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1 Introduction

The most popular objective function used to determine optimal policies in infi-
nite horizon models is the discounted utilitarian criterion,∑

t∈N
βt−1u(xt) , (1)

where 0 < β < 1 is the social discount factor and xt is the consumption of
generation t. This criterion has been heavily criticized on the ground that it
treats successive generations differently. Many economists in the utilitarian tra-
dition have denounced this deviation from the ideal of equal treatment of all
individuals. For instance, Frank Ramsey famously described discounting as a
“practice which is ethically indefensible and arises merely from the weakness
of the imagination” (Ramsey, 1928, p. 543). Among others, Pigou (1920) and
Harrod (1948) have also stigmatized discounting.

Drawing on these criticisms, a prolific literature has studied whether it would
be possible to combine the principle of procedural equity (equal treatment of all
generations) with the Pareto principle in the context of infinite consumption
streams. Although some positive results have been obtained, most of this liter-
ature stemming from Diamond (1965) has reached negative conclusions (Basu
and Mitra, 2003; Zame, 2007; Lauwers, 2010).

At the same time, several authors have pointed out the distributional conse-
quences of not discounting future generations’ utility. Mirrlees (1967) computed
optimal intertemporal consumption patterns in plausible economic models us-
ing the undiscounted utilitarian criterion (the so-called Ramsey criterion). He
observed that present generations should save up to 50 % of their net income for
the sake of future generations. The finding was best summarized by philosopher
John Rawls who declared that “the utilitarian doctrine may direct us to demand
heavy sacrifices of the poorer generations for the sake of greater advantages for
the later ones that are far better off” (Rawls, 1999, p. 253). He went on saying
that “these consequences can be to some degree corrected by discounting the
welfare of those living in the future” (Rawls, 1999, p. 262).

Although Rawls did not endorse discounted utilitarianism (for the very rea-
son that its failure to comply with procedural equity “has no intrinsic ethical
appeal” Rawls, 1999, p. 262), most of the economic literature has adopted it, as
the lesser of two evils. Yet the conflict between procedural equity and distribu-
tional equity in a utilitarian context has remained unsolved.

The above distributional justification for discounted utilitarianism critically
relies on the assumption that future generations are better off in the imple-
mented intergenerational allocation. Asheim and Buchholz (2003) noticed that,
in certain technological contexts, for instance in the Dasgupta-Heal-Solow model
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of capital accumulation and resource depletion, future generations may not be
better off. Undiscounted utilitarianism may then yield more satisfactory rec-
ommendations than discounted utilitarianism. The key point is that, for dis-
counting to prevent high sacrifices for the sake of others that are better off, it is
critical that generations’ rank in time corresponds to their rank in well-being.

If we retain the interpretation of the discount factor as preventing high sac-
rifices from the poor, it looks closely related to the social weights used in rank-
dependent measures of social welfare. An example of a rank-dependent criterion
is the Gini social welfare function. Generalizations thereof have been proposed
by Weymark (1981) and Ebert (1988). The main feature of rank-depended so-
cial welfare functions is that they put more weight on the utility of the worse off.
Rank-dependent weights simply represent the society’s aversion to inequality.

In this paper, we propose to apply rank-dependent methods to intergenera-
tional justice.1 More precisely, we put forward that the social observer use an
element from the class of rank-discounted utilitarian social welfare functions:∑

r∈N
βr−1u(x[r]) .

Here, the consumption stream (x[1], x[2], . . . , x[r], . . . ) is a reordering of the con-
sumption stream (x1, x2, . . . , xt, . . . ) such that x[1] ≤ x[2] ≤ · · · ≤ x[r] ≤ · · · .

However, an obstacle to applying rank-discounted utilitarianism in the con-
text of infinite consumption streams is that consumption streams where some
generations have infinite ranks cannot be reordered into a non-decreasing stream.
We resolve this problem by showing how the rank-discounted utilitarian ap-
proach can be extended in a natural manner to the full domain by including also
consumption streams that cannot be reordered into non-decreasing streams.

The extended rank-discounted utilitarian approach coincides with discounted
utilitarianism on the set of non-decreasing consumption streams. Utility dis-
counting is then justified as an expression of inequality aversion when future
generations are better off. However, and contrary to the discounted utilitar-
ian approach, extended rank-discounted utilitarianism also satisfies procedural
equity: two intergenerational consumption streams that are identical up to a per-
mutation are deemed equally good. Furthermore, it satisfies the strong Pareto
principle on the the domain of streams that can be reordered into non-decreasing
streams. Hence, the extended rank-discounted utilitarian approach overcomes
the impossibility results in the tradition of Diamond (1965) on this domain.

In Section 3, we offer a complete characterization of extended rank-discounted
utilitarian preferences. This characterization is clearly related to Koopmans’

1Alternatively, the analysis could have been motivated as an extension of known results on
finite rank-dependent social evaluation to the infinite case. For a comparison of our analysis
with relevant contributions in this alternative setting, see subsection 3.2.
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(1960) characterization of discounted utilitarian preferences. The difference is
that his separability and stationarity axioms are imposed on non-decreasing
streams only. Separability axioms on ordered streams are common in the theory
of decision under uncertainty (Gilboa, 1987; Wakker, 1993) and in the theory
of inequality measurement (Weymark, 1981; Ebert, 1988). With the exception
of Rébillé (2007), they have never been used in the theory of intertemporal de-
cision making yet. They permit to weight utilities according to their rank in a
distribution, which is exactly what rank-discounted utilitarian criteria do.

In Section 4, we provide conditions for a social observer using an extended
rank-discounted utilitarian criterion to be inequality averse, in the sense that she
always prefers a consumption stream obtained from another through a Pigou-
Dalton redistributive transfer. We also provide conditions for comparing two
social observers in terms of inequality aversion. When the social observer has
homothetic preferences, these conditions are very simple: she needs to discount
ranks more and to use a more concave utility function.

Distributional equity in the spirit of Atkinson (1970) has been addressed in
many papers in the literature on intergenerational equity (see, e.g., Birchenhall
and Grout, 1979; Bossert, Sprumont and Suzumura, 2007; Hara, Shinotsuka,
Suzumura and Xu, 2008). However, this literature did not emphasize the effects
of inequality aversion on society’s choice. We claim that inequality aversion is
a central notion for evaluating intergenerational problems.

In Section 5, we explore the implications of rank-discounted utilitarian social
welfare functions for the social discount rate. The highly publicized debates on
the social discount rate in the context of climate change have highlighted its
importance for policy evaluation. An ‘ethical’ view has suggested low values for
the social discount rate, on the ground that pure-time discounting violates pro-
cedural equity. Rank-discounted utilitarianism suggests an alternative ‘ethical’
view where discounting is an expression of society’s aversion to inequality.

Indeed, we prove that a more inequality averse social observer always dis-
count the future more, provided that future generations are better off. This has
important policy implications. If future generations are expected to be better
off in spite of climate change, then a more inequality averse extended rank-
discounted utilitarian social observer will agree with the recommendation of
Nordhaus (2008) to have gradual emission control policies rather than that of
Stern (2006) who calls for immediate action. However, since rank-discounting
depends on a generation’s rank in the intergenerational distribution rather than
its rank in time, if future generations are expected to be less well-off because of
climate change, then the social discount rate should on the contrary be negative,
and strong action should be undertaken to mitigate climate change.

In Section 6, we show that the extended rank-discounted utilitarian approach
can be applied to find the optimal growth policy in two benchmark models: the

3



Ramsey growth model and the Dasgupta-Heal-Solow model of capital accumu-
lation and resource depletion. Also in these applications, inequality aversion
plays a crucial role. Indeed, in a more inequality averse society, growth is pre-
vented for a greater set of initial conditions: if the initial stock of capital is
high enough, the society prefers to maintain consumption forever. Then more
inequality aversion yields greater equality and lower long-run consumption.

To reach these conclusions, we start in Section 2 by introducing the frame-
work of our analysis.

2 The framework

Let N denote as usual the set of natural numbers {1, 2, 3, . . . }. Let R denote
the set of real numbers, R+ the set of nonnegative real numbers, and R++ the
set of positive real numbers.

Denote by x = (x1, x2, . . . , xt, . . . ) an infinite stream (or allocation), where
xt ∈ R+ is a one-dimensional indicator of the well-being of generation t. We
refer to this indicator as the consumption of generation t, restrict attention to
allocations consisting of bounded consumption streams, and denote by

X =
{
x = (x1, . . . , xt, . . . ) ∈ RN

+ : suptxt < +∞
}

the set of possible allocations.
For x, y ∈ X, write x ≥ y whenever xt ≥ yt for all t ∈ N; write x > y

if x ≥ y and x 6= y; and write x � y whenever xt > yt for all t ∈ N. For
any T ∈ N and x, y ∈ X, denote by xTy the consumption stream z such that
zt = xt for all t ≤ T and zt = yt for all t > T . For any x ∈ R+ and y ∈ X,
denote by (x,y) the stream (x, y1, y2, . . . ).

Three subsets of X will be of particular interest. First, we introduce the set
of stationary consumption streams, Xc = {xc, x ∈ R+}, where for any x ∈ R+,
xc ∈ X denotes the allocation such that xc

t = x for all t ∈ N.
A second subset of X is the set of non-decreasing streams in X. This set is

denoted X+ = {x ∈ X : xt ≤ xt+1,∀t ∈ N}.
The third subset of X, playing a key role in the remainder of the paper, is the

set of allocations, X̄, whose elements can be permuted to obtain non-decreasing
streams. To introduce X̄ formally, let Π be the set of all permutations on N.
For any π ∈ Π and x ∈ X, let xπ = (xπ(1), xπ(2), . . . , xπ(t), . . . ). The set X̄ is
defined as follows: X̄ = {x ∈ X : ∃π ∈ Π, xπ ∈ X+}.

The following inclusions hold: Xc ⊂ X+ ⊂ X̄ ⊂ X. In a finite setting, X̄
would be the same as X. To see why this does not hold in an infinite setting,
consider the stream x = (1, 0, 0, . . . ). For any π ∈ Π, it must be that π(1) < +∞
so that any reordered stream has the form (0, 0, . . . , 0, 1, 0, . . . ). Hence, x cannot
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be reordered to form a non-decreasing stream.
To characterize the set X̄, let `(x) denote lim inft→+∞ xt for any x ∈ X.

Because streams in X are bounded, `(x) is well-defined for all x ∈ X. Write
L(x) = {t ∈ N : xt < `(x)} and denote by |L(x)| the cardinality of L(x).

Proposition 1.
(a) If an allocation x ∈ X satisfies |L(x)| < +∞, then x belongs to X̄ if and

only if xt ≤ `(x) for all t ∈ N.
(b) If an allocation x ∈ X satisfies |L(x)| = +∞, then x belongs to X̄ if and

only if xt < `(x) for all t ∈ N.

Proposition 1 is clearly equivalent to the following lemma.

Lemma 1. An allocation x ∈ X belongs to X̄ if and only if the cardinality of
{t ∈ N, t > τ : xt < xτ} is finite for all τ ∈ N.

Proof. For any x ∈ X and τ ∈ N, write Λτ (x) = {t ∈ N, t > τ : xt < xτ}.
If |Λτ (x)| = +∞ for some τ ∈ N, then, for any π ∈ Π, π(τ) < +∞ and it is

impossible that π(t) < π(τ) for all t ∈ Λτ (x). Hence, x /∈ X̄.
Conversely, assume |Λτ (x)| < +∞ for all τ ∈ N. The set Λ1(x) is finite and

can be re-ordered in non-decreasing order. These coordinate will form the n1

first elements of the ordered stream, with n1 = |Λ1(x)|. And π(1) = n1 + 1.
Then let τ2 be the first period such that xτ2 ≥ x1. The set Λτ2(x)\Λ1(x) is finite
and can be ordered in increasing order. These will form the n2 next elements
in the ordered stream, with n2 = |Λτ2(x)| − |Λ1(x)|. And π(t2) = n1 + n2 + 2.
Pursuing this procedure leads to an ordered stream. Hence, x ∈ X̄.

For x ∈ X̄, denote by x[ ] = (x[1], x[2], . . . , x[r], . . . ) the non-decreasing alloca-
tion which is a permutation of x; i.e., for some π ∈ Π such that xπ ∈ X+, it holds
that x[r] = xπ(r) for all r ∈ N. Note that the permutation π need not be unique
(if, for instance, xt = xt′ for some t 6= t′), but the resulting non-decreasing
allocation x[ ] is unique. Likewise, for x ∈ X, denote by (x[1], . . . , x[|L(x)|]) the
non-decreasing allocation which is a permutation of the elements of x satisfying
t ∈ L(x). The following notation is useful: rτ (x) = |{t ∈ N : xt < xτ}| + 1
and r̄τ (x) = |{t ∈ N : xt ≤ xτ}|. Whenever rτ (x) = r̄τ (x) < +∞, rτ (x) is the
unique rank of generation τ in the distribution x, and x[rτ (x)] = xτ .

A social welfare relation (SWR) on a set X is a binary relation %, where for
any x,y ∈ X, x % y entails that the consumption stream x is deemed socially
at least as good as y. Let ∼ and � denote the symmetric and asymmetric parts
of %. A social welfare function (SWF) representing % is a mapping W : X → R
with the property that for any x, y ∈ X, W (x) ≥ W (y) if and only if x % y.
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3 Axiomatic foundation

The difficulty of combining equal treatment of an infinite number of generations
with sensitivity to the interest of each of these generations has been the topic of
a prolific literature since the seminal contribution by Diamond (1965). Although
complete social preferences over infinite streams that combine equal treatment
with Paretian sensitivity exist (Svensson, 1980), they cannot be represented
(Basu and Mitra, 2003) nor explicitly described (Zame, 2007; Lauwers, 2010).

In this section we show how the set of ordered streams serves to overcome
this impossibility. In Subsection 3.1 we first impose axioms sufficient to ensure
numerical representability. Then we impose Paretian, separability and stationar-
ity axioms, as used to characterize discounted utilitarianism (Koopmans, 1960),
but restricted to the set of non-decreasing streams. In Subsection 3.2 we show
how this allows us to invoke a strong axiom of equal treatment, requiring social
indifference not only for finite permutations (as considered in the literature in
the wake of Diamond, 1965), but also for infinite permutations. In the con-
cluding Subsection 3.3 we show that we are still able (i) to retain sensitivity to
the interest of any one generation as long as there is only a finite number of
other generations with lower consumption levels, and (ii) to satisfy other ethical
axioms proposed in the literature to protect the interests of future generations.

3.1 Axioms

We first consider axioms sufficient to ensure numerical representability.

Axiom O (Order) The relation % is complete, reflexive and transitive on X.

An SWR satisfying axiom O is named a social welfare order (SWO).

Axiom C (Continuity) For any x, y ∈ X, if a sequence x1,x2, . . . ,xk, . . . of
allocations in X is such that limk→∞ supt∈N |xk

t − xt| = 0 and, for all k ∈ N,
xk % y (resp. xk - y), then x % y (resp. x - y).

Axiom M (Monotonicity) For any x, y ∈ X, if x > y, then x % y.

Axiom M is implied by the strong Pareto principle.
We then consider an axiom ensuring some sensitivity to the interests of the

present generation.

Axiom RD (Restricted Dominance) For any x, y ∈ R+, if x > y, then (x,xc) �
(y,xc).

Axiom RD is implied by the strong Pareto principle restricted to the set of
streams that can be reordered into non-decreasing streams:

Axiom RSP (Restricted Strong Pareto) For any x, y ∈ X̄, if x > y, then x � y.
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We now turn to restricted versions of the separability and stationarity axioms
usually invoked to characterize discounted utilitarianism.

Axiom RSEP (Restricted Separable Present) For any x, y, x′, y′ ∈ X+ such
that (i) xt = x′t and yt = y′t for all t ∈ {1, 2} and (ii) xt = yt and x′t = y′t for all
t ∈ N \ {1, 2}, x % y if and only if x′ % y′.

Axiom RSEP is Postulate 3′a in Koopmans’ (1960) characterization of dis-
counted utilitarianism restricted to the set of non-decreasing streams. We sug-
gest that such a restriction might be supported by ethical intuition. In partic-
ular, one might accept that the stream (1, 4, 5, 5, 5, . . . ) is socially better than
(2, 2, 5, 5, 5, . . . ), while not accepting that (1, 4, 2, 2, 2, . . . ) is socially better than
(2, 2, 2, 2, 2, . . . ). It is not obvious that we should treat the conflict between the
worst-off and the second worst-off generation presented by the first compari-
son in the same manner as we treat the conflict between the worst-off and the
best-off generation put forward by the second comparison.

Axiom RSEP follows from the following axiom by setting T = {1, 2}.

Axiom RSE (Restricted Separability) For any x, y, x′, y′ ∈ X+ and any T ⊂ N
such that (i) xt = x′t and yt = y′t for all t ∈ T and (ii) xt = yt and x′t = y′t for all
t ∈ N \ T , x % y if and only if x′ % y′.

Axiom RSE is closely related to the comonotonic sure-thing principle that has
been introduced in the theory of decision under uncertainty (see Gilboa, 1987;
Wakker, 1993).

Axiom RSEF (Restricted Separable Future) For any x, y, x′, y′ ∈ X+ such
that (i) xt = x′t and yt = y′t for all t ∈ N \ {1} and (ii) x1 = y1 and x′1 = y′1,
x % y if and only if x′ % y′.

Axiom RSEF is Postulate 3b in Koopmans’ (1960) characterization of dis-
counted utilitarianism restricted to the set of non-decreasing streams. It follows
from axiom RSE by setting T = {2, 3, . . . }.

Axiom RST (Restricted Stationarity) For any x, y,∈ X+, there exists z ∈ R+

with z ≤ min(x1, y1) such that (z,x) % (z,y) if and only if x % y.

Axiom RST is Koopmans’ (1960) stationarity postulate (Postulate 4) restricted
to the set of non-decreasing streams. The conjunction of axioms RSEF and
RST is the restriction of axiom IF (Independent Future), as used by Asheim,
Mitra and Tungodden (2010), to the set of non-decreasing streams.

Finally, we state the strong axiom of procedural equity, requiring social in-
difference with respect to all permutations π ∈ Π.

Axiom SA (Strong Anonymity) For any π ∈ Π and x ∈ X, x ∼ xπ.
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3.2 Characterization

In this subsection we characterize the class of SWOs satisfying O, C, M, RD,
RSEP, RSEF, RST and SA. As a first step, we do so within the restricted
domain X̄ of allocations that can be reordered into non-decreasing streams.

Definition 1 Rank-Discounted Utilitarian SWO. An SWR on X̄ is a Rank-
Discounted Utilitarian SWO (RDU SWO) if it is represented by an SWF W̄ :
X̄ → R defined by:

W̄ (x) = (1− β)
∑

r∈N
βr−1u(x[r]), (2)

where 0 < β < 1 is a real number and the function u is continuous and increasing.

Although the RDU criterion can be seen as an infinite extension of families
of single-series Ginis, as axiomatized by Bossert (1990), with the Gini weight
of rank r set equal to βr−1, our axiomatization differs from Bossert’s. The
recursive methods that we use are similar to his recursivity property. However,
we do not need the linear homogeneity and translatability properties which are
essential for his result. We rely instead on RSEF and RST which are taken
from intertemporal choice theory.2

Proposition 2. If an SWR % on X̄ satisfies axioms O, C, M, RD, RSEP,
RSEF, RST and SA, then it is an RDU SWO.

Proof. See Appendix A for a simplified version of Koopmans’ (1960) proof, sim-
ilar to the one in Bleichrodt, Rhode and Wakker (2008). The proof is applied
to non-decreasing streams, requiring the use of techniques developed by Wakker
(1993) for additive representation of preferences on rank-ordered sets. Axiom
C allows us to extend from a finite number of period to an infinite number of
periods the representation on non-decreasing streams. Axiom SA allows us to
extend the representation to the whole set X̄.

We then turn to the demonstration of the result that this class can be char-
acterized in terms of extended RDU SWOs on the unrestricted domain X.

Definition 2 Extended Rank-Discounted Utilitarian SWO. An SWR on X is an
Extended Rank-Discounted Utilitarian SWO (ERDU SWO) if it is represented
by an SWF W : X → R defined by:

W (x) = u(`(x)) + (1− β)
∑|L(x)|

r=1
βr−1

(
u(x[r])− u(`(x))

)
, (3)

2Another class of single-series Ginis is the class of single-parameter Ginis axiomatized by
Donaldson and Weymark (1980), whose generalization in a continuous framework is presented
in Donaldson and Weymark (1983). The finite population counterparts of the RDU criterion
does not satisfy the principle of population which characterizes single-parameter Ginis.
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where 0 < β < 1 is a real number and the function u is continuous and increasing.

To investigate how the ERDU SWF W extends the RDU SWF W̄ , define,
for any x ∈ X, x̄ as follows:{

x̄t = min{xt, `(x)} for all t ∈ N if |L(x)| < +∞
x̄ is the subsequence of x consisting of all xt with t ∈ L(x) if |L(x)| = +∞

Proposition 1 implies that, by construction, x̄ belongs to X̄; therefore, x̄[ ] is
well-defined. It follows from (2) and (3) that for all x ∈ X,

W (x) = W̄ (x̄) . (4)

The ERDU SWF W is consistent with the idea of constant rank-dependent
discounting: any generation t with xt > `(x) if |L(x)| < +∞ or xt ≥ `(x)
if |L(x)| = +∞ is infinitely ranked when consumption levels are ordered in a
non-decreasing sequence, in the sense that there are infinitely many generations
t′ with xt′ < xt. Hence, no weight is placed on their marginal consumption.

Lemma 2. Assume that an SWR % satisfies O, C, M and RD, and is rep-
resented on X̄ by an RDU SWF. Then the SWR % is represented on X by an

SWF W̃ which coincides with W̄ on X̄.

Proof. By O, C, M and RD, for all x ∈ X there exists a unique scalar xe

such that xc
e ∼ x. The scalar xe is an equally distributed equivalent and it

is a representation of %. The SWO % is also represented on X̄ by an RDU
SWF (1 − β)

∑
r∈N βr−1u(x[r]) where 0 < β < 1 and u is increasing. Define

W̃ (x) = u(xe) for all x ∈ X. Since u is increasing, W̃ is also a representation of
% and, by definition of the equally distributed equivalent on X̄, it is such that

W̃ (x) = (1− β)
∑

r∈N βr−1u(x[r]) for all x ∈ X̄.

Lemma 3. Assume that an SWR % satisfies M and SA, and is represented on

X̄ by W̄ and on X by W̃ . Then, for all x ∈ X with |L(x)| ≥ T ≥ 0,

W̃ (x) ≤ W̄ (xπ(1), xπ(2), . . . , xπ(T ), `(x), `(x), . . . ) ,

where, ∀t ∈ {1, . . . , T}, xπ(t) < `(x).

Proof. Such insensitivity for xt > `(x) is shown in Appendix A.

Lemma 4. Assume that an SWR % satisfies M and SA, and is represented on

X̄ by W̄ and on X by W̃ . Then, for all x ∈ X, W̃ (x) = W̄ (x̄) = W (x).

Proof. This follows from Lemma 3; see Appendix A.
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Proposition 3. Assume that an SWR % satisfies O, C, M, RD and SA, and
is represented on X̄ by an RDU SWF. Then the SWR % is represented on X by
an ERDU SWF.

Proof. This result follows from Lemmata 2 and 4.

Theorem 1. Consider an SWR % on X. The following two statements are
equivalent.

(1) % satisfies axioms O, C, M, RD, RSEP, RSEF, RST and SA.

(2) % is an ERDU SWO.

Proof. (1) implies (2). This follows from Propositions 2 and 3. (2) implies (1).
This is easy to establish, and its proof is left to the reader.

3.3 Properties

By combining axioms O, C, M and RD with the unrestricted versions of sep-
arability of the present and future and stationarity — SEP, SEF and ST —
one obtains a characterization of discounted utilitarianism (DU), whereby all
streams x in X are ranked according to the SWF (1) (cf. Asheim, Mitra and
Tungodden, 2010, Proposition 9). DU does not satisfy SA as an axiom of pro-
cedural equity, since the permutation of consumption may change the DU social
welfare. Moreover, as pointed out by Asheim, Mitra and Tungodden (2010),
the DU SWF does not satisfy the following distributional equity axiom, giving
priority to the future in conflicts where the present is better off than the future.

Axiom HEF (Hammond Equity for the Future) For all x, y, w, z ∈ R+, if
x > y > w > z, then (y,wc) % (x, zc).

Finally, as pointed out by Chichilnisky (1996), DU is a dictatorship of the
present, which on the domain X can be formalized as follows:

Axiom DP (Dictatorship of the Present) For all x, y ∈ X such that x � y,
there exist z ∈ R+ with xt, yt ≤ z for all t ∈ N and T ′ ∈ N such that, for any
x′, y′ ∈ [0, z]N, (xT, T+1x

′) � (yT, T+1y
′) for all T ≥ T ′.

Hence, a setting where O, C, M and RD are invoked, at least one of the axioms
SEP, SEF or ST must be weakened to prevent such a dictatorship.

Axiom NDP (Non Dictatorship of the Present) Condition DP does not hold.

Chichilnisky (1996) allows for axiom NDP by dropping axiom ST in the class
of sustainable preferences characterized by her Theorem 2. However, SWOs in
this class do not satisfy the two other ethical axioms: HEF and SA.
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Building on Asheim, Mitra and Tungodden’s (2010) axiomatic analysis of sus-
tainable recursive SWFs, Asheim and Mitra (2010) allow for HEF by weakening
SEP to RSEP (i.e., restricting separable present to the set of non-decreasing
streams) in their analysis of sustainable discounted utilitarian (SDU) SWOs,
while retaining the remaining axioms of the above axiomatization of DU. More-
over, SDU SWOs satisfy axiom NDP, but fail to satisfy axiom SA.

On this background it is of interest to note the following proposition.

Proposition 4. An ERDU SWO satisfies HEF and NDP.

Proof. An ERDU SWO satisfies HEF. Let x > y > w > z ≥ 0. Then W (y,wc)
= u(w) > u(z) = W (x, zc) . An ERDU SWO satisfies NDP. Let x � y. Choose
any z ≥ 0 satisfying xt, yt ≤ z for all t ∈ N. Let x′ = y′ = 0c ∈ [0, z]N. Then
W (xT, T+1x

′) = W (yT, T+1y
′) for all T ≥ 0.

Hence, when moving from SDU to ERDU, SA is added and SEF and ST are
weakened to RSEF and RST. The weakening of ST to RST means that we
lose time-consistency when social preferences are time-invariant. Even though
time-inconsistency turns out not to be an issue when ERDU SWFs are applied
to the Ramsey and Dasgupta-Heal-Solow growth models, as we do in Section
6, it might be a problem in other environments. It also excludes the use of
recursive methods, e.g., when faced with uncertainty.

Still, it is remarkable that anonymity (even in its strongest form, SA, al-
lowing infinite permutations) can be combined with numerical representability
and some sensitivity to the interests of the present generation, as such attempts
have not earlier lead to SWOs with attractive properties. Axiom SA is a basic
form of procedural equity, corresponding to equal treatment of generations. In
this sense it seems more fundamental than the distributional axiom HEF.

As pointed out by Van Liedekerke and Lauwers (1997), axiom SA is in con-
flict with the strong Pareto principle. Moreover, Basu and Mitra (2003) showed
that even finite anonymity (i.e., anonymity in its weaker form, involving only
finite permutations) rules out the strong Pareto principle when combined with
numerical representability. Finally, Zame (2007) and Lauwers (2010) demon-
strated that SWOs satisfying both finite anonymity and strong Pareto cannot
be explicitly described.

Strong anonymity, i.e., axiom SA, is even in conflict with the weak Pareto
principle whereby one stream is preferred to another stream if the former has
higher consumption than the latter at all times. This is demonstrated by the
following adaptation of Fleurbaey and Michel’s (2003) proof of their Theorem 1
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to a setting where streams are bounded: consider

x =
(

1
3
, 2

3
, 1

4
, 3

4
, . . . , 1

k+2
, k+1

k+2
, . . .

)
y =

(
1
4
, 1

3
, 1

5
, 2

3
, . . . , 1

k+3
, k

k+1
, . . .

)
,

where by axiom SA x is indifferent to y even though xt > yt for all t ∈ N.
Because ERDU SWOs satisfy axiom SA, it follows that they must be in

conflict with even the weak Pareto principle on the full domain X, which indeed
is what Lemma 3 entails. However, an important feature of ERDU SWOs is
that they satisfy the strong Pareto principle on the restricted set X̄ of streams
that can permuted into non-decreasing streams. This means that ERDU SWOs
retain sensitivity to the interest of any one generation as long as there is only
a finite number of other generations with lower consumption levels. Moreover,
they fulfill the separability axiom on the set X+ of non-decreasing streams.
These are straightforward consequences of (3), so that no proof is provided.

Proposition 5. An ERDU SWO satisfies RSP and RSE.

4 Inequality aversion

Up to now, we have addressed the issue of procedural equity and its compatibility
with the sensitivity to the interests of each generation.

In this section, we introduce concerns for distributional equity. We will show
that inequality aversion can be properly measured and compared within the
ERDU class of preferences. The next two sections will then show that inequality
aversion has significant policy implications.

4.1 The Pigou-Dalton transfer principle and inequality aversion

Following the practice of expressing distributional equity ideals by means of
transfer axioms, we consider a weak form of the Pigou-Dalton transfer principle:

Axiom PDT (Pigou-Dalton Transfer Principle) For any x,y ∈ X, if there exist
ε ∈ R++ and τ , τ ′ ∈ N such that ε ≤ yτ + ε = xτ ≤ xτ ′ = yτ ′ − ε and yt = xt for
all t 6= τ , τ ′, then x % y.

In this section, we study the restrictions imposed by PDT on ERDU criteria.
These restrictions hold on the rank-discount factor β and on the utility function
u in Eq. (3). Write %β,u for the ERDU SWO characterized by β and u.

Introduce the following index of non-concavity of the function u:

Cu = sup
0<ε≤x≤x′

u
(
x′ + ε

)
− u
(
x′
)

u
(
x
)
− u
(
x− ε

)
12



As shown by Chateauneuf, Cohen and Meilijson (2005), this index has two
interesting properties: (1) Cu ≥ 1, with Cu = 1 corresponding to u being concave;
(2) and, when u is differentiable, Cu = supy≤x

(
u′(x)/u′(y)

)
.

The non-concavity index Cu and the discount factor β jointly characterize
ERDU SWFs satisfying the Pigou-Dalton transfer principle.

Proposition 6. An ERDU SWO %β,u on X satisfies PDT if and only if

β × Cu ≤ 1.

Proof. See Appendix A.

Condition β × Cu ≤ 1 means that the utility function u must not be ‘too non-
concave’. The concavity of u, though sufficient, is not necessary for an ERDU
SWO to satisfy PDT.

In applications, it is convenient to consider the more specific class of homo-
thetic ERDU SWOs which yield clear-cuts results for comparisons of inequality
aversions and for the expression of the discount rate.

Definition 3 Homothetic Extended Rank-Discounted Utilitarian SWO. An SWO
% on X is a homothetic extended rank-discounted utilitarian SWO (HERDU
SWO) if it can be represented by an SWF W : X → R defined by:

W (x) =

{
(`(x))1−η

1−η
+ (1− β)

∑
r∈N βr−1

(
x1−η
[r]

1−η
− (`(x))1−η

1−η

)
if η 6= 1 ,

ln `(x) + (1− β)
∑

r∈N βr−1
(
ln x[r] − ln `(x)

)
if η = 1 ,

(5)

where 0 < β < 1 is a real number.

Denote by %β,η a HERDU SWO represented by an SWR W with rank-
discount factor β and utility function u(x) = x1−η/(1 − η) (or u(x) = ln x if
η = 1). In contrast to the general case, the (weak) concavity of u is necessary
and sufficient for a HERDU SWOs to be inequality averse. For a HERDU SWO
it is indeed the case that Cu = 1 whenever η ≥ 0 and Cu = +∞ whenever η < 0.
This is summarized in the following corollary:

Corollary 1. A HERDU SWO on X %β,η satisfies PDT if and only if η ≥ 0.

4.2 Comparative inequality aversion

Ranking different criteria according to the strength of their concerns for equality
is an important prerequisite to study the policy implications of inequality aver-
sion. The common way to do so is to define and compare the degree of inequality
aversion of the underlying SWOs. The aim of this section is to perform such
comparisons in the case of ERDU SWOs.
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We follow the procedure proposed in the literature on risk/uncertainty aver-
sion to make such comparisons (see Grant and Quiggin, 2005). It consists in: (i)
defining an inequality relation �I ; (ii) declaring an SWO % at least as inequality

averse as an SWO %̂ if, for any allocation y, whenever a less unequal allocation

x (according to �I) is preferred to y according to %̂, then x is also preferred to
y according to %.

We use a simple definition of the relation ‘more unequal than’ based on the
notion of a ‘local increase’ in inequality, namely an inequality change affecting
only two generations and leaving generations’ ranks unchanged.

Definition 4. For any x,y ∈ X, allocation y represents an elementary increase
in inequality with respect to allocation x, denoted y �I x, if there exist ε,
ε′ ∈ R++ and τ , τ ′ ∈ N such that yτ + ε = xτ ≤ xτ ′ = yτ ′ − ε′, rτ (y) = rτ (x),
r̄τ ′(y) = r̄τ ′(x), and yt = xt for all t 6= τ , τ ′.

The inequality relation �I is used to define comparative inequality aversion:

Definition 5. An SWO % is at least as inequality averse as an SWO %̂ if, for

any x and any y �I x: (i) x %̂ y =⇒ x % y, and (ii) x �̂ y =⇒ x � y.

Consider two ERDU SWOs, %β,u and %β̂,û. To assess their relative inequality

aversion, the discount factors β and β̂ and the relative concavity of the utility
functions u and û must be compared. The following two indices do so:

Dβ,β̂ = inf
t<t′

βt/β̂t

βt′/β̂t′
=

{
β̂/β if β ≤ β̂

0 if β > β̂

Cu,û = sup
0≤x1<x2≤x3<x4

[
u(x4)− u(x3)

]
/
[
û(x4)− û(x3)

][
u(x2)− u(x1)

]
/
[
û(x2)− û(x1)

] .

The index Dβ,β̂ is an index of the relative decreasing speed of the social weights.
The faster the social weights decrease, the less the society cares for better off
generations. The index Cu,û is an index of relative concavity of the utility func-
tions u and û. Furthermore (Grant and Quiggin, 2005), Cu,û ≥ 1, with Cu,û = 1
corresponding to the case where u is an increasing concave transformation of û.
In addition, if u and û are differentiable, Cu,û = supy≤x

(
u′(x)û′(y)

)
/
(
u′(y)û′(x)

)
.

The comparative inequality aversion of two ERDU SWOs can be character-
ized as follows:

Proposition 7. Consider two ERDU SWOs, %β,u and %β̂,û, on X. Then %β,u

is at least as inequality averse as %β̂,û if and only if

Dβ,β̂ ≥ Cu,û .
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Proof. See Appendix A.

By Proposition 7, β ≤ β̂ is a necessary condition for %β,u to be at least as
inequality averse as %β̂,û. A more inequality averse ERDU social observer has
a lower rank-discount factor and thus discount more the utility of better off
generations. Moreover, if β = β̂, then u must be a concave transformation of û.

Even clearer results can be obtained in the case of HERDU SWOs. Indeed, it
is straightforward that, whenever u(x) = x1−η/(1− η) and û(x) = x1−η̂/(1− η̂),
Cu,û = 1 if η ≥ η̂, and Cu,û = +∞ if η < η̂. We hence obtain the following simple
conditions for comparative inequality aversion of HERDU SWOs:

Corollary 2. Consider two HERDU SWOs, %β,η and %β̂,η̂, on X. Then %β,η

is at least as inequality averse as %β̂,η̂ if and only if β ≤ β̂ and η ≥ η̂.

As in the static case, inequality aversion is a key policy parameter in in-
tertemporal problems, playing an important role in designing optimal policies.
In Section 5, we describe how it affects social discounting, while in Section 6, we
study optimal ERDU policies and highlight the impact of inequality aversion.

5 Rank-discounted utilitarianism and social discounting

Triggered by the Stern (2006) review of climate change, the social discount
rate has attracted much attention in recent years (Nordhaus, 2007; Weitzman,
2007; Dasgupta, 2008). The controversy has not held on the social welfare
function used to assess different streams, as all the authors have endorsed the
DU approach. The controversy has held on the value of the parameters in the DU
SWF (1). In particular, the time-discount rate β and the elasticity of marginal
utility, ηu(x) = −d ln u′(x)/d ln x, have a critical role in the determination of the
social discount rate. However, there has been no consensus on the interpretation
and the value of these key parameters.

In this section, we derive the social discount rate arising from ERDU SWOs.
Doing so we prove that the key parameters of the social discount rate have
interpretations in terms of inequality aversion.

Assume that an ERDU SWO %β,u, has the property the function u in Eq. (3)
is twice continuously differentiable. In that case %β,u is said to be a smooth
ERDU SWO. Also, consider consumption streams x in X where

(i) |L(x)| < +∞ and xt 6= `(x) for all t ∈ N, or |L(x)| = +∞,

(ii) no pair in L(x) has the same consumption level (i.e., xt 6= xτ if t, τ ∈ L(x)).

The set of such streams is denoted X6=. Any stream in X6= has the property
that rt(x) = r̄t(x) < +∞ if t ∈ L(x), while rt(x) = r̄t(x) = +∞ otherwise. An
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SWR W representing a smooth ERDU SWO is differentiable on X6= only, with
∂W (x)/∂xt = βrt(x)−1u′(xt) > 0 if t ∈ L(x) and ∂W (x)/∂xt = 0 otherwise.

The social discount rate evaluates how much an increase in marginal con-
sumption in period t is ‘worth’ in terms of first period consumption. It is given
by the following formal expression:3

Definition 6. Let W be the SWF used to evaluate policies. Then the social
discount rate at period t for a stream x is:

ρt(x) =
ln(∂W/∂x1)− ln(∂W/∂xt)

t− 1
.

Consider a smooth ERDU SWO %β,u and denote by δ = − ln β the rank
discount rate. Also denote by gt(x) the average per period growth rate between
1 and t: gt(x) = (ln xt − ln x1)/(t − 1). The social discount rate arising from a
smooth ERDU SWO can now be approximated:

Proposition 8. Let %β,u be a smooth ERDU SWO, and consider a stream x ∈
X6= with 1 ∈ L(x). Then the social discount rate, ρt(x), at period t ∈ L(x)\{1}
is approximated by the rhs. of the following expression:

ρt(x) ≈ rt(x)− r1(x)

t− 1
δ + ηu(x1)gt(x) (6)

Proof. From the ERDU SWO it follows that

ρt(x) =

(
(r1(x)− 1) ln β + ln(u′(x1))

)
−
(
(rt(x)− 1) ln β + ln(u′(xt))

)
t− 1

=
rt(x)− r1(x)

t− 1
δ +

ln u′(x1)− ln u′(xt)

t− 1

≈ rt(x)− r1(x)

t− 1
δ − d ln u′(x1)

d ln x1

· ln xt − ln x1

t− 1

=
rt(x)− r1(x)

t− 1
δ + ηu(x1)gt(x) ,

using a log-linear approximation for u′(x).

3To understand the expression, imagine that today the society makes a marginal investment
ε whose rate of return is ρ, so that the generation born in period t can consume eρ(t−1)ε more
units of aggregate good. The change in social welfare through this investment is:

dW (x) =
∂W

∂xt
eρ(t−1)ε− ∂W

∂x1
ε

The social discount rate is the rate of return that makes the change in social welfare nil.
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Approximation (6) shows that the social discount rate is rank-dependent: it
depends crucially on the distance between the welfare rank of generation t and
the one of the first generation. The further generation t is in the intergenera-
tional distribution, the larger the social discount rate, and vice versa.

This remark leads to a second insight. If generation t is worse off than the first
generation, the social discount rate will be negative, provided that ηu(x1) ≥ 0,
which is always the case when u is concave. It has been pointed out in the
literature using a DU approach that the social discount rate may be negative
when future generations are sufficiently worse off (see for instance Dasgupta,
2008, p. 150). With ERDU, this should always be the case as soon as a future
generations are worse off and the function u is concave.

On the set of increasing consumption streams, the familiar expression ρt(x) ≈
δ + ηu(x1)gt(x) is obtained. For smooth HERDU SWOs, the log-linear approxi-
mation of marginal utility is exact and the expression becomes ρt(x) = δ+ηgt(x).
This expression emphasizes the crucial role played by the ethical parameters to
determine the social discount rate. Indeed, δ and η conjointly characterize the
attitude towards inequality: a more inequality averse social observer should have
a higher δ (lower β) and/or a higher η. Therefore, a more inequality averse soci-
ety should discount the future more whenever future generations are better off.
This insight actually generalizes to all ERDU SWOs.

Proposition 9. Consider two smooth ERDU SWOs, %β,u and %β̂,û, and a stream
x ∈ X6= with 1 ∈ L(x). Let ρt(x) and ρ̂t(x) be the associated discount rates at
period t ∈ L(x)\{1}. If %β,u is at least as inequality averse as %β̂,û, then:

(1) ρt(x) ≥ ρ̂t(x) if xt > x1.

(2) ρt(x) ≤ ρ̂t(x) if xt < x1.

Proof. For any x ∈ X6= and any t ∈ L(x)\{1}, ρt(x) ≥ ρ̂t(x) if and only if

∆ =
∂W/∂x1

∂W/∂xt

− ∂Ŵ/∂x1

∂Ŵ/∂xt

=
βr1(x)−1u′(x1)

βrt(x)−1u′(xt)
− β̂r1(x)−1û′(x1)

β̂rt(x)−1û′(xt)
≥ 0 ,

where W (Ŵ ) represents %β,u (%β̂,û). There are two ways to rearrange ∆:

∆ =

(
βr1(x)/β̂r1(x)

βrt(x)/β̂rt(x)
− u′(xt)û

′(x1)

u′(x1)û′(xt)

)
u′(x1)/u

′(xt)

β̂rt(x)/β̂r1(x)
, (7)

∆ =

(
u′(x1)û

′(xt)

u′(xt)û′(x1)
− βrt(x)/β̂rt(x)

βr1(x)/β̂r1(x)

)
û′(x1)/û

′(xt)

βrt(x)/βr1(x)
. (8)

17



Using the definitions of Dβ,β̂ and Cu,û, we obtain: by Eq. (7), for xt > x1,

∆ ≥
(
Dβ,β̂ − Cu,û

)(
u′(x1)/u

′(xt)
)
/
(
β̂rt(x)/β̂r1(x)

)
≥ 0

by Proposition 7, noting that rt(x) > r1(x); by Eq. (8), for xt < x1,

∆ ≤
(
Cu,û −Dβ,β̂

)(
û′(x1)/û

′(xt)
)(

βrt(x)/βr1(x)
)
≤ 0

by Proposition 7, noting that rt(x) < r1(x).

It is a strength of the class of HERDU criteria that the two parameters δ
and η have a consistent, common interpretation in terms of intergenerational
inequality aversion. By increasing each of δ and η, inequality aversion is en-
hanced. For increasing streams, a more inequality averse society discounts the
future more, with the discount rate having a clear ethical significance.

This is in contrast with the class of homothetic DU criteria where the two
parameters δ and η represent different ethical notions. The time discounting
parameter δ measures the intensity of intergenerational (procedural) inequity.
A fairer society should choose a lower δ. On the other hand, the elasticity of
marginal utility η is often interpreted as a measure of intra-temporal inequality
aversion. A more egalitarian society should choose a higher η. As a consequence,
it is not clear what the social discount rate of an ‘equity-minded’ society should
be: it should discount the future less to avoid intergenerational inequity, but
discount the future more because it is more averse to intra-period inequalities.

The result in Proposition 9 has important policy implications, in particular
for the question of climate change. If one believes that future generations will
be better off in spite of climate change,4 then a more inequality averse ERDU
social observer will agree with the recommendation of Nordhaus (2008) to have
a gradual emissions-control policy with increasing carbon price rather than with
that of Stern (2006) who calls for strong immediate action to mitigate climate
change. Indeed, Nordhaus proposes to use δ = 0.015 and η = 2 whereas Stern
argues in favor of δ = 0.001 and η = 1. However, the policy recommendation
will be totally different if one believes that climate change might strongly affect
the economy so that declining consumption would occur for some generations
in the future. This perspective may not be unrealistic for some poor developing
countries particularly exposed to climate change. In that case, an ERDU social
observer using η = 1 and δ > 0 will recommend discounting future consumption
at a negative rate. This rate is lower than the one promoted by Stern for
decreasing consumption streams, thus leading to even stronger action.

4The assumption is verified in the central scenario of most climate-economy integrated
assessment models, such as the RICE model of Nordhaus (2008) and the PAGE model used
in the Stern (2006) review.
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6 Optimal rank-discounted utilitarian policies

In this section, we establish that ERDU SWOs can be applied to two benchmark
models — the Ramsey and Dasgupta-Heal-Solow (DHS) growth models — and
show that the ERDU optimal streams in these models are the same as the ones
promoted by the SDU SWOs recently studied by Asheim and Mitra (2010).

In these model, the ERDU optimal streams maximize DU welfare over all
non-decreasing streams. By the justification of sustainability proposed by As-
heim, Buchholz and Tungodden (2001), finite anonymity combined with the
strong Pareto principle rules out all streams that are not non-decreasing when
applied to ‘productive’ technologies. Morever, ERDU welfare coincides with
DU welfare on the set of non-decreasing streams, thereby providing intuition
for choosing streams that maximize DU welfare over all non-decreasing streams.
However, Asheim, Buchholz and Tungodden’s (2001) argument is not directly
applicable here since (i) ERDU SWOs do not satisfy the strong Pareto principle
for streams that cannot be reordered into non-decreasing streams, and (ii) the
DHS growth model is ‘productive’ only if resource extraction is positive.

For this section, assume that the SWR % on the set of bounded consumption
streams is an ERDU SWO represented by W , as defined by Definition 2, where
u is assumed to strictly concave and continuously differentiable (on R++) with
limx→0 u′(0) = +∞. These additional properties on u do not follow from the
axiomatic basis for ERDU SWOs, but is imposed on the SWO for the purpose
of the analysis of this section. Write %β,u for the ERDU SWO determined by β
and u, where the properties of u are as described in this paragraph.

Both the Ramsey and DHS models allow for streams that are not bounded
above, a complication that must be addressed. For an unbounded stream x,
`(x) need not exist. If `(x) does not exist, then x can be permuted into a non-
decreasing stream, implying that Proposition 1 can be reformulated as follows
on any set X ⊆ RN

+ where X admits elements that are not bounded above.

Proposition 1′.
(a) If `(x) does not exist for an allocation x ∈ X, then x belongs to X̄.
(b) If `(x) exists for an allocation x ∈ X and |L(x)| < +∞, then x belongs

to X̄ if and only if xt ≤ `(x) for all t ∈ N.
(c) If `(x) exists for an allocation x ∈ X and |L(x)| = +∞, then x belongs

to X̄ if and only if xt < `(x) for all t ∈ N.

Let W be defined by W (x) = W̄ (x) (cf. Definition 1) if `(x) does not exist,
while W is defined by Definition 2 if `(x) exists. Then W (x) = W̄ (x̄) (cf. Eq. (4))
still holds where x̄ = x whenever `(x) does not exist.

As shown by Lemmata 1 and 2 in Asheim and Mitra (2010), in our applica-
tions the unilateral Laplace transform (

∑
t∈N βt−1xt) is finite for any 0 < β < 1
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and any feasible x in these technologies. We will see below that this implies that
W (x) is finite for all feasible streams. Hence, let X = {x ∈ RN

+ | W (x) < +∞}
for this section, and let the SWR % on X be an ERDU SWO represented by W .

The two subsequent subsections introduce sets of feasible streams. A stream
x is optimal if x is feasible and W (x) ≥ W (x′) for all feasible streams x′.

6.1 The Ramsey growth model

Assume that the technology is given by a strictly increasing, concave, and con-
tinuously differentiable production function f : R+ → R+, satisfying f(0) = 0
and limk→∞ f ′(k) = 0. A consumption stream x = (x1, x2, . . . ) is feasible given
an initial capital stock k1 > 0 if there exists a stream {k2, k3, . . . } such that

xt + kt+1 ≤ f(kt) + kt, xt ≥ 0, kt ≥ 0 (9)

for all t ∈ N. Such a technology is referred to as a Ramsey technology.

Lemma 5. If x ∈ X is feasible in a Ramsey technology, then x̄ is also feasible.
If x ∈ X̄ is feasible in a Ramsey technology, then x[ ] is also feasible.

Proof. These results follow as storage is costless in a Ramsey technology; cf. As-
heim (1991, Lemma 3).

It follows from Lemma 1 of Asheim and Mitra (2010) and Lemma 5 above,
combined with the concavity of u, that W (x) is finite for any feasible stream x
in a Ramsey technology.

Following Asheim and Mitra (2010) (but changing notation slightly), define
the gross output function as g(k) = f(k) + k, and denote by x(y) the unique
solution to the equation y = g(y − x(y)) such that 0 ≤ x(y) ≤ y. The function
x(y) is well-defined, continuous and differentiable (see Asheim and Mitra, 2010).
Write y∞(β) ≡ min{y ≥ 0 | βg′(y − x(y)) ≤ 1}. The function y∞ is strictly
increasing for all β satisfying that there exists k ≥ 0 such that βg′(k) = 1
(Asheim and Mitra, 2010).

Proposition 10. Consider an ERDU SWO %β,u where u is assumed to be
strictly concave and continuously differentiable (on R++) with limx→0 u′(0) = 0,
a Ramsey technology, and an initial capital stock k1 > 1. There exists a unique
optimal consumption stream, denoted x∗, which is characterized as follows:

(a) If y1 = g(k1) ≥ y∞(β), then x∗ is a stationary stream with x∗t = x(y1) for
all t ≥ 1.

(b) If y1 = g(k1) < y∞(β), then x∗ is an increasing stream, converging to
x(y∞(β)) and maximizing (1− β)

∑
t∈Nβt−1u(xt) over all feasible streams.
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Proof. Step 1: If x ∈ X is optimal, then x̄ ∈ X̄ is also optimal. If x is optimal,
then x is also feasible. By Lemma 5, x̄ is also feasible. By (4), W (x̄) = W̄ (x̄) =
W (x) ≥ W (x′) for all feasible streams x′. Hence, x̄ ∈ X̄ is also optimal.

Step 2: If x ∈ X̄ is optimal, then x[ ] ∈ X+ is also optimal. If x is optimal,
then x is also feasible. By Lemma 5, x[ ] is also feasible. Since x[ ] is a permuta-
tion of x, W (x[ ]) = W (x) ≥ W (x′) for all feasible streams x′. Hence, x[ ] ∈ X+

is also optimal.
Step 3: If x ∈ X+ is optimal, then x is the efficient stream x∗ characterized

by (a) and (b). The optimality of a non-decreasing x implies that x maximizes
W̄ (x′) over all non-decreasing streams x′. By Proposition 6 of Asheim (1991),
the efficient stream x∗ characterized by (a) and (b) is the unique stream maxi-
mizing W̄ (x′) over all non-decreasing streams x′.

Step 4: If x ∈ X̄\X+, then x is not optimal. Suppose x ∈ X̄\X+ is optimal.
By step 2, x[ ] ∈ X+ is optimal. However, by step 3, if x[ ] ∈ X+ is optimal,
then x[ ] coincides with the efficient stream x∗ characterized by (a) and (b)
However, it is not feasible to permute the efficient x∗ ∈ X+ into x ∈ X̄\X+, as
this contradicts that acceleration of consumption along an efficient stream with
positive capital stocks is costly in a Ramsey technology (Asheim, 1991, Lemma
3). Hence, x is not optimal.

Step 5: If x ∈ X\X̄, then x is not optimal. Suppose x ∈ X\X̄ is optimal.
By step 1, x̄ ∈ X̄ is optimal and, by the property of costless augmentation of
initial consumption (cf. Asheim, 1991, Lemma 3), inefficient. However, by steps
3 and 4, if x̄ ∈ X̄ is optimal, then x̄ coincides with the efficient stream x∗

characterized by (a) and (b). This contradicts that x is optimal.
Step 6: The efficient stream x∗ characterized by (a) and (b) is optimal. By

Proposition 6 of Asheim (1991), W (x∗) = W̄ (x∗) ≥ W̄ (x) = W (x) if x is
non-decreasing. If x ∈ X̄\X+, then by Lemma 5 the permutation of x into
the non-decreasing stream x[ ] is feasible, and furthermore, W (x∗) = W̄ (x∗) ≥
W̄ (x[ ]) = W (x[ ]) = W (x). Hence, W (x∗) ≥ W (x) if x ∈ X̄. If x ∈ X\X̄, then
W (x∗) ≥ W (x̄) = W̄ (x̄) = W (x) by (4), since x̄ ∈ X̄.

Proposition 10 shows that ERDU preferences can be operationalized in the
basic Ramsey model. We are able to characterize a unique optimal solution,
which we call the sustainable discounted utilitarian solution, being is the same
as in Asheim (1991) and Asheim and Mitra (2010).

Compared to SDU preferences, ERDU preferences emphasize more clearly
the influence of inequality aversion on optimal policy. Indeed, we know that
a necessary condition for an ERDU SWF Wβ,u to more inequality averse than

another ERDU SWF Wβ̂,û is that β ≤ β̂. From Proposition 10, it follows that:

• A more inequality averse ERDU society %β,u converges to a lower steady
state consumption than a less inequality averse society %β̂,û whenever k1
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satisfies g(k1) < y∞(β̂) and lead to the same steady state consumption
otherwise.

• A more inequality averse ERDU society %β,u prevents growth for a larger
set of initial conditions than a less inequality averse society %β̂,û (for k1

satisfying g(k1) ≥ y∞(β) as opposed to k1 satisfying g(k1) ≥ y∞(β̂)).

Regarding the second point, recall that the maximin always prevents growth.
The maximin is the special case of ERDU preferences where β → 0, an extreme
aversion to inequality. However, growth is also prevented for low values of β.

Inequality aversion therefore modifies both the long-run perspectives of the
society and the prospects of an egalitarian (stationary) distribution. Only the
parameter β determines the long-term impact of inequality aversion. The other
dimension of inequality aversion, the concavity of the function u, has only an
impact on the speed of the convergence to the steady state when g(k1) < y∞(β).

6.2 The Dasgupta-Heal-Solow growth model

The Dasgupta-Heal-Solow model (Dasgupta and Heal, 1974; Solow, 1974) is the
standard model of growth with an exhaustible natural resource. Production
depends on a man-made physical capital km

t , on the extraction dt of a natural
exhaustible resource kn

t and on the labor supply `t. The natural resource is
depleted by the resource use, so that kn

t+1 = kn
t − dt. The production function

f̂(km
t , dt, lt) is concave, non-decreasing, homogeneous of degree one, and twice

continuously differentiable. It satisfies (f̂km , f̂d, f̂`) � 0 for all (km, d, `) � 0 and
f̂(km, 0, `) = f̂(0, d, `) = 0 (both the physical capital and the natural resource
are essential in the production). Moreover, given (k̃m, d̃) � 0, there exists
a scalar χ̃ such that

(
df̂d(k

m, d, 1)
)
/
(
f̂`(k

m, d, 1)
)
≥ χ̃ for (km, d) satisfying

km ≥ k̃m and 0 ≤ d ≤ d̃ (the ratio of the share of the resource to the share of
labor is bounded away from zero when labor is fixed at unit level).

Assume that the labor force is constant and normalized to 1. Write f(km, d) :=
f̂(km, d, 1). Also assume that f is strictly concave and fkm,d(k

m, d) � 0 for all
(km, d) � 0. A consumption stream x = (x1, x2, . . . ) is feasible given initial
stocks (km

1 , kn
1 ) � 0 if there exists a stream {(km

2 , kn
2 ), (km

3 , kn
3 ), . . . } such that

xt + km
t+1 ≤ f(km

t , kn
t − kn

t+1) + km
t , xt ≥ 0, km

t ≥ 0, kn
t ≥ 0 (10)

for all t ∈ N. Hence, production f(km
t , kn

t − kn
t+1) is split between consumption

xt and capital accumulation km
t+1 − km

t at each time t.
The assumptions made so far do not ensure that it is feasible to maintain a

constant and positive consumption level forever. Therefore assume in addition
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that there exists from any (km
1 , kn

1 ) � 0 a constant stream with positive con-
sumption. Cass and Mitra (1991) give a necessary and sufficient condition on
f for this assumption to hold. Under this additional assumption there exists
an efficient constant consumption stream from any (km

1 , kn
1 ) � 0 (see Dasgupta

and Mitra, 1983, Proposition 5). A technology satisfying the above assumptions
is referred to as a Dasgupta-Heal-Solow (DHS) technology.

When establishing the implications of ERDU SWOs in the DHS growth
model, it is a complication that production is increasing in capital only if resource
extraction is positive, but a constant function of capital if resource extraction is
zero. However, the analysis of the Ramsey model above can still be adapted to
the DHS growth model.

Lemma 6. If x ∈ X is feasible in a DHS technology, then x̄ is also feasible. If
x ∈ X̄ is feasible in a DHS technology, then x[ ] is also feasible.

Proof. These results follow as storage is costless in a DHS technology; cf. Asheim
(1991, Lemma 4).

It follows from Lemma 2 of Asheim and Mitra (2010) and Lemma 6 above,
combined with the concavity of u, that W̄ (x) is finite for any feasible stream x
in a DHS technology.

Denote by x(km
1 , kn

1 ) the positive and constant level of consumption that
can be sustained for ever along an efficient constant consumption stream from
(km

1 , kn
1 ) � 0. It is possible to attach a sequence of shadow prices

(p1(k
m
1 , kn

1 ), p2(k
m
1 , kn

1 ), . . . , pt(k
m
1 , kn

1 ), . . . )

to the corresponding stationary consumption stream (for a characterization of
the prices, see Asheim and Mitra, 2010, Lemma 3). Write

β∞(km
1 , kn

1 ) =

∑+∞
t=2 pt(k

m
1 , kn

1 )∑+∞
t=1 pt(km

1 , kn
1 )

for the long-run discount factor at time 1 supporting this stationary stream.

Proposition 11. Consider an ERDU SWF %β,u where u is assumed to be
strictly concave and continuously differentiable (on R++) with limx→0 u′(0) = 0,
a Dasgupta-Heal-Solow technology, and initial stocks and resource (km

1 , kn
1 ) �

0. There exists a unique optimal consumption stream, denoted x∗, which is
characterized as follows:

(a) If β∞(km
1 , kn

1 ) ≥ β, then x∗ is a stationary stream with x∗t = x(km
1 , kn

1 ) for
all t ≥ 1.
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(b) If β∞(km
1 , kn

1 ) < β, then x∗ is a non-decreasing stream maximizing (1 −
β)
∑

t∈Nβt−1u(xt) over all feasible and non-decreasing streams. The stream
exhibits the following pattern:

– For t < τ , x∗t < x∗t+1,

– For all t ≥ τ , x∗t = x((km
τ )∗, (kn

τ )∗),

where τ := min{t ∈ N | β∞((km
t )∗, (kn

t )∗) ≥ β}.

The proof of Proposition 11 closely follows the proof of Proposition 10, dif-
fering only by substituting Lemma 6 for Lemma 5, Asheim and Mitra (2010,
Lemma 6) for Asheim (1991, Proposition 6), and Asheim (1991, Lemma 4) for
Asheim (1991, Lemma 3). Hence, it is not repeated here.

Proposition 11 shows that the consequences of a higher level of inequality
aversion exhibited in the Ramsey growth model still hold in the Dasgupta-Heal-
Solow model. Indeed:

• A more inequality averse RDU society %β,u will prevent growth for a
larger set of initial conditions than a less inequality averse society %β̂,û

(for (km
1 , kn

1 ) satisfying β∞(km
1 , kn

1 ) ≥ β as opposed to (km
1 , kn

1 ) satisfying
β∞(km

1 , kn
1 ) ≥ β̂).

In particular, in the maximin case, growth is always prevented. Again, the
maximin case represents an extreme form of inequality aversion, and less extreme
degrees of inequality aversion may allow for growth in an initial phase.

7 Conclusion

The ERDU approach to intertemporal welfare has several appealing features.
First, it offers a continuous and numerically representable criterion that rec-
onciles intergenerational procedural equity and efficiency on the set of alloca-
tions that can be rearranged into non-decreasing streams. Second, compared to
procedurally equitable, but incomplete, criteria like undiscounted utilitarianism
and lexicographic maximin, it allows for more flexibility in the specification of
inequality aversion. This is of particular importance in conflicts between the
present generation and an infinite number of future generations (cf. Asheim,
2010). Last, it provides a consistent and intuitive interpretation of the ethical
parameters determining the social discount rate. With the ERDU interpretation,
we have obtained the provocative statement that inequality aversion increases
the social discount rate along increasing consumption streams.

This statement is at odds with the traditional ethical approach to social dis-
counting. It comes from the fact that ERDU criteria do satisfy procedural equity
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(the reason why people endorsing the traditional ethical approach have called
for lower discount rates) while allowing for inequality-aversion-based discount-
ing. We believe that ERDU may spark off new debates on social discounting
within the ethical approach to social discounting.

The ERDU criterion can be operationalized. In particular, in benchmark
growth models the ERDU optimal policies coincide with those promoted by
the sustainable discounted utilitarian criterion that has been recently studied
by Asheim and Mitra (2010). While its recommendations may not be new,
the ERDU criterion offers an interesting new perspective that respects proce-
dural equity and displays concerns for intergenerational redistribution. It sheds
some new lights on what the present generation owes to future generations. On
the one hand, we must guarantee that they will not be worse off than we are.
On the other hand, intergenerational inequalities in favor of future generations
should not be too large as this would be unfair to the present generation. This
conception of intergenerational equity, more in line with the intuitive notion of
distributional equity, may seem appealing to many.

Appendix A

Proof of Proposition 2. Assume that % satisfies axioms O, C, M, RD,
RSEP, RSEF, RST and SA. Axioms O, C, and M imply that there ex-
ists a monotonic SWF W̄ representing % on X̄. By axiom SA, for all x ∈ X̄,
W̄ (x) = W̄ (x[ ]). We can therefore restrict attention to the set X+.

Now, for each T ∈ N, we introduce the following subset of X+:

{x ∈ X+ : xt = xT+1,∀t ≥ T + 1} .

These are the nondecreasing intergenerational allocations with a constant tail
from period T + 1 onward. Denote the restriction of % to this set by %T , which
is a continuous monotonic weak order on the following rank-ordered set:

X+
T =

{
(x1, · · · , xT+1) ∈ RT+1 : x1 ≤ · · · ≤ xT+1

}
.

Let T = {1, · · · , T + 1} denote the set of indices of the coordinates of X+
T .

We then proceed by showing that %T satisfies a separability property. A
subset of coordinates S ⊂ T is said separable for %T if for all (x1, · · · , xT+1),
(y1, · · · , yT+1), (x′1, · · · , x′T+1), (y′1, · · · , y′T+1) in X+

T , if xs = x′s and ys = y′s for
all s ∈ S and xt = yt and x′t = y′t for all t ∈ T \ S, then:

(x1, · · · , xT+1) %T (y1, · · · , yT+1) ⇐⇒ (x′1, · · · , x′T+1) %T (y′1, · · · , y′T+1) .

A subset of coordinates S ⊂ T is said essential if there exist (vs)s∈S and (ws)s∈S
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in R|S| and (zt)t∈T \S in R|T \S| such that, if (x1, · · · , xT+1) and (y1, · · · , yT+1)
are defined by xs = vs and ys = ws for all s ∈ S and xt = yt = zt for all
t ∈ T \S, then (x1, · · · , xT+1) ∈ X+

T , (y1, · · · , yT+1) ∈ X+
T and (x1, · · · , xT+1) �T

(y1, · · · , yT+1). The set T is completely separable for the relation %T if every
subset S ⊂ T is separable and essential.

To show that the set T = {1, · · · , T + 1} is completely separable for the
ordering %T , we use Theorem 1 in Gorman (1968). Let (I,K,L,M) be a par-
tition of the set of indices T such that each subset is not the empty set. The
theorem states that, If I ∪K and L∪K are separable and essential for %T , then
I, K, L, I ∪ L and I ∪ K ∪ L are separable and essential for %T .

For any t ≤ T , consider the following elements of X+
T :

(z1, . . . , zt−1, xt, xt+1, zt+2, . . . , zT+1), (z1, . . . , zt−1, yt, yt+1, zt+2, . . . , zT+1),

(w1, . . . , wt−1, xt, xt+1, wt+2, . . . , wT+1), (w1, . . . , wt−1, yt, yt+1, wt+2, . . . , wT+1).

By repeated application of axioms RSEF and RST, we have that:

(z1, . . . , zt−1, xt, xt+1, zt+2, . . . , zT+1) %T (z1, . . . , zt−1, yt, yt+1, zt+2, . . . , zT+1)

⇐⇒
(xt, xt+1, zt+2, . . . , zT+1) %T−t+1 (yt, yt+1, zt+2, . . . , zT+1) .

By axiom RSEP,

(xt, xt+1, zt+2, . . . , zT+1) %T−t+1 (yt, yt+1, zt+2, . . . , zT+1)

⇐⇒
(xt, xt+1, wt+2, . . . , wT+1) %T−t+1 (yt, yt+1, wt+2, . . . , wT+1) .

And once again by repeated application of axioms RSEF and RST,

(xt, xt+1, wt+2, . . . , wT+1) %T−t+1 (yt, yt+1, wt+2, . . . , wT+1)

⇐⇒
(w1, . . . , wt−1, xt, xt+1, wt+2, . . . , wT+1)%T (w1, . . . , wt−1, yt, yt+1, wt+2, . . . , wT+1).

As a consequence,

(z1, . . . , zt−1, xt, xt+1, zt+2, . . . , zT+1) %T (z1, . . . , zt−1, yt, yt+1, zt+2, . . . , zT+1)

⇐⇒
(w1, . . . , wt−1, xt, xt+1, wt+2, . . . , wT+1)%T (w1, . . . , wt−1, yt, yt+1, wt+2, . . . , wT+1),

establishing that the set {t, t + 1} is separable for %T for all t ≤ T .
By RD and repeated application of RSEF and RST as above, the set

{t, t + 1} is also essential.
Setting I = {t}, K = {t+1} and L = {t+2}, by Gorman’s theorem the sets
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{t}, {t + 1}, {t + 2}, {t, t + 2} and {t, t + 1, t + 2} are separable and essential.
Repeating the reasoning, all sets {t, t′} ⊂ T are separable and essential. By
unions of such sets and Gorman’s theorem we can obtain any subset S ⊂ T .5

Hence T = {1, · · · , T + 1} is completely separable for the relation %T .
Because X+

T is a rank-ordered set and T = {1, · · · , T + 1} is completely
separable for the relation %T we know by Theorem 3.2 and Corollary 3.6 of
Wakker (1993) that there exists a cardinal additive representation of %T :

W̄T (x) =
∑T

t=1
ut,T (xt) + VT (xT+1), ∀x ∈ X+

T (11)

The functions ut,T and VT are all continuous and nondecreasing. In addition, by
axioms M, RD, RSEF and RST, the functions u1,T and VT must be increasing.
By cardinality, we may set ut,T (0) = 0 for all t ≤ T and VT (0) = 0 (normalization
condition).

Now, representation (11) exists for %T whatever T ∈ N. Furthermore, %T

and %T+1 represent the same ordering on X+
T . By standard uniqueness results

for additive functions on rank-ordered sets (Wakker, 1993), we can take after
the appropriate normalization ut,T ≡ ut,T+1 and VT ≡ uT,T+1 + VT+1. We can
henceforth drop the subscript T in functions ut,T .

By axioms RSEF and RST, we also know that W̄T (x) =
∑T

t=1 ut(xt) +

VT (xT+1) and W̄T (x) =
∑T+1

t=2 ut(xt−1) + VT+1(xT+1) represent the same prefer-
ences for all x ∈ X+

T . By the cardinality of the additive representation and the
normalization condition, there must exists a β > 0 such that ut+1(x) = βut(x)
and VT+1(x) = βVT (x) for all x ∈ R+. Remark that β does not depend on t.
Denote ū ≡ u1 and V ≡ V1, we have the following representation of %T :

W̄T (x) =
∑T

t=1
βt−1ū(xt) + βT V (xT+1), ∀x ∈ X+

T

with ū and V two increasing functions.
Now remark that we must also have V (x) = ū(x) + βV (x), so that V (x) =

ū(x)/(1− β). This implies that β < 1 by axioms M and RD. This also implies
that V (x) =

∑+∞
t=1 βt−1ū(x). Hence, we obtain the following representation of

% on
⋃

T∈N X+
T by letting u(x) ≡ ū(x)/(1− β):

W̄ (x) = (1− β)
∑+∞

t=1
βt−1u(xt)

Now it remains to prove that the representation extends to the whole set X+.
For any x ∈ X+, we define the sequence x1,x2, · · · ,xk, · · · of allocations in X+

as follows: for any k ∈ N, xk
t = xt for all t ≤ k and xk

t = xk for all t > k. Each

5Singleton sets having been obtained in preceding steps.
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allocation in the sequence belongs to
⋃

T∈N X+
T , and limk→∞ supt∈N |xk

t −xt| = 0,
because we consider bounded streams. By C, we obtain that W̄ (x) = (1 −
β)
∑+∞

t=1 βt−1u(xt) is a SWF representing % on X+.

Proof of Lemma 3. We prove the result for the case where T = 0. The exten-
sion to the case where T > 0 (provided that |L(x)| ≥ T ) is straightforward: pull
these dates out and do the arguments below on the remainder of the stream.

Hence, by (2) we seek to establish that, for all x ∈ X,

W̃ (x) ≤ u(`(x)) .

Let y be defined by, ∀t ∈ N, yt = max{xt, `(x)} ≥ xt. By M, W̃ (x) ≤ W̃ (y).
Hence, it is sufficient to show that W̃ (y) ≤ u(`(x)). Write m := supt yt; m ∈ R+

exists since y is bounded.
Case 1: m = `(x). Then yt = `(x) for all t and W̃ (y) = u(`(x)).
Case 2: m > `(x). W.l.o.g. normalize the consumption scale s.t. m = 1 and

`(x) = 0. By the definition of m = 1 and `(x) = 0, there exists

z = (1, . . . , 1, 1
2
, 1, . . . , 1, 1

3
, 1, . . . , 1, 1

4
, 1, . . . , 1, 1

5
, 1, . . . , 1, 1

6
, 1, . . . )

such that, ∀t ∈ N, zt ≥ yt. By M, W̃ (x) ≤ W̃ (y) ≤ W̃ (z). Hence, it is sufficient

to show that W̃ (z) ≤ u(0).
By SA, z is indifferent to each member of the following sequence of streams

(where in zi the 1s appear at even dates t satisfying t ≥ 2i):

z1 = (1
2
, 1, 1

3
, 1, 1

4
, 1, 1

5
, 1, 1

6
, 1, . . . )

z2 = (1
3
, 1

2
, 1

4
, 1, 1

5
, 1, 1

6
, 1, 1

7
, 1, . . . )

z3 = (1
4
, 1

3
, 1

5
, 1

2
, 1

6
, 1, 1

7
, 1, 1

8
, 1, . . . )

z4 = (1
5
, 1

4
, 1

6
, 1

3
, 1

7
, 1

2
, 1

8
, 1, 1

9
, 1, . . . )

· · ·

Write, ∀i, j ∈ N, mij := maxt∈{1,...,j} zi. If j ≥ 2i, then mij = 1. If there
exists k ∈ Z+ such that j < 2(i − k), then mij ≤ 1/(2 + k). Define, ∀i, j ∈ N,
wij by, ∀t ∈ N, wij

t = mij if t ≤ j and wij
t = 1 otherwise.

Since, ∀i, j ∈ N, wij ∈ X+ and, ∀t ∈ N, wij
t ≥ zi

t, it follows, as % satisfies
M and SA and is represented on X̄ ⊇ X+ by W̄ , that, for all i, j ∈ N,

W̃ (x) ≤ W̃ (y) ≤ W̃ (z) = W̃ (zi) ≤ W̃ (wij) = (1− β)
∑

t∈N
βt−1u(wij

t ) .

Suppose W̃ (z) = u(0) + ε, where ε > 0. Since 0 < β < 1, one can choose
j ∈ N such that βj(u(1) − u(0)) < 1

2
ε. Since u is continuous and, for fixed
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j ∈ N, mij → 0 as i → ∞, one can choose i ∈ N such that (1 − βj)u(mij) <
(1− βj)u(0) + 1

2
ε. Then

W̃ (wij) = (1− βj)u(mij) + βju(1) < u(0) + 1
2
ε + 1

2
ε = u(0) + ε .

This contradicts that W̃ (z) ≤ W̃ (wij) for all i, j ∈ N. Hence, W̃ (x) ≤ W̃ (y) ≤
W̃ (z) ≤ u(0) = u(`(x)).

Proof of Lemma 4. Define y by, ∀t ∈ N, yt = `(x). Construct a sequence of
streams, yj, j ∈ Z+, inductively as follows: y0 = y and, ∀j ∈ N,

yj =

{
yj−1 if xj ≥ `(x)

(yj−1
1 , . . . , yj−1

j−1, xj, j+1y
j−1) if xj < `(x)

Note that, ∀j ∈ N, `(yj) = `(x). By Lemma 3, ∀j ∈ N,

W̃ (x) ≤ W̄ (yj) . (12)

Case 1: |L(x)| < ∞. In this case, there exists j ∈ N s.t., yj = x̄. As yj ∈ X̄,

W̄ (yj) = W̃ (yj) ≤ W̃ (x) by M. Hence, by (4),

W̃ (x) = W̄ (yj) = W̄ (x̄) = W (x) .

Case 2: |L(x)| = ∞. Write, ∀j ∈ N, `j := mint>j xt. Note that `j → `(x) as
j →∞. For each j ∈ N, define zj by, ∀t ∈ N, zj

t = min{xt, `
j}. By M it holds,

∀j ∈ N, that W̄ (zj) = W̃ (zj) ≤ W̃ (x), as zj ∈ X̄ and `j < `(x). Hence, by (12)
it follows that, ∀j ∈ N,

W̄ (zj) ≤ W̃ (x) ≤ W̄ (yj) . (13)

For any ε > 0, we can choose j ∈ N s.t. W̄ (yj)−W̄ (zj) ≤ u(`(x))−u(`j) < ε
since u is continuous and `j → `(x) as j → ∞. Combined with (13) and (4),

this implies W̃ (x) = limj→∞ W̄ (yj) = W̄ (x̄) = W (x).

Proof of Proposition 6. If the ERDU SWO %β,u satisfies axiom PDT, then
β × Cu ≤ 1. Assume that the ERDU SWO %β,u satisfies axiom PDT. Consider
x ∈ X such that xt = 0 for all t ≤ τ , xτ ≤ xτ+1, and xt > xτ +xτ+1 for t > τ +1.
Now consider y ∈ X such that yτ + ε = xτ ≤ xτ+1 = yτ+1 − ε and yt = xt for
all t 6= τ, τ + 1, with xτ ≥ ε > 0. Since the ERDU SWO %β,u satisfies axiom
PDT, it follows from the representation (3) of ERDU SWOs that:

βτ−1u(xτ )+βτu(xτ+1) ≥ βτ−1u(yτ )+βτu(yτ+1) = βτ−1u
(
xτ−ε

)
+βτu

(
xτ+1+ε

)
.
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This inequality can be rewritten:

1 ≥ β
u
(
xτ ′ + ε

)
− u
(
xτ ′
)

u
(
xτ

)
− u
(
xτ − ε

) . (14)

The construction of allocations x and y yielding this inequality can be done for
any two integers τ < τ ′, and for any real numbers 0 < ε ≤ xτ ≤ xτ ′ . Hence,

1 ≥ sup
0<ε≤x≤x′

β ×
u
(
x′ + ε

)
− u
(
x′
)

u
(
x
)
− u
(
x− ε

) = β × Cu

If β × Cu ≤ 1 holds for the ERDU SWO %β,u, then %β,u satisfies axiom
PDT. Assume that 1 ≥ β × Cu holds for the ERDU SWO %β,u. Consider x,
y ∈ X such that ε ≤ yτ + ε = xτ ≤ xτ ′ = yτ ′ − ε, and yt = xt for all t 6= τ , τ ′,
where xτ ≥ ε > 0 and τ , τ ′ ∈ N. We want to show that x %β,u y.

If `(x) ≤ xτ ′ , then x %β,u y by a dominance argument for those components
that matter. In the case where xτ ′ < `(x) < yτ ′ , the same argument as below
applies, replacing yτ ′ by `(x). Therefore, assume that yτ ′ ≤ `(x).

Using representation (3), it follows that x %β,u y if and only if:

W (x)−W (y) =
∑

r̄τ (y)≤r≤rτ (x)

βr−1
(
u(x[r])−u(y[r])

)
−

∑
r̄τ ′ (x)≤r≤rτ ′ (y)

βr−1
(
u(y[r])−u(x[r])

)
≥ 0.

For r̄τ (y) ≤ r ≤ rτ (x), we have u(x[r]) − u(y[r]) ≥ 0, and for r̄τ ′(x) ≤ r ≤
rτ ′(y), we have u(y[r])− u(x[r]) ≥ 0. Hence:∑

r̄τ (y)≤r≤rτ (x)

βr−1
(
u(x[r])− u(y[r])

)
−

∑
r̄τ ′ (x)≤r≤rτ ′ (y)

βr−1
(
u(y[r])− u(x[r])

)
≥ βrτ (x)−1 ×

∑
r̄τ (y)≤r≤rτ (x)

(
u(x[r])− u(y[r])

)
− β r̄τ ′ (x)−1 ×

∑
r̄τ ′ (x)≤r≤rτ ′ (y)

(
u(y[r])− u(x[r])

)
.

By definition of the Pigou-Dalton transfer,
∑

r̄τ (y)≤r≤rτ (x)

(
u(x[r])−u(y[r])

)
=

u(xτ )−u(yτ ) and
∑

r̄τ ′ (x)≤r≤rτ ′ (y)

(
u(y[r])−u(x[r])

)
= u(yτ ′)−u(xτ ′). Therefore:

W (x)−W (y) ≥ βrτ (x)−1
(
u(xτ )− u(yτ )

)
− β r̄τ ′ (x)−1

(
u(yτ ′)− u(xτ ′)

)
= βrτ (x)−1

(
u(xτ )− u(yτ )

)(
1− β r̄τ ′ (x)−rτ (x)u(yτ ′)− u(xτ ′)

u(xτ )− u(yτ )

)
≥ βrτ (x)−1

(
u(xτ )− u(yτ )

)(
1− β × u(xτ ′ + ε)− u(xτ ′)

u(xτ )− u(xτ − ε)

)
.

Since 1 ≥ β × Cu, it follows that W (x)−W (y) ≥ 0 and thus x %β,u y.
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The next lemma is needed for the proof of Proposition 7. Write

X̂ =
{
(x1, x2, x3, x4) ∈ R4

+ : 0 ≤ x1 < x2 ≤ x3 < x4, where

x4 = û−1
(
û(x3) + β̂τ−τ ′(û(x2)− û(x1))

)
for some τ , τ ′ ∈ N with τ < τ ′

}
,

C̃u,û = sup
(x1,x2,x3,x4)∈X̂

[
u(x4)− u(x3)

]
/
[
û(x4)− û(x3)

][
u(x2)− u(x1)

]
/
[
û(x2)− û(x1)

] .

Lemma 7. Cu,û = C̃u,û.

Proof. Write y1 = û(x1), y2 = û(x2), y3 = û(x3) and y4 = û(x4). Then

Cu,û = sup
0≤y1<y2≤y3<y4

[u ◦ û−1(y4)− u ◦ û−1(y3)]/[y4 − y3]

[u ◦ û−1(y2)− u ◦ û−1(y1)]/[y2 − y1]
= Gu◦û−1 ,

where Gu◦û−1 is Chateauneuf, Cohen and Meilijson’s (2005) ‘greediness’ index
for the function u ◦ û−1. Write also

X̂λ =
{

(y1, y2, y3, y4) ∈ R4
+ : 0 ≤ y1 < y2 ≤ y3 < y4, where y4−y3

y2−y1
= λ

}
,

Gu◦û−1(λ) = sup
(y1,y2,y3,y4)∈X̂λ

[u ◦ û−1(y4)− u ◦ û−1(y3)]/[y4 − y3]

[u ◦ û−1(y2)− u ◦ û−1(y1)]/[y2 − y1]
.

Then C̃u,û = supλ=β̂τ−τ ′ ,τ<τ ′ Gu◦û−1(λ). By Chateauneuf, Cohen and Meilijson

(2005, Lemma 1), Gu◦û−1 = Gu◦û−1(λ) for any λ > 0, so that Cu,û = C̃u,û.

Proof of Proposition 7. If %β,u is at least as inequality averse as %β̂,û, then
Dβ,β̂ ≥ Cu,û. Assume that %β,u is at least as inequality averse as %β̂,û. Consider
x, y ∈ X such that, for some τ , τ ′ ∈ N with τ < τ ′:

• xt = yt = 0 for all t < τ ;

• 0 ≤ yτ < xτ ≤ yt = xt ≤ xτ ′ for all τ < t < τ ′;

• yτ ′ = û−1
(
û(xτ ′) + β̂τ−τ ′(û(xτ )− û(yτ ))

)
so that yτ ′ ≥ xτ ′ ;

• yt = xt > yτ for t > τ ′.

(a) By construction, β̂τ ′
(
û(yτ ′)− û(xτ ′)

)
= β̂τ

(
û(xτ )− û(yτ )

)
, so that x ∼β̂,û y.

(b) Because y �I x and %β,u is at least as inequality averse as %β̂,û, x %β,u y

so that βτ ′
(
u(yτ ′)− u(xτ ′)

)
≤ βτ

(
u(xτ )− u(yτ )

)
. Facts (a) and (b) imply

βτ/β̂τ

βτ ′/β̂τ ′
≥
(
u(yτ ′)− u(xτ ′)

)
/
(
û(yτ ′)− û(xτ ′)

)(
u(xτ )− u(yτ )

)
/
(
û(xτ )− û(yτ )

) .
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The construction of x and y yielding this inequality can be done for any two
integers τ < τ ′, and for any real numbers 0 ≤ yτ < xτ ≤ xτ ′ < yτ ′ such that
yτ ′ = û−1

(
û(xτ ′) + β̂τ−τ ′(û(xτ )− û(yτ ))

)
. Then

Dβ,β̂ = inf
t<t′

βτ/β̂τ

βτ ′/β̂τ ′
≥ sup

(x1,x2,x3,x4)∈X̂

[
u(x4)− u(x3)

]
/
[
û(x4)− û(x3)

][
u(x2)− u(x1)

]
/
[
û(x2)− û(x1)

] = C̃u,û .

By Lemma 7 it follows that Dβ,β̂ ≥ Cu,û.
If Dβ,β̂ ≥ Cu,û, then %β,u is at least as inequality averse as %β̂,û. Assume

that y �I x and x ∼β̂,û y.6 We want to show that x %β,u y if Dβ,β̂ ≥ Cu,û.
If `(x) ≤ xτ ′ , then x %β,u y and x %β̂,û y. If xτ ′ < `(x) < yτ ′ , then the argu-

ment below applies, replacing yτ ′ by `(x). Therefore, assume that yτ ′ ≤ `(x).
By using β̂rτ (x)

(
û(xτ )− û(yτ )

)
= β̂ r̄τ ′ (x)

(
û(yτ ′)− û(xτ ′)

)
(which follows from

Eq. (3) and x ∼β̂,û y) we obtain

βrτ (x)
(
u(xτ )− u(yτ )

)
− β r̄τ ′ (x)

(
u(yτ ′)− u(xτ ′)

)
= β̂ r̄τ ′ (x)

(
û(yτ ′)− û(xτ ′)

)(βrτ (x)
(
u(xτ )− u(yτ )

)
β̂rτ (x)

(
û(xτ )− û(yτ )

) − β r̄τ ′ (x)
(
u(yτ ′)− u(xτ ′)

)
β̂ r̄τ ′ (x)

(
û(yτ ′)− û(xτ ′)

))

=
β r̄τ ′ (x)(û(yτ ′)− û(xτ ′))

û(xτ )−û(yτ )
u(xτ )−u(yτ )

(β

β̂

)rτ (x)−r̄τ ′ (x)

−
u(yτ ′ )−u(xτ ′ )
û(yτ ′ )−û(xτ ′ )

u(xτ )−u(yτ )
û(xτ )−û(yτ )


≥ β r̄τ ′ (x)(û(yτ ′)− û(xτ ′))

û(xτ )−û(yτ )
u(xτ )−u(yτ )

(
Dβ,β̂ − Cu,û

)
.

It now follows from Eq. (3) that that x %β,u y whenever Dβ,β̂ ≥ Cu,û.
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