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Abstract 
 
Using a German firm-level data set, this paper is the first to jointly study the cyclical 
properties of the cross-sections of firm-level real value added and Solow residual innovations, 
as well as capital and employment adjustment. We find two new business cycle facts: 1) The 
cross-sectional standard deviation of firm-level innovations in the Solow residual, value 
added and employment is robustly and significantly countercyclical. 2) The cross-sectional 
standard deviation of firm-level investment is procyclical. We show that a heterogeneous-firm 
RBC model with quantitatively realistic countercyclically disperse innovations in the firm-
level Solow residual and non-convex adjustment costs calibrated to the non-Gaussian features 
of the steady state investment rate distribution, produces investment dispersion that positively 
comoves with the cycle, with a correlation coefficient of 0.58, compared to 0.45 in the data. 
We argue more generally that the cross-sectional business cycle dynamics impose tight 
empirical restrictions on structural parameters and stochastic properties of driving forces in 
heterogeneous-firm models, and are therefore paramount in the calibration of these models. 
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1 Introduction

The cross-section of firms – more specifically the dispersions of change rates of firm-level out-

put, capital, employment and Solow residuals – display stark cyclical patterns. This paper sys-

tematically documents the cyclical properties of these moments of the cross-section of firms.

Using the balance sheet data set of Deutsche Bundesbank (USTAN) – a private sector, annual,

firm-level data set that allows us to investigate 26 years of data (1973-1998), in which the cross-

sections of the panel have over 30,000 firms per year on average –, we show that the cross-

sectional standard deviations of the firm-level innovations in the Solow residual, value added

and employment are robustly and significantly countercyclical, as measured by the contempo-

raneous correlation with the cyclical component of aggregate output. In contrast, the cross-

sectional standard deviation of firm-level investment rates is robustly and significantly pro-

cyclical. These results hold when different filtering methods are used, as well as the cross-

sectional interquartile range as a measure of dispersion. They are also robust to using cyclical

indicators other than aggregate output and to various changes in the sample selection criteria.

Figure 1 illustrates these two new business cycle facts (see Appendix A.5 for a time series graph

of the investment rate dispersion):

Figure 1: Cross-sectional Dispersion of Firm-Level Investment Rates and Solow Residual Inno-
vations
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It is clear that this finding is incompatible with a simple frictionless model of the firm with

ex ante homogeneous firms, as the latter would imply that the stochastic properties of the driv-

ing force – in this case dispersion in the innovations to firm-level Solow residuals – are at least

qualitatively inherited by the outcome variables. Indeed, we show that such a model would

lead to a counterfactual correlation of -0.54 between investment dispersion and aggregate out-

put, compared to 0.45 in the data. We propose a heterogenous-firm RBC model with persistent

idiosyncratic productivity shocks and lumpy capital adjustment to explain both qualitatively

and quantitatively the procyclicality of investment dispersion, even in the presence of coun-

tercyclical second-moment shocks in the driving force. The basic intuition, why lumpy capital

adjustment is at least qualitatively a suitable candidate to explain this fact, can be glanced from

the simple Ss-model in Caplin and Spulber (1987):

Proposition:

In a one-sided Ss-model a la Caplin and Spulber in steady state with a uniform gap- distri-

bution, fixed optimal adjustment policy S − s and shock ∆z > 0, the variance of adjustments is

increasing in ∆z if and only if the fraction of adjusters is smaller than 0.5.

Proof:

As is well known, average adjustment in this environment is ∆z. From this, it follows that

the variance of adjustment is given by: (0−∆z)2
(
1− ∆z

S−s

)
+ (

(S − s)−∆z
)2

(
∆z

S−s

)
=∆z(S − s −∆z),

which is increasing in ∆z if and only if ∆z
S−s < 0.5, where ∆z

S−s is the fraction of adjusters.

This example shows that with sufficient inertia the comovement of the extensive margin

with the cycle leads to a procyclical dispersion of adjustment, as in this simple model all the

dynamics are driven by the extensive margin. The intensive margin of adjustment, S−s, is fixed

by assumption. We will show that in a more realistic model a positive extensive margin effect is

still operative and can explain the observed procyclicality of investment dispersion.

Figure 2 displays sectoral variation that provides further suggestive evidence for this mech-

anism. It plots two correlation coefficients for the six one-digit sectors we observe in the USTAN

database against each other. On the x-axis it displays the correlation coefficients of investment

rate dispersion with the cyclical component of its own sectoral output. On the y-axis it displays

the correlation coefficients of the fraction of adjusters with these same output measures.1 The

plot shows that there is a positive association between the procyclicality of investment disper-

sion and the procyclicality of the extensive margin. Incidentally, the contemporaneous cor-

relation between the extensive margin and output for the aggregate USTAN data set is 0.73, a

number even higher than for investment rate dispersion.

1Using the convention of Cooper and Haltiwanger (2006), we define investing firms as those with annual invest-
ment rates of absolute value larger than 1%.
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Figure 2: Sectoral Variation in the Procyclicality of the Extensive Margin and Investment Rate
Dispersion

Notes: AGR: Agriculture; MIN: Mining & Energy; MAN: Manufacturing; CON: Construction; TRD: Trade (Retail &

Wholesale); TRA: Transportation & Communication. HP (100)−Y refers to the cyclical component of the output

of the corresponding sector. Both investment dispersion and the fraction of adjusters are linearly detrended.

We find more suggestive evidence that it is most likely lumpy capital adjustment that is gen-

erating this result: 1) we show that in a sector like manufacturing (see again Figure 2, left panel),

where we would expect non-convex factor adjustment to be most prevalent, procyclicality of in-

vestment dispersion is particularly pronounced, even though the driving force is most starkly

countercyclically disperse in this sector; 2) we also show that for smaller firms, i.e. firms that

are likely incapable of outgrowing adjustment costs, investment dispersion is significantly more

procyclical than for the largest firms. In contrast, conditional on firm size, finance variables

do not seem to have a large impact on the cyclicality of investment dispersion. We conclude

from this that the explanation does not lie in a financial friction. We also find no evidence of

a composition effect in the sense that some large sectors or large firms have actually procycli-

cal second-moment shocks that make the overall investment dispersion likewise procyclical. 3)

Finally, we find that the dispersion of investment rates is countercyclical – -0.549 – just like the

driving force, once we condition on large and lumpy investments as defined by a 20%-threshold

(see Cooper and Haltiwanger, 2006), in order to measure the dispersion of the intensive margin.

This is further evidence that the procyclicality of the unconditional investment rate dispersion

is driven by movements in the extensive margin.
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Why is this important? First, in our view explaining the business cycle dynamics of the

higher cross-sectional moments of the underlying macroeconomic aggregates is just as impor-

tant for our understanding of the business cycle as explaining these aggregates themselves. A

fully fledged business cycle theory has to speak to these cross-sectional dynamics as well. This

paper systematically documents the relevant facts and explains the most striking of them: pro-

cyclical investment dispersion in the presence of countercyclical second-moment shocks (see

Figure 1 and Table 3 in Section 2.2). Secondly, heterogenous-firm models have seen increased

use both in the macroeconomic as well as international finance literature. We show in this pa-

per that cross-sectional dynamics impose tight restrictions on structural parameters as well as

on the nature and stochastic properties of the driving forces in these models.2 For instance, we

show that procyclical investment dispersion – generated by a procyclical extensive margin effect

as in the above proposition – requires a large capital-curvature of the revenue function of the

firm, for this procyclical extensive margin effect to be strong enough in the presence of coun-

tercyclical second-moment shocks. Only with a large capital-curvature rely firms mostly on the

extensive margin for their capital adjustment (see Gourio and Kashyap (2007) for a related ob-

servation). We also document that the volatility of the countercyclical second-moment shocks

must not be too strong to be compatible with procyclical investment dispersion. In particular,

countercyclical second-moment shocks as large as suggested by Bloom (2009) and Bloom et al.

(2009) and large enough to generate interesting business cycle dynamics are incompatible with

this cross-sectional business cycle fact. That means cross-sectional dynamics have also strong

implications for the nature of aggregate dynamics.

Related Literature

The empirical part of this paper, section 2, is most closely related to a series of papers by

Higson and Holly et al. (2002, 2004), Doepke and Holly et al. (2005, 2008), Doepke and Weber

(2006), as well as Holly and Santoro (2008). Higson and Holly et al. (2002), using

Compustat data, study empirically the cyclicality of the standard deviation, skewness and kur-

tosis of the sales growth rate distribution and find them to be countercyclical, countercyclical

and procyclical, respectively. Higson and Holly et al. (2004) repeat this analysis for UK data on

quoted firms, and Doepke and Holly et al. (2005) for Germany, using the USTAN database, with

similar findings. Doepke and Weber (2006) study, again using USTAN data, the cyclicality of

transitions between sales growth regimes in firm-level data. In contrast to these papers, we fo-

cus on the cyclicality of cross-sectional second moments only, but include value added, Solow

residuals, investment rates and employment change rates into the analysis.3 The quantitative-

2Khan and Thomas (2005), in an earlier version of their 2008-paper, make a similar observation on the impor-
tance of general equilibrium in understanding cross-sectional firm dynamics. We confirm their conjecture here.

3Holly and Santoro (2008) as well as Doepke and Holly et al. (2008) start from the aforementioned empirical
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theoretical part of this paper – sections 3, 4 and 5 – draws heavily on the recent literature

on heterogenous-firm RBC models, developed in Khan and Thomas (2008), Bachmann et al.

(2008), Bloom (2009), Bloom et al. (2009) as well as Bachmann and Bayer (2009). Finally, our

work is related to the work by Eisfeldt and Rampini (2005), who show that capital reallocation

is procyclical and explain this in a two-sector model with costly capital reallocation.

2 The Facts

In Section 2.1 we briefly describe the USTAN data set and the main sample selection criteria

we use. Details are relegated to Appendix A.1. In Section 2.2 we present the baseline facts: the

contemporaneous correlations of cyclical aggregate output and the cross-sectional standard

deviations of firm-level Solow residual and real value added innovations as well as employment

change rates are negative, while the contemporaneous correlation of cyclical aggregate output

and the cross-sectional standard deviation of firm-level investment rates is positive. In Sec-

tion 2.4 we perform extensive robustness checks and also show, how these facts depend on

observable firm characteristics.

2.1 A Brief Data Description

2.1.1 USTAN Data

USTAN is a large annual firm-level balance sheet data base (Unternehmensbilanzstatistik) col-

lected by Deutsche Bundesbank. It is unique in its combination of size and coverage as well as

detail of available variables. It provides annual firm level data from 1971 to 1998 from the bal-

ance sheets and the profit and loss accounts of over 60,000 firms per year (see Stoess (2001),

von Kalckreuth (2003) and Doepke et al. (2005) for further details). In the days when the dis-

counting of commercial bills were one of the principal instruments of German monetary policy,

Bundesbank law required the Bundesbank to assess the creditworthiness of all parties backing

a commercial bill put up for discounting. The Bundesbank implemented this regulation by re-

quiring balance sheet data of all parties involved. These balance sheet data were then archived

and collected into a database.

Although the sampling design – one’s commercial bill being put up for discounting – does

not lead to a representative selection of firms in a statistical sense, the coverage of the sample

is very broad. USTAN covers incorporated firms as well as privately-owned companies, which

work and explore them in a monopolistically competitive model with financial frictions – the former – and in a
monopolistically competitive model with simple Calvo-type price-stickiness – the latter.
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distinguishes it positively from Compustat data.4 Its sectoral coverage – while still somewhat

biased to manufacturing firms – includes the construction, the service as well as the primary

sectors. This makes it different from, for instance, the Annual Survey of Manufacturing (ASM)

in the U.S.5 The following table 1 displays the sectoral coverage of our final baseline sample.

Table 1: SECTORAL COVERAGE

1-digit Sector Firm-year observations Percentage
Agriculture - AGR 12,291 1.44
Mining & Energy - MIN 4,165 0.49
Manufacturing - MAN 405,787 47.50
Construction - CON 54,569 6.39
Trade (Retail & Wholesale) - TRD 355,208 41.59
Transportation & Communication - TRA 22,085 2.59

Moreover, while there remains a bias to somewhat larger and financially healthier firms, the

size coverage is still fairly broad: 31% of all firms in our final baseline sample have less than

20 employees and 57% have less than 50 employees (see Table 21 in Appendix A.1 for details).

Finally, the Bundesbank itself frequently used the USTAN data for its macroeconomic analyses

and for cross-checking national accounting data. We take this as an indication that the bank

considers the data as sufficiently representative and of sufficiently high quality. This makes the

USTAN data an exceptionally suitable data source for the study of cross-sectional business cycle

dynamics.

2.1.2 Selection of the Baseline Sample

From the original USTAN data, we select only firms that report complete information on payroll,

gross value added and capital stocks. Moreover, we drop observations from East German firms

to avoid a break of the series in 1990. In addition, we remove observations that stem from

irregular accounting statements, e.g. when filing for bankruptcy or when closing operations.

We deflate all but the capital and investment data by the implicit deflator for gross value added

from the German national accounts.

Capital is deflated with one-digit sector- and capital-good specific investment good price

deflators within a perpetual inventory method. Even though USTAN data can be considered as

particularly high quality data, we cannot directly use capital stocks as reported. Tax motivated

4Davis et al. (2006) show that studying only publicly traded firms can lead to wrong conclusions, in particular
when higher cross-sectional moments are concerned. See Appendix A.1 Table 23 for ownership coverage in our
final sample.

5An additional advantage of these data is easy access: while access is on-site, it is practically free for researchers,
so that results derived from this data base can be easily tested and checked.

7



depreciation and price developments of capital goods lead to a general understatement of the

stock of capital a firm holds. Thus, capital stocks have to be recalculated using a perpetual

inventory method (see Appendix A.2, for details). Similarly, we recover the amount of labor

inputs from wage bills, as information on the number of employees (as opposed to payroll data)

is only updated infrequently for some companies (see Appendix A.3, for details). Finally, the

firm-level Solow residual is calculated from data on gross value added and factor inputs.

We remove outliers according to the following procedure: we calculate log changes in real

gross value added, the Solow residual, real capital and employment, as well as the firm-level in-

vestment rate and drop all observations where a change falls outside a three standard deviations

interval around the year-specific mean.6 We also drop those firms for which we do not have at

least five observations in first differences. This leaves us with a sample of 854,105 firm-year

observations, which corresponds to observations on 72,853 firms, i.e. the average observation

length of a firm in the sample is 11.7 years. The average number of firms in the cross-section

per year is 32,850. We perform numerous robustness checks with respect to each of the selec-

tion criteria and measurement choices: we use sectoral deflators for value added, an aggregate

investment good price deflator, change the cut-off rule to 2.5, 5 and 10 standard deviations and

leave all firms in the sample with two and twenty observations in first differences, respectively.

None of these choices change our baseline results.7

2.1.3 Calculating the Solow Residual and Factor Adjustments

We compute the firm-level Solow residual based on the following Cobb-Douglas production

function in accordance with our model:

yi ,t = ztεi ,t kθi ,t nν
i ,t ,

where εi ,t is firm-specific productivity, and zt is aggregate productivity. We assume that

labor input ni ,t is immediately productive, whereas capital ki ,t is pre-determined and inherited

from last period. In our main specification, we estimate the output elasticities of the production

factors, ν and θ, as median shares of factor expenditures over gross value added within each

industry.8

For factor adjustment, we use the symmetric adjustment rate definition proposed in Davis

et al. (1996). We thus define firm-level investment rates as
ii ,t

0.5∗(ki ,t+ki ,t+1)
9 and firm-level em-

6This outlier removal is done after removing firm and sectoral fixed effects. Centering the outlier removal
around the year mean is important to avoid artificial and countercyclical skewness of the respective distributions.

7See Appendix B for details. There we also discuss briefly the issue of sample selection.
8To check the robustness of our results, we try alternative specifications with predefined elasticities common

across sectors. We also change the timing assumption to include a predetermined employment stock, as well as
immediate adjustment in both factors. All results are very robust to the various ways of generating the firm-specific
Solow residual (for a detailed discussion, see Bachmann and Bayer, 2009).

9Appendix A.1 compares the USTAN aggregate and manufacturing investment rate histogram with the U.S. one
8



ployment adjustment rates as
∆ni ,t

0.5∗(ni ,t−1+ni ,t ) .10 We use log-differences in the Solow residual to

capture Solow residual innovations, as the persistence of firm-level Solow residuals exhibits

behavior close to a unit root. We remove firm fixed and sectoral-year11 effects from these first-

difference variables to focus on idiosyncratic fluctuations that do not capture differences in

sectoral responses to aggregate shocks or permanent ex-ante heterogeneity between firms.

2.1.4 Macro data

When combining this micro data with aggregate data, we have to take a stance on what sectoral

aggregate we view as the empirical counterpart to our model. We chose to include firms from

the following six sectors in our analysis: agriculture, mining and energy, manufacturing, con-

struction, trade (both retail and wholesale) as well as the transportation and communication

sector. This aggregate can be roughly characterized as the non-financial private business sector

in Germany. Whenever we use the term aggregate in the following, we mean this sector.

German national accounting data per one-digit sector (see Appendix A.1 for a detailed de-

scription of the data sources used) allow us to compute real value added, investment, capital

and employment data for this sectoral aggregate, and therefore also an aggregate Solow resid-

ual. Our USTAN sample captures on average 70% of sectoral value added, 44% of sectoral in-

vestment, 71% of its capital stock and 49% of sectoral employment.12

In addition to representing a large part of the non-financial private business sector in Ger-

many, USTAN also represents its cyclical behavior very well, as the following Table 2 shows:13

Table 2: CYCLICALITY OF CROSS-SECTIONAL AVERAGES

Cross-sectional Moment ρ(·, HP (100)−Y )

mean(
ii ,t

0.5∗(ki ,t+ki ,t+1) ) 0.756

mean(∆ logεi ,t ) 0.592
mean(∆ log yi ,t ) 0.663

mean(
∆ni ,t

0.5∗(ni ,t−1+ni ,t ) ) 0.602

Notes:
ρ: correlation coefficient.
HP (λ)−Y : Cyclical component of GDP after HP-filtering using smoothing parameter λ.

mean: cross-sectional average, linearly detrended.

from the Longitudinal Research Database, LRD. The similarities are remarkable, which suggests the generalizability
of our results also to the U.S.

10The baseline within-transformed cross-sectional dispersion data for factor adjustments can be found in Ta-
ble 27 in Appendix A.6.

11The sectoral fixed effects are essentially computed at the 2-digit level, see Table 20 in Appendix A.1 for details.
12The sectoral aggregate, in turn, captures 59% of real aggregate value added, 39% of aggregate investment, 26%

of aggregate capital and 65% of aggregate employment.
13We further document the good representation properties of USTAN in Appendix A.1.
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2.2 Main Facts

The following Table 3 presents the main new stylized facts about the cross-sectional dynamics

of firms. Firm-level investment rates display procyclical dispersion, whereas the cross-sectional

standard deviations of the (log)-changes in Solow residuals, output and employment are coun-

tercyclical.

Table 3: CYCLICALITY OF CROSS-SECTIONAL DISPERSION

Cross-sectional Moment ρ(·, HP (100)−Y ) 5% 95% Frac. w. opposite sign

σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ) 0.451 0.070 0.737 0.029

σ(∆ logεi ,t ) -0.481 -0.678 -0.306 0.000
σ(∆ log yi ,t ) -0.450 -0.675 -0.196 0.005

σ(
∆ni ,t

0.5∗(ni ,t−1+ni ,t ) ) -0.498 -0.717 -0.259 0.001

Notes:
σ: cross-sectional standard deviation, linearly detrended.

The columns 5% and 95% refer to the top and bottom 5-percentiles in a parametric bootstrap of the correlation

coefficient. The last column displays the fraction of simulations with the opposite sign of the point estimate. See

further notes to Table 2.

The first column of Table 3 shows the contemporaneous correlation of the cyclical com-

ponent of aggregate output14 with the cross-sectional standard deviations of the firm-level in-

vestment rates, the percentage changes in the firm-level Solow residual and real value added

as well as employment changes. The first is clearly procyclical, the latter three countercyclical.

The next two columns show the 5% and 95% confidence bands from 10,000 parametric boot-

strap simulations.15 The last column displays the fraction of negative correlations for the stan-

dard deviation of the firm-level investment rates, and the fraction of positive correlations for

the remaining three standard deviations in these bootstrap simulations. These three columns

together show that the sign of all correlations is significant. In the following, we show that find-

ing a procyclical investment rate dispersion is robust to the specific choices we have made in

calculating the numbers in Table 3.

2.3 Robustness

Table 4 shows that procyclical investment dispersion is robust to the choice of the cyclical indi-

cator.16 The result stands irrespective of whether we choose as cyclical indicators output filtered

14For the baseline scenario we use log-output with an HP-parameter 100.
15We use a pairwise unrestricted VAR with one lag as the parametric model. The results from a nonparametric

overlapping block bootstrap with a block size of four are similar to the parametric bootstrap.
16This is also true for the three other variables, and for σ(∆ logεi ,t ) and σ(∆ log yi ,t ), we have documented this

and other robustness tests elsewhere: Bachmann and Bayer (2009).
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Table 4: PROCYCLICALITY OF CROSS-SECTIONAL INVESTMENT DISPERSION - ROBUSTNESS TO

CYCLICAL INDICATOR

Cyclical Indicator ρ(σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ), ·)
HP(6.25)-Y 0.370
Log-diff-Y 0.351

mean(
ii ,t

0.5∗(ki ,t+ki ,t+1) ) 0.792

HP(100)-I 0.719
HP(100)-N 0.485
HP(100)-Solow Residual 0.387

Notes: See notes to Tables 2 and 3. I refers to aggregate investment, N to aggregate employment.

using a smaller smoothing parameter for the HP filter, following Ravn and Uhlig (2002), apply a

log-difference filter to output, or use the linearly detrended average cross-sectional investment

rate, or the HP(100)-filtered aggregate investment, employment or aggregate Solow residuals.

Table 5: PROCYCLICALITY OF CROSS-SECTIONAL INVESTMENT DISPERSION - MORE ROBUSTNESS

Cross-sectional Moment ρ(·, HP (100)−Y )

IQR(
ii ,t

0.5∗(ki ,t+ki ,t+1) ) 0.567

σ(∆ logki ,t ) 0.442

σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) )raw 0.451

σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) )quadratic detrending 0.555

σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) )cubic detrending 0.599

σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) )HP(100) detrending 0.618

σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) )1973−1990 0.297

σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) )1977−1998 0.359

Notes: See notes to Tables 2 and 3. IQR stands for interquartile range, which is linearly detrended.

Vice versa, our finding is also robust to the choices we have made for the other part of the

correlation, see Table 5. One can use the interquartile range (IQR) as the dispersion measure,

and one can study the firm level net percentage change in capital as opposed to the investment

rate.17 Moreover, it is not the removal of firm-level and sectoral fixed effects that induces this

procyclicality, as row three of this table shows. The next three rows show that the choice of

17This variable has the advantage that it corresponds to the percentage innovations in the stock of capital. We
can use a permanent-transitory decomposition to separate measurement error from true innovations to the capital
stock. The resulting correlation coefficient of the standard deviation of these purified innovations with the cycle is
0.449, and thus the procyclicality of the dispersion of capital innovations is not driven by measurement error.

11



a linear trend for investment rate dispersion is conservative: using quadratic detrending and

especially an HP-filter makes the procyclicality much stronger. This holds nearly uniformly for

all the other variations and robustness checks as well as the significance numbers in Table 3.

Finally, the last two rows demonstrate that the result is neither driven alone by the German

reunification, nor by the strong recession in 1975.

Tables 6 and 7 show how the cyclicality of cross-sectional investment dispersion manifests

itself across sectors and firm sizes. For the sectoral numbers we use the cross-sectional stan-

dard deviation of the firm-level investment rate and the HP(100)-filtered log-output of the cor-

responding sectors as inputs into the correlation measure. For the firm size numbers we use

HP(100)-filtered log-output from the sectoral aggregate.

Table 6: CYCLICALITY OF CROSS-SECTIONAL INVESTMENT DISPERSION - SECTORS

1-digit Sector ρ(σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ), HP (100)−Y ) ρ(σ(∆ logεi ,t ), HP (100)−Y )

AGR -0.192 -0.283
MIN 0.042 0.107
MAN 0.477 -0.397
CON 0.435 0.037
TRD 0.209 -0.387
TRA 0.404 0.034

Notes: See notes to Tables 2 and 3. See Figure 2 for the sectoral acronyms.

Table 6 shows that procyclicality of investment dispersion is strongly prevalent in the goods-

producing sectors, in particular manufacturing. The trade sector exhibits a smaller effect, whereas

in the primary sectors investment dispersion is nearly acyclical or weakly countercyclical.18 To

put these findings in perspective, we also display the cyclicality of the cross-sectional innovations-

to-Solow-residual dispersion, which – despite the procyclicality of investment dispersion – is

strongly countercyclical in the manufacturing and trade sectors. To sum up: manufacturing,

a sector where nonconvex adjustment technologies can be expected to be most prevalent, has

both the strongest countercyclically disperse driving force and the strongest procyclicality of

investment dispersion.

As Table 7 shows, procyclicality of investment dispersion is driven mainly by the smaller

firms, especially when size is measured by employment or value added. Large firms, in contrast,

display only weakly procyclical to acyclical investment dispersion. This distinction is significant

in the sense that at least if size is measured in terms of employment or value added, neither the

18Had we used the sectoral aggregate instead of own sector output as cyclical indicator, the results would be by
and large the same, except that the procyclicality of investment dispersion in the trade sector would more than
double with only half the countercylicality in the dispersion of the driving force.
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Table 7: CYCLICALITY OF CROSS-SECTIONAL INVESTMENT DISPERSION - FIRM SIZE

Size Class / Criterion Employment Value Added Capital
Smallest 25% 0.583 0.601 0.391
25% to 50% 0.456 0.468 0.422
50% to 75% 0.366 0.330 0.387
Largest 25% 0.188 0.215 0.399
Largest 5% 0.050 0.048 0.184

point estimate for the smallest size class lies in the [5%,95%]−bands of the largest size class nor

vice versa. 19

Finally, the last Table 8 shows that conditional on firm size – as measured by capital – the

financial situation of a firm – as measured by the equity-asset-ratio – hardly matters for the

cyclicality of investment dispersion:

Table 8: CYCLICALITY OF CROSS-SECTIONAL INVESTMENT DISPERSION - FINANCIAL SITUATION

Equity-Asset-Ratio Tercile Smallest 95% - Capital Largest 5% - Capital
First 0.369 -0.145
Second 0.273 0.034
Third 0.270 0.010

Tables 6 to 8 together with the finding that the Solow residual processes for small and large

firms hardly differ both on average over time and in terms of cyclicality of their innovations,20 at

least suggests that the friction necessary to explain the differential cyclicality of the dispersions

of firm-level innovations-to-Solow-residual and investment rates, respectively, can neither be

found in financial constraints nor principally in different shock processes. It also does not ap-

pear to be driven by certain sectors and large firms. We relegate a discussion of potential cyclical

sample selection to Appendix B and show there that it is not an issue.

Instead, we show in this paper that the presence of lumpy capital adjustment is a plausible

cause for this aspect of the cross-sectional firm dynamics. Indeed, the fact that procyclical in-

vestment dispersion is mostly prevalent in the manufacturing sector as well as in smaller firms,

i.e. firms where we would a priori expect non-convexities in the adjustment technology to be

most relevant, is at least consistent with our explanation.

19See Appendix A.1 for detailed information on the size distribution of firms in our sample.
20See Bachmann and Bayer (2009) for an in-depth discussion of this fact.
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Other Data Sources

Naturally the question arises whether it is specific to the German data used that we find

the dispersion of investment rates to be procyclical. To asses this we compare to data from

the UK DTI-database and to Compustat data from the US. The UK data comprises 10,966 firm-

year observations after removal of outliers and constraining the sample to firms with at least 5

observations, applying the same criteria as for the USTAN data. The UK data covers the period

1977-1990 and stems from a representative sample of firms (but over-sampling large firms) in

the manufacturing and some selected non-financial service sectors in Britain. For the US we

use Compustat annual accounts from 1968-2006. This yields for the US a final sample of 67,394

firm-year observations applying again the same sampling criteria as for the USTAN data.

Table 9 presents the results for these two data sets. The results are much in line with our

findings for the USTAN data: For the UK data set, which comprises a larger fraction of smaller

firms, we find a robust positive correlation of the dispersion of investment rates with the cycle,

irrespective of how we measure dispersion and cycle.

For the Compustat sample, we find a lower (though positive) correlation of the investment

rate dispersion with the cycle. This reflects that, in contrast to both the DTI data base and

the USTAN data, Compustat covers only large, publicly traded companies. The firms in the

Compustat sample are typically larger than even the top 5% largest firms in the USTAN data

and we have seen for the USTAN data that for larger firms the correlation coefficient drops.21

Table 9: CYCLICALITY OF CROSS-SECTIONAL INVESTMENT DISPERSION - EVIDENCE FROM THE

UK AND THE US

Cyclical Indicator ρ
(
σ

(
ii t

0.5(ki ,t−1+ki ,t )

)
, ·
)

ρ
(
IQR

(
ii t

0.5(ki ,t−1+ki ,t )

)
, ·
)

UK: Cambridge DTI, 1977 - 1990
HP(100)-Y 0.506 0.687
HP(6.25)-Y 0.488 0.749
Log-diff-Y 0.653 0.263

US: Compustat 1969 - 2006
HP(100)-Y 0.326 0.649
HP(6.25)-Y 0.334 0.628
Log-diff-Y 0.259 0.421

Notes: Aggregate output data, Y , for the US refers to real gross value added in the non-financial private business

sector. For the UK we use aggregate real gross-value-added instead, as the corresponding sectoral data is not

publicly available for the corresponding time period. Dispersion measures are linearly de-trended.

21All results are robust to alternative detrending methods for the dispersion of investment rates such as fitting
quadratic or cubic time-trends or HP-filtering. Results are available upon request.
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2.4 The Extensive Margin

As we have argued in the Introduction, the mechanism by which the model generates a pro-

cyclical dispersion of investment rates is the procyclicality of the extensive margin of invest-

ment. Table 10 provides direct evidence on this. It displays the numbers for Figure 2 in the

introduction as well as some robustness. The aggregate features strong procyclicality of the ex-

tensive margin,22 as does the manufacturing sector. The service sectors have a middle place,

whereas the primary sectors by and large display low and non-robust or zero procyclicality of

the extensive margin. For the construction sector the results are somewhat mixed, but overall

still show procyclicality.

Table 10: CYCLICALITY OF THE EXTENSIVE MARGIN

ρ(Frac. of adj., HP (100)−Y ) ρ(Frac. of lumpy adj., HP (100)−Y )
Aggregate 0.727 0.614
AGR 0.267 0.100
MIN 0.075 -0.1233
MAN 0.765 0.646
CON 0.428 0.153
TRD 0.559 0.388
TRA 0.237 0.263

Notes: See notes to Tables 2 and 3. See Figure 2 for the sectoral acronyms. The fraction of adjusters (Frac. of adj.) is

defined as firms with an investment rate of: | ii ,t
0.5(ki ,t+ki ,t+1) | > 0.01. The fraction of lumpy adjusters (Frac. of lumpy

adj.) is defined as firms with an investment rate of: | ii ,t
0.5(ki ,t+ki ,t+1) | > 0.2. Both are linearly detrended. HP (100)−Y

refers to the cyclical component of aggregate output in the first row, thereafter to the output of the corresponding

sector.

3 The Model

In this section we describe our model economy. We start with the firm’s problem, followed by

a brief description of the households and the definition of equilibrium. We conclude with a

sketch of the equilibrium computation. We follow closely Khan and Thomas (2008) and Bach-

mann et al. (2008). Since the model set up is discussed in detail there, we will be rather brief

here.

The main departure from either papers is the introduction of a second exogenous aggregate

state, the standard deviation of the distribution of idiosyncratic productivity shocks tomorrow,

22If we define the lumpiness threshold with 0.1, the aggregate number is 0.689.
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σ(ε′). The motivation for this is both realism, as we find these second-moment shocks in the

data, but also conservatism: we will show in Section 5.1 that without countercyclical second-

moment shocks the investment rate dispersion is very procyclical, more so than in the data,

even with very small fixed costs to adjustment. This comes as no surprise, as without counter-

cyclical second-moment shocks there is no countervailing force that would undo the extensive

margin effect that in turn causes the investment rate dispersion to be procyclical. Thus, since

this is a quantitative exercise using the correct amount of second-moment volatility and coun-

tercyclicality in the driving force is important. Following Khan and Thomas (2008), we approxi-

mate this now bivariate aggregate state process with a discrete Markov chain.

3.1 Firms

The economy consists of a unit mass of small firms. We do not model entry and exit decisions.

There is one commodity in the economy that can be consumed or invested. Each firm produces

this commodity, employing its pre-determined capital stock (k) and labor (n), according to the

following Cobb-Douglas decreasing-returns-to-scale production function (θ > 0, ν> 0, θ+ν<
1):

y = zεkθnν, (1)

where z and ε denote aggregate and firm-specific (idiosyncratic) technology, respectively.

The idiosyncratic technology process has autocorrelation ρI . It follows a Markov chain,

whose transition matrix depends on the aggregate state of its time-varying standard deviation,

σ(ε). In contrast, its support is independent of the aggregate state. To also capture observed

excess kurtosis in the idiosyncratic productivity shocks, we use a mixture of two Gaussian dis-

tributions in the Tauchen-approximation algorithm instead of the usual normal distribution.23

We denote the trend growth rate of aggregate productivity by (1−θ)(γ−1), so that aggregate y

and k grow at rateγ−1 along the balanced growth path. From now on we work with k and y (and

later C ) in efficiency units. The linearly detrended logarithm of aggregate productivity levels as

well as linearly detrendedσ(ε) evolve according to a VAR(1) process, with normal innovations v

that have zero mean and covarianceΩ:(
log z ′

σ(ε′′)− σ̄(ε)

)
= %A

(
log z

σ(ε′)− σ̄(ε)

)
+ v, (2)

where σ̄(ε) denotes the steady state standard deviation of idiosyncratic productivity inno-

vations.24

23Tauchen (1986). For details, see Section 4.
24Specifying this process in terms of log

(
σ(ε)

)
, in order to avoid negativity of the standard deviation of idiosyn-
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Productivity innovations at different aggregation levels are independent. Also, idiosyncratic

productivity shocks are independent across productive units. In contrast, we do not impose

any restrictions onΩ or %A ∈R2×2.

Each period a firms draws from a time-invariant distribution, G , its current cost of capital

adjustment, ξ≥ 0, which is denominated in units of labor. G is a uniform distribution on [0, ξ̄],

common to all firms. Draws are independent across firms and over time, and employment is

freely adjustable.

At the beginning of a period, a firm is characterized by its pre-determined capital stock, its

idiosyncratic productivity, and its capital adjustment cost. Given this and the aggregate state,

it decides its employment level, n, production and depreciation occurs, workers are paid, and

investment decisions are made. Then the period ends.

Upon investment, i , the firm incurs a fixed cost of ωξ, where ω is the current real wage rate.

Capital depreciates at rate δ. We can then summarize the evolution of the firm’s capital stock

(in efficiency units) between two consecutive periods, from k to k ′, as follows:

Fixed cost paid γk ′

i 6= 0: ωξ (1−δ)k + i

i = 0: 0 (1−δ)k

Given the i.i.d. nature of the adjustment costs, it is sufficient to describe differences across

firms and their evolution by the distribution of firms over (ε,k). We denote this distribution by

µ. Thus,
(
z,σ(ε′),µ

)
constitutes the current aggregate state and µ evolves according to the law

of motion µ′ = Γ(z,σ(ε′),µ), which firms take as given.

Next we describe the dynamic programming problem of each firm. We will take two short-

cuts (details can be found in Khan and Thomas, 2008). First, we state the problem in terms of

utils of the representative household (rather than physical units), and denote by p = p(z,σ(ε′),µ)

the marginal utility of consumption. Second, given the i.i.d. nature of the adjustment costs,

continuation values can be expressed without explicitly taking into account future adjustment

costs.

Let V 1(ε,k,ξ; z,σ(ε′),µ) denote the expected discounted value—in utils—of a firm that is in

idiosyncratic state (ε,k,ξ), given the aggregate state (z,σ(ε′),µ). Then the expected value prior

to the realization of the adjustment cost draw is given by:

V 0(ε,k; z,σ(ε′),µ) =
∫ ξ̄

0
V 1(ε,k,ξ; z,σ(ε′),µ)G(dξ). (3)

cratic productivity shocks is – given its high steady state value and relatively low variability (see Bachmann and
Bayer, 2009) – an unnecessary precaution that does not change the results.
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With this notation the dynamic programming problem is given by:

V 1(ε,k,ξ; z,σ(ε′),µ) = max
n

{CF+max(Vno adj,max
k ′ [−AC+Vadj])}, (4)

where CF denotes the firm’s flow value, Vno adj the firm’s continuation value if it chooses inaction

and does not adjust, and Vadj the continuation value, net of adjustment costs AC , if the firm

adjusts its capital stock. That is:

CF = [zεkθnν−ω(z,σ(ε′),µ)n]p(z,σ(ε′),µ), (5a)

Vno adj =βE[V 0(ε′, (1−δ)k/γ; z ′,σ(ε′′),µ′)], (5b)

AC = ξω(z,σ(ε′),µ)p(z,σ(ε′),µ), (5c)

Vadj =−i p(z,σ(ε′),µ)+βE[V 0(ε′,k ′; z ′,σ(ε′′),µ′)], (5d)

where both expectation operators average over next period’s realizations of the aggregate and

idiosyncratic productivity states, conditional on this period’s values, and we recall that i = γk ′−
(1−δ)k. Also, β denotes the discount factor of the representative household.

Taking as given pricesω(z,σ(ε′),µ) and p(z,σ(ε′),µ), and the law of motionµ′ = Γ(z,σ(ε′),µ),

the firm chooses optimally labor demand, whether to adjust its capital stock at the end of the

period, and the optimal capital stock, conditional on adjustment. This leads to policy functions:

N = N (ε,k; z,σ(ε′),µ) and K = K (ε,k,ξ; z,σ(ε′),µ). Since capital is pre-determined, the optimal

employment decision is independent of the current adjustment cost draw.

3.2 Households

We assume a continuum of identical households that have access to a complete set of state-

contingent claims. Hence, there is no heterogeneity across households. Moreover, they own

shares in the firms and are paid dividends. We do not need to model the household side in

detail (see Khan and Thomas (2008) for the details), and concentrate instead on the first-order

conditions to determine the equilibrium wage and the marginal utility of consumption.

Households have a standard felicity function in consumption and (indivisible) labor:

U (C , N h) = logC − AN h , (6)

where C denotes consumption and N h the household’s labor supply. Households maximize the
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expected present discounted value of the above felicity function. By definition we have:

p(z,σ(ε′),µ) ≡UC (C , N h) = 1

C (z,σ(ε′),µ)
, (7)

and from the intratemporal first-order condition:

ω(z,σ(ε′),µ) =− UN (C , N h)

p(z,σ(ε′),µ)
= A

p(z,σ(ε′),µ)
. (8)

3.3 Recursive Equilibrium

A recursive competitive equilibrium for this economy is a set of functions(
ω, p,V 1, N ,K ,C , N h ,Γ

)
,

that satisfy

1. Firm optimality: Taking ω, p and Γ as given, V 1(ε,k; z,σ(ε′),µ) solves (4) and the corre-

sponding policy functions are N (ε,k; z,σ(ε′),µ) and K (ε,k,ξ; z,σ(ε′),µ).

2. Household optimality: Taking ω and p as given, the household’s consumption and labor

supply satisfy (7) and (8).

3. Commodity market clearing:

C (z,σ(ε′),µ) =
∫

zεkθN (ε,k; z,σ(ε′),µ)νdµ −
∫ ∫ ξ̄

0
[γK (ε,k,ξ; z,σ(ε′),µ)− (1−δ)k]dGdµ.

4. Labor market clearing:

N h(z,σ(ε′),µ) =
∫

N (ε,k; z,σ(ε′),µ)dµ +
∫ ∫ ξ̄

0
ξJ

(
γK (ε,k,ξ; z,σ(ε′),µ)− (1−δ)k

)
dGdµ,

where J (x) = 0, if x = 0 and 1, otherwise.

5. Model consistent dynamics: The evolution of the cross-section that characterizes the econ-

omy, µ′ = Γ(z,σ(ε′),µ), is induced by K (ε,k,ξ; z,σ(ε′),µ) and the exogenous processes for

z, σ(ε′) as well as ε.

Conditions 1, 2, 3 and 4 define an equilibrium given Γ, while step 5 specifies the equilibrium

condition for Γ.
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3.4 Solution

As is well-known, (4) is not computable, since µ is infinite dimensional. Hence, we follow

Krusell and Smith (1997, 1998) and approximate the distribution µ by its first moment over

capital, and its evolution, Γ, by a simple log-linear rule. In the same vein, we approximate the

equilibrium pricing function by a log-linear rule, discrete aggregate state by discrete aggregate

state:

log k̄ ′ =ak
(
z,σ(ε′)

)+bk
(
z,σ(ε′)

)
log k̄, (9a)

log p =ap
(
z,σ(ε′)

)+bp
(
z,σ(ε′)

)
log k̄, (9b)

where k̄ denotes aggregate capital holdings. Given (8), we do not have to specify an equilibrium

rule for the real wage. As usual with this procedure, we posit this form and check that in equi-

librium it yields a good fit to the actual law of motion. In contrast to models without second

moment shocks, where it has been extensively shown that the first moment suffices, we show

here that the pure R2 goodness-of-fit metric does not perform as well anymore: R2 below 0.9

are possible, as we shall see in Section 5.2. Nevertheless, Bachmann and Bayer (2009) show that

the aggregate dynamics of such an economy are hardly affected, when higher moments of the

capital distribution are included and the R2 are pushed closer to unity (see Bachmann et al.

(2008) for a similar observation). We show here that also the cross-sectional dynamics are af-

fected only to a small degree. And since we consistently find that not including higher moments

leads to a slight underestimation of the procyclicality of investment dispersion, we prefer the

increase in computational speed and report our results, unless otherwise noted, with the first

moment only as a state variable.

Combining these assumptions and substituting k̄ for µ into (4) and using (9a)–(9b), we

have that (4) becomes a computable dynamic programming problem with policy functions

N = N (ε,k; z,σ(ε′), k̄) and K = K (ε,k,ξ; z,σ(ε′), k̄). We solve this problem via value function

iteration on V 0.

With these policy functions, we can then simulate a model economy without imposing the

equilibrium pricing rule (9b), but rather solve for it along the way. We simulate the model

economy for 1,600 time periods and discard the first 100 observations, when computing any

statistics. This procedure generates a time series of {pt } and {k̄t } endogenously, with which as-

sumed rules (9a)–(9b) can be updated via a simple OLS regression. The procedure stops when

the updated coefficients ak
(
z,σ(ε′)

)
and bk

(
z,σ(ε′)

)
, as well as ap

(
z,σ(ε′)

)
and bp

(
z,σ(ε′)

)
are

sufficiently close to the previous ones. We skip the details of this procedure, as this has been

outlined elsewhere – see Khan and Thomas (2008) and Bachmann et al. (2008).
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4 Calibration

The model period is a year – in congruence with the data frequency in USTAN. The following

parameters have standard values: β = 0.98 and δ = 0.094, which we compute from German

national accounting data for the sectoral aggregate that the USTAN sample corresponds to: the

non-financial private business sector. Given this depreciation rate, we pick γ= 1.014, in order to

match the time-average aggregate investment rate of 0.108. This number is also consistent with

German long-run growth rates. The log-felicity function features an elasticity of intertemporal

substitution (EIS) of one. The disutility of work parameter, A, is chosen to generate an average

time spent at work of 0.33: A = 2 for the baseline calibration.

We set the output elasticities of labor and capital to ν= 0.5565 and θ = 0.2075, respectively,

which correspond to the measured median labor and capital shares in manufacturing in the

USTAN data base (see Appendix A.4). While our data also include a considerable amount of

firms from other sectors, any weighted average or median of these shares would still be close to

the manufacturing values, which is why we decided to use them in our baseline calibration. We

discuss robustness to this parameter choice in Section 5.1 and Appendix A.4.25

Next, we have to choose the parameters of the two-state aggregate shock process. Here we

simply estimate a bivariate, unrestricted VAR with the linearly detrended natural logarithm of

the aggregate Solow residual26 and the linearly detrended σ(ε)-process from the USTAN data.27

The parameters of this VAR are as follows:28

%A =
(

0.4474 −3.7808

0.0574 0.7794

)
Ω=

(
0.0146 0.1617

0.1617 0.0023

)
(10)

This process is discretized on a [5×5]−grid, using a bivariate analog of Tauchen’s procedure.

We measure the steady state standard deviation of idiosyncratic technology innovations as

σ̄(ε) = 0.1201. Since these innovations also exhibit mild excess kurtosis – 4.4480 on average over

our time horizon –,29 and since the adjustment cost parameter ξ̄will be identified by the kurto-

sis of the firm-level investment rate (in addition to its skewness), we want to avoid attributing

25If one views the DRTS assumption as a mere stand-in for a CRTS production function with monopolistic com-
petition, than these choices would correspond to an employment elasticity of the underlying production function
of 0.7284 and a markup of 1

θ+ν = 1.31. Given the regulated product markets in Germany, this is a reasonable value.

The implied capital elasticity of the revenue function, θ
1−ν is 0.47. Finally, model simulations show that using the

capital share as an estimate for the output elasticity of capital under the null hypothesis of the model leads to a
small overestimation of the latter, which, as we will show in Section 5.1, leads to the the baseline calibration being
conservative relative to the main result: procyclicality of investment dispersion.

26We use again ν= 0.5565 and θ = 0.2075 in these calculations.
27After firm-level and sectoral fixed effects have been removed.
28With a slight abuse of notation, but for the sake of readability, Ω displays standard deviations on the main

diagonal and correlations on the off diagonal.
29We find no skewness.
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excess kurtosis in the firm-level investment rate to nonlinearities in the adjustment technology,

when the driving force itself has kurtosis. Hence, we incorporate the measured excess kurtosis

into the discretization process for the idiosyncratic technology state.30 Finally, we set ρI = 0.95,

in accordance with the high persistence of Solow residual innovations we find in the data. This

process is discretized on a 19−state-grid, using Tauchen’s procedure with mixed Gaussian nor-

mals.31

Given the aforementioned set of parameters
(
β,δ,γ, A,ν,θ,%A,Ω, σ̄(ε),ρI

)
, we then calibrate

the adjustment costs parameter ξ̄ to minimize a quadratic form in the normalized differences

between the time-average firm-level investment rate skewness produced by the model and the

data, as well as the time-average firm-level investment rate kurtosis:32

min
ξ̄
Ψ(ξ̄) ≡ 0.5 ·

[(( 1

T

∑
t

skewness(
ii ,t

0.5∗ (ki ,t +ki ,t+1)
)(ξ̄)−2.1920

)
/0.6956

)2+(( 1

T

∑
t

kur tosi s(
ii ,t

0.5∗ (ki ,t +ki ,t+1)
)(ξ̄)−20.0355

/
5.5064)

)2
]

. (11)

As can be seen from (11), the distribution of firm-level investment rates exhibits both sub-

stantial positive skewness – 2.1920 – as well as kurtosis – 20.0355. Caballero et al. (1995) doc-

ument a similar fact for U.S. manufacturing plants. They also argue that non-convex capital

adjustment costs are an important ingredient to explain such a strongly non-Gaussian distribu-

tion, given a close-to-Gaussian shock process. We therefore use the deviation from Gaussianity

in firm-level investment rates to identify ξ̄.

The following Table 11 demonstrates identification of ξ̄, as cross-sectional skewness and

kurtosis of the firm-level investment rates are both monotonically increasing in ξ̄. The mini-

mum of the distance measure Ψ is achieved for ξ̄= 0.3, our baseline case.33 This implies costs

conditional on adjustment equivalent to 15.4% of annual firm-level output on average, which

is well in line with estimates from the U.S. (see Bloom, 2009). A description of the aggregate

dynamics of the baseline calibration is relegated to Appendix C.

30We achieve this by using a mixture of two Gaussian distributions: N (0,0.0777) and N (0,0.1625) – the standard
deviations are 0.1201±0.0424 – with a weight of 0.4118 on the first distribution.

31The cross-sectional results do not change significantly with either an increase in the fineness of the aggregate
grid to [9×9], nor with one in the idiosyncratic grid to a 35−state-grid.

32The normalization constants in (11) are, respectively, the time series standard deviation of the investment rate
skewness and the time series standard deviation of the investment rate kurtosis.

33We searched over a finer grid of ξ̄ than displayed in the table, in order to find the optimal ξ̄.
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Table 11: CALIBRATION OF ADJUSTMENT COSTS - ξ̄

ξ̄ Skewness Kurtosis Ψ(ξ̄) Adj. costs/
Unit of Output

0.01 0.7852 5.0389 11.5082 1.5%
0.05 1.5168 7.6444 6.0062 4.2%
0.1 1.9340 9.3327 3.9157 6.8%
0.2 2.4011 11.4056 2.547 11.3%
0.3 (BL) 2.6915 12.8042 2.2402 15.4%
0.5 3.0686 14.7669 2.5035 23.3%
1 3.5926 17.8112 4.2169 43.3%

5 Results

5.1 Baseline Results

Can a thus calibrated DSGE model with idiosyncratic productivity shocks, fixed adjustment

costs to capital and countercyclical innovations to the dispersion of firm-level Solow residuals

reproduce the cyclicality of the cross-sectional dynamics observed in the data?

Table 12 summarizes our main result numerically: in our baseline calibration the model

matches the procyclicality of firm-level investment rate dispersion as well as the extensive mar-

gin reasonably well, even though it was calibrated to the steady state Non-Gaussianity of the

investment rate distribution.34 We use HP(100)-filtered aggregate model output as the cyclical

indicator. The countercyclical dispersions of value added and employment changes are also

captured very well.

Table 12: CYCLICALITY OF CROSS-SECTIONAL DISPERSION - BASELINE MODEL

Cross-sectional Moment Data Model

σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ) 0.451 0.580

σ(∆ log yi ,t ) -0.450 -0.392

σ(
∆ni ,t

0.5∗(ni ,t−1+ni ,t ) ) -0.498 -0.436

Fraction of adjusters 0.727 0.485

Notes: Correlation coefficients between HP(100)-filtered output and a cross-sectional standard deviation. Fraction

of adjusters is defined as firms with an investment rate of: | ii ,t
0.5(ki ,t+ki ,t+1) | > 0.01. The column ‘Model’ refers to the

correlation coefficients from a simulation of the model over T = 1500 periods.

34These numbers are obtained from a simulation of T = 1500. Using an even longer simulation of T = 3000 and
breaking it up into 60 pieces of T = 26 (the length of the USTAN sample) independent time series produces an
average value of 0.652 for the correlation between investment rate dispersion and cyclical output with a standard
deviation of: 0.113. The range is [0.390,0.845], which includes the point estimate of the data.
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Figure 3 shows that indeed the model produces procyclical investment dispersion close to

the one found in the data and shown in Figure 1 in the introduction. Likewise, Figure 8 in Ap-

pendix A.5 shows a simulated time path of investment dispersion that clearly exhibits positive

comovement with aggregate output.

Figure 3: Cross-sectional Dispersion of Firm-Level Investment Rates and Solow Residual Inno-
vations
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The next Table 13 illustrates how lumpy capital adjustment and countercyclical second mo-

ment shocks interact to generate the procyclicality result.

Two findings are important: in the presence of countercyclical second moment shocks, the

procyclicality of investment dispersion is a gradually and monotonically increasing function of

the adjustment cost parameter. What is perhaps surprising is that the level of adjustment costs

that best matches the cross-sectional average skewness and kurtosis of firm-level investment

rates – two statistics that have been known to be related to the level of nonconvexities at the

micro-level (see Caballero et al., 1995) – also leads to a model that almost matches an impor-

tant time series moment of the cross-sectional business cycle dynamics. Had we matched the

latter almost exactly, we would have chosen an adjustment cost parameter of 0.2, a value only

somewhat below our baseline calibration. The table also shows that a more conservative cali-

bration that calibrates to the cross-sectional skewness of firm-level investment rates only and
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Table 13: ADJUSTMENT COSTS AND CYCLICALITY OF INVESTMENT DISPERSION AND THE EXTEN-
SIVE MARGIN

ξ̄ Full Model w. 2nd moment shocks Model w/o. 2nd moment shocks
0 -0.543 -
0.0001 -0.536 -0.181
0.001 -0.456 0.674
0.005 -0.350 0.810
0.01 -0.283 0.832
0.05 -0.025 0.855
0.1 0.175 0.861
0.15 (skewness only) 0.334 0.870
0.2 0.444 0.873
0.3 (BL) 0.580 0.876
0.5 0.731 0.883
0.75 0.820 0.890
1 0.864 0.896

Notes: See notes to Table 12. Note that for the case with ξ̄ = 0 and no second-moment shocks any time series

variation of σ(
ii ,t

0.5(ki ,t+ki ,t+1) ) is a numerical artifact, which means that its correlation coefficient with output is not

defined. %A = 0.5259 andΩ= 0.0182 for the univariate case.

puts zero weight on their kurtosis, still generates a sizeable level of procyclicality in investment

dispersion. By contrast, the frictionless case merely replicates the countercyclicality of the dis-

persion of the driving force.

Moreover, the second column of this table shows that without second moment shocks, a

very low level of non-convexity immediately generates procyclicality in investment dispersion

– the gradient of procyclicality in the adjustment cost factor, ξ̄, is extremely steep without coun-

tercyclical second moment shocks.35 But it also makes the model overshoot this number con-

siderably. Thus, countercyclical second moment shocks are an important part in understanding

cross-sectional firm dynamics, both in generating countercyclical dispersions of value and em-

ployment changes, but also to generate realistic procyclicality in investment dispersion. With-

out them, it would simply be too easy to generate the latter. We view this as an important

confirmation of our calibration and our mechanism: in the presence of quantitatively real-

istic countercyclicality of the dispersion of the driving force, it is a level of adjustment costs

that matches best the nonlinear average moments of the investment rate distribution that also

generates about the right correlation coefficient between the standard deviation of investment

rates and aggregate output. Table 13 shows that this identification is rather tight.

35Notice that the proposition in the introduction suggests that for low enough adjustment cost parameters and
for an important enough role of the extensive margin we should expect countercylicality of investment rate dis-
persion even without countercyclical second moment shocks.
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Table 14 illustrates how the procyclicality of the investment dispersion and the procyclical-

ity of the extensive margin interact with the curvature of the revenue function in capital.

Table 14: FACTOR ELASTICITIES AND CYCLICALITY OF INVESTMENT DISPERSION

Cross-sectional Moment Baseline (0.47) Rev. Ela.=0.57 Rev. Ela.=0.63

σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ) 0.580 -0.102 -0.492

Fraction of Adjusters 0.485 -0.295 -0.603

Notes: See notes to Table 12. ‘Rev. Ela.’ stands for the revenue elasticity of capital in a reduced form revenue

function, after labor has been maximized out. It is given by θ
1−ν . Using the convention of Cooper and Haltiwanger

(2006), we define the fraction of adjusters as those firms that have annual investment rates of absolute value larger

than 1%.

The results in columns two and three refer to setups with factor elasticities ν = 0.5333, θ =
0.2667 and ν= 0.5556, θ = 0.2778, respectively, compared to ν= 0.5565, θ = 0.2075 in the base-

line scenario.36 It is clear that larger revenue elasticities in capital after labor has been maxi-

mized out, imply a lower procyclicality of the extensive margin and thus for the investment rate

dispersion. Smaller revenue elasticities or higher curvature of the production function imply

that the intensive margin of investment becomes less flexible: the range of the optimal capital

return level in the baseline scenario is [0.0261,41.9135], for the second column [0.0183,98.6497]

and [0.0073,175.0381] for the third column; all with the same process for idiosyncratic technol-

ogy. To achieve the optimal path for aggregate investment, the extensive margin becomes more

important for the firms, the higher the curvature of the revenue function. This effect of curva-

ture is well known and explained in detail in Gourio and Kashyap (2007).

Finally, Table 15 shows the effect of general equilibrium on both the procyclicality of the

extensive margin as well as the procyclicality of investment dispersion. Real wage and interest

rate movements lead to aggregate coordination and therefore to procyclicality of the fraction of

adjusters. This in turn increases the cyclical comovement of both the investment rate disper-

sion, as the following Table 15 shows. As we have shown above, both quantities are strongly

procyclical in the data. We thus confirm the conjecture in Khan and Thomas (2005) that gen-

eral equilibrium price movements are important to quantitatively account for cross-sectional

business cycle dynamics.

To sum up, the extent of both, the procyclicality of investment dispersion as well as the

countercyclicality of the dispersion of firm-level Solow residual innovations, impose important

36In a monopolistic competition framework, column two implies a scenario with a CRTS-one-third-two-third
production function and a markup of 1.25, column three a markup of 1.20. In each case, we recompute firm-level
and aggregate Solow residuals, estimate a new driving process (2) and re-calibrate the adjustment cost parameter
ξ̄ to minimizeΨ(ξ̄) in (11). For the second column this leads to ξ̄= 0.45, and ξ̄= 0.5 for the third column.
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Table 15: CYCLICALITY OF INVESTMENT DISPERSION AND GENERAL EQUILIBRIUM

Cross-sectional Moment Baseline - GE PE

σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ) 0.580 -0.1612

Fraction of Adjusters 0.485 -0.0222

Notes: See notes to Tables 12. ‘GE’ stands for general equilibrium and means a model simulation with market

clearing wages and interest rates. ‘PE’ stands for partial equilibrium and means a model simulation, where wages

and interest rates are held constant at the average level in the ‘GE’-simulation.

and very tight restrictions on important structural parameters, such as adjustment frictions

and factor elasticities in the production function. More generally, this makes the study of cross-

sectional business cycle dynamics important for the structure and calibration of heterogenous-

firm models. We also confirm the conjecture in Khan and Thomas (2005) that general equilib-

rium price movements are important to quantitatively account for the cross-sectional business

cycle dynamics observed in the data.

5.2 Robustness

In the following Table 16 we document robustness of our baseline result to some of the choices

we have made in the baseline calibration.

Table 16: CYCLICALITY OF INVESTMENT DISPERSION - ROBUSTNESS

Scenario ρ(σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ), HP (100)−Y )

Baseline 0.580
Double volatility of σ(∆εi ,t ) -0.006
Quadruple volatility of σ(∆εi ,t ) -0.283
C RR A = 3 0.560
Timing of σ(∆εi ,t ) 0.694
Log-weighting 0.731
mean(∆εi ,t ) 0.757

Notes: See notes to Table 12.

In order to check robustness of our results to a potential underestimation of the volatility

of the countercyclical second-moment shock, we double (and quadruple) it, while keeping its

steady state value fixed at σ̄(ε) = 0.1201. To this end, we rescale the σ(ε)-process by a factor of

two (four) when simulating the model. As expected, now the ability of the procyclical exten-

sive margin effect to overcome the countercyclical second-moment shocks is limited, because

the latter fluctuates more. This drives down the correlation of the investment rate dispersion
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and the cyclical component of aggregate output to zero and approximately −0.3, respectively.

Notice, however, that it is still the case that non-convexities in capital adjustment cause an ex-

tensive margin effect that partially offsets the countercyclical second-moment shocks, as the

frictionless counterparts of these two high volatility specifications feature correlation coeffi-

cients of investment dispersion with output of -0.551 and -0.535, respectively. But it is also clear

from this exercise that the strongly procyclical investment dispersion that we find in the data

– +0.451 – is at odds with the even more, eightfold as volatile countercyclical second-moment

shocks proposed in Bloom (2009) and Bloom et al. (2009) as important drivers of the business

cycle. Next, we check whether our unity CRRA is driving our result by increasing the CRRA to

3. This leads to hardly any change.37 Furthermore, we check whether the result is sensitive to

the timing assumption about the revelation of the dispersion of the firm-level Solow residual

innovation. The baseline model assumes that σ(∆εi ,t+1) is revealed today in t , concomitantly

with zt and εt , aggregate and idiosyncratic technology, which means investors know about the

actual productivity risk tomorrow at the time of the investment decision. There is another plau-

sible timing assumption: only σ(∆εi ,t ) is revealed today in t , and both zt and σ(∆εi ,t ) predict

the dispersion of the firm-level Solow residual innovation tomorrow through persistence in the

VAR in equation (10). As the fourth row shows, this increases somewhat the procyclicality of in-

vestment dispersion, as the corresponding number from a frictionless model would be −0.3845,

compared to the −0.5432 in the frictionless counterpart of the baseline timing assumption. The

effect through the countercyclical driving force in this case is simply more indirect. The next

to last row shows that using a normalized calibration criterion,Ψ(ξ̄), in (11) as opposed to, say,

log-deviations between model simulated skewness and kurtosis of investment rates, was a con-

servative choice. Had we used the latter – and therefore calibrated ξ̄ = 0.5 –, we would have

found an even stronger procyclicality of the investment rate dispersion. Finally, we replace the

aggregate Solow residual with the average firm-level Solow residual from USTAN in the bivariate

aggregate driving force, which somewhat increases the procyclicality of investment dispersion.

Measurement Error

Measuring Solow residuals is potentially fraud with error. Indeed, when we take measure-

ment error in our firm-level Solow residual calculation into account, we find that the average

standard deviation of the innovations to this Solow residual, σ̄(ε), declines from 0.120 to 0.091.38

37Technically, with the separable felicity specification in (6) there is no balanced growth path with CRRA=3. The
model remains consistent with balanced growth, if the disutility of leisure grows with the steady state growth rate,
γ, and the fundamental discount rate is accordingly adjusted.

38Assuming additive classical measurement error in firm-level log-Solow residuals and a time-invariant mea-
surement error variance, we can use the time-average of the difference between the one-period innovation to ob-
served firm-level log-Solow residuals and half the variance of the two-period innovations to estimate the variance
of measurement error. Subtracting this number (twice) from the observed variance of one-period innovations to
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We therefore recompute and recalibrate our model with a driving force that is corrected for this

measurement error. The adjustment cost parameter is lowered to ξ̄ = 0.25. As Table 17 shows,

this increases dramatically the procyclicality of investment dispersion. The model overshoots.

The next two lines explain why. We keep the fluctuations of the computed Solow residual inno-

vation dispersion as in the baseline model, but lower mechanically its long-run average and

recalibrate the adjustment cost parameter, respectively to ξ̄ = 0.25 and ξ̄ = 0.15. There are

two effects to consider: for a fixed adjustment cost parameter lowering the long-run average

of the second-moment driving force mechanically increases the coefficient of variation of the

latter, which in isolation drives down the procyclicality of investment dispersion. At the same

time, lowering the long-run average dispersion of idiosyncratic productivity shocks also means

that the adjustment costs parameter is relatively high compared to the remaining idiosyncratic

uncertainty, which strengthens the extensive margin effect and on net the procyclicality of in-

vestment dispersion. The second effect means that this too high adjustment cost parameter

overshoots now the optimal level to match skewness and kurtosis of the long-run investment

rate distribution. That is why we recalibrate ξ̄ downward. However, this is not enough to offset

the positive net effect on the procyclicality of investment dispersion.

Table 17: CYCLICALITY OF INVESTMENT DISPERSION - MEASUREMENT ERROR

Scenario ρ(σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ), HP (100)−Y )

Baseline 0.580
Measurement Error 0.845
Three quarter σ̄(ε) 0.896
Half σ̄(ε) 0.954
Measurement Error + Rescaled volatility of zt (0.6) 0.585
Measurement Error + Double volatility of σ(∆εi ,t ) 0.414
Measurement Error + Quadruple volatility of σ(∆εi ,t ) -0.078

Notes: See notes to Table 12.

One concern with this calibration is that we have treated idiosyncratic and aggregate Solow

residuals differently, specifying the former with measurement error and the latter not. The fifth

row addresses this concern which is reflected by the fact that aggregate volatility in our baseline

calibration is too high (see Appendix C). If this high volatility was due to measurement error,

then we would unduly increase the relative importance of first-moment shocks versus second-

moment shocks. A calibration where we re-scale the volatility of aggregate Solow residuals – by

a factor of 0.6 – to match the observed volatility of aggregate output in the German NIPA data in-

firm-level log-Solow residuals yields an estimate of the true variance of the innovations to firm-level log-Solow
residuals.
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deed lowers again the simulated procyclicality of investment dispersion. However, it is still very

much in line with the data, in fact very close to our baseline calibration, where measurement

error at any level was ignored.

The last two lines of Table 17 finally show that when we again take into account measure-

ment error in the microeconomic driving force only, the procyclicality of investment dispersion

still puts a sharp upper bound on the relative importance of countercyclical second-moment

shocks proposed in Bloom (2009) and Bloom et al. (2009). They basically cannot exceed an

unconditional time-series percentage standard deviation of twice 4.72%, where the latter is the

percentage volatility ofσ(ε) after measurement error is taken into account. Notice that rescaling

the aggregate Solow residual would only lower that number and make the bound sharper.

Higher Moments in the Krusell and Smith Rules

It remains to be shown that our result is not driven by the choice of only the average capital

stock in the Krusell and Smith rules (9a) and (9b). While it is the case that in the presence of

countercyclical second-moment shocks the conventional R2−measure is fairly low – at least in

some combinations of the discrete aggregate states, the minimum is 0.8701 –, and while it is also

true that including the skewness of the capital distribution39 leads to an average increase of the

R2 for the capital regressions from 0.9378 to 0.9870 and for the marginal utility of consumption

regressions from 0.9962 to 0.9986, neither the aggregate behavior (see Bachmann and Bayer

(2009) for details) nor the cross-sectional dynamics of the model are significantly altered: the

correlation between investment dispersion and cyclical aggregate output raises slightly from

0.580 to 0.639.40 That means, if anything, our baseline numerical specification is somewhat

conservative with respect to our main finding.41 The bottom line, however, is that better fore-

casts do not necessarily induce the agents to behave differently (see Bachmann et al. (2008) for

a similar finding).

The scatter plots in Figure 4 make this point graphically: the positive relationship between

investment dispersion and cyclical aggregate output is nearly indistinguishable between a nu-

merical specification where only average capital is used as a state variable and one, where also

the skewness of firm-level capital is included in the forecasting rules.

39Including the standard deviation of capital does not yield any significant improvements in R2. The average R2

over all discrete states for the skewness regression, that is analogous to (9a), is 0.9261.
40We find even somewhat better improvements in the R2 and a similarly small increase in the procyclicality of

investment dispersion, when instead we include the standard deviation of log firm-level Solow residuals as an
additional moment in the Krusell and Smith rules. Numbers are available on request.

41Our finding that the procyclicality of investment dispersion puts a sharp upper bound on the countercyclicality
of the dispersion of firm-level Solow residual innovations is also robust to including higher moments. Numbers
are available on request.
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Figure 4: Cross-sectional Dispersion of Firm-Level Investment Rates and Solow Residual Inno-
vations: Higher Moments
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Notes: Dispersion refers to the cross sectional standard-deviation.

5.3 Results from Sectoral Calibrations

To test our mechanism further, we use the 1-digit sectoral variation in the procyclicality of in-

vestment dispersion and the extensive margin from Figure 2 in the introduction. We view this as

an additional and suggestive exercise, given that for computational feasibility we have to make

an important shortcut. Instead of calibrating and computing a realistic six-sector general equi-

librium model of the German economy, we run six separate specifications of our baseline DSGE

model, where we adjust crucial parameters to sectoral statistics, but otherwise treat the corre-

sponding sector as the aggregate economy. Specifically, we calibrate the factor elasticities in

the production function to sectoral income shares and use our sectoral USTAN results both for

the long-run standard deviation (and the kurtosis)42 of the innovations to the firm-level Solow

residual, σ̄(ε), as well as the time series process of the latter. We set the sectoral long-run growth

rates to zero and calibrate the sectoral depreciation rates to match the sectoral long-run aggre-

gate investment rate. In the baseline exercise we also use sectoral Solow residuals as the first

moment shock in the VAR in equation (2).43 Finally, given all these parameters we calibrate the

adjustment costs parameter, ξ̄, to match a variance-weighted quadratic form in sectoral skew-

ness and kurtosis of the firm-level investment rates, analogous to (11). Table 30 in Appendix D

42As in the aggregate data we find mild excess kurtosis and no skewness across the one-digit sectors. The exact
numbers are available from the authors on request.

43The exact specifications of these VARs for each sector are available from the authors on request. Table 31 in
Appendix D displays the results, when we use aggregate Solow residuals in the estimation of the driving process
and aggregate output as the cyclical indicator.
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displays the main calibration parameters for each sector. For computational reasons we leave

out the agricultural sector in this sectoral exercise. There we estimate the revenue elasticity of

capital to be 0.935, which requires infeasibly fine and large grids for firm-level capital, a compu-

tational burden that is beyond the scope of this simple sectoral exercise. Given this high revenue

elasticity of capital and our results in Table 14 in Section 5.1 about how curvature of the revenue

function relates to the cyclicality of investment dispersion, the low and slightly negative corre-

lation of investment dispersion in the agricultural sector – -0.192 (with own sectoral output, see

Table 6 in Section 2.4) and 0.151 (with aggregate output) – should come as no surprise and, in

fact, supports our mechanism without the aforementioned computational burden.44

Table 18: RESULTS FROM SECTORAL CALIBRATION

Sector ρ(σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ), HP (100)−Y ) ρ(Fraction of Adjusters, HP (100)−Y )

Model Data Model Data
Aggregate 0.580 0.451 0.485 0.727
MIN 0.050 0.042 0.058 0.075
MAN 0.771 0.477 0.754 0.765
CON 0.684 0.435 0.565 0.428
TRD 0.909 0.209 0.920 0.559
TRA 0.223 0.404 0.250 0.237

Notes: See notes to Tables 12. See Figure 2 for the sectoral acronyms. HP (100)−Y refers to the cyclical component

of aggregate output in the first row, from the second row onwards to the cyclical component of the output of the

corresponding sector.

Table 18 displays the results for the correlations of investment dispersion and the extensive

margin, respectively, with own sector output.45 The correlation coefficients between model

simulations and data are 0.446 for investment rate dispersion and 0.901 for the extensive mar-

gin. The corresponding rank correlations are 0.4 and 0.9, respectively. The model captures the

overall variation with mining and energy not displaying any cyclicality of either investment rate

dispersion or the extensive margin, the transportation and communication sector featuring a

middle position and manufacturing and construction having the strongest procyclicality. The

models for the latter sectors slightly overestimate procyclicality, for the former one it is underes-

timated. The biggest exception is the trade sector, where the models produce an almost perfect

procyclicality of both investment rate dispersion and the extensive margin, which is inconsis-

tent with the data. The explanation is simple: as can be gathered from Table 30 in Appendix D,

44For similar reasons, in the computation for the mining and energy sector we scale down the measured factor
elasticities by a factor of 0.9. This facilitates the numerics considerably without compromising our results.

45Tables 31 and 32 in Appendix D show the results with aggregate output and the own sector average cross-
sectional investment rate, respectively. The latter show a higher congruence between data and model numbers.
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we estimate the lowest revenue elasticity of capital in the trade sector – 0.403. This enormously

facilitates the extensive margin mechanism to an extent that is obviously at odds with the data.

It appears that we neglected a significant factor in trade that can be adjusted but does not ap-

pear in our specification of the production function. One advantage of using the cross-sectional

dynamics of investment is that it helps to identify this flaw. Yet, it is beyond the scope of this

paper to offer a remedy for this discrepancy. We nevertheless view the overall sectoral results

in support of our basic mechanism, especially given the simplicity of the sectoral exercise, and

leave the trade “puzzle”for future research.

6 Final Remarks

This paper studies the cyclical behavior of the second moments of the cross-sections of firm-

level innovations to value added, Solow residuals, capital and employment. We show that even

in the presence of countercyclically disperse Solow residual innovations the dispersion of in-

vestment rates is significantly and robustly procyclical. We also show that this can be quantita-

tively explained by realistically calibrated non-convex adjustment costs: a procyclical extensive

margin effect dominates the countercyclical dispersion in the driving force. Other potential ex-

planations, such as financial frictions, are ruled out. We finally argue that the understanding of

the cross-sectional business cycle dynamics imposes important restrictions on structural pa-

rameters and driving forces. In particular, large countercyclical second moment shocks that

could generate sizeable business cycle dynamics would be incompatible with procyclical in-

vestment dispersion.

We view this as just the beginning of a new research program that attempts to understand

more comprehensively the time-series behavior of the entire cross-section of firms, not merely

the cyclicality of second moments. This will ultimately lead to a better microfoundation of

structural heterogeneous-firm models and contribute to making them suitable for policy anal-

ysis. We also plan to corroborate these new findings for more countries, in particular the U.S.
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A Data Appendix

A.1 Description of the Sample

The Bundesbank’s corporate balance sheet database (Unternehmensbilanzstatistik, USTAN

henceforth) has been originally created as a by-product of the bank’s rediscounting activities, an

important instrument of monetary policy before the introduction of the Euro. When a commer-

cial bank wished to pledge a commercial bill of exchange to the Bundesbank, the commercial

bank had to prove the creditworthiness of the bill. For that purpose the bank had to provide

the Bundesbank with balance sheet information of all parties who backed the bill of exchange.

By law, the Bundesbank could only accept bills backed by at least three parties known to be

creditworthy. This procedure allowed the Bundesbank to collect a data set with information

stemming from the balance sheets and the profit and loss accounts of firms (see Stoess (2001),

von Kalckreuth (2003) and Doepke et al. (2005) for further details).

Quality standards of the data are particularly high. All mandatory data collected for USTAN

have been double-checked by Bundesbank staff. Hence, the data should contain unusually few

errors for a micro-data set. One drawback of USTAN is that with the introduction of the EURO,

the Bundesbank stopped buying commercial bills and collected firm balance sheet data only

irregularly and from publicly available sources. For this reason, the data set stops being useful

in 1999. Therefore, we only use data from 1971 to 1998, which leaves us with essentially 26 year

observations from 1973 to 1998 because of lagging and first-differencing.

The coverage of the sample is broad, although it is technically not a representative sam-

ple due to the non-random sample design. It was also more common to use bills of exchange

in manufacturing and for incorporated companies, which biases our data somewhat towards

these kinds of firms. And, of course, the Bundesbank would only rediscount bills with a good

rating, so that the set of firms in USTAN is also somewhat biased to financially healthy and

larger firms.

Nevertheless, USTAN covers a wide range of firms, since short-term financing through com-

mercial bills of exchange was common practice for many German companies across all busi-

ness sectors (see Table 20 below for the detailed sectoral composition of our final sample). US-

TAN also has a broad ownership coverage ranging from incorporated firms as well as privately

owned companies, which distinguishes it from the Compustat data. Within the former group

USTAN covers both untraded corporations (e.g. limited liability firms, GmbH) as well as pub-

licly held companies (AG) – see Table 23 below. Finally, USTAN features also a relatively broad

size coverage, as we will show in Table 21 below for our final sample, the creation of which we

describe in some detail now.
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We start out with the universe of observations in the USTAN data, merging the files for

1971-1986 and 1987-1998. In a first pass, we then drop all balance sheets that are irregular,

e.g. bankruptcy or closing balance sheets, or stem from a group/holding (Konzernbilanz). This

leaves us with only regular balance sheets (Handelsbilanz or Steuerbilanz). We also drop all

firms with missing payroll data or missing or negative sales data, which are basically non-

operating firms. A small amount of duplicate balance sheets is removed as well. And finally, we

drop the following sectors: hospitality (hotels and restaurants), which has only a small amount

of firms in the database, financial and insurance institutions, the mostly public health and ed-

ucation sectors, as well as other public companies like museums, etc. and some other small

service industries, such as hair cutters, dry cleaners and funeral homes;46 or when sectoral in-

formation was missing. The sectoral aggregate we are studying can be roughly characterized as

the non-financial private business sector in Germany. This leaves us with an initial data set of

1,764,846 firm-year observations and 259,614 firms. The average number of firms per year is

63,030.

From this initial data set we remove step-by-step more observations, in order to get an eco-

nomically reasonable data set. We first drop observations from likely East German firms to

avoid a break of the series in 1990. We identify a West German firm as a firm that has a West

German address or has no address information but enters the sample before 1990. Then we

recompute capital stocks with a modified perpetual inventory method (PIM) and employment

levels. In the modified PIM we drop a small amount of observations from the top and bottom

of the distribution of correction factors for the initial capital stock, see Appendix A.2. Extreme

correction factors indicate that constant depreciation is not a good approximation for this par-

ticular firm. Such a firm will have had an episode of extraordinary depreciation (e.g. fire, a

natural disaster, etc.) and the capital stocks by PIM will be a bad measure of the actual capital

after the disaster. We remove observations that do not have a log value added and a log capital

stock after PIM. Another large part is removed due to not featuring changes in log firm-level

employment, capital and real value added, which obviously requires us to observe firms for two

consecutive years. Then we remove outliers in factor changes and real value added changes.

Specifically, we identify as outliers in our sample a firm-year in which the firm level investment

rate or log changes in firm-level real value added, employment and capital stock fall outside

a three standard deviations band around the firm and sectoral-year mean. Then we compute

firm-level Solow residuals (see Appendix A.4 for details) and similarly remove observations with

missing log changes in Solow residuals as well as outliers therein. We finally remove – before and

46The number of firms from the public sector and these small industries is tiny to begin with, as they did not use
commercial bills as a financing instrument. We left out financial and insurance institutions, as they arguably have
a very different production function and investment behavior.
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after each step of the outlier removal – firms that have less than five observations in firm-level

Solow residual changes. We conduct extensive robustness checks of our results to the choices

for the outlier and observation thresholds (see Appendix B). Table 19 summarizes, how much

observations are dropped in each step.

Table 19: SAMPLE CREATION

Criterion Drops of Firm-Year Observations
East Germany 104,299
Outliers in PIM 7,539
Missing log value added 1,349
Missing log capital 31,819
Missing log-changes in N, K, VA 161,668
Outliers in factor and VA log-changes 41,453
Missing log-changes in Solow residual 126,086
Outliers in Solow residual log-changes 18,978
Not enough observations 417,550
Total 910,741

The final sample then consists of 854,105 firm-year observations, which amounts to obser-

vations on 72,853 firms and the average observation length of a firm in the sample is 11.7 years.

The average number of firms per year is 32,850. The following Tables 20 and 21 as well as 22

and 23 show the average sectoral 47 and the size distributions in our sample, as well as the dis-

tributions over the number of observations and legal forms, respectively.

47WZ 2003 is the industry classification from 2003 that the German national accounting system
(Volkswirtschaftliche Gesamtrechnung, VGR) uses.
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Table 20: SECTORAL DISTRIBUTION

ID Sector Observations Frequency WZ 2003
10 Agriculture 12,291 1.44% A, B
20 Energy & Mining 4,165 0.49% C, E
31 Chemical Industry, Oil 14,721 1.72% DF, DG
32 Plastics, Rubber 23,892 2.80% DH
33 Glass, Ceramics 28,623 3.35% DI
34 Metals 30,591 3.58% DJ
35 Machinery 162,407 19.01% DK, DL, DM, DN
36 Wood, Paper, Printing 61,672 7.22% DD, DE
37 Textiles, Leather 46,173 5.41% DB, DC
38 Food, Tobacco 37,708 4.41% DA
40 Construction 54,569 6.39% F
61 Wholesale Trade 213,071 24.95% G51
62 Retail Trade & Cars 142,137 16.64% G50, G51
70 Transportation & Communication 22,085 2.59% I

Total 854,105

Table 21: SIZE DISTRIBUTIONS OF FIRMS

Number of
Employees 1-4 5-9 10-14 15-19 20-49 50-99 100-249 250-499 500+
Fraction 6.14% 9.46% 8.24% 7.30% 26.28% 17.04% 14.37% 5.68% 5.49%

Capital Stock
(in 1000 1991-Euro) 0-299 300-599 600-999 1,000-1,499 1,500-2,499 2,500-4,999 5,000-9,999 10,000-24,999 25,000+
Fraction 8.23% 9.01% 9.67% 9.36% 13.08% 17.71% 13.87% 11.08% 7.99%

Real Value Added
(in 1000 1991-Euro) 0-299 300-499 500-999 1,000-1,499 1,500-2,499 2,500-4,999 5,000-9,999 10,000-24,999 25,000+
Fraction 8.17% 7.93% 16.38% 11.56% 14.45% 16.28% 11.20% 8.25% 5.79%
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Table 22: OBSERVATION DISTRIBUTION

Obs. per Firm Firms Percent Cum. Obs. per Firm Firms Percent Cum.
5 8,973 12.32 12.32 16 2,487 3.41 78.10
6 7,592 10.42 22.74 17 2,225 3.05 81.16
7 6,609 9.07 31.81 18 2,024 2.78 83.93
8 5,724 7.86 39.67 19 1,849 2.54 86.47
9 4,901 6.73 46.39 20 1,619 2.22 88.69

10 4,338 5.95 52.35 21 1,479 2.03 90.72
11 3,960 5.44 57.78 22 1,351 1.85 92.58
12 3,528 4.84 62.63 23 1,446 1.98 94.56
13 3,134 4.30 66.93 24 988 1.36 95.92
14 3,006 4.13 71.05 25 892 1.22 97.14
15 2,647 3.63 74.69 26 2081 2.86 100

Total 72,853

Table 23: LEGAL FORM DISTRIBUTION

Legal Form Observations Frequency
Publicly Traded (AG, KGaA, etc.) 18,582 2.18%
Limited Liability Companies (GmbH, GmbH&Co., etc.) 506,184 59.26%
Fully Liable Partnerships (OHG, KG, etc.) 327,526 38.35%
Other: unincorporated associations (e.V.) 1,813 0.21%
municipal agencies (Körperschaften öR) etc.
Total 854,105 100%
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How well does the USTAN aggregate represent the non-financial private business sector

(NFPBS) in Germany? Table 24 shows that USTAN represents on average 70% of the value added

of the NFPBS, which, in turn, comprises 59% of the aggregate real value added, 44% of its invest-

ment, etc. Moreover, USTAN replicates the capital-output ratio of NFPBS rather well, somewhat

less so the other canonical ratios, such as the investment rate, average labor productivity and

the labor share, which has obviously to do with our larger firm bias in the sample.48

Table 24: USTAN AND THE NFPBS

USTAN/NFPBS USTAN NFPBS NFPBS/Aggregate
Value Added 70% - - 59%
Investment 44% - - 39%
Capital 71% - - 26%
Employment 49% - - 65%
Payroll 54% - - 65%
Capital/Value Added - 1.544 1.496 -
Investment/Value Added - 0.099 0.158 -
Value Added/Employment - 52828 36859 -
Payroll/Value Added - 0.506 0.657 -

Figure 5 shows that except for a certain overrepresentation of manufacturing and a certain

underrepresentation of the transportation and communication sector, USTAN represents the

sectoral composition in NFPBS rather well.

Figure 6 demonstrates that also the cyclical behavior of USTAN and NFPBS is close. The

correlation of the cyclical components of value added is 0.7671 and for the investment rate it is

0.7843.49

48 To compute these time-average statistics we only average over the data from 1973 to 1990, because from then
on German national accounting does no longer report West and East Germany separately. For the business cy-
cle statistics we use the post-reunification data, but filter separately before and after this structural break. NFPBS
value added is taken from Bruttowertschoepfung in jeweiligen Preisen, table 3.2.1 of VGR, deflated year-by-year by
the implicit deflator for aggregate value added, table 3.1.1 of VGR (we apply the same deflator to USTAN data).
The base year is always 1991. We experiment also with implicit sector-specific deflators for value added from
table 3.2.1 and 3.2.2 of VGR, and results are robust to this. NFPBS investment is Bruttoanlageinvestitionen in jew-
eiligen Preisen from table 3.2.8.1, deflated with the implicit sector-specific investment price deflators given by
Bruttoanlageinvestitionen - preisbereinigt, a chain index, from table 3.2.9.1, VGR. NFPBS capital is Nettoanlagev-
ermoegen in Preisen von 2000 from table 3.2.19.1, VGR, re-chained to 1991 prices. In both the computation of
investment and capital data for USTAN in the PIM we use the implicit sector and capital good specific (equipment
and non-residential structures) deflators for investment: tables 3.2.8.2, 3.2.9.2., 3.2.8.3 and 3.2.9.3., VGR. We also
experiment with deflating USTAN data with a uniform investment price deflator, the Preisindex der Investitions-
gueterproduzenten, source: GP-X002, Statistisches Bundesamt. NFPBS employment is number of employed, Ar-
beitnehmer, from table 3.2.13, VGR. Finally, payroll is taken from Arbeitnehmerentgelt, table 3.2.10., VGR, deflated
by the same general implicit deflator for aggregate value added that we use to deflate value added numbers.

49We take first differences of log value added and then take out both for it and the investment rate a deterministic
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Figure 5: Sectoral Composition in USTAN and NFPBS
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Graphs display the fraction of the sum of real value added, investment and capital, respectively, over all firms by

1-digit sector within the USTAN sample over the NFPBS aggregate.

Finally, how does the USTAN investment rate cross-section compare to known data from

the U.S.? The following Table 25 compares cross-sectional moments of the USTAN investment

rates, as well as for the manufacturing sector in USTAN (for reasons of comparison with only

ki ,t in the denominator) with the ones reported in Cooper and Haltiwanger (2006) for manufac-

turing plant-level data. Even though USTAN is a firm-level as opposed to a plant-level data set,

these histograms are remarkably similar, which lends some optimism to the generalizability of

our results to the U.S.

Table 25: USTAN AND LRD MOMENTS

Moment USTAN USTAN-Manufacturing LRD
Negative Spike (<-20%) 0.3% 0.3% 1.8%
Negative Investment (-20%,-1%) 2.6% 2.0% 8.6%
Inaction (-1%,1%) 15.1% 11.4% 8.1%
Positive Investment (1%,20%) 67.7% 73.6% 62.9%
Positive Spike (> 20%) 14.2% 12.7% 18.6%

linear trend to remove the growth of the USTAN sample over time. The correlation between only the first differ-
ences in log value added is still 0.5348, and 0.4966, when an HP(100)-filter is applied. The correlation for the raw
investment rate series is 0.7089.
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Figure 6: Cyclical Behavior in USTAN and NFPBS
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Upper panel: time series for the sum of real value added over all firms in the USTAN sample and NFPBS after
detrending with logarithmic first differences and a deterministic linear trend.

Lower panel: time series for the sum of investment over all firms in the USTAN sample and NFPBS, divided by the

average of the beginning-of-period and end-of-period aggregate capital stocks in USTAN and NFPBS, respectively,

after detrending with a deterministic linear trend.

A.2 Capital Stocks

In order to obtain economically meaningful stocks of capital series for each firm, we have to

re-calculate capital stocks in a Perpetual Inventory Method (PIM). The first step is to compute

firm-level investment series, ii ,t , from the corporate balance sheets, which contain data only

on accounting capital stocks, ka
i ,t , and accounting total depreciation, d a

i ,t . The following accu-

mulation identity allows to back out nominal firm-level investment:50

ka
i ,t+1 = ka

i ,t −d a
i ,t +p I

t ii ,t . (12)

The next step is to recognize that capital stocks from corporate balance sheets are not di-

rectly usable for economic analysis for two reasons: 1) accounting depreciation, d a
i ,t , in cor-

porate balance sheets is often motivated by tax reasons and typically higher than economic

depreciation, δe
i ,t , expressed as a rate; 2) accounting capital stocks are reported at historical

50Specifically, ka
i ,t is the sum of balance sheet items ap65, Technische Anlagen und Maschinen, and ap66, Andere

Anlagen, Betriebs-und Geschaeftsausstattung, for equipment; and balance sheet item ap64, Grundstuecke, Bauten,
for structures. Since balance sheet data are typically end-of-year stock data, notice that ka

i ,t is the end-of-period
capital stock in year t −1. d a

i ,t is profit and loss account item ap156, Abschreibungen auf Sachanlagen und imma-
terielle Vermoegensgegenstaende des Anlagevermoegens. In contrast to ka

i ,t , d a
i ,t is not given for each capital good

separately. For the solution of this complication, see below.
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prices. Both effects would lead to an underestimation of the real firm-level capital stock, if one

were to simply deflate the current accounting capital stock, ka
i ,t , with a current investment price

deflator, p I
t (assuming that p I

t increases over time). We therefore apply a Perpetual Inventory

Method (PIM) to compute economic real capital stocks:

k(1)
i ,1 = ka

i ,1. (13)

k(1)
i ,t+1 = (

1−δe
t

)
k(1)

i ,t +
p I

t

p I
1991

ii ,t . (14)

ka
i ,1 is the accounting capital stock in prices of 1991 at the beginning of an uninterrupted

sequence of firm observations – if for a firm-year we have a missing investment observation,

the PIM is started anew, when the firm appears again in the data set. We estimate δe
t for each

year from national accounting data, VGR, separately for equipment and non-residential struc-

tures (table 3.1.3, VGR, Nettoanlagevermoegen nach Vermoegensarten in jeweiligen Preisen, Aus-

ruestungen und Nichtwohnbauten; table 3.1.4, VGR, Abschreibungen nach Vermoegensarten in

jeweiligen Preisen, Ausruestungen und Nichtwohnbauten). VGR contains sectoral and capital

good specific depreciation data only after 1991, which is why we decided to use only capital

good specific depreciation rates for the entire time horizon. For the data sources for invest-

ment price deflators see footnote 48. The drawback of this procedure is that we do not observe

directly capital-good specific d a
i ,t in the balance sheets (differently from ka

i ,t ), so that (12) is not

directly applicable for the two types of capital goods separately. We therefore split up d a
i ,t ac-

cording to the fraction that each capital good accounts for in the book value of total capital,

weighting each capital good by its VGR depreciation rate. Creating a capital series for both cap-

ital goods this way is mainly meant to provide a better estimate for total capital for each firm,

because we finally aggregate up both types of capital into a single capital good at the firm-level.

There is a final complication, which comes through relying on ka
i ,1 as the starting value of

the PIM. It is typically not a good estimate of the productive real capital stock of the firm at that

time. Therefore, we calculate the time-average factor φ (for each sector), by which k(1)
i ,t is larger

than ka
i ,t , and replace ka

i ,1 by φka
i ,1 in the perpetual inventory method. We do this iteratively,

until φ converges, i.e. we calculate:

k(n)
i ,t+1 = (

1−δe
t

)
k(n)

i ,t + p I
t

p I
1991

ii ,t (15)

k(n)
i ,1 = φ(n−1)k(n−1)

i ,1 (16)

φ(n) = (N T )−1
∑
i ,t

k(n)
i ,t

k(n−1)
i ,t

(17)
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where k(0)
i ,t = ka

i ,t , φ(0) = 1. We stop when for each sector and each capital good category φ< 1.1.

Since for our purposes we want to compute economic, i.e. productive, capital stocks, we

then – as a final step – add to the capital stock series from this iterative PIM the net present

value of the real expenditures for renting and leasing equipment and structures.51

A.3 Labor Inputs

A more particular difficulty with USTAN data is that information on the number of employees is

only updated infrequently for some companies, as it is not taken directly from balance sheets,

but sampled from supplementary company information. Being no balance sheet item, the em-

ployment data is not constrained by legal accounting rules and did not undergo consistency

checks by Bundesbank staff. However, in order to compute firm-level Solow residuals, we need

some measure of employment.

We base this measure on the payroll data (w ag ebi l li ,t ) from the profit and loss statements

(item ap154, Personalaufwand). Payroll data is regulated by accounting standards and is checked

for consistency by the Bundesbank using accounting identities. In contrast to the direct em-

ployment data, the payroll data is generally considered of high quality. Therefore, we exploit

this data to construct a proxy measure for (log) employment ni ,t as follows (with a slight abuse

of notation, we use ni ,t here for log employment).

The idea behind our proxy measure is that we can determine sectoral average wages even

though firm level employment is measured with error. Since wage bargaining in Germany is

highly centralized, the sectoral average wage is all we need then, since it is a good proxy for firm

level wages. Therefore, dividing firm level payroll by the sectoral average wage recovers true

firm level employment.

Specifically, we assume that the measurement error in reported log employment, n∗
i ,t ,52 is

classical and additive:

n∗
i ,t = ni ,t +εi ,t . (18)

Then we decompose the wage per employee, ωi ,t , of firm i at time t into two effects. One is

determined by a firm-time-specific wage component wi ,t , and the other one being region-,

r (i , t ), sector-, j (i , t ), and size-class-specific, s (i , t ), where j (i , t ), r (i , t ) and s (i , t ) denote that

51 Specifically, we take item ap161, Miet- und Pachtaufwendungen, from the profit and loss accounts, deflate it by
the implicit investment good price deflator, which we compute, in turn, from tables 3.2.8.1 and 3.2.9.1 from VGR,
and then divide it by a measure of the user cost of capital. The latter is simply the sum of real interest rates for a
given year, which - courtesy of the Bundesbank - we compute from nominal interest rates on corporate bonds and
ex-post CPI inflation data (the series is available from the authors upon request), and the time-average, accounting
capital-good weighted depreciation rate per firm.

52We use item ap34, Beschaeftigtenzahl im Durchschnitt des Geschaeftsjahres, to measure n∗
i ,t , where available.
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firm i belongs to sector j , region r and size-class s at time t , respectively.53 Thus, we write

ωi ,t = w̄ j (i ,t ),r (i ,t ),s(i ,t ),t +wi ,t . (19)

We denote all firms that belong to sector j , region r and size-class s at time t by I
(

j ,r, s, t
)
. Then

we can estimate a sector-region-size wage component, w̄ j ,r,s,t , as:54

̂̄w j ,r,s,t = 1

#I
(

j ,r, s, t
) ∑

i∈I( j ,r,s,t)

[
log

(
w ag ebi l li ,t

)−n∗
i ,t

]
. (20)

We then use this estimate of the average wage rate to estimate employment on the basis of the

firm’s wage bill:

n̂i t = log w ag ebi l li t − ̂̄w j ,r,s,t (21)

= ni t +ωi t − 1

#I
(

j ,r, s, t
) ∑

h∈I( j ,r,s,t)

(
nh,t +ωh,t −

(
nh,t +εh,t

))
(22)

= ni t +wi t − 1

#I
(

j ,r, s, t
) ∑

h∈I( j ,r,s,t)

(
wh,t −εh,t

)
(23)

= ni t +wi t + 1

#I
(

j ,r, s, t
) ∑

h∈I( j ,r,s,t)
εh,t . (24)

The second equality stems from using (18). The next to last equality holds, because one can

replace ωi t by (19), realizing that the w̄ , which do not depend on a specific firm, cancel. The

last equality holds, because, by construction, the average firm-level deviation from a sector-

region-size bin is zero in every year. For #I
(

j ,r, s, t
)

large, the average measurement error term(
1

#I( j ,r,s,t)
∑

h∈I( j ,r,s,t)εh,t

)
is negligible. In addition, since wage bargaining is highly centralized

in Germany, also the firm specific wage component, wi t , can be expected to be of lesser impor-

tance, i.e. the varianceσ2
w is small. In particular it can be expected to be smaller than the initial

measurement error in employment stocks. Therefore our measure of employment, n̂i ,t , should

follow real employment, ni ,t , more closely than n∗
i ,t .

To corroborate this claim, we checked our procedure using data from the German social

53Specifically, for sectors we use the 2-digit classification in Table 20 in Appendix A.1. For size classes we use
terciles of the capital distribution in each year. For the region-specific wage component we proceed as follows: we
divide West Germany into three regions, according to zip codes: South with zip codes starting with 7,8,9, except for
98 and 99; Middle with zip codes starting with 4,5,6, except for 48 and 59; North with zip codes starting with 2,3 as
well as 48 and 59. However, not all balance sheets feature zip code information, which is why we compute ̂̄w j ,r,s,t

with and without a region component. For those firms that do not have zip code information or for those firms
that are in sector-region-size bins with fewer than 50 observations in a given year, we take the estimate without the
region component.

54To estimate ̂̄w j ,r,s,t we of course use only those observations, where n∗
i ,t , i.e. item ap34, Beschaeftigtenzahl im

Durchschnitt des Geschaeftsjahres, is available.
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security records at the Institut fuer Arbeitsmarkt- und Berufsforschung (IAB), which provide in-

formation on the wage bill and employment at the establishment level. There we observe true

employment and wage bills for all plants and the time 1975-2006. Constraining ourselves to the

sample period 1975-1998 and to plants with more than 12 employees, i.e. to data comparable to

the one of the USTAN data, we find the correlation between n̂i ,t and ni ,t as well as between∆n̂i ,t

and∆ni ,t to be fairly high (98% and 94%, respectively). This means that the cross-sectional vari-

ance of the firm specific wage innovationsσ2
∆w is small (0.0026) compared to the cross-sectional

variance of employment changes (σ2
∆n = 0.0163, σ2

∆n̂ = 0.0162). Finally, a correlation coefficient

between mean(∆ni ,t ) in the USTAN data and the log-change in aggregate NFPBS employment

of 0.653 shows also the quality of our employment measure.

A.4 Solow Residual Calculation

With the estimated firm-level capital stocks and employment levels we can now compute firm-

level Solow residuals from the logged production function (1). In our baseline specification we

estimate the factor elasticities, ν and θ, as 1-digit sector-specific median, pooled over all firm-

year observations in a sector, expenditure shares.55 Table 26 displays the estimated elasticities.

Simulations show that under the null hypothesis of the model the labor elasticity is very accu-

rately estimated by the labor share, whereas the capital elasticity is slightly overestimated by the

capital share, which makes our simulations conservative, as we have shown that a lower capital

elasticity, i.e. more curvature in the revenue function, will lead to a stronger extensive margin

effect, that will make investment dispersion more procyclical (see Section 5.1 for details). No-

tice that for the aggregate Solow residual calculation in the baseline scenario, for which we use

the data sources specified in Footnote 48 in Appendix A.1, we simply use the expenditure shares

from manufacturing, as manufacturing is still the largest sector within NFPBS (had we used any

weighted median of expenditure shares the result would have been the same). We experiment

also with weighted average expenditure shares, both weighted with value added and with em-

ployment/capital and using USTAN and NFPBS weights. To come up with a single number

for each factor elasticity, we simply take the median of these four weighted averages and use

ν= 0.5229 and θ = 0.2352. This requires a recalibration of the adjustment costs factor, ξ̄, to 0.35,

but the baseline result is not changed: the resulting procyclicality of investment dispersion is

0.584, a number very close to the 0.580 of the baseline scenario.

55We use profit and loss account item ap153, Rohergebnis, for firm-level value added and deflate it in the baseline
scenario with the aggregate value added deflator, but experiment also with sector-specific value added deflators,
see Footnote 48 in Appendix A.1 for details. To compute firm-level expenditure shares, we proceed as follows:
the labor share is simply total payroll divided by value added (ap154/ap153); capital expenditures, which are then
again divided by value added, are the sum of the PIM capital stock and the net present value of renting and leasing
expenditures multiplied by the user cost of capital as specified in Footnote 51 in Appendix A.2.
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Table 26: SECTOR-SPECIFIC EXPENDITURE SHARES

ID Sector labor share ν capital share θ
1 Agriculture 0.2182 0.7310
2 Energy & Mining 0.3557 0.5491
3 Manufacturing 0.5565 0.2075
4 Construction 0.6552 0.1771
6 Trade 0.4536 0.2204
7 Transport & Communication 0.4205 0.2896

A.5 Two More Graphs

Figure 7: Data: Time Series of Investment Dispersion and Cyclical Component of GDP - Nor-
malized by their STD
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Notes:

Dispersion refers to the cross sectional standard-deviation. The cyclical component of GDP is the HP-filtered

output series with a smoothing parameter of 100.
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Figure 8: Baseline Model: Time Series of Investment Dispersion and Cyclical Component of
GDP - Normalized by their STD
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Notes:

Dispersion refers to the cross sectional standard-deviation. The cyclical component of GDP is the HP-filtered

output series with a smoothing parameter of 100.
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A.6 Cross-sectional Dispersion Data

Table 27: CROSS-SECTIONAL DISPERSION DATA FOR THE INVESTMENT RATE AND THE EMPLOY-
MENT CHANGE RATE IN THE BASELINE EMPIRICAL SCENARIO

Year σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ) σ(
∆ni ,t

0.5∗(ni ,t−1+ni ,t ) )

1973 10.244 13.6663
1974 8.9526 14.4443
1975 9.0204 14.4376
1976 9.6333 13.93
1977 10.1548 13.2382
1978 10.4159 13.2087
1979 11.0221 13.1194
1980 10.7869 13.0973
1981 10.783 13.6914
1982 10.716 13.659
1983 11.6913 13.5832
1984 11.3018 13.2013
1985 11.5982 13.5816
1986 12.3032 13.2644
1987 12.9186 13.4395
1988 12.6576 13.0941
1989 12.8989 12.7371
1990 12.8748 13.3669
1991 13.4788 13.2751
1992 13.1874 12.9378
1993 12.5017 13.1612
1994 12.2241 12.9218
1995 12.3296 12.6971
1996 12.3953 12.8086
1997 12.2611 12.264
1998 12.9089 12.1935

Notes: σ: cross-sectional standard deviation of the within-transformed data. No detrending. The corresponding

data for σ(∆ logεi ,t ) and σ(∆ log yi ,t ) can be found in Bachmann and Bayer (2009).
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B Robustness of Cross-sectional Cyclicality

In this appendix we check the robustness of the main empirical finding of this paper – the pro-

cyclicality of investment dispersion – to sample selection and variable construction. First, we

use an aggregate price deflator for investment goods (see Footnote 48 in Appendix A.1 for de-

tails) in the perpetual inventory method instead of sectoral deflators separately for equipment

and structures. Second, we employ a stricter outlier removal criterion of 2.5 standard deviations

around the firm- and year-specific mean in Solow residual and value added innovations, as well

as investment rates and employment changes. Third, we use two more liberal outlier criteria us-

ing 5 and 10 standard deviations instead of 3.56 Fourth, we employ a specification, where we

assume that an outlier above 3 standard deviations means a merger and, subsequently, treat

these firms as new firms in addition to removing them in the year, where the outlier occurs.

Fifth, we restrict the sample to firms with at least 20 observations in first differences, in order

to make sure that the cyclical effects we find are not due to cyclical variations in the sample

composition.57 Sixth, we use all the firms that we observe at least twice with first differences.58

Finally, we carry out a more standard PIM that simply uses the reported capital stocks in the

first year of observation for a firm, instead of solving a fixed point problem in correction factors

(see Appendix A.2 for details). As one can see from Table 28, the results are robust to all these al-

ternative sampling procedures; in particular, the robust procyclicality of investment dispersion

is not driven by a change in the cyclicality of the dispersion of the driving force.

56The latter variant lowers the number of dropped firm-year observations due to outliers in factor and value
added changes from 41,453 to 4,240, and the ones due to outliers in Solow residual changes from 18,978 to 1,486.
This leaves the total number of firm-year observations at 934,315 and the total number of firms in the sample at
78,092.

57Consistent with the slightly lower correlation of investment dispersion with aggregate output in this case, we
find the same correlation coefficient to be 0.382, when we control for sample selection in the following way: we
estimate a simple selection model, where lagged firm-level Solow residuals determine selection and the firm-level
investment rate is modeled as a mean regression. We use the maximum likelihood estimator by Heckman (1976)
to infer the selection-corrected variance of the residual in the firm-level investment rate equation. The latter is
very close to the sample variance of firm-level investment rates, indicating that our results are not influenced by
systematic sample drop-outs.

58This lowers the number of dropped firm-year observations due to not satisfying the minimum observation
requirement from 417,550 to 158,950. This leaves the total number of firm-year observations at 971,308 and the
total number of firms in the sample at 114,528.
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Table 28: CYCLICALITY OF CROSS-SECTIONAL INVESTMENT DISPERSION - DATA TREATMENT

Treatment ρ(σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ), HP (100)−Y ) ρ(σ(∆ logεi ,t ), HP (100)−Y )

Baseline 0.451 -0.481
Uniform price index for I-goods 0.427 -0.480
Stricter outlier removal 0.452 -0.499
Looser outlier removal 0.422 -0.476
Very loose outlier removal 0.427 -0.578
Stricter Merger Criterion 0.416 -0.486
Longer in sample 0.392 -0.341
Shorter in sample 0.439 -0.485
Standard Perpetual Inventory 0.563 -0.492

C Aggregate Statistics

Table 29: AGGREGATE BUSINESS CYCLE STATISTICS FOR THE BASELINE CALIBRATION

Moment/Aggregate Quantity Y C I N
Standard Deviation 4.04% (2.30%) 1.27% (1.79%) 18.99% (4.37%) 3.01% (1.80%)
Relative Standard Deviation 1 0.32 (0.78) 4.71 (1.90) 0.74 (0.78)
Persistence 0.42 (0.48) 0.66 (0.67) 0.34 (0.42) 0.33 (0.61)
Correlation with Y 1 0.84 (0.66) 0.98 (0.83) 0.97 (0.68)

Notes:

Business cycle statistics of aggregate output, Y , consumption C , investment I and employment N . N in the model

includes the amount of labor used to adjust the firms’ capital stocks. All variables are logged and then HP-filtered

with a smoothing parameter of 100. The first numbers in a column refer to a simulation of the model over T =
1500 periods. Numbers in brackets refer to German aggregate NFPBS data. Persistence refers to the first order

autocorrelation.

All variables are logged and then HP-filtered with a smoothing parameter of 100. The num-

bers in brackets are the statistics from the data, from the sectoral aggregate that corresponds

to the USTAN data: the non-financial private business sector (NFPBS). They are gathered from

German sectoral national accounting data (see Footnote 48 in Appendix A.1 for details). Real

private consumption data are private Konsumausgaben, a chain index with base year in 1991,

from table 3.2 in the VGR. The model employment variable includes the amount of labor used

to adjust the firms’ capital stocks.

In our baseline calibration, the economy is overall too volatile, which we attribute partly to
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the fact that we compute the aggregate Solow residual process from the private non-financial

business sector and not from the overall economy. Nevertheless, both the too high volatility

numbers, as well as the too low persistence numbers as well as the discrepancy between model

and the data in the relative standard deviations – relative to std(Y ) – of aggregate consumption

and aggregate investment show that there is not enough smoothing in the baseline calibration,

which is a well-known problem of the standard RBC model. Our baseline model cannot improve

that, as the level of non-convexities essentially puts it in a parameter range, where the Khan and

Thomas neutrality result still holds (see Khan and Thomas, 2008). Since this paper is exclusively

concerned with cross-sectional dynamics, for which – as we have shown – non-convexities mat-

ter already at a level, where they would be near-neutral for aggregate dynamics, we do not view

this as a problem for our main result. More smoothing could be implemented through a stan-

dard quadratic adjustment cost element on top of the fixed cost, however at both a substantial

computational burden and at the expense of cleanness of exposition. In fact, quadratic adjust-

ment costs would work very similarly to an increase in curvature in the maximized-out revenue

function, which, as we have shown, puts more emphasis on the procyclical extensive margin

and would only strengthen our mechanism. Our robustness checks include a case, where we

decrease the volatility of the aggregate Solow residual in order to match the volatility of aggre-

gate output. This puts relatively more weight on the second-moment shocks, i.e. the counter-

cyclicality of the dispersion in the Solow residual innovations, and would make it – all things

equal – harder for the extensive margin effect in the lumpy model to generate procyclicality of

investment dispersion. Row five in Table 17 in Section 5.2 shows that this does not invalidate

our baseline result. To summarize: the aggregate shortcomings of the model are similar to the

one in the standard RBC model, but based on our robustness checks we view them as mainly

orthogonal to the cross-sectional dynamics that this paper focusses on.
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D Sectoral Calibration

Table 30: SECTORAL CALIBRATION

Sector ξ̄ σ̄(ε) skew(
ii ,t

0.5∗(ki ,t+ki ,t+1) ) kur t (
ii ,t

0.5∗(ki ,t+ki ,t+1) ) θ ν δ

Aggregate 0.3 12.01 2.1920 20.0355 0.208 0.557 0.108
MIN 0.5 11.56 1.3355 15.8334 0.549 0.356 0.093
MAN 0.25 11.47 2.2511 21.4518 0.208 0.557 0.119
CON 0.25 10.56 1.7684 20.9611 0.177 0.655 0.153
TRD 0.4 12.44 2.1091 17.6077 0.220 0.454 0.123
TRA 0.07 13.56 1.3315 10.6363 0.290 0.421 0.112

Notes: See Figure 2 for the sectoral acronyms. ξ̄ is the calibrated adjustment cost parameter. σ̄(ε) is the long-run

standard deviation of the innovations to the firm-level Solow residual. θ and ν are the capital and employment,

respectively, elasticity in the production function. In the computation for the mining and energy sector we scaled

down the measured and reported factor elasticities by a factor of 0.9. δ are sector-specific depreciation rates.

Table 31: RESULTS FROM SECTORAL CALIBRATION - AGGREGATE SOLOW RESIDUALS

Sector ρ(σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ), HP (100)−Y ) ρ(Fraction of Adjusters, HP (100)−Y )

Model Data Model Data
Aggregate 0.580 0.451 0.485 0.727
MIN -0.097 0.011 -0.066 0.106
MAN 0.614 0.372 0.577 0.786
CON 0.335 0.357 0.154 0.675
TRD 0.900 0.452 0.917 0.575
TRA 0.239 0.473 0.255 0.592

Notes: See notes to Tables 12. See Figure 2 for the sectoral acronyms. Aggregate Solow residuals were used in the

driving force. HP (100)−Y refers to the cyclical component of the output of the private non-financial business

sector aggregate. The correlation coefficients between model simulations and data are 0.721 for investment rate

dispersion and 0.560 for the extensive margin. The corresponding rank correlations are 0.4 and 0.3, respectively.
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Table 32: RESULTS FROM THE SECTORAL CALIBRATION - OWN SECTOR SOLOW RESIDUALS - COR-
RELATION WITH AVERAGE INVESTMENT RATE

Sector ρ(σ(
ii ,t

0.5∗(ki ,t+ki ,t+1) ),mean(
ii ,t

0.5∗(ki ,t+ki ,t+1) )) ρ(Fraction of Adjusters,mean(
ii ,t

0.5∗(ki ,t+ki ,t+1) ))

Model Data Model Data
Aggregate 0.621 0.792 0.736 0.847
MIN -0.259 -0.674 -0.164 -0.312
MAN 0.799 0.845 0.800 0.874
CON 0.781 0.713 0.682 0.884
TRD 0.984 0.720 0.989 0.869
TRA 0.302 0.622 0.342 0.822

Notes: See notes to Tables 12. See Figure 2 for the sectoral acronyms. Own sector Solow residuals were used in the

driving force. In the first row, mean(
ii ,t

0.5∗(ki ,t+ki ,t+1) ) refers to the linearly detrended average investment rate in the

USTAN sample. From the second row onwards it means the linearly detrended average investment rate in the cor-

responding sector. The correlation coefficients between model simulations and data are 0.899 for investment rate

dispersion and 0.972 for the extensive margin. The corresponding rank correlations are 0.9 and 0.6, respectively.
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