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wages and a constant mortality rate. In the first extension we study the implications for 
microeconomic decisions and macroeconomic outcomes of a hump-shaped life-cycle profile 
in labour productivity, whilst in the second extension we postulate a realistic mortality 
process. Our main findings are that the limited availability of annuities induces agents to 
retire early in the first two models, but later in the model with age-dependent mortality. In all 
cases, the general equilibrium repercussion is that economic growth is lower under imperfect 
annuities than with perfect annuities. 
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1 Introduction

Economic wisdom suggests that annuities are welfare maximizing in the presence of life-time

uncertainty (Yaari, 1965). Surprisingly, however, the availability of annuities around the

world is severely limited (Cannon and Tonks, 2008). Taking this observation into account,

numerous studies have investigated the implications of the limited availability of annuities on

life-cycle choices made by individuals (see, for instance, Abel, 1985, Hurd, 1989, and Leung,

1994, 2007).

The limited availability of annuities does not only affect decisions of individuals. Indeed,

this financial imperfection also has aggregate effects on the economy through the market for

loanable funds and the labour market. Somewhat surprisingly, however, this macroeconomic

effect of imperfect annuity markets has only received scant attention in the literature. In the

current paper we elaborate on exactly this point. That is, we study the implications of an

imperfect annuity market on both the consumption, labour supply, retirement, and saving

decisions by individual agents and the general equilibrium repercussions thereof.

We study the relationship between the annuity market imperfection and economic growth

by developing an overlapping generations model featuring endogenous growth. Individuals

choose labour supply endogenously. We model the annuity market imperfection by introduc-

ing a load factor which renders the interest rate on annuities less than actuarially fair. As

a result, this load factor leads to profits for the annuity firms, which are redistributed to

the agents in a lump-sum fashion. In the core model agents face a constant mortality rate

(as in Blanchard, 1985) and constant productivity over their life-cycle. Although convenient

to analyze, the core model suffers from a number of empirical deficiencies that might bias

our results. To address these deficiencies we study two extensions, namely age-dependent

productivity and mortality. We do so in isolation at first, and then in concert.

Our main finding is that an imperfect annuity market leads to a reduction of the economic

growth rate, although the quantitative effect is rather small in a plausibly calibrated version

of the model. This conclusion derives from the fact that overpriced annuities retard the

accumulation of capital, which constitutes the engine of growth in our model. Furthermore,

we find that incorporating realistic aspects of the life-cycle has important effects on the

quantitative results. That is, whereas the core model suggests that a modest increase in the

load factor causes a reduction in the growth rate of 28 basis points (from 1% per annum
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to 0.72%), a plausibly calibrated model–featuring both extensions mentioned above–only

suggests a reduction of about 9 basis points. This discrepancy is a direct consequence of

the fact that the constant mortality rate featuring in the core model kills off the young too

quickly and the old too slowly.

In addition we find that labour supply and–especially–retirement, are hardly affected by

an imperfect annuity market. In the calibrated model, the increase in the load factor causes

agents to retire 2 months later and to supply only marginally less labour during their active

career. Again we find that a correctly modeled mortality structure is crucial. That is, in the

core model agents retire 18 months early and reduce labour supply by 10% during their active

career.

From a theoretical point of view two findings stand out. First, we find that, in the presence

of annuity market imperfections and with age-dependent mortality, consumption exhibits a

hump-shaped profile whereas for perfect annuities it is ever increasing. This is in line with the

results of Bütler (2001) and Hansen and İmrohoroğlu (2008) who show that such imperfections

lead the agents to discount future consumption by their mortality rate. Second, we find that

asset accumulation decreases in the presence of an imperfect annuity market. A similar result

is provided by Abel (1985) and Fuster (1999) who show that asset accumulation decreases

if the elasticity of intertemporal substitution is not less than unity and there is steady state

growth.

Previous work on the limited availability of annuities has mainly focused on individual

choices, disregarding labour supply decisions and assuming the complete absence of annuity

markets; see, for instance, Abel (1985), Hurd (1989), and Leung (1994, 2007). Similarly,

the small number of computable general equilibrium (CGE) analyses have typically focused

on the complete absence of annuities and exogenous labour supply; see, for instance, Fuster

(1999), Conesa and Krueger (2006) and Conesa et al. (2009). In contrast, Pecchenino and

Pollard (1997) use a Diamond-Samuelson model to study the general equilibrium impact

of a truly imperfect annuity market. Although only focusing on individual choices, Bütler

(2001) introduces endogenous labour supply and also focuses on an imperfect annuity market.

Hansen and İmrohoroğlu (2008) drop the endogenous labour supply part of the Bütler (2001)

model and study the implications of an imperfect annuity market in general equilibrium. Our

paper adds to this literature by specifically focusing on imperfect annuities in relationship to
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endogenous labour supply and, especially, a realistic demographic structure.1

The remainder of the paper is structured as follows. Section 2 sets out the core model,

whilst section 3 studies the relationship between annuity market imperfection, retirement

and economic growth. Section 4 introduces the two extensions that allow our model to better

resemble realistic features of life-cycle choices. Section 5 concludes. There is a separate

appendix (Heijdra and Mierau, 2009a) containing all derivations.

2 Model

2.1 Firms

The production side of the model makes use of the insights of Romer (1989) and postulates

the existence of sufficiently strong external effects operating between private firms in the

economy. There is a large and fixed number, N0, of identical, perfectly competitive firms.

The technology available to firm i is given by:

Yi (t) = Z (t)Ki (t)
εK Li (t)

1−εK , 0 < εK < 1, (1)

where Yi (t) is output, Ki (t) is capital use, Li (t) is the labour input, and Z (t) represents

the general level of factor productivity which is taken as given by individual firms. The

competitive firm hires factors of production according to the following marginal productivity

conditions:

w (t) = (1 − εK)Z (t)κi (t)
εK , (2)

r (t) + δ = εKZ (t)κi (t)
εK−1 , (3)

where κi (t) ≡ Ki (t) /Li (t) is the capital intensity. The rental rate on each factor is the

same for all firms, i.e. they all choose the same capital intensity and κi (t) = κ (t) for all

i = 1, · · · , N0. This is a very useful property of the model because it enables us to aggregate

the microeconomic relations to the macroeconomic level.

Generalizing the insights of Saint-Paul (1992, p. 1247) and Paul Romer (1989) to a

growing population, we assume that the inter-firm externality takes the following form:

Z (t) = Z0κ (t)1−εK , (4)

1Recent papers including a realistic demographic structure and perfect annuities in a general equilibrium

setting include Boucekkine et al. (2002), d’Albis (2007), and Heijdra and Romp (2008, 2009a, 2009b).
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where Z0 is a positive constant, κ (t) ≡ K (t) /L (t) is the economy-wide capital intensity,

K (t) ≡
∑

i Ki (t) is the aggregate capital stock, and L (t) ≡
∑

i Li (t) is aggregate employ-

ment. According to (4), total factor productivity depends positively on the aggregate capital

intensity, i.e. if an individual firm i raises its capital intensity, then all firms in the economy

benefit somewhat as a result because the general productivity indicator rises for all of them.

Using (4), equations (1)–(3) can now be rewritten in aggregate terms:2

Y (t) = Z0K (t) , (5)

w (t)L (t) = (1 − εK)Y (t) , (6)

r (t) = r = εKZ0 − δ, (7)

where Y (t) ≡
∑

i Yi (t) is aggregate output and we assume that capital is sufficiently pro-

ductive, i.e. εKZ0 − δ > 0. The aggregate technology is linear in the capital stock and the

interest is constant.

2.2 Consumers

2.2.1 Individual behaviour

We generalize the Blanchard (1985) model of consumer behaviour by including an endogenous

labour-leisure decision and by assuming potentially imperfect annuity markets. At time t,

expected remaining-lifetime utility of an individual born at time v (v ≤ t) is given by:

EΛ (v, t) ≡

∫ ∞

t

ln
[

C(v, τ)εC · [1 − L(v, τ)](1−εC)
]

· e(ρ+µ)(t−τ)dτ, (8)

where C (v, τ) is consumption, L (v, τ) is labour supply (the time endowment is equal to

unity), ρ is the pure rate of time preference, and µ is the instantaneous mortality rate.

The agent’s budget identity is given by:

Ȧ(v, τ) = rAA(v, τ) + w(τ)L (v, τ) − C(v, τ) + Π (v, τ) , (9)

where A (v, τ) is the stock of financial assets, rA is the annuity rate of interest rate, w (τ) is

the wage rate, and Π (v, τ) is a lump-sum transfers from life insurance companies (see below).

2All firms use the same capital intensity (κi (t) = κ (t)), so that Yi (t) = Li (t) Z (t) κ (t)εK and

Y (t) = L (t) Z (t) κ (t)εK . By using (4) in this expression, we find (5). For the wage we find w (t) =

(1 − εK) Z (t) κ (t)εK = (1 − εK) Z0κ (t), which can be rewritten to get (6). Finally, for the rental rate on

capital we find r (t) + δ = εKZ (t) κ (t)εK−1 = εKZ0.
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Following Yaari (1965), we postulate the existence of annuity markets, but unlike Yaari we

allow the annuities to be less than actuarially fair. Since the agent is subject to lifetime

uncertainty and has no bequest motive, he/she will fully annuitize so that the annuity rate

of interest facing the agent is given by:

rA ≡ r + θµ, (10)

where r is the real interest rate (see (7)), and θ is a load factor that measures the degree of

imperfection of the annuities (0 ≤ θ ≤ 1). Although there are numerous explanations for the

overpricing of annuities (Cannon and Tonks, 2008, ch. 8) the main reason for imperfections

on the annuity markets seems to be adverse selection (Finkelstein and Poterba, 2002, 2004,

and 2006). That is, agents with a low mortality rate are more likely to buy annuities than

agents with high mortality rates. However, because mortality is private information annuity

firms “mis-price” annuities for low-mortality agents, thus creating a load factor.3

Our specification is quite general and incorporates three important cases:

• Perfect annuities (PA). The case of perfect (actuarially fair) annuities is obtained by

setting θ = 1. Life insurance companies break even, and Π (v, τ) = 0.

• Imperfect annuities (IA). The case of imperfect (less than actuarially fair) annuities

is obtained by assuming 0 < θ < 1. Life insurance companies make excess profits,

Π (τ) = µ (1 − θ) A (τ), which are taxed away by the government and distributed in a

lump-sum fashion to surviving agents.

• No annuities (NA). For θ = 0 there are no annuity markets. The agent can save at the

interest rate r, but borrowing is impossible because, with lifetime uncertainty, he/she

faces a probabilistic time-of-death wealth constraint of the form, prob {A (v, τ) ≥ 0} = 1

(Yaari, 1965, p. 139). By definition, Π (v, τ) = 0.

In the remainder of this paper we restrict attention to the PA and IA cases.4

The agent chooses time profiles for C (v, τ), A (v, τ), and L (v, τ) (for τ ≥ t) in order to

maximize (1), subject to (i) the budget identity (2), (ii) a NPG condition, limτ→∞ A (v, τ)

3Alternatively adverse selection effects could lead to quantity rationing in the sense that agents cannot buy

the amount of annuities they want (see, Eckstein et al., 1985 and Eichenbaum and Peled, 1987). In the current

paper we ignore such rationing and focus purely on the price effect of adverse selection.
4We study the NA case in a companion paper; see Heijdra and Mierau (2009b).
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Figure 1: Life-cycle consumption, labour supply, and retirement

e(r+θµ)(t−τ) = 0, (iii) the initial asset position in the planning period, A (v, t), and (iv) a

non-negativity condition, L (v, τ) ≥ 0. The solution of this optimization problem is presented

in detail in Heijdra and Mierau (2009a, Appendix A). For expositional purposes, however,

here we restrict attention to the optimal individual life-cycle decisions in the context of an

economy moving along a steady-state balanced growth path.5

Along the balanced growth path, labour productivity grows at a constant exponential

rate, γ̂ (see below), and as a result individual agents face an upward sloping path for real

wages over their lifetimes:

w (τ) = w (v) eγ̂(τ−v). (11)

The consumption Euler equation is given by:

Ċ (v, τ)

C (v, τ)
= r − ρ − (1 − θ)µ > 0. (12)

5The transitional dynamic properties of the models discussed in this paper can be studied numerically by

discretizing it.
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With imperfect annuities, individual consumption growth is affected by the mortality rate, a

result first demonstrated for the case with θ = 0 by Yaari (1965, p. 143). During the working

period, the agent equates the marginal rate of substitution between leisure and consumption

to the wage rate at all times, i.e.:

(1 − εC) / (1 − L (v, τ))

εC/C (v, τ)
= w (τ) . (13)

The consumption-leisure choice is illustrated in Figure 1, where C (u) /w (0) and L (u) stand

for, respectively, consumption (scaled by the wage rate at birth) and labour supply of the agent

at age u. The initial choice at age u = 0 is at point E0 where there is a tangency between an

indifference curve (labeled U0) and a “budget line” (labeled BE0).
6 If there were no economic

growth, the wage rate would be constant over the agent’s lifetime and the optimum would

gradually move along the dashed line from E0 to A at which point it is optimal to retire.

This move reflects the positive wealth effect on the demands for consumption and leisure.

After retirement, the agent would move along the vertical leisure constraint in the direction

of points E1 and E2.

Matters are slightly more complicated in the presence of economic growth and an upward

sloping wage profile (11). Over the agent’s life the utility-expansion path rotates in a counter-

clockwise fashion inducing substitution effects. In terms of Figure 1, the agent retires at point

E1 where the marginal rate of substitution between leisure and consumption is equal to w (R),

where R stands for this agent’s age at retirement. Using the dotted utility-expansion line

through point E1 we find that the total effect on consumption and leisure during working life

is given by the move from E0 to E1. The pure substitution effect is given by the move from

E0 to E′, and the wealth effect is the move from E′ to E1.

Armed with this graphical apparatus we can deduce the following analytical expressions.

Consumption of a newborn is given by:

C (v, v) =
εC (ρ + µ)

εC + (1 − εC)
[

1 − e−(ρ+µ)R(v)
] · LI (v, v) , (14)

where R (v) is the retirement age chosen by an agent born at time v, and LI (v, v) is lifetime

6During the working period, the budget line is given by:

X (v, τ) = w (τ) [1 − L (v, τ)] + C (v, τ) ,

where X (v, τ) is full consumption. The line BE0 is obtained by subsituting X (v, v).
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income of the agent:

LI (v, v) = w (v) ·
1 − e−(r−γ̂+θµ)R(v)

r − γ̂ + θµ
+ LT (v, v) , (15)

where LT (v, v) are lifetime transfers received from the government:

LT (v, v) ≡

∫ ∞

v

Π (v, τ) e(r+θµ)(v−τ)dτ. (16)

Equation (14) shows that consumption of a newborn is proportional to lifetime income. The

marginal propensity to consume out of lifetime income is decreasing in the retirement age.

Equation (15) provides the definition of lifetime income. The first term on the right-hand side

represents the present value of the time endowment during working life, using the growth-

corrected annuity rate of interest (r − γ̂ + θµ) for discounting. The later one retires, the

higher is this term. The second term on the right-hand side of (15) is just the present value

of transfers, defined in (16).

Point E1 in Figure 1 is attained at the point where consumption satisfies:

C (v, v + R (v)) =
εC

1 − εC
w (v) eγ̂R(v). (17)

By using (12) we find that C (v, τ) = C (v, v) e(r−ρ−(1−θ)µ)(τ−v) so that (17) can be rewritten

as:

C (v, v)

w (v)
=

εC

1 − εC
e−(r−γ̂−ρ−(1−θ)µ)R(v). (18)

Equations (14) (with (15) substituted), and (18) represent a simultaneous system implicitly

determining C (v, v) /w (v) and R (v) as a function of the structural parameters (εC , ρ, µ, r,

and θ), the macroeconomic growth rate (γ̂), and relative lifetime transfers (LT (v, v) /w (v)).

We illustrate the optimal retirement choice in Figure 2. This figure is based on the

following parameter settings. The interest rate is set at six percent per annum (r = 0.06)

whilst the rate of time preference is three and a half percent (ρ = 0.035). These values imply

that in the presence of perfect annuities, individual consumption grows at 2.5 percent per

annum (see (12)). The instantaneous mortality rate is estimated with Dutch mortality data

for the cohort born in 1960 (see below for details). This yields a value of 1.26 percent per

annum (µ = 0.0126), implying an expected remaining lifetime of 79.4 years. We assume that

labour productivity growth equals one percent per annum (γ̂ = 0.01), and set the utility

parameter for consumption at such a value that the optimal retirement age with perfect
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Figure 2: Optimal retirement age

annuities is R∗ = 42 years. This yields a value of εC = 0.3152. Finally, we assume that

annuities are perfect, i.e. θ = 1 in Figure 2. This simplifies matters somewhat because

LT (v, v) = 0 for this case.

In Figure 2, the Ψ (R) function plots the combinations between C (v, v) /w (v) and R (v)

implied by equations (14)-(15) (with LT (v, v) = 0 imposed). Despite the fact that the

marginal propensity to consume is a downward sloping function of the retirement age, lifetime

income is sharply increasing in the retirement age and Ψ (R) is upward sloping as a result.

The downward sloping Φ (R) function plots equation (18) and intersects Ψ (R) at point EPA
0 .

There is a unique optimal retirement age which, for the parameters used here, equals R∗ = 42.

Figure 2 also illustrates the partial equilibrium effects of a change in the macroeconomic

growth rate, γ̂. Indeed, the thin dashed lines depict the Φ (R) and Ψ (R) functions for the

zero-growth case (γ̂ = 0), for which the optimal retirement age is R∗ = 29.7 years. In
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terms of Figure 1, this is the case where the agent moves from E0 to A along the dashed

utility-expansion curve. With a flat wage profile, equilibrium consumption at birth (and at

all ages) and the retirement age are both lower than with an upward sloping wage profile.

Finally, we note that an increase in lifetime transfers leads to an upward shift in Ψ (R), higher

consumption at birth and a lower retirement age. The transfers thus cause a negative wealth

effect on the optimal retirement age.

With imperfect annuities (0 < θ < 1) we must confront the issue of redistribution of

excess profits and recognize the fact that LT (v, v) will be positive in general. To keep things

as simple as possible, we assume that the lump-sum transfers are set according to:

Π (v, τ) = z · w (τ) , (19)

where z is a positive indexing parameter, that is taken as given by individual agents but

determined endogenously in general equilibrium via the balanced budget requirement of the

redistribution scheme (see below). By using (19) in (16) we find:

LT (v, v)

w (v)
≡

z

r − γ̂ + θµ
. (20)

We prove in Heijdra and Mierau (2009a, Appendix A) that z is constant along the balanced

growth path.7 Equations (14)-(15), (18), and (20) in combination imply that the retirement

age is independent of v, i.e. R (v) = R∗ for all v. We summarize this important result in the

following proposition.

Proposition 1 Consider lump-sum redistribution of excess profits of life-insurance compa-

nies, of the form Π (v, τ) = z · w (τ). In that case: (i) the retirement age is independent of

v, i.e. R (v) = R∗ for all v; (ii) the ratio between consumption at birth and the wage rate at

birth is independent of v, i.e. C (v, v) /w (v) = εC

1−εC
e−(r−γ̂−ρ−(1−θ)µ)R∗

for all v.

2.2.2 Aggregate household behaviour

In this subsection we derive expressions for per-capita average consumption, saving, and

labour supply. Following Buiter (1988), we allow for constant population growth π and

7An alternative feasible redistribution scheme would set Π (v, τ) = z ·w (v), implying that LT (v, v) /w (v) =

z/ (r + θµ) along the balanced growth path. Interestingly, “actuarially fair” lump-sum redistribution, setting

transfers according to Π (v, τ) = µ (1 − θ) A (v, τ), is infeasible. Under such a scheme, LT (v, v) becomes

unbounded which is clearly infeasible.
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distinguish between the birth rate, β, and the mortality rate rate, µ, so that π ≡ β − µ. The

relative cohort weights evolve according to:

p (v, t) ≡
P (v, t)

P (t)
= βeβ(v−t), t ≥ v, (21)

where P (v, t) is the size of cohort v at time t and P (t) is the total population. Using (21),

we can define per-capita average values in general terms as:

x (t) ≡

∫ t

−∞

p (v, t)X (v, t) dv, (22)

where X (v, t) denotes the variable in question at the individual level, and x (t) is the per

capita average value of the same variable.

Off the steady-state growth path, exact analytical aggregation of the individual behav-

ioural decision rules is impossible. To see why this is the case, note, for example, that con-

sumption of workers features an age-dependent propensity to consume out of age-dependent

wealth making aggregation impossible. We therefore focus on steady-state relationships. We

know that R (v) = R∗ for all v, so for consumption we find:

C (v, v) =
εC

1 − εC
w (v) e−[r−γ̂−ρ−(1−θ)µ]R∗

, (23)

C (v, t) = C (v, v) e[r−ρ−(1−θ)µ](t−v), (24)

whilst the wage rate satisfies equation (11). Using (22), per capita average consumption is

thus given by:

c (t) ≡

∫ t

−∞

p (v, t)C (v, t) dv ≡
C (v, v)

w (v)
·

βw (t)

γ̂ + β + ρ + (1 − θ) µ − r
. (25)

It follows from (13) and (23)-(24) that labour supply of workers in period t (t − v ≤ R∗)

can be written as:

L (v, t) = 1 − e−[r−γ̂−ρ−(1−θ)µ](R∗+v−t). (26)

Since L (v, t) = 0 for retirees (t − v > R∗), per capita average labour supply is equal to:

l (t) ≡

∫ t

t−R∗

p (v, t)L (v, t) dv

=
[

1 − e−βR∗
]

− βe−βR∗

·
e[γ̂+β+ρ+(1−θ)µ−r]R∗

− 1

γ̂ + β + ρ + (1 − θ)µ − r
≡ l, (27)

with 0 < l < 1. The term in square brackets on the right-hand of (27) provides the first

mechanism by which l falls short of unity: agents retire and their unit time endowment is

12



consumed in full in the form of leisure. The second composite term on the right-hand side

of (27) represents the second mechanism by which l falls short of unity: as workers age they

reduce their labour supply.

At the individual level, financial assets are accumulated according to:

Ȧ (v, t) = (r + θµ) A (v, t) + w (t)L (v, t) + zw (v) − C (v, t) , (28)

where L (v, t) = 0 for retirees (for t − v > R∗). Per capita aggregate assets are defined as

a (t) ≡
∫ t

−∞
p (v, t)A (v, t) dv so that:

ȧ (t) =

∫ t

−∞

p (v, t) Ȧ (v, t) dv − βa (t) , (29)

where we have incorporated the fact that individual agents are born bare of financial assets

(A (v, v) = 0) and that cohort shares evolve over time according to ṗ (v, t) = −βp (v, t).

Substituting (28) into (29) and noting (27) we obtain:

ȧ (t) = (r + θµ − β) a (t) + w (t) l (t) + zw (t) − c (t) . (30)

The balanced-budget requirement for the lump-sum redistribution scheme is given in per

capita terms by:

µ (1 − θ) a (t) = zw (t) . (31)

Finally, by substituting (31) into (30) we obtain:

ȧ (t) = (r + µ − β) a (t) + w (t) l (t) − c (t) . (32)

Like in the standard case with perfect annuities, the aggregate per capita annuity receipts,

θµa (t), do not feature directly in (32) because they constitute pure transfers from the dead

to the living. In each period, life insurance companies receive µa (t) from the estates of the

deceased and pay θµa (t) to their surviving customers. The resulting profit, (1 − θ) µa (t),

is taxed away by the government and redistributed to the surviving agents. The transfers

debudget from the per capita average asset accumulation equation.

2.3 Balanced growth path

In the absence of government bonds, the capital market equilibrium condition is given by

A (t) = K (t). In per capita average terms we thus find:

a (t) = k (t) , (33)
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Table 1: Balanced growth and retirement in the core model

(a) Microeconomic relationships:

C (v, v)

w (v)
=

εC (ρ + µ)

εC + (1 − εC)
[

1 − e−(ρ+µ)R∗
] ·

1 − e−(r−γ̂+θµ)R∗
+ z

r − γ̂ + θµ
(T1.1)

C (v, v)

w (v)
=

εC

1 − εC
e−(r−γ̂−ρ−(1−θ)µ)R∗

(T1.2)

(b) Macroeconomic relationships:

z = µ (1 − θ)
k (t)

w (t)
(T1.3)

γ̂ ≡
k̇ (t)

k (t)
= r − π +

[

l −
c (t)

w (t)

]

·
w (t)

k (t)
(T1.4)

w (t) l

k (t)
= (1 − εK)Z0 (T1.5)

l ≡ 1 − e−βR∗

− βe−βR∗ e[γ̂+β+ρ+(1−θ)µ−r]R∗
− 1

γ̂ + β + ρ + (1 − θ) µ − r
(T1.6)

c (t)

w (t)
≡

β

γ̂ + β + ρ + (1 − θ) µ − r
·
C (v, v)

w (v)
(T1.7)

Definitions: Endogenous are C(v, v)/w(v), R∗, z, γ̂, l, w(t)/k(t), and c(t)/k(t). Parameters: birth

rate β, mortality rate µ, population growth rate π ≡ β − µ, imperfection annuities θ, rate of time

preference ρ, capital coefficient in the technology εK , consumption coefficient in tastes εC , scale factor

in the technology Z0. The interest rate is r ≡ εKZ0 − δ, where δ is the depreciation rate of capital.
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where k (t) ≡ K (t) /P (t) is the per capita stock of capital. From (5)-(6) we easily find:

y (t) = Z0k (t) , (34)

w (t) l (t) = (1 − εK) y (t) , (35)

where y (t) ≡ Y (t) /P (t) is per capita output.

The macroeconomic growth model has been written in a compact format in Table 1.

Equation (T1.1) is obtained by substituting (15) and (20) into (14). Equation (T1.2) is the

same as (23). Equation (T1.3) is (31) with (33) substituted. Equation (T1.4) is obtained by

substituting (33) into (32). Equation (T1.5) is obtained by combining (34)-(35) and noting

(27). Equation (T1.6) is the same as (27). Finally, (T1.7) is the same as (25).

The model features a two-way interaction between the microeconomic decisions and the

macroeconomic outcomes. Equations (T1.1)-(T1.2) determine scaled newborn consumption,

C (v, v) /w (v), and the optimal retirement age, R∗, as a function of the key macroeconomic

variables. Equations (T1.3)-(T1.7) determine equilibrium transfers, z, the macroeconomic

growth rate, γ̂, the overall wage-capital ratio, w (t) /k (t), aggregate labour supply, l, and the

c (t) /w (t) ratio as a function of the optimal retirement age and scaled newborn consumption.

3 Retirement, growth and annuities

In this section we compute and visualize the comparative static general equilibrium effects

for the core model of Table 1. To compute the initial general equilibrium we assume that

annuities are perfect (θ = 1) and use the coefficient values mentioned above (in the paragraph

below equation (18)). We assume that rate of population growth is one percent per annum

(π = 0.01). Since π ≡ β−µ, this implies that, for the mortality rate that was postulated above,

the birth rate is β = 0.0226. The capital depreciation rate is ten percent per annum (δ = 0.10).

We use the efficiency parameter of capital as a calibration parameter and find εK = 0.9241.8

It follows that the constant in the production function is equal to Z0 = (r + δ) /εK = 0.1731.

The initial steady-state growth path has the following features: C (v, v) /w (v) = 0.2451,

R∗ = 42, z = 0, γ̂ = 0.01, l = 0.1802, c (t) /w (t) = 0.7286, and w (t) /k (t) = 0.0729. For

8This is, of course, an implausibly high value, signalling that it is hard to obtain a calibration for the core

model that yields plausible values for all parameters. Below we introduce some model extensions that allow

us to substantially improve the quality of the calibration in this respect.
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convenience these values are restated in the first column in Table 2(a).

Figure 3 visualizes some of the key features of the calibration. Figure 3(a) depicts the

general equilibrium determination of the retirement age and the macroeconomic growth rate.

The curve labeled MIE represents the microeconomic equilibrium condition, i.e. it depicts

(γ̂, R∗) combinations for which (T1.1) and (T1.2) are equated (recall that z = 0 in the base

case, so the microeconomic equilibrium can be computed conditional on the macroeconomic

growth rate only). In Figure 3(a), the line labeled MAE depicts the macroeconomic equi-

librium conditions, i.e. it depicts (γ̂, R∗) combinations for which (T1.3)–(T1.7) are satisfied.

The equilibrium is at point E0, where MIE and MAE intersect.

Figure 3 also illustrates the steady-state age profiles for the key variables (solid lines).

Figure 3(b) shows that the logarithm of scaled consumption is linear is the agents age. Figure

3(c) shows that the agent gradually reduces the number of hours supplied to the labour

market, and retires permanently at age R∗ = 42. Finally, Figure 3(d) shows that the path of

financial assets is monotonically increasing in age, and features a slight kink at the retirement

age.

Next we consider the equilibrium under imperfect annuities. Instead of setting θ = 1, we

simulate the model with a value of θ = 0.70 and keep all other parameters the same. The

new equilibrium values for the different variables are reported in the second column in Table

2(a). Obviously, with imperfect annuities lump-sum transfers become positive. Interestingly,

agents reduce lifetime labour supply and retire about one and a half years earlier than under

perfect annuities.

The new growth rate is about three quarters of its value under perfect annuities. In

Figure 4 we visualize the general equilibrium effects of θ on the retirement decision and

scaled consumption of a newborn. The solid lines depict the case with perfect annuities

(θ = 1). The equilibrium is at point EPA. The thick dashed lines illustrate the case with

imperfect annuities (θ = 0.70), taking into account the general equilibrium effects on γ̂ and z.

The equilibrium with imperfect annuities is at point EIA, which lies north-west of point EPA.

Agents retire earlier in life and consume more at birth. The thinly dashed line in Figure 4

depicts the Ψ (R)-line for imperfect annuities, but assuming that the transfers are zero. The

total effect of the move from EPA to EIA can thus be decomposed into a part that is caused

by the effect of the growth rate, and a part that is caused by lump-sum transfers.
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Table 2: Growth and retirement: quantitative effects

(a) Core case (b) Productivity (c) Mortality (d) Combined

θ = 1.0 θ = 0.7 θ = 1.0 θ = 0.7 θ = 1.0 θ = 0.7 θ = 1.0 θ = 0.7

(i) (ii)
C (v, v)

w (v)
0.2451 0.2606 0.1966 0.2065 0.2395 0.2421 0.2061 0.2067 0.1947

S∗ (years) 0 0 2.06 2.52 0 0 2.06 2.10 1.61

R∗ (years) 42 40.49 42 41.31 42 42.72 42 42.15 39.68

z 0 0.0465 0 0.0343 0 0.0115 0 0.0092 0

γ̂ (%) 1.00 0.72 1.00 0.70 1.00 0.94 1.00 0.91 0.61

l (or n) 0.1802 0.1616 0.1862 0.1695 0.2162 0.2103 0.2385 0.2324 0.2284

c (t)

w (t)
0.7286 0.6881 0.5846 0.5596 0.3702 0.3623 0.3187 0.3123 0.3233

w (t)

k (t)
0.0729 0.0813 0.1004 0.1103 0.2597 0.2669 0.4990 0.5120 0.5211
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(a) growth (γ̂) and retirement age (R∗) (b) scaled consumption newborns (C(u)/w(0))
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Figure 3: General equilibrium in the core model

The new steady-state age profiles for the imperfect annuity case have been illustrated in

Figures 3(b)–(d) (see the dashed lines). The growth rate in individual consumption is reduced

somewhat because − (1 − θ)µ features in equation (12). Figure 3(c) shows that the agent

reduces labour supply at all age levels and thus retires earlier than under perfect annuities.

Finally, Figure 3(d) shows that the age profile for scaled financial assets continues to be

upward sloping, though it is lower than under perfect annuities.
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Figure 4: Imperfect annuities and the retirement date
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4 Extensions

In the previous section we used a calibrated version of the core model to show that an

imperfection in the annuity market leads to a reduction in both the optimal retirement age

and the macroeconomic growth rate. The core model, though useful for analytical purposes,

suffers from a number of empirical deficiencies. These are:

(ED1). The age profile for consumption is monotonically increasing, whereas it is

hump-shaped in reality (Gourinchas and Parker, 2002, and Fernández-Villaverde and

Krueger, 2007).

(ED2). The age profile for labour supply is monotonically decreasing. In reality, labour

supply is constant and age-invariant for most of working life and tapers off rapidly near

the optimal retirement age (see, for example, McGrattan and Rogerson (2004) for the

United States).

(ED3). Labour productivity is age-independent, whereas in reality it appears to be

hump-shaped (cf. Hansen, 1993 and Rios-Rull, 1996).

(ED4). Under perfect annuities, the age profile for financial assets is monotonically

rising. In reality, financial assets (a) display a hump-shaped profile, and (b) remain

non-negative in old age (Huggett, 1996). Feature (a) can be mimicked by assuming

imperfect annuities, but in that case assets become negative for very old agents, thus

violating feature (b).

(ED5). To calibrate the model for a realistic retirement age and macroeconomic growth

rate, an implausibly high efficiency parameter for capital must be postulated.

In this section we consider two important model extensions, namely age-dependent labour

productivity and age-dependent mortality. In each case we study whether, and to what extent,

the model extension under consideration can solve the empirical deficiencies of the core model.

Both individual decisions and (simulated) general equilibrium effects are studied.

4.1 Hump-shaped productivity

In this section we directly address empirical deficiency (ED3) and assume that labour pro-

ductivity of individuals is hump-shaped. An analytically useful age profile for productivity
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involves exponential terms:

E (u) = α0e
−β0u − α1e

−β1u, (36)

where E (u) is labour productivity of a u-year old worker, and we assume that α0 > α1 > 0,

β1 > β0 > 0, and α1β1 > α0β0. We easily find that:

E (0) = α0 − α1 > 0, lim
u→∞

E (u) = 0, (37)

E′ (u) = −β0α0e
−β0u + β1α1e

−β1u







> 0 for 0 ≤ u < ū

< 0 for u ≥ ū
, (38)

where ū is:

ū =
1

β1 − β0

ln

(

α1β1

α0β0

)

. (39)

Labour productivity is non-negative throughout life, starts out positive, is rising during the

first life phase, and declines thereafter.

The production side of the model is affected as follows. The total stock of efficiency units

of labour at time t is denoted by N (t) and is defined in the usual way:

N (t) ≡

∫ t

−∞

P (v, t)E (t − v)L (v, t) dv, (40)

where L (v, t) stands for labour supply in raw hours, and P (v, t) is the size of cohort v at

time t. Replacing Li by Ni in equation (1), and redefining κi ≡ Ki/Ni and κ ≡ K/N , we find

that (5) and (7) are still satisfied but (6) must be changed to:

w (t)N (t) = (1 − εK) Y (t) , (41)

where w (t) stands for the rental rate on efficiency units of labour. The wage faced at time t

by a worker born at time v is thus given by:

w (v, t) ≡ E (t − v) w (t) . (42)

The household side of the model is affected as follows. In the household budget identity

(9), w (τ) is replaced by w (v, τ). Along the balanced growth path, w (v, τ) can be written as:

w (v, τ) = w (v) eγ̂(τ−v)
[

α0e
−β0(τ−v) − α1e

−β1(τ−v)
]

, (43)
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where we have used (36) and (42). The consumption Euler equation is still given by (12).

Interestingly, with a hump-shaped wage profile, it may be optimal for the agent to delay

labour market entry somewhat. Indeed, we now have two relevant dates for the working

decision of an agent, namely the optimal entry date, S∗, and the optimal retirement date,

R∗.9 Obviously, we must have that R∗ > S∗ ≥ 0. During working life (S∗ ≤ τ − v ≤ R∗) the

condition (13) still holds but with w (v, τ) replacing w (τ).

Scaled consumption of a newborn agent is given by:

C (v, v)

w (v)
=

εC (ρ + µ)

εC + (1 − εC)
[

e−(ρ+µ)S∗ − e−(ρ+µ)R∗
] ·

LI (v, v)

w (v)
, (44)

where LI (v, v) /w (v) is defined as:

LI (v, v)

w (v)
≡

∫ R∗

S∗

E (s) e−(r−γ̂+θµ)sds +
z

r − γ̂ + θµ
. (45)

For an interior solution (with S > 0), the labour market entry condition is given by:10

C (v, v)

w (v)
=

εC

1 − εC
E (S∗) e−[r−γ̂−ρ−(1−θ)µ]S∗

, (46)

whereas the retirement condition is given by:

C (v, v)

w (v)
=

εC

1 − εC
E (R∗) e−[r−γ̂−ρ−(1−θ)µ]R∗

. (47)

Equations (44) (with (45) substituted), (46), and (47) form a three-equation system with

three unknowns, viz. C (v, v) /w (v), S∗, and R∗ (see Table 3(a)). This system can be solved

conditional on the macroeconomic variables, γ̂ and z.

Using cross-section efficiency data for male workers aged between 18 and 70 from Hansen

(1993, p. 74) we find the solid pattern in Figure 5(a). We interpolate these data by fitting

equation (36) using non-linear least squares. We find the following estimates (t-statistics in

brackets): α0 = 4.494 (fixed), α̂1 = 4.010 (71.04), β̂0 = 0.0231 (24.20), and β̂1 = 0.050

(17.81). The fitted productivity profile is illustrated with dashed lines in Figure 5(a).

9As was the case in the core model of the previous section, household preferences and the redistribution

scheme are such that S∗ and R∗ are generation independent, i.e. S∗ (v) = S∗ and R∗ (v) = R∗ for all v.
10It is not difficult to show that an interior solution for S∗ is obtained if the following condition is satisfied:

C (v, v)

w (v)
>

εC

1 − εC

E (0) .

If this condition is violated, then L (v, v) attains an interior solution satisfying:

C (v, v)

w (v)
=

εC

1 − εC

E (0) [1 − L (v, v)] .

22



Table 3: Balanced growth and retirement with age-dependent productivity

(a) Microeconomic relationships:

C (v, v)

w (v)
=

εC (ρ + µ)

εC + (1 − εC)
[

e−(ρ+µ)S∗ − e−(ρ+µ)R∗
]

·

[

∫ R∗

S∗

E (s) e−(r−γ̂+θµ)sds +
z

r − γ̂ + θµ

]

(T3.1)

C (v, v)

w (v)
=

εC

1 − εC
E (S∗) e−(r−γ̂−ρ−(1−θ)µ)S∗

(T3.2)

C (v, v)

w (v)
=

εC

1 − εC
E (R∗) e−(r−γ̂−ρ−(1−θ)µ)R∗

(T3.3)

(b) Macroeconomic relationships:

z = µ (1 − θ)
k (t)

w (t)
(T3.4)

γ̂ ≡
k̇ (t)

k (t)
= r − π +

[

n −
c (t)

w (t)

]

·
w (t)

k (t)
(T3.5)

w (t)n

k (t)
= (1 − εK)Z0 (T3.6)

n ≡

∫ R∗

S∗

βE (s) e−βsds

−βe−βR∗

E (R∗)
e[γ̂+β+ρ+(1−θ)µ−r](R∗−S∗) − 1

γ̂ + β + ρ + (1 − θ) µ − r
(T3.7)

c (t)

w (t)
≡

β

γ̂ + β + ρ + (1 − θ) µ − r
·
C (v, v)

w (v)
(T3.8)

Definitions: Endogenous are C(v, v)/w(v), S∗, R∗, z, γ̂, n, w(t)/k(t), and c(t)/w(t). Parameters:

birth rate β, mortality rate µ, population growth rate π ≡ β−µ, imperfection annuities θ, rate of time

preference ρ, capital coefficient in the technology εK , consumption coefficient in tastes εC , scale factor

in the technology Z0. The interest rate is r ≡ εKZ0 − δ, where δ is the depreciation rate of capital.
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(a) efficiency profile (E(u)) (b) labour supply (L(u))
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Figure 5: General equilibrium with age-dependent labour productivity
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We have collected the key equations of the macroeconomic growth model in Table 3.

Effectively this table provides the hump-shaped productivity analogue to Table 1. Compared

to Table 1, the main changed are as follows. First, there is an additional equation governing

the entry decision of households. Second, total labour supply is measured in efficiency units

(i.e. n rather than l features in (T3.5)–(T3.7)). Third, the labour productivity age profile

features prominently in (T3.2)–(T3.3) and (T3.7). The key features of the initial steady-state

growth path have been reported in the first column of Table 2(b).

Figures 5(b)–(d) provide a visualization of the extended model. The key panel to consider

is 5(b), which shows that with a hump-shaped productivity profile, the labour supply profile

also features a hump-shaped pattern. This model extension thus somewhat alleviates empir-

ical deficiency (ED2) of the core model. That is, we now have a labour supply profile that

increases rapidly in young age, briefly touches a plateau and then drops to zero (i.e. retire-

ment) quickly. Interestingly, the remaining empirical deficiencies (ED1) and (ED4)–(ED5)

are not solved by the introduction of age dependent labour productivity. Consumption and

assets are not hump shaped, and the required capital efficiency parameter, though lower than

for the core model, is still too high (εK = 0.8954).

As before, the dashed lines in Figures 5(b)–(d) visualize the implications of an imperfect

annuity market (captured by θ = 0.7). The key features of the new steady-state growth path

have been reported in column 2 of Table 2(b). Just as in the core model, agents retire earlier

when annuity markets are imperfect. Furthermore, and in contrast to the core model, we

find that agents also delay labour market entry by almost half a year. Hence, the composite

impact of an imperfect annuity market on individual decisions is that agents delay labour

market entry, work less during working life and retire early. In general equilibrium this leads

to a substantial reduction in economic growth. Interestingly, the effect on economic growth

is very similar for the core model and the extended model.

4.2 Age-dependent mortality

In this section we assume E (u) = 1 for all u and instead augment the core model by as-

suming age-dependent mortality. For ease of exposition, we use a demographic process which

incorporates a finite maximum age; the BCL-model suggested by Boucekkine et al. (2002).
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In this model, the surviving fraction up to age u (from the perspective of birth) is given by:

1 − Φ(u) ≡
µ0 − eµ1u

µ0 − 1
, (48)

with µ0 > 1 and µ1 > 0. For this demographic process, D̄ = (1/µ1) lnµ0 is the maximum

attainable age, whilst the instantaneous mortality rate at age u is given by:11

µ (u) ≡
Φ′ (u)

1 − Φ(u)
=

µ1e
µ1u

µ0 − eµ1u
. (49)

The mortality rate is increasing in age and becomes infinite at u = D̄.

We use data from age 18 onward for the Dutch cohort that was born in 1960. Following

Heijdra and Romp (2008), we denote the actual surviving fraction up until model age ui by Si,

and estimate the parameters of the parametric distribution function by means of non-linear

least squares. The model to be estimated is thus:

Si = 1 − Φ(ui) + εi = d (ui ≤ D) ·
µ0 − eµ1ui

µ0 − 1
+ εi, (50)

where d
(

ui ≤ D̄
)

= 1 for ui ≤ D̄, and d
(

ui ≤ D̄
)

= 0 for ui > D̄, and εi is the stochastic

error term. We find the following estimates (with t-statistics in brackets): µ̂0 = 122.643

(11.14), µ̂1 = 0.0680 (48.51). The standard error of the regression is σ̂ = 0.02241, and the

implied estimate for D̄ is 70.75 model years (i.e., the maximum age in biological years is

88.75). Figure 6(a) depicts the actual and fitted survival rates with, respectively, solid and

dashed lines. Up to age 69, the BCL model fits the data rather well. For higher ages the fit

deteriorates as the BCL model fails to capture the fact that some people are expected to live

to very ripe old ages in reality.

Using the same data, we also estimate the parameter of the Blanchard demography, by

running the following regression by means of non-linear least squares: Si = e−µui + εi. We

find µ̂ = 0.0126 (11.41), and σ̂ = 0.2466. The dotted line in Figure 6a depicts the fitted

11This result follows from the fact that 1−Φ
(

D̄
)

= 0 iff eµ1D̄ = µ0. Note furthermore that (for 0 < u, s < D̄),

the cumulative mortality rate is:

M (u) ≡ − ln [1 − Φ (u)] ,

so that the exponential discounting factors are given by:

e−M(s)
≡

µ0 − eµ1s

µ0 − 1
, eM(s)

≡

µ0 − 1

µ0 − eµ1s
.
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(a) mortality process (1 − Φ(u)) (b) labour supply (L(u))
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Figure 6: General equilibrium with age-dependent mortality
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survival rates implied by the Blanchard demography. The fit is much worse than that of the

BCL model. Relative to the data, the Blanchard model “kills off” the young too quickly and

the old too slowly.

In the presence of age-dependent mortality, the core model is changed as follows. First,

as is explained in Heijdra and Romp (2008, p. 92), the lifetime utility function (8) is now

given by:

EΛ (v, t) ≡ eM(t−v).

∫ v+D̄

t

ln
[

C(v, τ)εC · [1 − L(v, τ)](1−εC)
]

· e−ρ(τ−t)−M(τ−v)dτ, (51)

where (a) the maximum possible age is incorporated in the upper limit of the integral, and

(b) the discounting factor due to lifetime uncertainty, e−M(τ−v) =
(

µ0 − eµ1(τ−v)
)

/ (µ0 − 1),

depends on the agent’s age at some future time τ .

Second, the annuity rate given in (10) above is modified to reflect the fact that the

mortality rate depends on age:

rA (τ − v) ≡ r + θµ (τ − v) , (for 0 ≤ τ − v < D̄). (52)

Older agents attract a higher annuity rate than younger agents do because they feature a

higher mortality rate (note that at age τ − v = D̄ no life insurance is available). Utility

maximization gives rise to a consumption Euler equation that is different from the one given

in (12) above:

Ċ (v, τ)

C (v, τ)
= r − ρ − (1 − θ)µ (τ − v) . (53)

Provided annuities are imperfect (θ < 1), optimal consumption growth is age dependent.

The key expressions characterizing individual behaviour are given in equations (T4.1)–

(T4.3) in Table 4. Equation (T4.1) gives the expression for scaled consumption at birth.

It contains specific values for a general demography-dependent function that is defined as

follows:

Ξ (λ1, λ2)
u1
u0

=

∫ u1

u0

e−λ1s ·

[

µ0 − eµ1s

µ0 − 1

]λ2

ds, (54)

with 0 ≤ u0 < u1 ≤ D̄ and λ2 ≥ 0. Provided λ1 is finite, the integral exists and is strictly pos-

itive. It follows that Ξ (r − γ̂, θ)R∗

S∗ > 0, Ξ (r − γ̂, θ)D̄
0 > 0, Ξ (ρ, 1)R∗

S∗ > 0, and Ξ (ρ, 1)D̄
0 > 0,

so scaled newborn consumption is positive and depends positively on the amount of transfers.
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Table 4: Balanced growth and retirement with age-dependent mortality

(a) Microeconomic relationships:

C (v, v)

w (v)
=

εCΞ (r − γ̂, θ)R∗

S∗ + εCΞ (r − γ̂, θ)D̄
0 · z

(1 − εC) Ξ (ρ, 1)R∗

S∗ + εCΞ (ρ, 1)D̄
0

(T4.1)

C (v, v)

w (v)
=

εC

1 − εC
e−(r−γ̂−ρ)S∗+(1−θ)M(S∗) (T4.2)

C (v, v)

w (v)
=

εC

1 − εC
e−(r−γ̂−ρ)R∗+(1−θ)M(R∗) (T4.3)

(b) Macroeconomic relationships:

z = (1 − θ) ·

∫ D̄

0
βe−(π+γ̂)u−M(u)µ (u)

A (v, v + u)

w (v)
du (T4.4)

γ̂ ≡
k̇ (t)

k (t)
= r − π +

[

l −
c (t)

w (t)

]

·
w (t)

k (t)
(T4.5)

w (t) l

k (t)
= (1 − εK)Z0 (T4.6)

l = β ·

[

Ξ (π, 1)R∗

S∗ −
1 − εC

εC

C (v, v)

w (v)
· Ξ (π + ρ + γ̂ − r, 2 − θ)R∗

S∗

]

(T4.7)

c (t)

w (t)
≡

C (v, v)

w (v)
· βΞ (π + ρ + γ̂ − r, 2 − θ)D̄

0 (T4.8)

Definitions: Endogenous are C(v, v)/w(v), S∗, R∗, z, γ̂, l, w(t)/k(t), and c(t)/w(t). Parameters:

birth rate β, aggregate mortality rate µ̄, population growth rate π ≡ β − µ̄, imperfection annuities

θ, rate of time preference ρ, capital coefficient in the technology εK , consumption coefficient in tastes

εC , scale factor in the technology Z0. The interest rate is r ≡ εKZ0 − δ, where δ is the depreciation

rate of capital.
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Interestingly, despite the fact that productivity is age-independent, equation (T4.2) show

that with imperfect annuities it is in principle possible for the individual agent to postpone

labour market entry somewhat, i.e. to choose S∗ > 0. With a realistic demography, however,

this scenario does not materialize, i.e. in practice labour market entry is immediate and

S∗ = 0. Intuitively, this results from the fact that the mortality process only cuts in toward

the end of the agent’s life.

The third aspect for which the core model is modified as a result of age-dependent mortal-

ity concerns the demographic system. As is shown in Heijdra and Romp (2008, p. 94), with

age-dependent mortality the demographic steady-state equilibrium has the following features:

1

β
= Ξ (π, 1)D̄

0 , (55)

p (v, t) ≡
P (v, t)

P (t)
≡ βe−π(t−v)−M(t−v), (56)

where β is the crude birth rate (as before), π is the growth rate of the population, and p (v, t)

is the relative size of cohort v at time t ≥ v. For a given birth rate, equation (55) determines

the unique population growth rate consistent with the demographic steady state. The average

population-wide mortality rate, µ̄, follows residually from the fact that π ≡ β− µ̄.12 Equation

(55) simply generalizes (21) to the case with age-dependent mortality.

The macroeconomic part of the model is given by equations (T4.4)–(T4.8) in Table 4.

Compared to the core model, the main changes are found in (T4.4) and (T4.7)–(T4.8). In

(T4.4), transfers can no longer be related to a single aggregate variable but must be computed

(numerically) by using the scaled wealth paths of existing cohorts. Expressions (T4.7)–(T4.8)

generalize (T1.6)–(T1.7), making use of the Ξ (λ1, λ2)
u1
u0

function defined in (54) above.

Just as for the previous two models, we calibrate the model for an initial steady state with

perfect annuities (θ = 1), a growth rate of one percent (γ̂ = 0.01), and an optimal retirement

age of 42 years (R∗ = 42). The key features of the initial steady-state growth path have been

12The average mortality rate is defined as:

µ̄ ≡

1

P (t)
·

∫ t

t−D̄

µ (t − v) P (v, t) dv = β

∫ t

−D̄

µ (t − v) e−π(t−v)−M(t−v)dv.

For the BCL demography we find:

µ̄ = β ·

∫ D̄

0

µ (s) e−πs−M(s)ds =
βµ1

µ0 − 1
·

∫ D̄

0

e(µ1−π)sds =
βµ1

µ0 − 1
·

µ0e
−πD̄

− 1

µ1 − π
.

See Heijdra and Mierau (2009a) for further details.
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reported in the first column of Table 2(c). As was mentioned above, labour market entry is

immediate for the cases considered in Table 2(c).

Figures 6(b)–(d) provide a visualization of the extended model. The key panels to consider

are 6(c) and 6(d). With imperfect annuities, consumption features a hump-shaped pattern

thus addressing empirical deficiency (ED1)–see the dashed lines in Figure 6(c). This finding

is in line with Yaari (1965), Abel (1985), Bütler (2001), and Hansen and İmrohoroğlu (2008):

with imperfect annuities the mortality rate features in the Euler equation. Hence, if the

mortality rate is age-dependent, agents will discount consumption later on in life more heavily,

thus creating a hump-shaped profile. From an empirical point of view it should be noted that

we–like Bütler (2001) and Hansen and İmrohoroğlu (2008)–also find that the hump occurs too

late in life. Also, as is illustrated in Figure 6(d), financial assets feature a hump-shaped pattern

both with perfect and with imperfect annuities. The model extension thus fixes empirical

deficiency (ED4) to a large extent. Finally, empirical deficiency (ED5) is reduced somewhat

in this extension as the required efficiency parameter for capital is equal to εK = 0.74 (rather

than 0.92 in the core model).

As before, the dashed lines in Figures 6(b)–(d) visualize the implications of an imperfect

annuity market (captured by θ = 0.7). The key features of the new steady-state growth

path have been reported in column 2 of Table 2(c). Just as in the core model, individual and

aggregate saving and thus the macroeconomic growth rate are all lower when annuity markets

are imperfect rather than perfect.13 Furthermore, and in contrast to both the core model and

the model with age-dependent productivity, we now find that agents also delay labour market

exit by almost three-quarters of year. Hence, the composite impact of an imperfect annuity

market on individual decisions is that agents work slightly fewer hours during most of their

working life, but retire somewhat later thus limiting the fall in the aggregate supply of labour.

In general equilibrium this retirement effect explains why the reduction in economic growth

is much smaller than for the previous two models.

In contrast to the core model, the calibration results of the model with a realistic de-

mographic structure suggest a less pronounced effect of the annuity market imperfection;

compare panels (a) and (c) in Table 2. Instead of experiencing a reduction in the economic

13This finding regarding growth has previously been highlighted by Abel (1985) and Fuster (1999) who

suggest that capital accumulation decreases with imperfect annuities provided (i) the elasticity of intertemporal

substitution is no less than unity and (ii) there is steady-state growth.
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(a) imperfection ((1 − θ)µ(u)) (b) cohort size (p(u))

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

economic age (u)

Im
pe

rf
ec

tio
n

0 10 20 30 40 50 60 70
−0.005

0

0.005

0.01

0.015

0.02

0.025

economic age (u)

C
oh

or
t s

iz
e

Figure 7: The annuity market imperfection

growth rate of 28 basis points, in the extended model we see a rather small reduction of only

6 basis points. Furthermore, instead of retiring 18 months early, agents now delay retirement

by almost 8 months. To appreciate the origin of these effects, note Figures 7(a)-(b). Figure

7(a) visualizes the annuity market imperfection faced by the agent over the life-cycle. The

dashed line shows the imperfection for the Blanchard mortality process whilst the solid line

depicts the imperfection for the realistic case. From here it is immediately clear that the

Blanchard mortality process overstates the magnitude of the annuity market imperfection for

a substantial part of the life-cycle. In contrast, for a realistic demography the annuity market

imperfection only becomes an issue later on in life. Furthermore, as can be seen in Figure

7(b), the relative size of cohorts that are actually affected is quite small. Thus, both the

individual and the aggregate effect of annuity market imperfections is much less pronounced

with a realistic demography.

4.3 Full model

In this section we visualize the full model, simultaneously incorporating age-dependent labour

productivity and mortality. The key equations for the full model have been collected in Table

5, whilst Figure 8 visualizes some of its salient life-cycle features. Finally, the quantitative

effect of imperfect annuities are reported in Table 2(d).

Figure 8(a) plots the right-hand sides of (T5.2) and (T5.3) as a function of age. For θ = 1,
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there is a unique entry age (S∗ = 2.06, at point A) and a unique retirement age (R∗ = 42,

at point B). In contrast, for θ = 0.7, there appears to be a second labour market entry point

located to the right of point B. This point is not feasible, however, because we assume that

labour market exit is an absorbing state. Hence, also for θ = 0.7, there are unique entry and

exit ages, i.e. S∗ = 2.09 and R∗ = 42.15–see Table 2(d).

Figure 8(b) shows the age profile for labour supply. It is hump-shaped because labour

productivity is, i.e. Figure 8(b) looks very much like Figure 5(b) above.

Figure 8(d) shows the age profile for financial assets. This figures captures the main

features of Figure 6(d), but adds a borrowing period at the start of life. Agents delay labour

market entry and–upon entry–face rather low wages and supply few hours early on in life.

They finance their rising consumption profile by borrowing during that first life phase.

Interestingly, the quantitative effects of θ are rather small, as is revealed in Table 2(d),

column (i). First, the effect on the retirement age is very small because the age-effects in

productivity and mortality offset each other. Second, the mortality effect virtually eliminates

the positive effect on the labour market entry age. Third, as the comparison between panels

(b) to (d) in Table 2 reveals, the mortality effect constitutes the dominant mechanism by

which economic growth is reduced in the full model. Growth only falls by 9 basis points

(rather than 28 basis points for the core model). Finally, we note that empirical deficiency

(ED5) is reduced by quite a bit in the full model as the required efficiency parameter for

capital is equal to εK = 0.57 (rather than 0.92 in the core model).

4.4 The role of transfers in the full model

Up until now we have focused on the situation where the profits made by the annuity firms

are redistributed toward the agents in the form of a lump-sum transfer. These transfers

have allowed us to focus solely on the substitution effect of the annuity market imperfection.

However, in order to study the full (i.e. income and substitution) effect of the imperfection

we need to consider an alternative general equilibrium mechanism by which the profits of the

annuity firms are spent. In this subsection we assume that the government uses the funds

for non-productive spending. We refer the reader to Heijdra and Mierau (2009a) for detailed

derivations of the new equilibrium.

Compared to Table 5, there are two major changes. First, transfers are zero both with
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Table 5: Balanced growth and retirement with age-dependent productivity and mortality

(a) Microeconomic relationships:

C (v, v)

w (v)
=

α0εCΞ (r + β0 − γ̂, θ)R∗

S∗ − α1εCΞ (r + β1 − γ̂, θ)R∗

S∗

(1 − εC) Ξ (ρ, 1)R∗

S∗ + εCΞ (ρ, 1)D̄
0

+
εCΞ (r − γ̂, θ)D̄

0 · z

(1 − εC) Ξ (ρ, 1)R∗

S∗ + εCΞ (ρ, 1)D̄
0

(T5.1)

C (v, v)

w (v)
=

εC

1 − εC
E (S∗) e−(r−γ̂−ρ)S∗+(1−θ)M(S∗) (T5.2)

C (v, v)

w (v)
=

εC

1 − εC
E (R∗) e−(r−γ̂−ρ)R∗+(1−θ)M(R∗) (T5.3)

(b) Macroeconomic relationships:

z = (1 − θ) ·

∫ D̄

0
βe−(π+γ̂)u−M(u)µ (u)

A (v, v + u)

w (v)
du (T5.4)

γ̂ ≡
k̇ (t)

k (t)
= r − π +

[

n −
c (t)

w (t)

]

·
w (t)

k (t)
(T5.5)

w (t)n

k (t)
= (1 − εK)Z0 (T5.6)

n = β ·

[

α0Ξ (π + β0, 1)R∗

S∗ − α1Ξ (π + β1, 1)R∗

S∗

−
1 − εC

εC

C (v, v)

w (v)
· Ξ (π + ρ + γ̂ − r, 2 − θ)R∗

S∗

]

(T5.7)

c (t)

w (t)
≡

C (v, v)

w (v)
· βΞ (π + ρ + γ̂ − r, 2 − θ)D̄

0 (T5.8)

Definitions: Endogenous are C(v, v)/w(v), S∗, R∗, z, γ̂, l, w(t)/k(t), and c(t)/w(t). Parameters:

birth rate β, aggregate mortality rate µ̄, population growth rate π ≡ β − µ̄, imperfection annuities

θ, rate of time preference ρ, capital coefficient in the technology εK , consumption coefficient in tastes

εC , scale factor in the technology Z0. The interest rate is r ≡ εKZ0 − δ, where δ is the depreciation

rate of capital.
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(a) entry/exit condition (b) labour supply (L(u))
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Figure 8: General equilibrium with age-dependent productivity and mortality
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(a) labour supply (L(u)) (b) scaled financial assets (A(u)/w(0))
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Figure 9: Full model with useless government spending

perfect and imperfect annuities. Second, the imperfection surfaces directly in the relationship

for the growth rate. Indeed, equation (T5.5) is replaced by:

γ̂ =
k̇ (t)

k (t)
= r − π − (1 − θ) ·

w (t) Γ

k (t)
+

[

n −
c (t)

w (t)

]

w (t)

k (t)
, (T5.5′)

where w (t) Γ is given by:

w (t) Γ ≡

∫ t

t−D̄

p (v, t)µ (t − v) A (v, t) dv.

Figure 9 visualizes the impact of the annuity market imperfection on labour supply and

financial assets (As in the full model with transfers, consumption is hump shaped.). Figure

9(b) shows that assets accumulation is increased slightly for younger agents and reduced

substantially for older agents. Furthermore, as in the core model and the first extension we

find that agents retire early. Although similar to the calibration results in the other models,

we find that draining the profits from the system leads to more pronounced results. That

is, the income effect arising from the annuity market imperfection is substantial. This is

especially visible when considering the growth rate, which drops by 39 basis points–see Table

2(d), column (ii).

5 Conclusions

Although prominently present in economic theory, annuity markets are notoriously imperfect

in real life. In this paper we study the implications of an imperfect annuity market on, espe-
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cially, labour market decisions of individual agents and the general equilibrium repercussions

on, and of, economic growth. In contrast to Conesa and Krueger (2006) and Conesa et al.

(2009) we focus on an imperfect but not absent annuity market. This novel feature allows

us to consider the impact of different degrees of imperfection. Furthermore, in contrast to

Pecchenino and Pollard (1997), we explicitly focus on the labour market consequences of im-

perfect annuities. By studying endogenous intensive and extensive labour market decisions

we can focus on the key channels by which imperfect annuities affect individual and aggregate

outcomes.

We model an imperfect annuity market by setting the interest rate on life-insured loans

and deposits below the actuarially fair rate. This assures that life-insurance firms make excess

profits which have to be redistributed somehow. We then embed the imperfect annuity in

a core model featuring overlapping generations and endogenous growth. The core model

features age-independent wages and a constant mortality rate. Furthermore, we consider the

implications of a realistic individual productivity profile and of a realistic mortality profile.

We show that both extensions are needed to obtain a realistic calibration of the model.

The main findings emerging from our quantitative analysis are as follows. First, the way in

which excess profits (arising from overpriced annuities) are redistributed has a large effect on

the quantitative results. If these profits are handed back to the agents in a lump-sum fashion,

then the annuity market imperfection only has rather modest effects on labour market entry,

retirement, and macroeconomic growth. In contrast, if these profits are consumed by the

government on useless activities, then the effects are much larger. Labour market entry and

retirement both occur earlier in life, and the aggregate growth rate is reduced substantially

as a result of the annuity imperfection.

Second, the core model substantially overstates the retirement and growth effects of the

annuity imperfection. This is because its assumed demographic process “kills off” the young

agents too quickly and the older agents not quickly enough. Optimizing macroeconomic

models must include a realistic demographic process for these models to be of any quantitative

use.

A rather robust finding from all model variants considered is that economic growth is

lower under imperfect annuities than with perfect annuities. This findings begs the question

whether there is role for a policy maker to mitigate the negative consequences of an imperfect
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annuity market. A natural candidate for such a policy is a public pension system. We aim

to study this and other issues in future work.
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