-pay auction dominates the winner-pay auction when the values’ asymmetry

is considered “high”.

Example 2. We focus again on the example 1: two bidders benefit the same externality α1 =

α2 = 1
2min x̃i

. Hence, the two bidders’ maximum bid is x̄ = v2 + 1−t
2 and the bidders’ mixed

strategies are

F1(x) =
2x + t

2v2 + 1
and F2(x) = 1 +

v2(2x − 2v2 + t − 1)

v1(2v2 + 1)

Furthermore, the expected revenue when t < 2v2+1
2v1+1 is

ER =
1

v1(2v2 + 1)

[(

v2 +
1 − t

2

)2

(v1+v2)+(tv1)
2(v1−v2)+t2v2

1+tv1v2(2v2+1)+2tv2
2

(

tv1 − v2 −
1 − t

2

)]

The graphic below gives all the charts of expected revenue with t < t̄, v2 = 5 and v1 increasing

from 7 to 20 with a 0.5 step.18 Example 1 (without minimum bids imposed) is equivalent to

the situation when t = 0. Thus, when the values of t are high enough, we can notice that the

first price all-pay auction is better than the first-price winner-pay auction with “high” level of

asymmetry.

18v1 ≥ 7 ensures that the asymmetry between values is “high”.
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7 Conclusion

This paper shows that all-pay auctions do not raise higher revenue for charity than winner-pay

auctions every time. Indeed, this result depends on the asymmetry between bidders. In partic-

ular, winner-pay auctions outperforms first-price all-pay auction when the asymmetry between

bidders is strong. That contradicts Goeree et al. (2005)’s results. Our work can be related to

the one of Carpenter et al. (2008). Indeed, they have found in a field experiment that first-price

winner-pay auction outperforms first-price all-pay auction. One of the explications could be a

strong asymmetry between bidders.

This work could be completed by a laboratory experiment. In fact, only one lab experiment

(Onderstal and Schram (2008)) has been implemented until now with opposite results to the

field experiment of Carpenter et al. (2008). Onderstal and Schram (2008) find similar results to

Goeree et al. (2005). However, our results are quite different from Goeree et al. (2005)’s because

of the introduction of asymmetric valuations. That is why, it would be interesting to test our

prediction with the introduction of asymmetry between the bidders’ valuations: all-pay auctions

can be dominated by winner-pay auctions. That could also be the occasion to test the impact

of altruism on agents’ behavior. Finally, theoritical and experimental works should be led about

the form of the externalities that we considered here linear.

All-pay auctions with externalities that are independent of the winner’s identity but func-

tions of the amount raised have other applications in economy.

Here, we focus on the team theory. This illustration could be connected to other forms of

team works (particularly in firms) leading to social promotion. Let’s consider, a team sport

like basket-ball. Every year during the American championship of basket-ball (the NBA) or

the all-stars game finals, the most valuable player (MVP) is elected. During such games, every

player makes the highest effort to win the event but also to be elected the MVP of the game.

Each player takes advantage of the team’s effort to win the game and thus can be elected MVP

thanks to the externality of the total amount of the efforts made. vi represents the player’s value

for the MVP title. Therefore, her effort xi has two goals: to win the game and be elected MVP.

When a player is not elected MVP, he takes advantage of the externality by winning the game.

As a player tries to win the game by making the highest effort, he helps also her team mates to

be elected MVP .

In a recent paper, Edlin (2005) displays a tax credit method to incite people to give more

for charity purposes. He suggests to deduce the agents’ donations to charity organizations from
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their income tax (limited to a certain percent of their income). The agents are free to choose the

organization they want to help. This method should improve the all-pay auctions performance

for charity and lets an open question for futur researches.

Appendix

Proof of proposition 1. Let us consider the two bidder case. If we divide the bidders’ i expected

utility by 1 − αi, we almost obtain the same bidders’ expected utility as in the case without

externality given by Hillman and Riley (1989). However, after this operation has been made,

there remains an important difference between the bidder’s expected utility we find and the one

Hillman and Riley (1989) find. Indeed, there is a constant in their function while our function

has an externality αj
EXj

1 − αi
. Thus, we only have a constant in our function at the equilibrium.

That makes an important difference. By this division the result for the two bidder case follows

as in Hillman and Riley (1989). Yet, we cannot use the proof of Hillman and Riley (1989)

to determine the uniqueness when there are more than two bidders. Indeed, bidders take into

account the positive amount payed by each opponent. Thus, even if externalities are constant

at the equilibrium, bidders do not take advantage of the same positive externalities. Let us

assume that a third bidder takes part in the auction. Her expected utility is equal to or higher

than α3EX1 + α3EX2. Define x̃i = xi
1−αi

. Given her two rivals’ mixed strategies, it follows that

F1(x3)F2(x3)v3 ≥ (1−α3)x3, which is equivalent to x̃1(x̃3 − x̃2) ≥ x̃3(x̃2 − x3). As x̃2 > x̃3 and

x̃3 ≥ x3, there is a contradiction. This result can be generalized to a game with n bidders. To

show that there is a unique solution, here we could apply the lemma 14’ of Baye et al. (1990):

x̃i = 0 ∀i > 2.19 !

Proof of proposition 2. The sketch of this proof follows the same logic as the proof of Proposition

2 in Anderson et al. (1998). For similar reasons as the ones pointed out without externalities,

the two players make their bids on the common support [0, b] and the density function, F ′
i = fi

exists. The set of equilibria in mixed strategies is completely characterized by a Nash equilibria

where only pure strategies which are better responses to the others strategies are played with a

strictly positive probability. All of these strategies lead to the same expected utility. Next, we

denote λ = 1
vi

and ignore the suffix.

Let T be an operator such as T : F (x) /−→ TF (x) and

TF (x) ≡ λx − λ

∫ b

0
h(x, y)f(y)dy + constant (6)

As F is a continuous function, we restrict our study to the set of continuous functions on [0, b]

denoted C[0, b]. Especially, we consider D = {F ∈ C[0, b]\||F || ≤ 1} with ||.|| the supremum

norm. The set D, which includes all of the continuous distribution functions, is closed and convex

but not compact. Thus, to prove that (6) has a solution, we apply the following Schauder’s second

theorem:

Theorem (Schauder, 1930). If D is a closed convex subset of a normed space and E a relatively

compact subset of D, then every continuous mapping of D to E has a fixed-point.

19Actually, the proof of this lemma has to be slightly changed and be adapted to our setting. As the modifi-

cations are of minor importance, we do not give the details of the proof.
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To apply this theorem, we need to prove two parts. First, that T (D) ≡ E = {TF\F ∈ D}

is relatively compact.20 Second, T is a continuous mapping from D to E.

Showing that E is relatively compact is equivalent to showing that E is uniformly bounded

and equicontinuous (Ascoli’s theorem) on [0, b]. Generalization of the assumption A2 leads to
∂h
∂x (x, y) < 1 for all y ∈ [0, b]. Then, TF (x) is nondecreasing. Thus |TF (x)| ≤ TF (b) = 1, for

all x ∈ [0, b]. Let us show that E is equicontinuous. We need to show that∀ε,∃η,∀F ∈ E such

that |TF (x1) − TF (x2)| < ε when |x1 − x2| < η.

|TF (x1) − TF (x2)| =

∣
∣
∣
∣
λ(x1 − x2) − λ

∫ b

0
[h(x1, y) − h(x2, y)]f(y)dy

∣
∣
∣
∣

≤ λ

[

|x1 − x2| +

∣
∣
∣
∣

∫ b

0
[h(x1, y) − h(x2, y)]f(y)dy

∣
∣
∣
∣

]

≤ λ|x1 − x2|

[

1 +
| supy∈[0,b][h(x1, y) − h(x2, y)]|

|x1 − x2|

]

< λη

[

1 +
| supy∈[0,b][h(x1, y) − h(x2, y)]|

|x1 − x2|

]

The function h is continuous and bounded on [0, b]. [0, b]is a compact which explains the result

of the last line. Denoted κ ≡ | supy∈[0,b][h(x1, y) − h(x2, y)]|. Thus, |TF (x1) − TF (x2)| < ε for

η = ε |x1−x2|
λ(|x1−x2|+κ) .

Now, let us prove the continuity of T . The operator T is continuous if, for all F1, F2 and for

all ε > 0, there exists a η > 0 such that |TF1(x)−TF2(x)| < ε when |F1 −F2| < η. Let us write

F1(x) = F2(x) + g(x) with −η < g(x) < η ∀x ∈ [0, b]. Henceforth

|TF1(x) − TF2(x)| =

∣
∣
∣
∣
− λ

∫ b

0
h(x, y)(f1(y) − f2(y))dy

∣
∣
∣
∣

≤ λ

∫ b

0
|h(x, y)||g′(y)|dy

≤ h(b, b)λ

∫ b

0
|g′(y)|dy

< h(b, b)λη

To go from the first to the second line, notice that F ′
1(x) − F ′

2(x) = g′(x). We use the fact that

h is a continuous function on [0, b] bounded by a maximum h(b, b) to go to the third line.

Hence, the difference between TF1 and TF2 is inferior to ε > 0 when η = ε
λh(b,b) . !

Proof of proposition 3. All mixed strategies at the equilibrium lead to the same expected utility.

Thus, we can completely characterize the set of equilibrium in mixed strategies. In particular,

the expected utility is zero for xi = 0:

EUi(xi,Xj) =

∫ xi

0
(vi − (1 − 2αi)x)dFj(x) − (1 − 2αi)xi(1 − Fj(xi)) = 0

Hence the Volterra integral equation

fj(x)vi = (1 − 2αi)(1 − Fj(x)) (7)

20A space is relatively compact when his closed span is compact.
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The solution is given by

Fj(x) = 1 − kjexp

(

−
(1 − 2αi)x

vi

)

x ∈ Xj kj ∈ R

Fj is a distribution function defined on Xj where the minima is zero and the maxima noted

x̃. As the distribution functions must verify Fj(0) = 0, Fj(x̃) = 1 and

∫ x̃

0
fj(x)dx = 1, we know

that Xj and [0;+∞) are merged but also that kj = 1. Henceforth,

Fj(x) = 1 − exp

(

−
(1 − 2αi)x

vi

)

x ∈ [0;+∞)

!

Proof of proposition 4. By (2) we have the expected utility:

EUi(xi,X−i) = vi

∏

j "=i

dFj(xj) − (1 − αi)

∫

R
n−1
+

ti(x)
∏

j "=i

dFj(xj)

︸ ︷︷ ︸

A

+αi

∫

R
n−1
+

∑

j "=i

tj(x)
∏

j "=i

dFj(xj)

︸ ︷︷ ︸

B

A represents bidder i’s expected payment when we take into account its own external effect.

The term B is the expected payment of bidder i’s rivals. αiB is the sum of the externalities of

bidder i’s rivals that i takes advantage of.

We can write A again as follow
∫

R
n−1
+

x(2)
1xi≥xj

∀j "=i

∏

j "=i

dFj(xj)

︸ ︷︷ ︸

AI

+

∫

R
n−1
+

xi1∃k/xk>xi

k "=i

∏

j "=i

dFj(xj)

︸ ︷︷ ︸

AII

The term AI is i’s expected payment when she wins i.e. he pays the second highest bid. AII is

i’s expected payment when she loses. She could then either be the second highest bidder or a

lower bidder.

AI =

∫

R
n−1
+

∑

j "=i

xj1 xk≤xj≤xi

∀k "={j,i},j "=i

∏

j "=i

dFj(xj)

=

∫

R+

∑

j "=i

xj1xj≤xi

{∫

R
n−2
+

∏

k "=i,j

1xk≤xj≤xi

∏

k "=i,j

dFk(xk)

}

dFj(xj)

=

∫

R+

∑

j "=i

xj1xj≤xi

{
∏

k "=i,j

∫

R

1xk≤xj≤xidFk(xk)

}

dFj(xj)

=

∫

R+

∑

j "=i

xj1xj≤xi

∏

k "=i,j

Fk(xj)dFj(xj)

=

∫ xi

0
xdGi(x)

We get the first line from the fact that x(2)1xi≥xj =
∑

j "=i

xj1 xk≤xj≤xi

∀k "={j,i},j "=i

. The independence of

the distribution functions explains how we go from the second to the third line. By denoting

dGi(x) =
∑

j "=i

∏

k "=i,j

Fk(x)dFj(x), we obtain the final result.
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AII =

∫

R
n−1
+

xi(1 − 1i∈Q(x))
∏

j "=i

dFj(xj)

= xi − xi

∏

j "=i

Fj(xi)

= xi(1 − Gi(xi))

The independence of the distribution functions, explains how we go from the first line to the

second.

B can be written also like

B =
∑

l "=i

∫

R
n−1
+

tl(x)
∏

j "=i

dFj(xj)

=
∑

l "=i

{∫

R
n−1
+

x(2)
1xl≥xk

∀k "=l

∏

j "=i

dFj(xj)

︸ ︷︷ ︸

BI

+

∫

R
n−1
+

xl1∃k/xl<xk
k "=l

∏

j "=i

dFj(xj)

︸ ︷︷ ︸

BII

}

We add all of the expected external effects. The case where player l )= i takes the second higher

bid is distinguished from the others.

BI =

∫

R
n−1
+

∑

k "=l

xk1xm≤xk≤xl
∀m"={k,l}

∏

j "=i

dFj(xj)

=

∫

R
n−1
+

∑

k "=l

xk

∏

m"={k,l},k "=l

1xm≤xk≤xl

∏

j "=i

dFj(xj)

=

∫

R
n−1
+

∑

k "=i,l

xk

∏

m"=i,k,l
k "=l

1xm≤xk≤xl
dFm(xm)1xi≤xk≤xl

dFk(xk)dFl(xl)

+

∫

R
n−1
+

xi

∏

m"=i,l

1xm≤xi≤xl

∏

j "=i

dFj(xj)

=

∫

R2
+

∑

k "=i,l

xk

∫

R
n−3
+

∏

m"=i,k,l
k "=l

1xm≤xk
dFm(xm)1xi≤xk≤xl

dFk(xk)dFl(xl)

+ xi

∫

R+

∏

m"=i,l

{∫ xi

0
dFm(xm)

}

1xi≤xl
dFl(xl)

=

∫

R2
+

∑

k "=i,l

xk

∏

m"=i,k,l
k "=l

Fm(xk)1xi≤xk≤xl
dFk(xk)dFl(xl) + xi

∏

m"=i,l

Fm(xi)(1 − Fl(xi))

=

∫

R+

∫ xl

xi

∑

k "=i,l

xk

∏

m"=i,k,l
k "=l

Fm(xk)dFk(xk)dFl(xl) + xi

(
∏

m"=i,l

Fm(xi) − Gi(xi)

)
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BII =

∫

R
n−1
+

xl(1 − 1l∈Q(x))
∏

j "=i

dFj(xj)

=

∫

R
n−1
+

xl

∏

j "=i

dFj(xj) −

∫

R
n−1
+

xl

∏

k "=i,l

(

1xk≤xl
dFk(xk)

)

1xi≤xl
dFl(xl)

=

∫

R
n−1
+

xl

∏

j "=i

dFj(xj) −

∫

R+

xl1xi≤xl

{∫

R
n−2
+

∏

k "=i,l

1xk≤xl
dFk(xk)

}

dFl(xl)

=

∫

R+

xldFl(xl) −

∫

R+

xl1xi≤xl

∏

k "=i,l

Fk(xl)dFl(xl)

=

∫

R+

xl(1 − 1xi≤xl

∏

k "=i,l

Fk(xl))dFl(xl)

Hence

EUi(xi,X−i) =

∫ xi

0
(vi − (1 − αi)x)dGi(x) − (1 − αi)xi(1 − Gi(xi))

+ αi

∑

l "=i

∫

R+

xl(1 − 1xi≤xl

∏

k "=i,l

Fk(xl))dFl(xl)

+ αi

∑

l "=i

(∫

R+

∫ xl

xi

∑

k "=i,l

xk

∏

m"=i,k,l
k "=l

Fm(xk)dFk(xk)dFl(xl) + xi

∏

m"=i,l

Fm(xi)(1 − Fl(xi))

)

Next, we will note

Gil(x) =
∏

k "=i,l

Fk(x) et G′
il(x) =

∑

j "=i,l

∏

k "=i,l,j

Fk(x)dFj(x)

As the expected utility is constant at the equilibrium, the FOC leads to

viG
′
i(x) − (1 − αi)(1 − Gi(x)) + αi

∑

l "=i

Gil(x) − αi

∑

l "=i

Gil(x)Fl(x) − αix
∑

l "=i

G′
il(x)Fl(x) = 0

Notice that (n − 1)Gi(x) =
∑

l "=i

Gil(x)Fl(x) and (n − 2)G′
i(x) =

∑

l "=i

G′
il(x)Fl(x) henceforth

(vi − αix(n − 2))G′
i(x) + (1 − αin)Gi(x) = (1 − αi) − αi

∑

l "=i

Gil(x) ∀i ∈ {1, ..., n} (A1)

This result is true for all n > 3. The closed characterization of the solution is very difficult.

Yet, we can deduce the solution by an alternative way. Indeed, let Fi and Fj be the mixed

strategies of the two bidders i and j. We can notice that the derivative of the expected utility of

a third bidder k Hk(x) = ∂EUk
∂x (xi,X1,X2) is a monotonous increasing function. Furthermore,

Hk(0) = −(1 − αk) and limx→+∞ Hk(x) = 0. Thus, given the mixed strategies of i and j, k do

not participate.

This result can easily be extended to a number n of bidders. For that, we should use recurrence.

!
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