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probabilities and reaches ambiguous conclusions on whether the potential for regime shift will
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1. Introduction

Complex dynamic systems can undergo changes iragtiens between constituent
components that cause a shift to different systgmaihics. In ecological systems such
“regime shifts” can cause changes in nutrient agcland population dynamics of various
species with consequences for the value of ecanyséevices derived from the system. For
example, lakes may shift between oligotrophic aottophic conditions with impacts on
water quality, fish populations, recreation, andthetics (Scheffer 1997, Carpenter et al.
1999, Carpenter 2003). Terrestrial systems cdhlstiveen grasslands and woodlands with
impacts on the value of grazing and other ecosystemices (Perrings and Walker 1997,
Janssen et al. 2004). Coral reef systems canfsbmft coral dominated to algal dominated
with impacts on water quality, fish populationsgzreation and aesthetics (Hughes et al. 2003).
At a larger scale, the global climate system mayeha&gime shifts with potentially major
consequences in several dimensions (e.g., sea fe®esl agricultural production, water
scarcity). Economic systems can also undergo regimfts. Examples include sudden shifts
in consumer choices (“fads”) and cultural change.(eBikhchandani et al. 1992, and
popularized by Gladwell 2000), shifts in financiadarkets due to changes in investor
sentiment and herd behavior (e.g., Scharfstein $teth 1990, Banerjee 1992, Brock and
Hommes 1998) or due to changes in investor infaonaand hedging (Genotte and Leland
1990, Brock et al. 2009), and shifts in the maagoremy (e.g., Azariadis 1981, Cass and
Shell 1983, Hamilton 1989, Guo et al. 2005). Oadhreshold between regimes has been
crossed it may be difficult to reverse the prodesshift back to the original regime (“system
hysteresis”, Scheffer et al. 2001).

In this paper we analyze optimal management ofreaiyc system with the potential

for a regime shift. To fix ideas, we focus ouradission on the case of harvesting a



renewable resource (e.g., a fishery) in which ttoevth function of the stock is dependent on
the regime and where the stock level of the resaan influence the probability of a regime
shift. For example, high levels of harvest carupsdfish populations that graze on plankton
and increase the probability that a bleaching ewemither disturbance will shift a coral reef
system from coral dominated to algal dominated (+#sget al. 2003). The shift into a new
regime reduces fishery productivity and may alstuce other ecosystem services (recreation,
storm protection, etc). The model we analyze, h@neis more general than harvesting a
renewable resource and could be used to analyzeciemymstance in which management
actions affect probabilities of regime shift, suah greenhouse gas emissions and climate
regime shifts, or financial regulations and thegptial for sudden shifts in investor sentiment.
Prior research in economics on optimal managemeéh potential regime shift has
focused on the case of catastrophic stock collapsenvironmental economics, this line of
research began with Cropper (1976) who analyzeddemn which utility falls to zero once
a threshold is crossédIn Cropper’s model, the location of the threshisldinknown. The
probability of crossing the threshold increasethalevel of pollution (or resource depletion).
William Reed showed how to transform the optimahagement problem with a probability
of crossing a threshold, which is a stochastic dyngroblem, into a deterministic problem
that could be solved analytically using the Pordgimyanaximum principle (Reed 1987, 1988;
and see Reed and Echavarria Heras 1992 for a umafuinary). In Reed’s approach, the
potential for collapse has an ambiguous effect @magement prior to the collapse. The
potential for collapse tends to increase explatabecause collapse reduces the future value
of stocks so there is less incentive to maintagtks. This effect works identically to an
increase in the discount rate and occurs for theesg@ason that an increase in mortality risk

increases an individual’'s discount rate. Workinghe opposite direction, however, is the

! Earlier, Kamien and Schwarz (1971) developed aghofimachinery failure that is formally similar ioodels
of environmental collapse.
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fact that decreased exploitation results in higitecks and lowers the probability of collapse.
We refer to actions that lessen exploitation tauoedprobabilities of bad future outcome as
“precaution”. Combining these two effects yieldsaanbiguous overall result. Reed applied
his approach to analyze optimal management of toresbject to fire (Reed 1984, 1987,
1989), fisheries subject to collapse (Reed 1988) emvironmental pollution (Clarke and
Reed 1994). Threshold models have also been dgpfiether researchers to climate change
(e.g., Tsur and Zemel 1996, Gjerde et al. 1999|eKelt al. 2004), environmental pollution
(Tsur and Zemel 1998), groundwater aquifers (Tswt Zemel 1995), and nuclear power
(Aronsson et al. 1998). Maéler et al. (2007) applsimilar model to generate a shadow price
for resilience, where resilience influences thebptulity of regime shift. A slightly different
modeling approach to thresholds was taken by Neefaff)1, 2003, 2006) who does not
include the potential for shocks so that the prdltglof regime shift is positive only in time
periods when stocks are being depleted. Tsur anikeZ(2006, 2008) study the regulation of
stock externalities that arise in cases of non-eaapse behavior. In all of these models, a
regime shift triggers a discontinuous decline stade variable and/or value function.

A different approach, and one more in line with ¢eelogical literature, is to model a
regime shift as a change in system dynamics rdtfar as a sudden collapse in the stock.
Peterson, Carpenter and Brock (2003) consider aehwith two regimes (oligotrophic and
eutrophic lake system), with state equations tifegrdoy an additive term. They show that
optimal management will typically involve periodoollapse (switch from oligotrophic to
eutrophic) and recovery (switch from eutrophic tmarophic). Brozovic and Schlenker
(2008) use a similar model of regime shift to amalthe relationship between precaution and
variance of uncertainty and find that the relatitopss not monotonic. An increase in the
variance of the stochastic component of the natsyatem that determines whether the

threshold is crossed initially increases precautiblowever, if the variance gets very large,



not much can be done to prevent crossing the tbleésind precaution becomes too costly
compared to the small reduction in the probabifitgt the threshold is crossed. Brock and
Starrett (2003) and Maler et al. (2003) analyzeoalehwith a convex-concave regeneration
function that captures the potential for regimeftshi These models, however, are
deterministic and focus on characterizing differeptimal paths under various parameter
conditions.

In this paper we develop a general growth mod#l stochastic regime shift that can
capture changes to stock levels and/or system dgsawhen a regime shift occurs. We
consider cases in which the probability of a regsh#t is not affected by any management
action (exogenous regime shift), and cases in wthehprobability of a regime shift is a
function of management action (endogenous reginig.sihe model in this paper contains
one important simplification. We assume that thgective function is linear in the control
variable, which generates extreme controls andwallfor a relatively simple analytical
solution.

In the case with an exogenous regime shift thatiltesn a change in system
dynamics but not an immediate change in stock Jevelshow that the threat of regime shift
does not affect optimal management prior to anemicl regime shift. With an endogenous
regime shift that changes system dynamics, optimatagement becomes precautionary in
the sense that the potential for regime shift wdlise managers to choose less intensive
harvest (emissions) and maintain higher resouroekst (environmental quality). These
results contrast with the prior literature thatused on stock collapse where a potential
regime shift causes more intensive exploitationtlim case with exogenous regime shift) or
ambiguous results (in the case with endogenoumeeghift).

In the next section we set up the optimal managemadel with potential regime

shifts and derive results. The results are digtligs section 3. We compare our results with



prior literature and explain major differences. ¥nmarize our findings and include a brief

discussion of important extensions and open questiosection 4.

2. Model

We use a simple dynamic model with a linear obyecfunction (constant price and
constant marginal cost of harvest) to demonstegalts about optimal management with the
potential for a regime shift. The linear objectivmction in the control variable simplifies
the analytics. Other than this, however, the maglguite general. For concreteness and to
make comparisons with prior literature easier, merpret the model as a renewable resource
model. The renewable resource can be thought afteaditional renewable resource like a
fishery or as an environmental resource like thabal atmosphere. Additional harvest of
fish, or increased emission of greenhouse gasemraes extra current flow benefits but
leads to depletion of the resource base, whichgausie system in an undesirable direction
and makes it more likely that some shock or digtode will cause regime shift.

The objective is to maximize the present valueesMenue from harvest, subject to

stock dynamics

1t
Maxj;e ph(t)dt 1)

S.t.8(t) = G(s(t)) —h(t),s(0) = s,,s(t) = O, h(t) = Ofor allt,
wherep > 0 denotes the constant net pribé) is the harvest level at timer > 0 is the
discount rates(t) is the resource stock at timeandG(s(t)) is the natural growth function of
the resource, which depends on the resource stdék.assume that the growth function is
concave in stock and th&(0) = 0.

At some future time (possibly infinite) there is a regime shift. Befdimer the
growth function is given b{s,(s), with Gy(s) > 0 for 0< s< K; andGy(s) < 0 fors> Kj. In

the case where regime shift changes system dynaafies timer the growth function is
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given byGy(s), with Gy(s) > 0 for 0< s< K, andGy(s) < 0 fors> K,. We assume th&i(s)
> Gy(s) and G, '(s) > G,'(s), for all s >0, andK; < K;. HereK;j, i = 1, 2, can be thought of
as carrying capacity, i.e. the steady-state valube system with no harvest. The size of the

stock at time is unchanged by the regime shift. Stock dynamiescharacterized by

—h(t),for0<
SRR e

A simple illustration of the effect of the regimkifs for the case of logistic growtl@i(s) =

g91 - s/K),i=1, 2, withg= 1, K; = 1 andK, = 0.75, is shown in Figure 1.

Growth

olochk

Figure 1: lllustration of a reduced growth funatiafter a regime shift.

In the case where regime shift causes stock ca)ape haves(t) = 0 andG,(0) = 0
forallt>r1.

We think of the regime shift as a future event wehitie time until this event occurs is
a stochastic variable. The standard way of modehis is by means of a hazard ratelf
the hazard rate is constant, the time until thenewecurs is drawn from an exponential
probability distributionie™ where a highi means a high probability that the event will

happen soon. Alternatively,/1tan be seen as an indicator of the resiliencéeiystem,



i.e., its ability to resist shocks and maintainreat productivity even with disturbance (note
that 1/4 is the mean of the exponential probability disttion). We will, however, also
consider hazard rates that depend on the stgsk,in order to capture the possibility that
harvesting behavior that changes stock levelsaffdict the probability of a regime shift.

In the case where regime shift causes a shift stegy dynamics, we have a standard
renewable resource model with growth functiGp(s) after the shift has occurred. The
optimal harvesting policy in this second regimemsll-known and can be derived with a
“most rapid approach path” technique (Spence aad&t 1975). However, we will show
the result with dynamic programming as that techaigan also be used when analyzing the
first regime before the shift has occurred. Exdeptdiscounting, the problem is stationary
and the Hamilton-Jacobi-Bellman equation for theent value functiov, is given by

0= mr:av{ ph-rV,(s) +V,"(S)(G,(s) —h)}. 3
Because this equation is linearhnthe optimal harvest has three basic options With O
when p<V,'(s), h infinite when p>V,'(s), andh indeterminate wherp =V,'(s). We have
to find the value functiorV, that satisfies the Hamilton-Jacobi-Bellman equati?Ve will
work in steps: first we fix a maximal harvest letgllarge enough so that the stock always
decreases fon = hy, and determine the solutiory of this problem, and then we take the
limit hy, — o in V. Given the structure of the optimal harvest, ithea is to split the state
space ofs between 0 and the carrying capadftyin an area wherh = 0, so that the state
increases, and an area whire h,, so that the state decreases, separated by dasistate
s,. We will construct the value functiov, from the resulting differential equations and we
will show that the conditions of the Hamilton-JacBllman equation (3) are fulfilled, so
that this is indeed the structure of the optimdlitson. This procedure leads to the following

set of differential equations:



0=-1V,(9) +V,'(9)G,(s), fors<s,, (4a)
0= ph, =1V,(9) +V,'(9)(G,(s) ~h,).for s> s,. (4b)

Differentiation and algebraic manipulation of eqoas (4a) and (4b) yields

V,"(8) = (r —=G,'(9)) (222((532 fors<s, .
V,"(9) = (r —G;(s))%,for s>s,.

Let the states; be determined by
G,'(s,)=r. (6)

Assuming thatG,'(0) >r, the states, is situated between 0 and the carrying capégitylt is
clear from equation (1) that © V,(s) < ph./r. Therefore, it follows from equation (5) and
the concavity ofG,(s) thatV,"(s) is negative fols < $ and also negative f& > 3, so that
V.’ is decreasing. In the limit @approaches, from below in (4a) and approaches, from

above in (4b), these equations can be interpreté@@equations in the two unknowvg’s,)

andVy' (), if the functionV, is continuously differentiable. This leads to
Vis)= . Vi(s) = P, ™

Because/,' is decreasing, if follows that,'(s) > p for s < s andV,'(s)< p for s > , so
thath = 0 andh = hy, are indeed the optimal harvest levelsder $ ands > s, respectively.
The states; is a steady state with optimal harvhast Gy(s;) and a value given by the second
equation in (7). All the conditions of the Hamiitdacobi-Bellman equation (3) are satisfied.
The structure of the optimal solution in the secoegime is clear now. It consists of the
steady-state path = $, wheres; is determined by equation (6), preceded by a wétihh =
0 if we start at a stockbelows,, or by a path witth = hy, if we start at a stockaboves,.
Equation (6) is the standard “golden rule” of growtThe value functioW, can be

explicitly solved from the differential equatior&a)) and (4b) and is given by
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oo PC:(S;) fors<s,
V,(s) = ' , (8)

e—rtm(s) sz(Sz) + (1_ e—rtm(s))%’for s> Sz
r r
wherety(s) andt(s) can be interpreted as the times needed to ®dobm s with h = 0 and
h = hy,, respectively. These functions satisfy(s) =-1/G,(s andt,'(s)=1/(h,—- G (9).
We now take the limit of the value functidh for s > 3, given by equation (8), fdi, — .
It is clear that(s) — 0. Furthermore, since limo (1-€*)/x = 1, we have that

— o tm(s)

lim 1 —t. (s)ph, = I|m pj

- rt_(S)

hm G( )dx= pidx:p(s—sz). (9)

In the limit forh, — oo, the, the value functiow,(s) for s > $ takes the form

sz(sz)

V,(s) = p(s—s,) +—===,fors>s,. (10)

The interpretation of equation (10) is that the amids - $) is harvested instantaneously and
sold at pricep and from that point on there is a steady-statedsarequal to natural growth,
Ga(s2). Since the conditions in the first regime arédyethan the conditions in the second
regime, it is to be expected that expression (@0}YHe value functioV, is the relevant one
when the regime shift occurs.

Deriving the value function in the case where amegshift causes a stock collapse is
trivial sinces(t) = 0, so thah(t) = O for allt>z. Therefore, we have th¥k(s) = O for alls.

Next we consider the first regime, before the guesevent. Harvest levels must

maximize the expected present value of net revenue

MaxE{J' e" phx dt & Y (9))}
s.t.s(t)— G (s(t)- h(t), 90)= s, €)= O, l{&= Oforall

(11)

wherer is a stochastic variable. For a constant hazted.y with an exponential probability

distribution for the point in time, a Pontryagin approach for deriving the optimalison is
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convenient (see appendix 1). However, we wanttusicler the possibility that the hazard
ratel is not constant and that it depends on the sfockhis can be solved with a Pontryagin
approach as well (see appendix 1) but this is nmugte tedious and we prefer to develop the
Hamilton-Jacobi-Bellman equation for the value fime in the first regime, directly using
the hazard rate.

Starting at time with stocks we can approximate the probability of a regimétshi
a small time periodit by A(s(t))4t, which is in fact the basic definition of the hekaate/.
The value functionWi(s,?), is the maximal expected value of the objectivecfion at timet

for stocks and can therefore be written as

t+At

Wi(s 9 =max( [ e" pif x dx 2
+A-AS)ADW(SHA s A J+A( 3 &Y Y 8A )%
We use the symbaV because we want to use the symbethen we eliminate the factet"
from the resulting Hamilton-Jacobi-Bellman equatimiow. By approximating the integral
and moving the left-hand side of equation (12)h® tight-hand side and dividing by, we
get
0= mhax{e‘rt ph+A(9 € Y( A B-A( S W A , 1))

+VV1(S+Ast+Ap-vy(s)} : (13)
At

Taking the limit of equation (13) fatt—0 yields
0=maxfe™ pht+ e"A(IY( F-A( B W.9t W, 3(t,6)s )h , W )p (19

Except for discounting, the problem is stationaggia. By definingVi(s) = €"W(s,), the

Hamilton-Jacobi-Bellman equation for the first regi becomes
0=max ph+A(S)(V,(8) ~VA(8)) = 1Vy(8) +V,'()(Gy(8) =)} - (15)
The structure of equation (15) is the same as thetare of equation (3). The optimal

harvest in the first regime has three basic optiamsvell, withh = 0 whenp<V,'(s), h
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infinite when p>V,'(s), andh indeterminate wherp=V,'(s). Again, we first impose the

restriction Os'h < h,. As before we search for a positive s&fédelow the carrying capacity
Ky, with h =0 fors < 5 andh = h,, for s > s, so that all the conditions of the Hamilton-
Jacobi-Bellman equation (15) are satisfiedh # 0 andh = h,, are the optimal harvest levels,
equation (15) yields

0= A9V, (9) - (r + AV (9) +V,'(9G,(9). for s< s, (163
0= ph, +ASV,(8) ~ (r + ANV, (9 +V,' ()(Gy(9) - h, ) for s> 5 (169

In the limit ass approaches; from below in (16a) and approaches; from above in (16b),

these equations yield two equations in the two onkisVi(s:) andVy' (sy), if the functionV,

is continuously differentiable. This leads to

V() =P, (s) = PRI ANEE) an

Differentiation of equations (16a) and (16b) yields

{Gl(S)Vl"(S) = f(s), fors<s, (18)
(G(s) -h, )V, "(s) = f(s), fors>s,
where

f(s)=(r +A(s) =G (M () = A(IV,' () + A () (V1 (S) = V,(9)) - (19)

In order forh = 0 andh = hy, to be the optimal harvest levels, we need Yhds) > p for s <
s andV,'(s) < p fors > 5. As a consequence, with equation (17), we needetfhlimit and

the right limit of V,"(S) ats = s to be less than or equal to 0. It follows fronuatipn (18)

that this is equivalent té(s) <0 fors < g andf(s) > 0 for s > g, so that the stat® must

satisfyf(s;) = 0 or, using equations (19) and (17),

o V'(s) |, A(s) _T
Gl(sl)—r+/1(sl){1 0 } -~ A(Sl){Gl(sl) EVZ(SJ] (20)
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The difficulty here is that we cannot generallywhbatf(s) < 0 fors < 5 andf(s) > 0 fors
> 55, as we had in the analysis of the second regirfteis reasonable to assume that

A'(s) <0, because the resilienddi(s) should increase if the stockincreases, and that
A'(K,) =0. Furthermore, we assume tf@&t(0)>r+A(0). This guarantees th§0D) < 0

andf(Ky) > 0, so that somewhere on the interv@l i) the functionf is zero and switches
sign from negative to positive. Note, however i@ functionf may have multiple zeros.

If f switches from positive to negative, the solutidrequation (20) separates areas where
= hp, to the left anch = 0 to the right. These points are not stable. Aot rule out the
existence of more than one stable steady stateeVewso that the optimal solution may
depend on the initial state. If there is an indof singular states, instead of an isolated one,

we need to hav¥,'(s) = p on that interval. It follows from equation (1%t equation (17)

and thus equation (20) have to hold on the whdkml. This is generally not possible. In
what follows, we will focus on a steady statesatisfying equation (20) witljs) < 0 fors <

s andf(s) > 0 for s > 5 in some neighborhood &. The functionV; satisfying the
differential equation (16), with initial conditio(i7), solves the Hamilton-Jacobi-Bellman
equation (15) in this neighborhood. It follows ttllae optimal solution here consists of a
steady-state path = s, with h = Gy(s), either preceded by a path whh= 0 if we start at a
stocks belows;, or by a path withh = h,, if we start at a stock aboves;. We note that if

has multiple zeros, sag” ands®, then there may be an intermediate pajht<s® <

such thatv; is continuous but not necessarily differentiabls@t We show in appendix 2

that even in this case, the functignfurnishes a solution of the optimization problem.
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Equation (20) is the “golden rule” of growth whdete is the possibility of a regime
shift. Our results will follow directly from thigolden rule so that we do not give an explicit

expression for the value functidf wherehy, — «.2

3. Results

We can use the results of the analysis summarizeelquation (20) to provide a
characterization of the effects of regime shiftaptimal management. We distinguish four
cases: a) exogenous regime shift with stock cedlap) endogenous regime shift with stock
collapse, c) exogenous regime shift with changestesy dynamics, and d) endogenous

regime shift with changed system dynamics.

Case 1: Exogenous regime shift with stock collapse

With a constant hazard rateand a stock collapse, we have thigts) =0 andV, = 0 so that
the condition for the steady-state stock prior toegime shift (as shown in equation (20))
becomes

G/'(s)=r+A (21)
This result shows that potential future regimetsim€reases the discount rate leading to a

lower steady-state stock than without the possjai collapse.

Case 2: Endogenous regime shift with stock collapse
If the hazard rateé depends on the stoskthe condition for the steady-state stock prioato

regime shift with potential total stock collapge= 0 becomes

A (8)Gy(s) 2

G(8) =1 +A(s)+ = S

2 The expressions are available from the authors npguest.
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In this case we have two effects and the net effeambiguous (note that'(s) <0). The
effect shown in Case 1 above (the addition of #renti(s)) will tend to increase the

intensity of harvest and decrease the steady-stattk. However, the desire to avoid a

regime shift will tend to decrease the intensityhafvest and increase the steady-state stock

A'(s)G(s)

because the final termW in equation (22) is negative. This can be seea fmsm

of endogenous discounting. The overall effect idigoous. The effect of the potential
regime shift on steady-state stock will depend drictv effect dominates. The previous
literature has focused on this case (e.g., Ree8,10Brke and Reed 1994, Tsur and Zemel

1996).

Case 3: Exogenous regime shift with changed sysyer@mics

If the hazard raté is constant and the regime shift causes a shdystem dynamics we have
that A'(s) =0 andV,'(s) = p so that the condition for the steady-state stoik po a regime

shift becomes

G'(s)=r. (23)
The steady-state stock in this case is the samétlagut the possibility of a regime shift. An
exogenous probability of regime shift that causehange in system dynamics, but not an
immediate change in stock levels, will not changgneal management. Remember thais
larger thars, (determined by equation (6)) because of the cmmditon the growth functions
G; and G; in section 2. If the regime shift occurs, managetmwill adjust to the new
situation, with a lower steady-state value. Howeyeior to regime shift it is optimal to

manage according to the current (not future) caoorst

Case 4: Endogenous regime shift with changed sydyeamics

16



If the hazard ratél depends on the stockand a regime shift causes a shift in system

dynamics, the condition for the steady-state sk to a regime shift becomes

A'(
G'(s)=r+ -~ A(Q){Gl(sl) 2(51)} (24)
which can be rewritten as
ey A'(s) 1| pG(s) _
Gil) =1+ ol L POy (o) . 25)

The term between brackets is positive which casdam as follows. With initial stasg, the

objective in (11) is maximized by= Gy(s;). It follows that
Vi(s)= B[ €" pQ § dt € ¥ ¥ =(1 - E@{pq“) M% {V).! (26)

V1(s1) must be larger thawix(s;) because the maximizing= Gy(s;) must give a larger value
than implementing the optimal harvesting policy floe second regime from the beginning.
It follows that the term between brackets in equra{25) is positive. Furthermore, because

A'(s) <0, it is clear now thatg'(s) <r, so that optimal management is precautionary in

this case: the potential for a regime shift willchEase the harvest rate and increase the
steady-state stock level. How much the steadg-saick will increase under precautionary
optimal management depends on the difference batwee growth functionsQGa(s) and

G2(9)), on the probability characteristics of the regishift ¢(s)), and on the discount rate.(

4. Discussion

As we demonstrated above, for the case when reghiiecauses a shift in system
dynamics and when management actions influencertitability of a shift from a desirable
to an undesirable regime, optimal management igprecautionary actions that reduce the
probability of regime shift. This result, wherecentainty regarding potentially harmful

future consequences leads to actions that reduteatpd risks, accords with much recent
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writing in environmental and resource managementhen“Precautionary Principle” (e.g.
Lauck et al. 1998, Raffensperger and Tickner 199%).date, the Precautionary Principle has
lacked rigorous justification except under rathienited conditions (Gollier et al. 2000).
However, with an exogenous probability of regimédtgine., when management actions do
not affect the probability of regime shift) and wéehe regime shift affects system dynamics
but does not cause stock collapse, optimal managegoner to regime shift is unaffected by
the potential for regime shift. Once a regimetddfs occurred, management will be adjusted
to fit the new conditions. Any change in manageinpeior to the regime shift involves a loss
of profit from failing to satisfy the golden rulé growth in the initial regime.

These results contrast with prior results in ttezdture that show that the potential for
a catastrophic collapse in stock will cause eitl@rincrease in exploitation (which is the
opposite of precautionary action) or an ambiguoifisce In the models of catastrophic
collapse of a renewable resource such as a fishieey,collapse causes the stock of a
renewable resource to fall, with either no futuaeviest or an eventual recovery to pre-crash
conditions. In either event, the collapse causedestruction of a valuable asset. Knowing
that there is some potential for asset destruc@omanager will be more aggressive in
harvesting the resource in order to gain profitsrgo potential destruction. So, for example,
the risk of a forest fire that would destroy timlasisets gives an incentive for a landowner to
harvest timber sooner than if there were no riskref(Reed 1984). This stock effect works
to increase the manager’s discount rate in the saayethat an increase in risk of mortality
increases the discount rate for an individual. FHoeease in the discount rate shifts optimal
management towards immediate consumption and awaydavings and investment.

We summarize the differences between our resulisrevregime shift leads to
changes in system dynamics and the prior literaburestock collapse in Table 1. Regime

shifts with changes in system dynamics (but nokséffect) do not cause a change in optimal
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management by themselves (Case Ill). Only if mansnt actions lead to changes in the
probability of a regime shift (via changes in thates of the system) will the potential for
regime shift lead to changes in optimal managen{€aise IV). In this case, optimal
management is to become precautionary in the dbas@ threat of future regime shift will
cause managers to reduce current harvests anadsectiee stock of the resource. For climate
change, this would mean that consideration of thiergial of future regime shifts should
cause a decrease in current emissions of greenlgasss. In contrast, the potential for stock
collapse itself causes a shift in optimal managen@nards more aggressive exploitation
(Case I). With endogenous probabilities, manageénesmls to become more precautionary,

but whether this is sufficient to override the &teffect is ambiguous (Case II).

Table 1: Comparison of models and results

Exogenous Probability aofEndogenous Probability of
Regime Shift Regime Shift
Stock Effect Case | Case Il
Increased exploitation Ambiguous result
System Dynamics Effect Case Il Case IV
No effect Decreased exploitation

We have assumed that if the regime shift occurs,atonce and for all shift. In reality,
however, it is likely that there will be potentidr the regime to shift back again to the
original regime or for it to shift between a numieérdifferent regimes. In addition, there
may be more than one threat process at work leadinige potential for multiple types of
regime shift. Analyzing these possibilities impli@ more complicated analysis with a series

of nested Hamilton-Jacobi-Bellman equations witHu@afunctions characterizing the
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different regimes. Doing so will change the resuldtf course, but not the logic that we find
in our simple model above with only one potentedime shift. Similarly, a regime shift
may be accompanied by a partial stock collapse whidl lead to intermediate results, but
again the logic of our analysis will remain.

Another potentially fruitful avenue for future reseh is to extend the model of
uncertainty. Using a hazard rate is a very corer@gnapproach and it captures many
important features of the problem. This approdudwever, does not allow for endogenous
learning about probabilities of regime shift witlhilditional experience or with active
experimentation. Experimentation to learn abostesy dynamics can also influence optimal
management (e.g., Walters and Holling 1990). Ipemting the option to learn is an
important extension of the approach considered. hé&iaally, our model assumes constant
prices and abstracts from costs that change witvektior stock levels. Having a non-linear
objective function in the control variable would keathe model more difficult to solve. In
principle such a model could be solved, at leasherically. We leave such extensions for

further research.
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Appendix 1
a) Constant hazard rate
In the first regime with carrying capacity, starting from stock levels that are higher

thans,, harvest levels must maximize the expected value of the revenue
j e ph(t)dt +e "V, (s(1)), (A1)
0

subject to stock dynamics with growth functi@i. For a constant hazard rateve can

easily write this expected value as follows:
TAe‘“{je‘“ ph(t)dt+e™""V,(s(7))}dr (A2)
0 0

or, by changing the order of integration,
T(Txle‘“dr)e‘rt ph(t)dt + ]2/1e‘“”)’v2 (s(r))dr, (A3)
0t 0

which leads to
Te'“”)t{ ph(t) + AV, (s(t))}dt. (A4)
0

The current value Pontryagin function for this geob reads as

P(s, 1, h) = ph+ AV, (s) + u(G,(s) — h). (A5)
Maximizing with respect to the harvdsyields thath = 0, if p <y, h = oo, if p > i, andh is
singular, ifp = . If the optimal harvest is singular on a timeemtl, we have there the
conditionu(t) = p for the co-statg. From the co-state equation

A(t) = (1 + ) p(t) - AV, (s(1)) — u(t)G, ' (s()) (AB)
it follows that on such an interval

Gl'(s):r+/1—/1LF§S) (A7)
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for a constans with h = Gy(s). Case 1 and case 3 follow immediately.

b) Variable hazard rate
With the hazard functioh given by

P(r O{t,t + At) | 7 0{0,8})

AO=gm =Ry o
the probabilitySthat no regime shift has occurred up to tinegiven by
S(t) = Litm0 |_| @-A@At)At) = litmo exp{z In(L- A(IAt)At)} =
t
= thrpoexp{—ZA(lAt)At} = exp{—_([A(x)dx}, (A9)

so that the cumulative distribution functi&nfor the timer of the regime shift becomes

S(t) = P(r <t) =1-5(t) =1-e " (AL0)
This yields as expected value of the revenue

I{ie‘” pht)dt+e™""V, (s(7))}dS (1) (A11)
or, by changing the order of integration,

I(T dS°(r))e™ ph(t)dt + Ie‘”v2 (s(r))dS’(7),

t

or

Te’ﬁm“xe-" ph(t)dt + Te-”v2 (SNA@)e ¥ ar, (A12)

0 0
which leads to

Te‘ﬁ“”(x”dx{ ph(t) + ALV, (s(t))}dt. (A13)

0

It is convenient to introduce a second state vigiqlby
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a(t) = [ A(dx g(t) = A(t).q(0) =O. (A14)

Assuming that the hazard rateis a function of the stock, the current value Pontryagin
function for this problem reads as

P(s, 0, 4,0,h) = e (ph+ A(s)V,(9)) + (Gy(s) — h) + gA(s). (A15)
Maximizing with respect to the harvesyields thath = 0, if €% < u, h = o, if €9p > 4, and
h is singular, ife% = . If the optimal harvest is singular on a timeeinal, we have there

the conditionu(t) = €%"p for the co-stata. From the co-state equationin

(1) = ru(t) — e LA SOV, (s(1)) + AV, (s(H)}
— HOG,'(s()) —a (DA (s(t))

(A16)
with

(1) = -q(t)e™ p = —A(s(t)e™ p (A17)
it follows, after eliminating the co-stateand multiplying with €°®, that at each time

0=A(S)p+rp—A'(S)V,(S) —A(S)V,'(S) — pG,'(s) —€TA'(9). (A18)
Differentiating this equation with respect to titer a constans yields

0=-e"WA(s)a(t)A'(s) - eV (t)A'(s) = d(t) = —-A(s)a(t). (A19)
From this and the co-state equatiomin

a(t) =ro(t) +e O phit) + A(s(t))V, (s(t))} (A20)
it follows that at each time

(r + A(s))o =—e(ph+ A(s)V,(9)). (A21)
Using this equation to elimina&gs from (A18) and substitutinly = Gy(s) finally leads to

Vo'(8)y, (9

r+A(s)

G,/ (s) =r+A(s)1- )+ [G.(5) —Lsz(S)]- (A22)

This is equation (20) in the main text.
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Appendix 2

In this appendix, we prove a verification theoremthe value functioi; constructed in the
main part of the article. Recall that the functinsatisfies the following properties: it is
continuous and at least piecewise continuousledfitiable. Moreover, there are finitely
many points
such that
Vi (9> pif §7< x ¢,
V(9= pif = ¢,
V/(9< pif §'< =¥
Only at the points=5§", i =1---,n—1, the functionV; may fail to be differentiable. It is

continuously differentiable everywhere else, swingf there the Hamilton-Jacobi-Bellman

equation

max ph+ AV, - AV, — 1V, +V, (G, - h)] =0, (A23)

Osheh,
Note that the points"” are precisely those points at which the funcfigrdefined in the
main text, satisfies fos in a neighbourhood of" thatf(s)< 0if s<s®” andf(s) > 0if

s>s" . It follows from this that the harvesting ruhé solving the maximisation in (A23) is

of the form

h'(9=0,if §%< < &,
h*(S)=G( éi))'if = #)’
h'(s) = h,,if §" < x7¥.
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For s=5" there are two possibilities:

h'(s)={0, h,} ,if \is not differentiable ats= &’
h'(s) = G("éi) ) otherwise.

In the first case, the decision maker is indifférbatween two distinct actions; and such a

point is called an indifference point (or Skibampor DNS(S) point: see Grass et al. (2008)).

We note that i is the solution of the equation
$=G,(s) ~h'(s)
with initial condition s(0) = s,, then

Vi(s,) = E{ [} pi (stt)dt + €V, (s(7))

We shall show thah' (s(t )is the optimal harvesting schedule.

Theorem. Let h=h(t) be an admissible harvesting schedule, and dets(t) satisfy
s(0) =s, and
§t) =G,(s(t)) - h(t) a.e.
Then
V()2 €] & piY de & X @) (n24)
and equality obtains if and only if

ht) =h' (s(t)) a.e.

Proof. In the following, all harvesting schedules will lbessumed to be admissible. We

introduce
5 ={§(1),_§(1’,~~-, §(”’,_$”’} _
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and make the following fundamental observation.e Shbset of continuously differentiable
harvesting schedules is dense in the set of aledidbhs, as is the smaller subset of
continuously differentiable schedules for which

h'(t) #0 whenevers { )1 > (A25)

Heres s stock evolution associated to the schetlul&he latter property is a consequence of

Sard’s theorem (see e.g. Arnol'd, 1988).

Recall from appendix 1 that

(ph+AV,)dt. (A26)

0

E(.[or e—rt ph* (S(t))dt + e—r TVZ (S(T))) - '[00 e—J';(rM(x))dx

By the observation above, if there is a harvessicigedule for which (A24) is violated, then

there is another continuously differentiable schedu=h(t) satisfying (A25) which also

violates (A24). Given this schedule, ket s(t bé the stock evolution associated to it, and

let h' = " (s(t)).

For s=g(t) >, the functionv; is differentiable and the following equation obtai

g{é““wme:ém”Wﬂyﬂq—m—a+ANJ (A27)

All argumentgt) ands(t) are suppressed in this equation for readability.
There is an increasing sequence
0= tO < tl < .en
such thats=g(t) Iz if t#t;, for any j. Note that since the elementsXoére isolated, the

sequencegt;} has no accumulation points. Integrating the iter(A27) fromt,, to t,

yields
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—j;"l( r+1(%) dx

V(S('i))_ e Y( $jt—1))
=[BT (G- D= (i) )

e—j;‘ (r+A(x)) dx

Summing these expressions ovel gikelds then
Vi) = [ e‘ﬁ“”‘x”dx(vl’ (G, —h)—(r + A)Vljdt. (A28)
Adding equations (A26) and (A28) yields
E( [ e phitydt+e” TVZ(S(T))) ~Vy(s)
(A29)

=[ & b AV, AV, — 1V, 4V, (G, — )t

As h' solves the Hamilton-Jacobi-Bellman equation, sudiing equation (A23) from

equation (A29) yields
£l [} e phidt +& V(1) | -V (s)

-3[f e-I;w(x»dx( VY j(h i)t
— k.,

Now, if t,, <t <t,, then eithelV, > p and0O=h"<h,orV, <p andh,=h">h.
In both cases it follows that

(P-V)(h —h)<0
for almost allt > 0. Consequently

£l [/ e phitdt + &V, ()| -Vu(s)

contradicting the violation of (A24).
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