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Abstract 
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productivity growth, while costs and benefits of old managerial age cancel out for non-
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1. Introduction 

Innovation is one of the main drivers of productivity growth. It is thus no wonder that the study of 

its determinants has attracted considerable attention (Geroski 2000, Comin and Hobijn 2009). 

Extensive empirical evidence has documented that R&D enhances firm innovation and productivity 

by enabling product innovation (Griliches, 1992; van Pottelsberghe de la Potterie, 2008) as well as 

easing the adoption of technologies developed in other firms and possibly countries (Griffith, 

Redding and van Reenen, 2004; Parisi, Schiantarelli and Sembenelli, 2006). The risky nature of 

innovation also makes it a typically hard-to-finance undertaking, which has led a number of 

scholars to investigate the enabling role of cash flows to avoid that liquidity constraints strangle yet 

undeveloped innovations in their infancy (Brown, Fazzari and Petersen, 2009, Geroski, van Reenen 

and Walters, 2002, Hall, Mairesse, Branstetter and Crépon, 1998). 

Less investigated, and perhaps more controversial, is the relation between experience on one side 

and innovation and productivity on the other. Does it pay for a firm to be endowed with the breadth 

and the novelty of ideas brought about by newcomers on the entrepreneurial and the workers’ side? 

Or do innovation and productivity gains mostly originate from the competence of older – hence mor 

experienced - workers and managers? 

As discussed by Jones (2010), the case list of how un-experienced entrepreneurs and workers 

managed to develop and bring brand new products and technologies to the market are long. It starts 

with an un-experienced Bill Gates leaving Harvard in 1975 to co-found Microsoft with his friend 

Paul Allen, and continues with Steve Jobs and Steve Wozniak, the young founders of Apple. More 

recently, Sergei Brin and Larry Page, the co-founders of Google, were bright but young and un-

experienced Stanford PhD students when they started thinking about the number and the 

informational content and nature of the links underlying the functioning of the World Wide Web. 

Yet we can also think of radical innovations brought about by more experienced workers and 

entrepreneurs, in some cases by the same grown-up entrepreneurs that had revolutionized their 

industry already once. It is still Steve Jobs who has made a tremendous comeback with his i-Pod, i-
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Phone and i-Pad devices. So at times managers grow old, but their ability to innovate does not 

necessarily fade away. 

Even among scientists and artists, while there is widespread agreement that great innovations often 

come from the young and the un-experienced yet brilliant minds. Chicago economist David 

Galenson (2003, 2005, 2007) has documented how the life-cycle of artists may be distinctively of 

two types, of a conceptual and an experiential type, so that the young genius of Van Gogh and 

Picasso, of Melville and Welles can be matched by the experienced ability of Michelangelo and 

Rembrandt, Paul Cezanne and Alfred Hitchcock. The relation between age and fundamental 

innovations in arts and science seems not to be linear as well. 

Apart from scientists, artists and managers, this set of issues also has deep implications for workers. 

The productivity of individual workers depends on a host of characteristics, such as education and 

skills, experience, motivation, intellectual and physical abilities. Some of these worker 

characteristics – notably the productive value of skills – may deteriorate with age. Verhaegen and 

Salthouse (1997) present a meta-analysis of 91 studies on how mental abilities develop over the 

individual life span. Based on these studies, they conclude that the cognitive abilities (reasoning, 

speed and episodic memory) decline significantly just before 50 years of age and more thereafter. 

Maximum levels are instead achieved in the 20s and the 30s, independently of country and sex. 

Altogether, whether the good or the bad effects of experience actually prevail in practice is largely 

an empirical matter that can be usefully investigated with company data. In this paper we analyze 

the role of managerial and workers’ experience in spurring (or depressing) firm-level innovation 

and productivity gains, exploiting firm-level data from the Italian economy in the early 2000s. 

Italy in the early 2000s provides a fertile ground for studying the implications of experience for 

innovation and productivity. As shown in Table 1, since the second half of the 1990s a sharp 

productivity slowdown came about in the Italian economy, in spite of the fact that brand new 

technologies and managerial techniques had become available out there “on the shelf” thanks to the 

ICT revolution. Italy’s productivity slowdown is not the consequence of unfortunate business cycle 
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fluctuations. 

Table 1. Growth of labor productivity in Italy, 1970-2003, main industry groups. 

 1970-80 1980-95 1995-03 1995-00 2000-03 
Economy 2.4 1.8 0.6 1.1 -0.2 
Agriculture 3.1 4.3 2.7 5.2 -1.5 
Manufacturing 2.8 3.0 0.2 1.0 -1.0 
-- non-durables 2.7 3.1 0.3 0.7 -0.2 
-- durables 2.9 2.7 0.0 1.7 -2.7 
Construction 1.9 1.0 0.1 0.5 -0.5 
Business sector services 1.8 1.1 0.1 0.5 -0.5 
Source: Daveri and Jona-Lasinio, 2005 

The sharp productivity slowdown started around 1995 in both manufacturing and service industries. 

Yet the zeroing of productivity growth in manufacturing – hence in “the” leading sector of the 

Italian economy in the past decades - is particularly worrisome and has taken place smoothly 

throughout the period but in a more pronounced fashion in 2001-03. 

Experience may come into play to explain Italy’s productivity slowdown in two ways. On the one 

hand, productivity fell in parallel with the introduction of piecemeal labor market reform which 

eased the entry of temporary (thus un-experienced) workers in the Italian labor market. Robert 

Gordon and Ian Dew-Becker (2008) conjectured that the process of labor market reform that 

occurred in many European countries in the second half of the 1990s, while helping Europe reverse 

the past tendencies towards job destruction, has been eventually detrimental to productivity growth. 

Simplifying their view to an extreme, if temporary job creation is allowed and labor demand does 

not shift outwards in parallel, labor supply shifts to the right along a given labor demand curve. No 

wonder that productivity declines as a result. This happened in Italy as well in 1997-98, when 

legislative changes gave full legal recognition to a host of contractual forms of part-time and 

temporary jobs, some of which had been in place even before though restricted to the unofficial 

labor market, while keeping job protection unchanged for permanent workers. The flurry of cheap 

labor from such half hearted labor market reforms likely translated into a decline of the equilibrium 

capital-labor ratio. Yet these legislative changes may have also discouraged the propensity to 
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innovate of entrepreneurs, who found themselves confronted with the hard-to-resist temptation to 

adopt techniques intensively using part-time workers now abundantly available in the labor market 

instead of experimenting with (riskier) ICT-enabled innovation. 

The other channel through which experience may have been important is on the manager side. The 

pace of adoption of ICT-related innovation was also possibly hampered by the unusually high 

presence of old, thus very experienced but perhaps possibly conservative (and very powerful) 

managers and board members, a reflection of the persisting lack of contestability of firm property 

rights in the Italian capital market. As discussed by Bandiera, Guiso, Prat and Sadun (2008), it turns 

out that only a fraction of firms – especially the non-family owned and multinationals - adopts a 

“performance-based” model, whereby managers are hired through business contacts and head-

hunting activities, undergo regular assessment procedures and are rewarded, promoted and 

dismissed on the basis of their assessment results. Most firms – particularly the family-owned ones 

and those mainly active in the domestic market - follow instead a “fidelity model” of managerial 

talent, hiring their managers based on personal or family contacts, which leaves formal assessment 

of performance in the background at best. In many ways, the fidelity model ends up selecting and 

keeping in office old managers well connected to their shareholders but only occasionally 

connected to market and technological developments. In short, the type of managerial model – 

based on performance or fidelity – is tightly associated with the quality, the conduct and the 

performance of managers as well as of the firm itself. Firms blessed with faithful managers are 

often at a disadvantage when faced with new technological opportunities with respect to foreign 

competitors less dependent on family-based modes of running a firm. This state of affairs has been 

increasingly perceived as a severe constraint for the Italian economy, particularly when it has been 

exposed to the chance of reaping the technological and organizational benefits brought about by the 

Internet revolution in other countries. 

The story may then be as follows. Labor market reform has channeled an inflow of relatively un-

experienced workers into the Italian labor market. In parallel, the lack of financial market reform 
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has instead kept the average age of those in charge of leading Italian companies unchanged, and this 

missing change (and “excess experience”) is alleged to have lowered the propensity to innovate and 

the productivity performance of Italian firms. Gordon and Dew-Becker have not contrasted their 

ideas with micro data, while Bandiera, Guiso, Prat and Sadun have not looked at the interaction of 

labor market reform with the productivity and innovation counterpart of managerial practices. So 

there is room for comparing a streamlined version of the two views with company data. This is the 

main goal of our paper. More generally we believe that this combination of events and structural 

features is helpful for learning on the relation between experience, innovation and productivity. 

In our study we employ a firm-level data set to separately analyze at the role of experience on the 

side of workers and the side of managers. Our preferred measure of experience on the workers’ side 

is the average share of temporary workers in total employment. The increased presence of 

temporary workers in the Italian labor force has been a novelty of the late 1990s, which is portrayed 

in our company data. Our preferred measure of experience on the manager side is the average age of 

managers and board members in the Italian firms. 

In doing so, we are confronted with (and we thus explicitly tackle) a few statistical hurdles, the first 

of which is the fundamentally cross-sectional nature of our data. The use of (long) differences for 

productivity growth (as opposed to productivity levels as most other studies such as Hall, Lotti and 

Mairesse (2007) allows us to lessen the simultaneity bias that would originate from regressing log 

levels of firm performance onto our variables of interest, such as managerial age or the share of 

temporary workers. Secondly, our preferred set of estimates is the result of a first stage where a 

regime switch from being non-innovative to innovative or the reverse may occur or not and a 

second stage. 

Our evidence indicates that innovation and productivity growth was particularly low in firms with 

disproportionately high shares of temporary workers to start with. This result is robust to all 

changes of specifications. 
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Yet declining productivity is also – slightly less robustly - associated to such managerial features as 

the average age of the managers running the companies. Our estimates separately run for innovative 

and non-innovative companies indicate that an older age of managers is associated with lower 

productivity in innovative firms and with higher productivity in non-innovative firms. This is 

consistent with common sense that suggests a more positive role of experience in firms with 

relatively standardized and stable business practices, while old age is presumably more damaging 

for innovative firms that would be supposed to swiftly adopt new technologies as they become 

available. This is presumably more tightly correlated with schooling and less with experience on the 

job. Our two-stage model results, while broadly confirming the robustness of the partial correlation 

between the share of temporary workers and productivity, shows that both product and process 

innovation are positively related with productivity growth. For the innovative firms age is 

negatively correlated with productivity growth and positively correlated or at times uncorrelated 

within the sample of non innovative firms, with little variation across estimation methods. 

Our paper is structured as follows. In section 2, we discuss why and how experience should matter 

for innovation and productivity. In section 3 we describe the paper’s conceptual underpinnings and 

estimation strategy. In section 4 we describe the main features of our data set. In section 5 we 

present our main results and some extensions. Section 6 concludes. 

 

2. Conceptual framework 

We consider a constant-returns-to-scale value-added production function. The full-fledged 

production function underlying equation (1) below would have (real) output on the left–hand side 

and capital, labor, intermediate inputs and services on the right-hand side. This would allow us to 

differentially treat the substitutability of such inputs with respect to capital and labor. Specifying the 

production function in terms of value added, however, lessens the endogenous input choice problem 

that plagues the estimates of production functions in general. Under the (untested) assumption of 

separability between the value added and the intermediates functions, the dependent variable may 
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instead be real output less (real) materials and services. This implies that materials and services are 

no longer an argument in the production function. 

Subject to these preliminary remarks and assumptions, in each period t, labor productivity (in logs) 

for firm i at time t may be decomposed as follows: 

)/ln()ln()/ln( ,,,, titiKtiitti LKALY β+=         (1) 

Equation (1) stems from a production function where (the log of) value added Y is a log-linear 

function of the capital labor ratio K/L and the efficiency parameter A. In turn, A is a function of 

time and innovation as follows: 

errorINNOVATIONtAit +∗∗= α)ln(         (2) 

The growth rate of the technological parameter is thus a linear function of INNOVATION. Under 

(1) and (2), the log difference (the growth rate) of labor productivity is a linear function of the 

growth rate of the capital-labor ratio and of the determinants of innovation. 

In turn we assume that INNOVATION is a linear function of a few variables of interest including 

our preferred proxies for experience, i.e. firm-averaged managerial age and the share of part-time 

temporary workers in each firm, and other determinants of the decision to innovate (whether a firm 

undertakes R&D spending, the share of R&D workers in the total firm’s labor force; cash flows) 

plus an array of regional, size and industry dummies, each affecting (the log of) A through a 

separate parameter. 

Leaving aside the other determinants of innovation for expositional purpose, INNOVATION may 

be seen as a function of managerial experience and business schooling capital as follows: 

INNOVATIONi = a Ei + b Si          (3) 

where E is experience and S is managerial capital formally accumulated going to the business 

school with S = T – E. The variable “E” is the number of years a manager has spent doing her job 

inside or outside the firm. The variable “S” is the managerial capital accumulated at the business 

school by the manager under the time constraint T=E+S, i.e. a manager either goes to the business 
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school or learns on the job, so that the net effect of E on INNOVATION is positive or negative 

depending on whether a>b. 

The intuition for (3) is simple. Traditional managerial techniques require on-the-job experience, 

while novel managerial techniques are those accumulated through off-the-job specific training or 

(business) schooling. This typically involves a trade-off, for a firm faces the decision to employ 

today a relatively experienced but old-fashioned manager or tomorrow a relatively un-experienced 

but well trained manager. It might also be that the marginal productivity of managerial experience 

and schooling is different across different categories of firms, such as between the so called 

innovative and non-innovative ones. 

In practice, we empirically implement the logical framework described above in two stages. In the 

first stage firms are all alike but they contemplate the choice of innovating or not. As documented in 

previous studies, they are more likely to become innovative if they undertake R&D and if endowed 

with enough cash-flows, as well as other location, size and industry time-invariant variables 

(captured by fixed effects in our empirical analysis). But the firm’s propensity to innovate may also 

be affected by experience-related variables, whose role has not been much investigated before. 

Firms may innovate more if they do not employ too high a share of temporary workers as well as if 

they are endowed with relatively young managers. Once firms have selected themselves into 

innovative and non-innovative, experience as well as location, firm and size dummies are also 

allowed to affect productivity growth in the second stage, while R&D and cash flow are not. The 

exclusion of R&D and cash flows is thus our main identifying assumption. 

 

3. Empirical specification and strategy 

We search for the best empirical specification consistent with our data, starting from a baseline 

specification with no asymmetry between innovative and non-innovative firms. This baseline 

specification is the following: 
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The dependent variable is the 2001-03 growth rate of labor productivity for firm i calculated at time 

t = 2003, with respect to 2001. Age is calculated as the average age of the board members and 

managers when they were appointed.1 Temporary/L is the share of workers in the firm operating on 

a temporary contract (full time + part time) in 2001. In the regressions we control also for twenty-

one sector dummies,2 four geographical macro areas,3 size dummies for small, medium and large 

firms and firm membership in a group. Size is measured following the European Commission 

definition: firms with less than 50 workers are “Small”; firms with more than 50 but less than or 

equal 250 workers are “Medium”; firms with more than 250 employees are “Large”. 

Unfortunately, the IX Capitalia/Unicredit survey includes three years of observation only for a 

limited subset of our variables of interest. As to the determinants of innovation, in particular, we 

only have data for 2001, the initial year in our sample, and not for the three years between 2001 and 

2003.4 Hence specification (4) is estimated by regressing the growth rate of labor productivity 

(hence the long difference of log productivity levels) on explanatory variables measured at a point 

in time, therefore within a cross sectional framework. Yet first differencing the log levels of labor 

productivity and the capital-labor ratio allows us to get rid of some of the unobserved heterogeneity 

between firms that represents the most obvious source of simultaneity bias. 

As a second step in our empirical analysis, we run a Chow test of parameter instability on 

specification (4) to check whether there are significant asymmetries between innovative and non-

innovative firms. It might be that because we expect the parameters (β,γ,µ) to differ between 
                                                 
1 As a robustness check, we have also substituted as a regressor the average age of the board members with their 
seniority, i.e. the firm-board-average number of years in the board in 2001 (the initial year of our sample). This measure 
may however contain substantial measurement error given that we do not know when board members have quit or 
changed their role within the board before 2003. We have thus chosen not to report these results, which are however 
available upon request. 
2 The sector breakdown is based on the Ateco2007 classification of Italy’s industries, in turn equivalent to the NACE 
rev.2 European code. 
3 Macro areas are defined by the Italian National Institute of Statistics (ISTAT) which groups Italian regions into 4 
areas: North West (Lombardy, Piedmont, Liguria), North East (Veneto, Trentino Alto Adige, Friuli Venezia Giulia, 
Emilia Romagna), Centre (Lazio, Umbria, Marche, Tuscany), South and Islands (Campania, Apulia, Abruzzo, Molise, 
Basilicata, Calabria, Sicily, Sardinia). 
4 If merged with the data from a previous survey, the IXth survey plus AIDA reduces to a tiny sample of firms. 
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innovative and non innovative firms.5 Innovative firms had introduced a product or process 

innovation (or both) in the three-year period considered by the survey (2001-2003). Non innovative 

firms declared to never introduce innovations in the period. This test is at first carried out without 

allowing for endogenous regime switching. 

We perform the test by comparing the estimates of equation (4) on the two subgroups 

(unconstrained model) and on the whole sample (constrained model). The null hypothesis is that the 

constrained model is valid. The F-test when the firms are grouped as innovative and non innovative 

is F(31,7915)=15.99 p-value=0.0, thus rejecting the null. P-values are reported in Table 4 and refer 

to the three innovation modes, depending on whether the group discriminant refers to whether the 

firm undertakes either product or process innovations, product innovation only, or process 

innovation only. The Chow test always rejects the null hypothesis, thus indicating that the partial 

correlation between age and the share of temporary workers, on one side, and the dependent 

variable on the other differs across the two groups of firms. 

Consistently with the test results, we allow the parameters of interest of the experience variables to 

vary across groups, according to the specification equation (5): 
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The dummies D1 and D2 identify the two groups of firms (D1 = 1 if the firm is innovative and D2 = 

1 if it is non innovative). D2 will be omitted in the regression because of collinearity. Notice that the 

innovation dummy captures the impact of technological progress on labor productivity as in a 

standard Cobb-Douglas production function approach. 

In Table 4 we also report the Wald tests (and the relative p values) of parameter instability for each 

parameter, when the null hypothesis is:  

                                                 
5 In the robustness checks section we applies the Chow test also to α, assuming that the growth rate of the capital-labor 
ratio differs across groups as well. In the benchmark model, we assume that the effect of  K/L on labor productivity 
does not differ across types of firms. 
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The third step forward considers the formation of the groups as endogenous. The idea is that firms 

introduce innovations because they are more productive, young or intensive at investing into R&D 

activities or innovative capital, or maybe because they have more cash flows. The age profile of the 

board members and/or the share of temporary workers might be correlated to the innovativeness of 

the firms as well. 

The new specification for labor productivity growth can be thought of as a standard case of 

switching regression model with endogenous switching (as explained firstly in Maddala 1983). We 

want to consistently estimate the parameters in two regimes: whether firms are innovative (regime j 

= 1) or non innovative (regime j = 2) over the period of observation. The new model specification is 

the following. 
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The marginal distribution of the error terms εjit j=1,2 can be assumed normal with zero mean and 

constant variance σj
2. We shall modify this strong assumption in the robustness estimations. The 

conditional distribution of the error terms are instead different from zero, according to: 
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This is because a criterion function determines whether a firm belongs to regime 1 or 2, as in 

equation (7):6 
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6 10D 21 =⇔= D , meaning that, if a firm has not introduced an innovation in 2001-2003, it is non innovative by 
definition. 
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The criterion function depends on the Zs, namely variables correlated with the decision of 

introducing innovations, such as R&D expenditure at the beginning of the sample period and the 

other determinants of innovation, including age and the share of temporary workers. 

To estimate the parameters δ’ we observe that the expected value E(D1)=P(D1=1)=P(δ’Zit+ωit>0) 

is the probability of being an innovative firm. If the error term ωit is assumed with E(ωit) = 0 and 

V(ωit ) = 1 the (first stage) estimation method applied is the probit maximum likelihood.  

Usually equation (6) is estimated separately for the two regimes, whose idiosyncratic errors are 

correlated with ωit, according to the covariance matrix: 
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In this case we need to introduce corrections for the error conditional mean as in (8) and (8’): 
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where φ (·) and Φ(·) are, respectively, the standard normal density and cumulative distribution 

functions. To calculate (8) and (8’) notice that we used the conditional distribution of ε given ω. 

This is normal with mean E(εjit | ωit) = σεj1ωωit and variance V(εjit | ωit) = σj
2-σ2

εjω.  Given (6)-(8’), our 

specification becomes: 
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This system of equations can be estimated consistently with OLS (second stage) after substituting 

the estimate of δ’Z in the correction terms (derived from first stage probit estimation).7 

                                                 
7 Building on Maddala (1983) we could simplify equation (9) simultaneously, adding the correction term, i.e. the sum 
of (8) + (8’), for the whole sample: 
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We may also allow the parameter of the capital-labor ratio to vary across groups. If this is the case, 

the system of equations (9) may be written as: 
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Clearly, if none of the parameters varies across groups, equation (9) reduces to the simple original 

form (4): 
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This is the constrained equation (constraint being equal parameters in all groups) used in the former 

Chow test. Leaving aside the potential endogeneity of the capital-labor ratio, the problem of 

endogenous group formation in the latter case disappears altogether. 

As to the potential endogeneity of the capital stock, we assume that capital accumulation depends 

on past investment intensities and initial levels of capital/labor ratio, conditional on size, sector and 

group of the firm, whether or not it has introduced innovations, and on firm age. Because of this, we 
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Rearranging terms, we would obtain an estimable specification which allows to perform Wald tests of parameters 
instability. When the coefficients of the interactions are equal to zero, this procedure is a convenient way to impose 
cross-equation restrictions on the two-regime specification: 
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where ξit has a standard normal distribution. 
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will use 2SLS-IV method for the equation systems (9) and (9’) at the second stage as well, where 

the growth rate of the capital-labor ratio is instrumented. 

 

4. The dataset 

We collected balance sheet data for a representative sample of Italian manufacturing firms and their 

board characteristics in the period 2001-2003 from two sources of data. Information about 

employment characteristics, innovation activity and R&D investment at the firm level come from 

the IXth Survey on Manufacturing Firms by the Italian bank Capitalia-Unicredit.  

This survey has been run in 2004 through questionnaires distributed to 4177 firms. The 

questionnaires inquire about location, legal form, group, sales, investments, R&D investments, 

innovation activity, exports, labor force characteristics, financial status and incentives, balance 

sheets. Most of the quantitative information relates to the previous three years since the time of the 

survey, separately. Some qualitative answers, instead, are related to the whole three-year period, i.e. 

innovation activity. 

Information about balance sheets and age of the board members come instead from the AIDA 

database.8 AIDA is updated every week but maintains balance sheet data for the previous years as 

well. Thus we extracted balance sheet items over the 2001-2003 spanning to check and correct for 

inconsistencies between the two sources. Incidentally, our chosen sub-period - the years between 

2001 and 2003 - happens to be a period during which Italy’s productivity shortfall has been 

particularly severe. 

While we can extract balance sheet from AIDA in the years of interest to match the two sources, the 

database registers just the latest board composition, which means that we access information about 

board members of existing firms on December 31, 2007. We know the year at which the person was 
                                                 
8 AIDA is managed by Bureau Van Dijk. It collects balance sheets, proprietary shares, firm characteristics and board 

characteristics on about 250000 Italian firms. We accessed the data on firms with at least €800.000 gross sales as of 31 

December 2007. 
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nominated but the duration of the service is practically unknown, and her/his function is scarcely 

available. Thus we take the board composition as if it was present in 2001-2003 as well. For each 

member with available data, we calculate her/his age at the time of the nomination within the board, 

as well as the age in 2001, 2002 and 2003. For each firm we have calculated an average age of the 

board. We excluded from the dataset those firms whose board name appeared to be another 

company, not a physical person. We also excluded those firms whose board members’ appointment 

appears to have occurred before their birth dates. 

Firms in the Capitalia-Unicredit dataset (with information relative to the 2001-2003 period) also 

present in 2007 to match AIDA information are 3562 (that is 85.3% of the sample). Firm-individual 

observations are 21081. We first test for potential sample selection of these firms, in terms of age, 

size, location and sector of production (younger, bigger or particular sectors could have a higher 

survival rate, higher productivity or innovation capacity). The discussion of the potential selection 

bias is placed in the Appendix section of this paper. The data then need a cleaning procedure 

because of inconsistencies between birth dates and appointment dates of the individual board 

members, implausible firm age, non-individual board members, missing values. Only 7977 (about 

40% of total observations) distributed in 1042 firms contain sensible information on birth and 

service dates and other variables, which finally becomes our longitudinal or “quasi”-panel dataset 

with firms as units and board members as the longitudinal dimension, in the years 2001-2003. 
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Table 2. Descriptive statistics of the main variables of interest. 

Fixed characteristics°,b Firms Yes No   
Product  1042 51.1 48.9   
Process  1042 55.2 44.8   
Either Product or Process  1042 73.7 26.3   
R&D spending (yes/no) 1042 63.3 36.7   
Group 1042 49.3 50.7   
High-tech 1042 33.2 66.8   
      
Variables of interest  Mean St.D. Min Max 
Production per worker€ 1042 311.67 268.42 16.54 2384.78
∆2log(Production/L)b 1042 2.11 30.45 -294.86 293.71 
Capital Stock per worker€ 1042 64.45 67.63 0.193 652.99 
∆2log(Capital Stock/L)b 1042 17.60 42.03 -365.23 348.57 
Total Workersª (L) 1042 208.7 559.5 6 12199 
Temporary Workers Rateª,b 1042 4.21 12.43 0 100 
R&D Workersª 1020 7.47 34.08 0 755 
R&D investment per worker€,a  563 3.14 5.44 0 77.672 
R&D intensity (Production)a,b 563 1.64 3.83 0 57.6 
Investment intensity (Production)a,b 1042 3.86 5.18 0 34.4 
Cash flow per worker€,a 1042 23.089 37.769 -86.603 736.728
Average Board age (years) 1042 49.6 6.45 20          77 
Age of the firma (years) 1033 26.9    20.0 0 172 

Note: Dummy variables statistics are expressed in fraction. a measured in 2001. ° referred to 2001-2003  

period, b in percentage points, € in thousand euros. 

 
Table 3. Firm size and area distribution in the final sample of firms. 

 Small Medium Large  North West North East Centre South 

Freq 206 658 178  376 354 160 152 

% 19.7 63.2 17.1  36.1 34.0 15.3 14.6 

 

5. Results 

5.1 Exogenous group formation 

If the decision to innovate (and hence group formation) is taken for granted, equation (5) can be 

estimated through OLS. 
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Table 4. OLS Estimates of labor productivity growth rates (in percentage points). 

Any innovation Product Process Dependent variable 

it

it

L
Y

ln2∆  
Coefficient Robust 

Std. Err.
Coefficient Robust 

Std. Err.
Coefficient 
 

Robust 
Std. Err.

       
Innovative firms 15.12** 7.094 2.588 5.954 17.24*** 6.006 

it

it

L
K

ln2∆ *Innov 
0.2587*** 0.008 0.292*** 0.009 0.304*** 0.009 

it

it

L
K

ln2∆ *non_Innov 
0.01 0.015 0.069*** 0.011 0.019 0.012 

Age*Innov -0.283*** 0.069 -0.286*** 0.085 -0.366*** 0.078 
Age*non_Innov 0.091 0.125 -0.109 0.084 0.066 0.091 
Temporary*Innov -0.095*** 0.035 -0.073* 0.041 -0.106*** 0.039 
Temporary*non_Innov -0.199*** 0.046 -0.213*** 0.037 -0.197*** 0.039 
Large -1.94* 1.113 -1.894* 1.108 -1.081 1.096 
Medium -5.74*** 0.876 -5.965*** 0.871 -4.970*** 0.864 
Group 2.86*** 0.680 3.199*** 0.679  2.48*** 0.675 
Constant 2.61 10.19 14.019 8.799 3.637 9.216 
Industry dummies yes  yes  yes  
Region dummies yes  yes  yes  
       
Wald test for equality of coefficients between Innovative and non Innovative 
Capital-labor ratio [0.000]  [0.000]  [0.000]  
Age [0.0085]  [0.138]  [0.0003]  
Share of temporary [0.069]  [0.011]  [0.0946]  
Chow test F [0.000]  [0.000]  [0.000]  
Adj R2 0.154  0.157  0.171  
N 7977  7977  7977  
Note: * 10%, ** 5%, *** 1% level of significance, p-values in brackets. Size, areas, industry and group dummies 

are included in all regressions. 

Table 4 shows the OLS coefficients and robust standard errors of the estimates of labor productivity 

growth rates (two-year rates) on our variables of interest, interacted with the group dummies. 

“Innov” refers to the group of firms introducing an innovation in 2001-2003, while “non_Innov” 

refers to the group of the non innovative firms. Column 1 and 2 refer to firms which have 

introduced any - hence either product or process - innovation. Column 3 and 4 refer to firms which 

have introduced product innovation only and column 5 and 6 refer to firms having introduced 

process innovation only. All the regressions include standard control variables such as size, 

geographical areas, industry dummies, as well as the dummy that takes a value of one for firms 
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belonging to a group and a value of zero for those not belonging to any group, which, in previous 

work (see for instance Parisi, Schiantarelli and Sembenelli, 2006), has been shown to be a 

statistically significant correlate of firms’ productivity performance. 

The innovation dummy reports a coefficient of 15.12 with 5% statistical significance. This means 

that there exists a significant drift of 15.1 percentage points for productivity growth for the Italian 

innovative firms, even in the years considered. This is particularly true for those firms introducing 

process innovation (17.2%), while the drift is nearly not significant for those firms introducing 

product innovation. 

For the group of innovative firms, irrespectively of how innovation is defined, the estimate of the 

age coefficient is negative and statistically significant. The point-wise estimates indicate that an 

increase in the average age of the board members of one year translates into lower productivity 

growth of some 0.28-0.37 percentage points. As to the non innovative group, the effect is zero: 

having a younger board of governance on average does not spur productivity growth for the non-

innovative firms. The semi-elasticity of age for the whole sample is instead not significantly 

different from zero. In order to capture the partial correlation of age and productivity growth it is 

thus crucial to distinguish between innovative and non-innovative categories of firms. 

The coefficient estimate for the temporary workers share is instead statistically significant and 

negative both for the innovative and the non-innovative group, with point-wise estimates around -

.10 for the innovative and around -.20 for the non innovative firms. The Wald test for equality of 

parameters in the case of the temporary workers share has a p-value in the 5%-10% range, meaning 

that it is not clear whether the coefficients are to be considered different or not across groups. We 

can think that a firm endowed with a high share of temporary workers always exhibits lower 

productivity growth. 

Finally, the capital-labor ratio coefficient is usually significant and positive for the innovative firms, 

its point-wise estimate is almost three times bigger (.26) than that of non-innovative firms (around 

.07 in the case of product innovative firms). The three Wald tests of parameter stability always 
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reject the null. The imprecise estimates of the capital per worker growth in the non innovative group 

might be due to its potential endogeneity. 

To confirm our results, Table 4 reports p-values of the Wald tests of parameter instability for the H0 

hypotheses:  
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The test for age and the capital-labor ratio coefficients rejects the null of equal parameters (p-value 

of the test is equal to zero). In general the three Wald tests reveal that the constrained model has to 

be rejected. 

 

5.2 Endogenous innovation decision 

Table 5 and 6 show the results from the two-stage method of estimation of the parameters in (7) and 

(9’), which take into account the endogenous formation of the two groups. The two-stage analysis 

allows us to perfect our understanding of the relation between our variables of interest and 

productivity growth. 

Table 5 shows the estimates of the first stage, namely the decision to innovate. The probit 

estimations of Table 5 are used as a first stage in the switching regression with endogenous 

switching (eq. (7)). The probit results for product innovation appear in column 3 and 4 and those for 

process innovation appear in column 5 and 6. These latter regressions are useful to understand the 

importance of the different instruments in determining innovation decisions. The given set of 

instruments predicts much better the probability to undertake a product innovation than a process 

innovation. Moreover, engaging in R&D activity and hiring R&D workers has a much stronger 

effect on the probability of undertaking product innovation than on the one of process innovation. In 

contrast, per-worker current cash flow seems to be an important pre-condition for introducing 
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process innovations. Both large and medium-sized firms appear to be more often innovative that 

small firms. 

As far as our main variables of interest are concerned, the share of temporary workers does not 

appear to significantly affect the decision to innovate if we split innovations between product and 

process, while the average age of board members does it already at this first stage. 

Table 5. Probit Maximum Likelihood for Innovation dummies (first stage). 

Innovation Product Process Probit ML 
Coeff Robust 

Std. Err.
Coeff Robust 

Std. Err.
Coeff 
 

Robust 
Std. Err. 

R&D: yes 0.687*** .0431 .811***   .041 .329***    .039 
R&D workerst-1 0.250***    .0221 .316***   .018 .118***    .016 
Cash flowt-2 0.0017*** .0006 .0006   .0004 .0015***  .0004 
Large 0.260*** .0594 .211***   .056 .250***    .053 
Medium 0.297*** .0424 .138***   .042 .254***    .039 
Temporary workers -0.003** .0014 .0006 .0014 -.0019 .0013 
Age of  board members -0.012*** .0031 -.008*** .0029 -.017*** .0027 
Constant 0.439*** .1576 -.552***  .149 .465***    .141 
Pseudo-R2 0.153  0.2014  0.047  
N 7773  7773  7773  
 

Table 6 shows the estimates of the second stage switching regression: the Maddala method with 

OLS on eq. (9’) and a 2SLS-IV method to take into account the endogeneity of the growth rate of 

capital stock per worker.9 The instruments used for the growth rate of the capital stock prediction 

are the initial level of the capital/labor ratio, age of the firm at the beginning of the sample period, 

investment intensity at the beginning of the sample period, size, area, sector and group dummies. 

Table 6 indicates that the method of estimation does not matter very much: the estimated 

coefficients for innovative firms are in fact very similar when using OLS and 2SLS; the same 

applies to the sample of non-innovative firms. It should also be noticed that the switching regression 

correction is only positive and significant for the innovative firms. The estimated regressions for the 

innovative firms tend to exhibit a larger R2 than for the non-innovative firms (respectively 0.22 in 
                                                 
9 We run similar regressions of equations derived in Note 8, which allows to test for parameters equality between the 
two regimes. The results confirm the presence of significant differences in the estimates of the coefficients, in particular 
as far as age and the rate of temporary workers are concerned, between the two regimes. The table with these other 
regressions are available upon requests. 
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the OLS case and .21 in the 2SLS case vis-à-vis .10 for their correspondent regressions). The 

Sargan tests for over-identifying restrictions cannot reject the hypothesis of validity of instruments 

only at the 5% level, with a p-value of .064 for the innovative firms and .72 for the non-innovative 

ones. 

The impact of mean age of the board members on productivity growth is negative and statistically 

significant (γ1,OLS = -0.31, γ1,2SLS = -0.31) for innovative firms and positive and non significant 

(γ2,OLS= γ2,2SLS = .06) for the non-innovative firms. Hence the statistical significance stays there and 

the point-wise estimates are in the same ballpark (perhaps higher for the innovative firms) as the 

OLS results previously shown in Table 4. 

Again replicating the same pattern of results as in Table 4, the estimates for the capital share are 

almost three times higher for innovative firms than for non-innovative firms. The OLS method 

appears slightly overestimating α1,OLS = 0.256 and 0.087, respectively, for innovative and non-

innovative, while α1,2SLS = 0.20 and remains equal to 0.085 for the non innovative when the capital 

stock is instrumented with the 2SLS method. 

The impact of the share of temporary workers does not also differ significantly across estimation 

methods but they differ in significance across categories of firms. The share of temporary workers 

affects negatively productivity growth at the second stage for innovative firms (with coefficients of 

some negative .11-.12, very similar to those found in Table 4), and it is -0.27 for the non innovative 

firms. This result replicates that of Table 4, where the corresponding coefficients were slightly 

smaller. 
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Table 6. Second stage results for system (9’), OLS and 2SLS. 

Dependent OLS 2SLS  OLS 2SLS 

it

it

L
Y

ln2∆  
Coeff Robust  

St.E. 

Coeff         Robust  

St.E. 

 Coeff Robust  

St.E. 

Coeff Robust 

St.E. 

 Innovative firms  Non Innovative firms 

α1 (K/L ratio) 0.256*** 0.0265 0.199*** 0.0302 α2 0.087*** 0.0212 0.085*** 0.0239 

β1 (constant) 20.164*** 3.204 20.46*** 3.146 β2 -6.68 7.755 -6.67 7.698 

γ1 (age) -0.307*** 0.0465 -0.313*** 0.0453 γ2 0.061 0.1375 0.061 0.1366 

µ1 (temporary 
workers) 

-0.114*** 0.023 -0.123*** 0.0234 µ2 -0.273** 0.120 -0.272** 0.1194 

-σε1ω 2.597* 1.526 3.659** 1.528 σε2ω -1.557 3.152 -1.545 3.1343 

          

R2 0.215  0.099  R2 0.208  0.099  

Sargan test   3.429 
[0.064] 

    .413 
[0.520] 

 

N 5859  5859  N 1914  1914  

          

Note. All regressions include size, sector, area and group dummies. The first stage refers to column 1 and 2 of 

Table 5. The 2SLS method instruments the growth rate of the capital stock per worker with the lagged K/L in 

levels and the lagged investment intensity.  

 

As a robustness check we replicate the estimates of equation (4) for the sub-sample of managers 

who are supposed to take decisions within the board. We select those firms whose board contains 

competence-specific managers, who are supposed to influence the decision to introduce innovations 

in the firm, eventually. The sign and size of the main coefficients are confirmed. We omit reporting 

them here for brevity. 

We finally implement the Maximum Likelihood Endogenous Switching model which allows us to 

obtain consistent and efficient estimates. 
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Following the method suggested by Lokshin and Sajaia (2004) we estimate the equation system (9’) 

first by including the growth rate of the capital stock as it is (analogously to the OLS method in 

Table 6), second by substituting the variable with its predicted value obtained through a first-stage 

regression with instruments (analogously to the 2SLS method used in Table 6). The results of the 

ML Endogenous Switching Model are shown in Table 7 below. 

The results for innovative firms largely confirm those of Table 6. The estimated share of the capital 

stock is equal to 0.196 when the capital stock is predicted. The parameters for mean age are 

estimated to be equal to -0.40 (overestimating with respect to OLS and 2SLS). The temporary 

worker share coefficient is higher both in ML and ML predicted (-0.19 and -0.22 respectively). The 

value of ρ1 greater than zero means that the correlation between the residuals of the second-stage 

equation and the selection equation is positive. This means that an innovative firm does better in 

increasing productivity than a firm which randomly chooses to be in either regime. 

The capital share for non innovative firms is zero both with ML and with ML predicted. This value 

is similar to the OLS result of Table 4. 

Our estimates also indicate that the impact of average board age for non innovative firms is zero. 

This result is the same as that of Table 6, where the 2SLS coefficient is zero as well. 

The impact of the share of temporary workers is instead negative and significant (µ2,ML ≅ µ2,MLpred = 

-0.24). Finally, the correlation between selecting the regime and the second-stage equation is zero. 

The Wald test of independence across the equations (8) and (8’) rejects the null of independence. 

Together with the positive and statistically significant Mills ratios, this means that the error 

correction-switching method is appropriate. 
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Table 7. Second stage results for system (9’), Maximum Likelihood efficient method. 

Dependent ML ML (predict k̂ )  ML ML (predict k̂ ) 

it

it

L
Y

ln2∆  
Coeff Robust  

St. E. 

Coeff Robust 

Std. 
Err. 

 Coeff Robust  

St. E. 

Coeff Robust 

St. E. 

 Innovative firms  Non Innovative firms 

α1 .2588*** .0244 .1967*** .0382 α2 .0199 .0195 -.0004 .0252 

β1 17.00*** 3.343 18.17*** 3.381 β2 -6.658 10.85 -6.414 10.023 

γ1 -.4028*** .056 -.3862*** .0591 γ2 -.0105 .1473 -.0051 .1462 

µ1 -.1878*** .0288 -.2172*** .0308 µ2 -.242** .1174 -.2369** .1167 

σ1 28.719*** .8895 30.51***    1.096 σ2 29.941*** .2622 29.93***   .1986 

ρ1 .6917 .0936 .6421 .1211 ρ2 .1126 .1385 .1039 .1179 

Mills ratio .4439** .2767 .444** .2821  1.364*** .5181 1.368*** .5282 

          

Condition Exogenous K Endogenous K      

Wald 

χ2(1) 

22.86 

[0.000] 

 13.95  
[0.000] 

      

P(Inno) .7356 .1785 .735 .1816      

N 7773  7773       

Note. All regressions include size, area and sector dummies.  Columns 3 and 4 show ML with predicted value of the 

growth rate of capital stock for innovative firms. Columns 7 and 8 replicate ML with predicted value for the non 

innovative cluster. Wald Chi-square test is testing for the independence of the residuals in system (8). P(Inno) is the 

predicted probability of being in the innovative regime in the first stage.   

 

8. Conclusions 

In this paper we exploited data from a sample of some eight thousands innovative and non-

innovative firm-observations to describe the pattern of correlation between experience, innovation 

and productivity growth during the recent period of serious productivity slowdown in the Italian 
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economy. Our results seem to indicate that both workers’ and managerial experience matter for 

productivity growth. 

As to managerial age, definite patterns of correlation are present once the whole sample is split into 

innovative and non-innovative clusters. Age, in particular – a measure of overall experience – in the 

labor market appears to be (positively correlated or) uncorrelated with productivity growth in non-

innovative firms, while it is robustly negatively correlated with productivity growth in the sample of 

innovative firms. Results are also strongly statistically significant for our other variable of interest: 

the share of temporary workers is in most cases negatively correlated with productivity growth. 

This result seems to differ across groups in absolute value, being more important for non innovative 

firms. 

The cross-sectional statistical analysis of long-differences based on firm-averaged data is not 

problem-free. A big issue is potential reverse causation. The statistical relations we intend to 

analyze posit that (say) age is the independent variable and productivity the dependent variable. But 

cross-section data as such (be they observed at a given point in time or averaged over time) may 

only indicate correlation, not causation. Therefore, if the estimated coefficient linking age and 

productivity is negative, this may not indicate that the firms where aged managers are employed are 

less productive. Rather, the negative correlation may simply signal that older managers tend to stay 

longer in less productive and older firms, featuring outdated machines and methods of production, 

probably because they managed to put in place successful “relations”, while new, innovative and 

high-productivity plants may be more often matched to young and brilliant managers. If this is the 

case, we would be wrongly interpreting what causes what, attributing to age a causal influence on 

plant productivity, which may go the other way around. This is why we implement our 2SLS 

specification. Our expectation is that by choosing predetermined instruments, which also include 

age of the firm, we are lessening the simultaneity problems. 

Surely, a lot of unobserved heterogeneity in plant productivity is still there in the data even once we 

have augmented the list of productivity determinants with dummies and other control variables. Yet 
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the problem of interpreting the statistical results from cross-sectional estimates arises if and only if 

the unobserved (therefore unmeasured) firm variables are correlated with the included explanatory 

variables. For example, if managerial ability – a typically unobserved firm variable – were unrelated 

to the age of managers, then leaving it out of the empirical analysis would not be a major problem. 

This may or may not be the case though. If managerial ability is not observed and therefore omitted 

from the analysis but it turns out to be correlated with some included variable such as the age of 

managers, its effect may be picked up by the negative estimated relation between high-age 

managers and productivity. We would be misperceiving the effect of managerial ability on 

productivity as if it were the causal effect of age on productivity. To tackle this problem, we control 

for a few dummy variables that capture some, though presumably not all, of the unobserved 

determinants of firm productivity. 
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Appendix 

We control for sample selection that could actually come up when Capitalia-Unicredit IX survey 

data are matched with AIDA balance sheet of firms present in 2007. Not all Capitalia firms exist in 

AIDA register. Nonetheless, we manage to retain almost 86% of the Capitalia sample. Therefore, 

we check in what type of characteristics do firms in-sample and out-of-sample differ.  

Figure A 1. In and Out Sample distribution of Capitalia firms by size 
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Figure A1 shows the distribution by class of workers of the firms falling in and out of our final 

panel. The panel tends to maintain medium size firms mainly (87%), while keeping around 79% of 

the medium-large and large firms. As far as the very small firms, our panel keeps 82% of them. 

Formally, the test for independence hypothesis rejects the null (Pearson chi-square(4) = 25.7455, p-

value = 0.000) meaning that being in or out of sample depends in a certain way on firm size. 

We lose 15.6% of firms located in North-West part of Italy (Lombardia, Piemonte, Liguria, Valle 

d’Aosta), 13.9% of the firms located in the North-East (Trentino A.A., Veneto, Friuli V.G., Emilia 

Romagna), 13.5% of the firms located in the Centre (Toscana, Umbria, Marche, Lazio) and 15.8% 

of the firms located in the South. The Pearson chi-square(4) = 3.4150 with p-value = 0.491 says that 

there is statistical independence between the regional distribution and being in or out of sample. 
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Traditional sectors with lower Ateco 1991 code, i.e. Food and Beverages, Textiles, Clothes, 

Tobacco, tend to be underrepresented with respect to the original Capitalia sample, as we can see 

from Figure A2. In any case if we consider High-Tech versus the others, there is an independent 

distribution of frequencies in and out of sample (Pearson chi-square(1) test = 0.3952 with p-

value=0.530). 

We then run a two-sample t test with equal variances to test for equality of average firm age 

between the two groups (in-sample, out-sample). The results highlight that firms outside the sample 

are on average 3 years older, and the difference in means is statistically significant.  

Figure A 2. Distribution of firms by Ateco 1991 classification, in and out-sample 
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Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval] 

Out sample 570 31.87 .938 22.41 30.03 33.72 

In sample 3469 28.87 .325 19.16 28.24 29.51 

Combined 4039 29.29 .309 19.67 28.69 29.90 

diff  3.00 .887  1.259 4.742 

Degrees of freedom: 4037 
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Ho: mean(out) - mean(in) = diff = 0 

     Ha: diff < 0 Ha: diff ≠ 0 Ha: diff > 0 

t =   3.3795 t =   3.3795 t =   3.3795 

P < t =   0.9996 P > |t| =   0.0007       P > t =   0.0004 

 

Finally, we run an association tests to check for independence between being an innovative firm and 

being in or out of sample, to evaluate whether less innovative firms are those kicked out of the final 

panel. The Pearson chi-square tests are listed for different types of innovation activity: 

R&D expenditures in 2001-2003 (yes/no) 

 

Pearson chi-square(1) = 3.52 p-value = 0.061 

Introducing product innovations (yes/no) 

 

Pearson chi-square(1) = 7.194 p-value = 0.007 

 

Introducing process innovations (yes/no) 

 

Pearson chi-square(1) = 2.189 p-value = 0.139 

 

Introducing both process and product 

innovations (yes/no) 

Pearson chi-square(1) = 2.249 p-value = 0.134 

 

 

We reject the hypothesis of independence for R&D expenditure and product innovation only. That 

means that firms investing into R&D and introducing product innovations have a (slightly) higher 

probability to survive. We cannot reject the null for process innovations or both kinds of 

innovations, instead. Introducing process innovations or not provide a firm equal probability to 

remain in our sample.  
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