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1 Introduction

Continuous time models with uncertainty are widely used in economics. The seminal papers

are the finance papers by Merton (1969, 1971) and his (1975) Solow growth model with

stochastic population growth. These methods were used subsequently - for what could be

called an early endogenous growth model - by Eaton (1981). Eaton introduced uncertainty in

the production process, highlighting technological uncertainty. Versions of his formulation of

the production process, which we will call “differential” in what follows, were used by many

authors in several fields. Recent examples include Asea and Turnovsky (1998), Bianconi

and Turnovsky (2005), Chatterjee, Giuliano and Turnovsky (2004), Chattopadhyay and

Turnovsky (2003), Clemens and Soretz (2004), Corsetti (1997), Epaulart and Pommeret

(2003), Evans and Kenc (2003), García-Peñalosa and Turnovsky (2005), Gokan (2002), Gong

and Zou (2002, 2003), Grinols and Turnovsky (1993, 1994, 1998a, and 1998b), Kenc (2004),

Pommeret and Smith (2005), Smith (1996), Steger (2005), Turnovsky (1993, 1999a, 1999b,

and 2000), Turnovsky and Smith (2006) and Koethenbuerger and Lockwood (2009).

While apparently very inspiring and useful for understanding a wide range of issues, the

differential production technology has at least two major shortcomings. First, modeling the

production process by specifying a differential instead of a standard production function is

intuitively hard to understand. Similar difficulties arise when trying to interpret the goods

market equilibrium condition embedded in a setup with a differential formulation of the

production process. Second, as already Grinols and Turnovsky (1998a) have noticed in

footnote 4 of their paper “[...] the flow of output [...] may become negative”. They suggest,

however, that “[...] the advantages to computation and modeling are sufficiently great to

justify this specification, despite this unappealing aspect.”. Nevertheless, this implication

of this modelling choice as well as its difficult interpretation might be the reasons why

continuous time methods under uncertainty are not as widely used in macroeconomics as

they could be and as these methods would deserve, given their convenient properties.

It is the purpose of this paper to show that an alternative formulation of production

technologies is available which does not have the shortcomings of the differential approach.

To this end, section 2.1 presents the basic demand side consisting of an agent that maxim-

izes a standard utility function. Section 2.2 then presents the differential representation of

technologies while section 2.3 offers the alternative formulation. Section 3.1 then generalizes

existing closed-form solutions for comparison purposes.

Our main theoretical contributions are all in the subsequent section 3.2 which models

technologies by standard production functions. We first present a closed form solution of a

maximization problem with logarithmic instantaneous utility and both one Wiener process

and many Poisson processes as the source of uncertainty for the evolution of total factor

productivity (TFP). We also show in app. 6.2.4 where the “educated guess” for the value

function comes from.

We then present closed form solutions for maximization problems where the instantaneous

utility function is different from the logarithmic specification but still belongs to the constant

relative risk aversion (CRRA) class. For these non-logarithmic cases, uncertainty affects

the accumulation technology of the economy via a stochastic depreciation process. The

fundamental source of uncertainty is the same combination of a Wiener process and many

Poisson processes as previously. One can read this section as a reinterpretation of the resource
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constraint with differential formulations of the technology such that the formulation of the

technology is standard. In this reading, our contribution is this reinterpretation and the

generalization of results to a setup with a Wiener process and many Poisson processes.

2 The model

2.1 The planner

We study a classic saving-investment problem. A social planner chooses the amount of

consumption  () so as to maximize a social welfare function representing expected utility

of infinitely-lived households,

 = 

∙Z ∞



−[−] ( ()) 

¸
, (1)

where  denotes the time preference rate. The instantaneous utility function is of the CRRA

class,

 ( ()) =

(
()1−−1

1− for  6= 1
log () for  = 1

 (2)

We see this central planner view as a short-cut to a decentralized economy without any

distortions. All of the results which will follow below will therefore also hold in an economy

with many households.

2.2 Differential representation of the technology

This section presents the approach which specifies technologies by a differential. In order

to be comparable as much as possible to the approach appearing in section 2.3.2 below, we

modify the differential setup, as it can be found in the literature, in two ways. First, we make

the depreciation rate  explicit. The depreciation rate is is usually implicitly contained in

the constant production technology factor We replace  by − which is of course just a
notational matter and does not alter any of the implications of the differential model. Second,

instead of adding a stochastic component in the equation for the production technology we

subtract this term. Again, this is just a notational matter and only changes the signs of

the corresponding parameters of the stochastic processes considered. It will, however, be

advantageous later when comparing the approach we suggest with this differential approach.

The production process of an economy can now be specified - following a large part of

the literature as cited in the introduction - by

 () = (− ) () − ()  () , (3)

where  () is aggregate output in , (− ) is a constant measure of the TFP less the

deterministic depreciation rate ,  () is the capital stock, and the increment  () will be

specified below. The flow of output is used for capital accumulation and for consumption,

modeled as

 () =  () +  () . (4)
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Combining equations (3) and (4) gives the expression for the capital accumulation which is

equal to investment2

 () = ((− ) ()−  ()) − ()  ()  (5)

This and similar processes are used for example by Evans and Kenc (2003), Gertler and

Grinols (1982), Gokan (2002), Gong and Zou (2002, 2003), Grinols and Turnovsky (1998a,

1998b), Steger (2005), or Turnovsky (1993). In most of these papers the stochastic increment

in eq. (3) is defined to be  () =  () where  () is a Brownian motion and the  is

some variance measure of output.

While some authors acknowledge (see e.g. footnote 4 in Grinols and Turnovsky (1998a))

the fact that this implies the possibility of a negative  , we briefly recapitulate this property

here by simply solving the differential equation (3) starting in  = 0 with  (0) ≡ 0 and

 (0) ≡ 0,
 () = 0 + (− )

Z 

0

 () − 

Z 

0

 ()  () 

To see that this is in fact a solution of the above flow-representation just apply Ito’s Lemma

and recover (3).3 This says that with a constant factor input, i.e.  () = 0+(− )−
 (), output in  is determined by a deterministic and a stochastic part. The latter one is

often interpreted to reflect various random elements affecting output production (e.g. Gong

and Zou, 2003). Ignoring 0 the deterministic part (− )  implies linear growth (i.e. not

exponential growth as is usually the case and empirically more relevant) and the stochastic

part  () implies deviations from the trend. As  () is Brownian motion, the sum of the

deterministic and the stochastic part can become negative.

The unusual formulation in (3) and the property that  () can become negative might be

two reasons why this approach is not as popular as it could be. We will now present standard

formulations of technologies which make models just as tractable as with this formulation.

2.3 Standard representation of the technology

We now present technologies in the standard way. We use a typical  structure and intro-

duce uncertainty either through uncertainty in TFP - “standard I” - or through uncertainty

in the capital accumulation process - “standard II”.

2.3.1 Standard I: stochastic TFP

This section will now preserve the spirit of the technology used above - the AK-structure -

but expresses the technology in a way such that it has standard properties. The economy

2This equation (5) can be obtained under the additional assumption that that  () =  ()  where

“...consumption over the instant  occurs at the non-stochastic rate  () .” (cf. Turnovsky and Smith

(2006) on page 251). The expression  () =  ()  can be found expicitly e.g. in Grinols and Turnovsky

(1998a) on page 503 or in Turnovsky (2000) on page 400 and is at odds with the prediction of this model (see

further below) that optimal consumption is a constant fraction  of the capital stock, i.e.  () =  () 

making consumption stochastic and not just a function  () times the deterministic time differential .
3For an introduction to the methods behind this and for more background, see Wälde (2009, part IV).

4



produces the final good  according to

 () =  () () . (6)

Capital is the only factor of production and TFP is given by  (). It follows the stochastic

process

 () =  () + ()  () , (7)

where the increment  () in its most general formulation will be specified below as a

combination of one Wiener and many Poisson processes.

Capital accumulation is equal to investments  () =  ()−  () net of depreciation,

 () = ( ()−  ()−  ()) . (8)

2.3.2 Standard II: stochastic depreciation

There is an alternative where output is left in the standard formulation (6), TFP remains

constant at , i.e.  () = 0, and hence (7) is not valid. In contrast, following Rebelo

and Xie (1999), we assume that capital accumulation is stochastic. Let there be a standard

goods market clearing condition  () =  () +  () but let capital accumulation be risky,

e.g. by a stochastic depreciation process:

 () =  () − () (+  ()) .

Again,  () is a combination of a Wiener and Poisson processes. This capital accumula-

tion equation gives, together with the goods market clearing condition and the production

technology, an expression of

 () = ( ()−  ()−  ()) − ()  () . (9)

Notice that this equation is identical to the capital accumulation process of the differential

setup in (5). Hence, if  () is a simple Brownian motion we have a similar formulation of

the resource constraint as Eaton (1981) and others, only that we have obtained it with a

more standard setup with standard output and a stochastic capital accumulation process.

The interpretation that the stochastic part of the capital accumulation process is the

result of stochastic depreciation was already suggested by Eaton (1981, footnote 2). In

the differential approach, stochastic capital accumulation is the result of combining the

assumptions about the stochastic evolution of output in (3) and the goods market clearing

condition in (4). By contrast, in the standard II approach proposed here, the fact that capital

accumulation is risky is an assumption which results in a stochastic evolution of output.

This has the advantage of explicitly specifying where uncertainty comes from and avoids

specifications of output which can easily be criticized. With more conventional technologies

as proposed here, the continuous time approach to uncertainty could become more popular.

3 Closed form solutions

It is well-known that closed form solutions exist for a variety of models. Table 1 summarizes

the structure of the models presented above and provides a preview of the optimal consump-

tion levels. This section generalizes existing closed-form solutions and compares them to the
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new ones - which are based on models with standard production functions.

Table 1: Model overview and preview of results

differential standard I standard II

(stoch. output) (stoch. TFP) (stoch. depreciation)

output  = (− )−   =   = 

TFP constant 

= +  constant

capital  =  −   = −   = − −

investment  =   =  −   =  − 

stoch. process  =  + Σ
=1 identical identical

log-utility  =   =   = 

CES-utility  =  n.a.  = 

The differential approach widely used in the literature and its features are presented in the

second column. Approaches with standard production functions appear in columns three

and four. The notation used in this table is as in the text. The only new parameter is

 ≡ 


− 1− 


(− ) + (1− )

1

2
2 − 1


Σ
=1

¡
(1− )

1− − 1¢  (10)

Following the idea of Merton (1976), we allow the stochastic component  () in the

technology (column 2), in TFP (column 3) or in depreciation (column 4) to be a mixture of

both a continuous and countably many jump processes,  () =  ()+Σ
=1 (), implying

that

 () =  () + Σ
=1 () . (11)

The differential  () stands for the increment of standard Brownian motion, i.e.  () ∼
 (0 ), whereas the  () for  = 1   describe increments of independent Poisson pro-

cesses with arrival rates . By setting  = 0 the formulation used by Eaton (1981) and in

the bulk of the literature thereafter is obtained. With  = 0 a pure jump setup results.

3.1 Differential approach

The definition for uncertainty in (11) applied to the capital accumulation process in (5)

yields

 () = ((− ) ()−  ()) −  ()  ()−Σ
=1 ()  ()  (12)

In order to obtain a closed-form solution, one needs to solve the following nonlinear ordinary

differential equation called the maximized Bellman equation (for the derivation, see app.

6.1.1),

 () = log

µ
1



¶
+ 

µ
(− ) − 1



¶
+
1

2
22+ (13)

Σ
=1 ( ( − )−  ()) 
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Solving requires an educated guess about the value function  whose structure can be shown

to be identical (cf. app. 6.1.2) to that one of the well-known case where  = 0 ∀ (cf. e.g.
Merton, 1969), i.e.

 () ≡ log ()


+Ψ (14)

with

 = , Ψ =
−  − − 1

2
2 + Σ

=1 log (1− )

2
.

This explicit form of the value function leads to the conclusion that optimal consumption is

just the constant fraction  of the capital stock,

∗ () =  ()  (15)

The result that  is a constant fraction of  is robust to allowing a more general in-

stantaneous utility function as in (2). This implies optimal consumption to be given by (cf.

app. 6.1.3)

∗ () =  () (16)

where the constant  is the one from (10).

3.2 Standard approaches

3.2.1 Standard I

In contrast to the differential approach, we now let TFP  () to be a function of time and

stochastic disturbances. Allowing  6= 0 in the formulation for the TFP process (cf. eq.

(7) with (11)), we specify the parameters , , , and the arrival rates  of the Poisson

processes  such that  () is a martingale, i.e. the expectation about the TFP level at

some future point in time is given by the current level,  [ ()] =  () for  ≥  implying

that  () has no trend. Given the  technology in (6), this assumption is made in order

to preserve a stationary expected growth rate of the economy which is governed by the

marginal product of capital  () (cf. app. 6.2.1). As  [ ()] =  () (+Σ

=1)(−) (cf.

app. 6.2.2) the restriction of no trend in the TFP-process requires that

+ Σ
=1 = 0. (17)

Economically speaking, given that the arrival rates  are positive by construction, technolo-

gical progress is either technological regress (  0) or there are occasional negative shocks,

i.e.   0 We find the second interpretation more plausible where oil price shocks, natural

or other disasters disrupt the smooth evolution of an economy. But it should be kept in

mind that without an  specification, one could allow for both positive  and .

With this setup and a logarithmic utility, the maximized Bellman equation is a second

order nonlinear partial differential equation (cf. app. 6.2.3),

 () = log

µ
1



¶
+ 

µ
 −  − 1



¶
+ +

1

2


22+ (18)

Σ
=1 ( (+ )−  ()) 
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It is standard in the literature to provide an “educated guess” and prove a verification

theorem. Finding such a guess can sometimes be very time-consuming. For our case here in

(18), we can be more systematic and derive a solution.

Use the definition of the value function as the expected utility out of current and all

future optimal consumption,  () ≡ max{()}  subject to constraints where  is the

objective function from (1). Looking at the results from the literature as well as from the

previous section, a plausible guess concerning optimal consumption is

∗ () ≡ ̃ () , (19)

where the ̃ is an arbitrary constant. Inserting this conjecture into the objective function

we can analyze whether the resulting integral can be solved. In fact, doing so by deriving

expressions for  () from (8) and for  () from (7) with (11), respectively, together with

the guess (19) gives (cf. app. 6.2.4)

 () = 

∙Z ∞



−(−) log
³
̃ () 

 

(()−−)

´


¸
, (20)

where

 =  (− )− 1
2
2 (− ) +  () + log

µ
Σ
=1

1 + 


¶
Σ
=1

 ()




Simplifying and solving this integral and dropping the time subscript (as this expression

holds for each point in time) yields the value function,

 =
log
³
̃

´


+


2
−  + ̃

2
. (21)

It is easy to verify that, for ̃ = , this is indeed a solution to the maximized Bellman

equation. Therefore it is confirmed that optimal consumption is a constant fraction of the

capital stock,

∗ () =  () . (22)

Unfortunately unlike in the case with the differential technology this result holds only for

the logarithmic utility (2) and not for the CRRA case of  6= 1

3.2.2 Standard II with Brownian motion and many Poisson processes

Fortunately, however, closed from solution can be found for CRRA utility functions with  6=
1 and standard technologies. The alternative to stochastic TFP we propose is a stochastic

capital accumulation technology via e.g. stochastic depreciation. Let the  () in (9) again

stand for a combination of a Wiener process and many Poisson processes as in (11):

 () = ( ()−  ()) − () (+  () + Σ
=1 ()) (23)

Of course this equation is identical to the corresponding expression in the differential setup in

(12). Therefore, computing the solution for the maximization problem of the social planner

both in the case with log-utility (2) and in the case with the more general instantaneous

utility function (2) leads to the same rule concerning optimal consumption, i.e. consumption

is just the constant fraction  (cf. eq. (15)) and  (cf. eq. (16)), respectively, of the capital

stock.

8



4 Conclusion

The differential approach to specifying technologies is widely used. Specifications of tech-

nologies of this type in continuous time models with uncertainty have undesirable features.

These features might be one reason why modeling uncertainty in continuous time is not as

popular in macroeconomics as it could be. One major advantage of these specifications is

their analytical tractability.

This paper generalizes existing closed-form solutions for differential technologies. More

importantly, it proposes two alternative setups where technologies are modeled by standard

production functions. In both cases, the undesirable features of the differential approach are

not present and the analytical tractability is preserved. Closed form solutions are provided

for both alternatives.

One alternative implies solutions which are identical to solutions of models following

the differential approach. This shows that all results obtained so far in the literature can be

preserved even without the undesirable features. For all future papers, analytical tractability

can be obtained just as easily as before.

5 Appendix

The appendix is available upon request
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