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Abstract 
 

We analyze how the threat of a potential future regime shift affects optimal management. We 
use a simple general growth model to analyze four cases that involve combinations of stock 
collapse versus changes in system dynamics, and exogenous versus endogenous probabilities 
of regime shift. Prior work in economics has focused on stock collapse with endogenous 
probabilities and reaches ambiguous conclusions on whether the potential for regime shift will 
increase or decrease intensity of resource use and level of resource stock. We show that all 
other cases yield unambiguous results. In particular, with endogenous probability of regime 
shift that affects system dynamics the potential for regime shift causes optimal management 
to become precautionary in the sense of maintaining higher resource stock levels. 
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1.  Introduction 

Complex dynamic systems can undergo changes in interactions between constituent 

components that cause a shift to different system dynamics.  In ecological systems such 

“regime shifts” can cause changes in nutrient cycling and population dynamics of various 

species with consequences for the value of ecosystem services derived from the system.  For 

example, lakes may shift between oligotrophic and eutrophic conditions with impacts on 

water quality, fish populations, recreation, and aesthetics (Scheffer 1997, Carpenter et al. 

1999, Carpenter 2003).  Terrestrial systems can shift between grasslands and woodlands with 

impacts on the value of grazing and other ecosystem services (Perrings and Walker 1997, 

Janssen et al. 2004).  Coral reef systems can shift from coral dominated to algal dominated 

with impacts on water quality, fish populations, recreation and aesthetics (Hughes et al. 2003).  

At a larger scale, the global climate system may have regime shifts with potentially major 

consequences in several dimensions (e.g., sea level rise, agricultural production, water 

scarcity).  Economic systems can also undergo regime shifts.  Examples include sudden shifts 

in consumer choices (“fads”) and cultural change (e.g., Bikhchandani et al. 1992, and 

popularized by Gladwell 2000), shifts in financial markets due to changes in investor 

sentiment and herd behavior (e.g., Scharfstein and Stein 1990, Banerjee 1992, Brock and 

Hommes 1998) or due to changes in investor information and hedging (Genotte and Leland 

1990, Brock et al. 2009), and shifts in the macro-economy (e.g., Azariadis 1981, Cass and 

Shell 1983, Hamilton 1989, Guo et al. 2005).  Once a threshold between regimes has been 

crossed it may be difficult to reverse the process to shift back to the original regime (“system 

hysteresis”, Scheffer et al. 2001). 

In this paper we analyze optimal management of a dynamic system with the potential 

for a regime shift.  To fix ideas, we focus our discussion on the case of harvesting a 
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renewable resource (e.g., a fishery) in which the growth function of the stock is dependent on 

the regime and where the stock level of the resource can influence the probability of a regime 

shift.  For example, high levels of harvest can reduce fish populations that graze on plankton 

and increase the probability that a bleaching event or other disturbance will shift a coral reef 

system from coral dominated to algal dominated (Hughes et al. 2003).  The shift into a new 

regime reduces fishery productivity and may also reduce other ecosystem services (recreation, 

storm protection, etc).  The model we analyze, however, is more general than harvesting a 

renewable resource and could be used to analyze any circumstance in which management 

actions affect probabilities of regime shift, such as greenhouse gas emissions and climate 

regime shifts, or financial regulations and the potential for sudden shifts in investor sentiment. 

    Prior research in economics on optimal management with potential regime shift has 

focused on the case of catastrophic stock collapse.  In environmental economics, this line of 

research began with Cropper (1976) who analyzed a model in which utility falls to zero once 

a threshold is crossed.1  In Cropper’s model, the location of the threshold is unknown.  The 

probability of crossing the threshold increases in the level of pollution (or resource depletion).  

William Reed showed how to transform the optimal management problem with a probability 

of crossing a threshold, which is a stochastic dynamic problem, into a deterministic problem 

that could be solved analytically using the Pontryagin maximum principle (Reed 1987, 1988; 

and see Reed and Echavarria Heras 1992 for a useful summary).  In Reed’s approach, the 

potential for collapse has an ambiguous effect on management prior to the collapse.  The 

potential for collapse tends to increase exploitation because collapse reduces the future value 

of stocks so there is less incentive to maintain stocks.  This effect works identically to an 

increase in the discount rate and occurs for the same reason that an increase in mortality risk 

increases an individual’s discount rate.  Working in the opposite direction, however, is the 

                                                 
1 Earlier, Kamien and Schwarz (1971) developed a model of machinery failure that is formally similar to models 
of environmental collapse. 
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fact that decreased exploitation results in higher stocks and lowers the probability of collapse.  

We refer to actions that lessen exploitation to reduce probabilities of bad future outcome as 

“precaution”. Combining these two effects yields an ambiguous overall result.  Reed applied 

his approach to analyze optimal management of forests subject to fire (Reed 1984, 1987, 

1989), fisheries subject to collapse (Reed 1988) and environmental pollution (Clarke and 

Reed 1994).  Threshold models have also been applied by other researchers to climate change 

(e.g., Tsur and Zemel 1996, Gjerde et al. 1999, Keller et al. 2004), environmental pollution 

(Tsur and Zemel 1998), groundwater aquifers (Tsur and Zemel 1995), and nuclear power 

(Aronsson et al. 1998).  Mäler et al. (2007) apply a similar model to generate a shadow price 

for resilience, where resilience influences the probability of regime shift.  A slightly different 

modeling approach to thresholds was taken by Nævdal (2001, 2003, 2006) who does not 

include the potential for shocks so that the probability of regime shift is positive only in time 

periods when stocks are being depleted.  Tsur and Zemel (2006, 2008) study the regulation of 

stock externalities that arise in cases of non-cooperative behavior.  In all of these models, a 

regime shift triggers a discontinuous decline in a state variable and/or value function. 

A different approach, and one more in line with the ecological literature, is to model a 

regime shift as a change in system dynamics rather than as a sudden collapse in the stock.  

Peterson, Carpenter and Brock (2003) consider a model with two regimes (oligotrophic and 

eutrophic lake system), with state equations that differ by an additive term.  They show that 

optimal management will typically involve periodic collapse (switch from oligotrophic to 

eutrophic) and recovery (switch from eutrophic to oligotrophic).   Brozovic and Schlenker 

(2008) use a similar model of regime shift to analyze the relationship between precaution and 

variance of uncertainty and find that the relationship is not monotonic.  An increase in the 

variance of the stochastic component of the natural system that determines whether the 

threshold is crossed initially increases precaution.  However, if the variance gets very large, 
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not much can be done to prevent crossing the threshold and precaution becomes too costly 

compared to the small reduction in the probability that the threshold is crossed.  Brock and 

Starrett (2003) and Mäler et al. (2003) analyze a model with a convex-concave regeneration 

function that captures the potential for regime shifts.  These models, however, are 

deterministic and focus on characterizing different optimal paths under various parameter 

conditions. 

 In this paper we develop a general growth model with stochastic regime shift that can 

capture changes to stock levels and/or system dynamics when a regime shift occurs.  We 

consider cases in which the probability of a regime shift is not affected by any management 

action (exogenous regime shift), and cases in which the probability of a regime shift is a 

function of management action (endogenous regime shift).  The model in this paper contains 

one important simplification.  We assume that the objective function is linear in the control 

variable, which generates extreme controls and allows for a relatively simple analytical 

solution. 

In the case with an exogenous regime shift that results in a change in system 

dynamics but not an immediate change in stock level, we show that the threat of regime shift 

does not affect optimal management prior to any potential regime shift.  With an endogenous 

regime shift that changes system dynamics, optimal management becomes precautionary in 

the sense that the potential for regime shift will cause managers to choose less intensive 

harvest (emissions) and maintain higher resource stocks (environmental quality).  These 

results contrast with the prior literature that focused on stock collapse where a potential 

regime shift causes more intensive exploitation (in the case with exogenous regime shift) or 

ambiguous results (in the case with endogenous regime shift). 

In the next section we set up the optimal management model with potential regime 

shifts and derive results.  The results are discussed in section 3.  We compare our results with 
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prior literature and explain major differences.  We summarize our findings and include a brief 

discussion of important extensions and open questions in section 4.   

 

2.  Model 

We use a simple dynamic model with a linear objective function (constant price and 

constant marginal cost of harvest) to demonstrate results about optimal management with the 

potential for a regime shift.  The linear objective function in the control variable simplifies 

the analytics.  Other than this, however, the model is quite general.  For concreteness and to 

make comparisons with prior literature easier, we interpret the model as a renewable resource 

model.  The renewable resource can be thought of as a traditional renewable resource like a 

fishery or as an environmental resource like the global atmosphere.  Additional harvest of 

fish, or increased emission of greenhouse gases, generates extra current flow benefits but 

leads to depletion of the resource base, which pushes the system in an undesirable direction 

and makes it more likely that some shock or disturbance will cause regime shift. 

The objective is to maximize the present value of revenue from harvest, subject to 

stock dynamics 

, allfor  0)(,0)(,)0(),())(()( s.t.

)(

0

0

tthtsssthtsGts

dttpheMax rt

≥≥=−=

∫
∞

−

ɺ

    (1) 

where p > 0 denotes the constant net price, h(t) is the harvest level at time t, r > 0 is the 

discount rate, s(t) is the resource stock at time t, and G(s(t)) is the natural growth function of 

the resource, which depends on the resource stock.  We assume that the growth function is 

concave in stock and that G(0) =  0. 

At some future time τ (possibly infinite) there is a regime shift.  Before time τ the 

growth function is given by G1(s), with G1(s) > 0 for 0 <  s <  K1 and G1(s) < 0 for s >  K1.  In 

the case where regime shift changes system dynamics, after time τ the growth function is 
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given by G2(s), with G2(s) > 0 for 0 <  s <  K2 and G2(s) < 0 for s >  K2. We assume that G1(s) 

> G2(s) and ),(')(' 21 sGsG >  for all s > 0, and K2 < K1.  Here Ki, i = 1, 2, can be thought of 

as carrying capacity, i.e. the steady-state value in the system with no harvest.  The size of the 

stock at time τ is unchanged by the regime shift. Stock dynamics are characterized by  





≥−
<≤−

=−=
τ

τ
tthtsG

tthtsG
thtsGts

for  ),())((

0for  ),())((
)())(()(

2

1
ɺ  .    (2) 

A simple illustration of the effect of the regime shift for the case of logistic growth, Gi(s) = 

gs(1 - s/Ki), i = 1, 2, with g =  1,  K1 =  1 and K2 =  0.75, is shown in Figure 1. 

 

               

Figure 1:  Illustration of a reduced growth function after a regime shift. 

 

In the case where regime shift causes stock collapse, we have s(t) = 0 and G2(0) =  0 

for all t ≥ τ.  

We think of the regime shift as a future event where the time until this event occurs is 

a stochastic variable.  The standard way of modeling this is by means of a hazard rate λ.  If 

the hazard rate is constant, the time until the event occurs is drawn from an exponential 

probability distribution λe-λx where a high λ means a high probability that the event will 

happen soon.  Alternatively, 1/λ can be seen as an indicator of the resilience of the system, 
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i.e., its ability to resist shocks and maintain current productivity even with disturbance (note 

that 1/λ is the mean of the exponential probability distribution).  We will, however, also 

consider hazard rates that depend on the stock, λ(s), in order to capture the possibility that 

harvesting behavior that changes stock levels will affect the probability of a regime shift. 

In the case where regime shift causes a shift in system dynamics, we have a standard 

renewable resource model with growth function G2(s) after the shift has occurred.  The 

optimal harvesting policy in this second regime is well-known and can be derived with a 

“most rapid approach path” technique (Spence and Starrett 1975).  However, we will show 

the result with dynamic programming as that technique can also be used when analyzing the 

first regime before the shift has occurred.  Except for discounting, the problem is stationary 

and the Hamilton-Jacobi-Bellman equation for the current value function V2 is given by 

)})()((')({max0 222 hsGsVsrVph
h

−+−= .      (3) 

Because this equation is linear in h, the optimal harvest has three basic options with h = 0 

when )('2 sVp < , h infinite when )('2 sVp > , and h indeterminate when )('2 sVp = .  We have 

to find the value function V2 that satisfies the Hamilton-Jacobi-Bellman equation.  We will 

work in steps: first we fix a maximal harvest level hm large enough so that the stock always 

decreases for h = hm, and determine the solution V2 of this problem, and then we take the 

limit hm → ∞ in V2.  Given the structure of the optimal harvest, the idea is to split the state 

space of s between 0 and the carrying capacity K2 in an area where h = 0, so that the state 

increases, and an area where h = hm, so that the state decreases, separated by a singular state 

s2.  We will construct the value function V2 from the resulting differential equations and we 

will show that the conditions of the Hamilton-Jacobi-Bellman equation (3) are fulfilled, so 

that this is indeed the structure of the optimal solution.  This procedure leads to the following 

set of differential equations: 
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Differentiation and algebraic manipulation of equations (4a) and (4b) yields 
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Let the state s2 be determined by 

rsG =)(' 22 .          (6) 

Assuming that rG >)0('2 , the state s2 is situated between 0 and the carrying capacity K2.  It is 

clear from equation (1) that 0 < V2(s) < phm/r.  Therefore, it follows from equation (5) and 

the concavity of G2(s) that )(''2 sV  is negative for s < s2 and also negative for s > s2, so that 

V2’  is decreasing.  In the limit as s approaches s2 from below in (4a) and s approaches s2 from 

above in (4b), these equations can be interpreted as two equations in the two unknowns V2(s2) 

and V2’ (s2), if the function V2 is continuously differentiable.  This leads to 

.
)(

)(,)(' 22
2222 r

spG
sVpsV ==        (7) 

Because V2’  is decreasing, if follows that psV >)('2  for s < s2 and psV <)('2  for s > s2, so 

that h = 0 and h = hm are indeed the optimal harvest levels for s < s2 and s > s2, respectively.  

The state s2 is a steady state with optimal harvest h = G2(s2) and a value given by the second 

equation in (7).  All the conditions of the Hamilton-Jacobi-Bellman equation (3) are satisfied.  

The structure of the optimal solution in the second regime is clear now.  It consists of the 

steady-state path s = s2, where s2 is determined by equation (6), preceded by a path with h = 

0 if we start at a stock s below s2, or by a path with h = hm if we start at a stock s above s2.   

Equation (6) is the standard “golden rule” of growth.  The value function V2 can be 

explicitly solved from the differential equations (4a) and (4b) and is given by 
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where t0(s) and tm(s) can be interpreted as the times needed to reach s2 from s with h = 0 and 

h = hm, respectively.  These functions satisfy )(/1)(' 20 sGst −=  and 2'( ) 1 / ( ( ))m mt s h G s= − .  

We now take the limit of the value function V2 for s > s2, given by equation (8), for hm → ∞.  

It is clear that tm(s) → 0.  Furthermore, since limx→0 (1-e-x)/x = 1, we have that 
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In the limit for hm → ∞, the, the value function V2(s) for s > s2 takes the form 

2
22

22 for  ,
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)()( ss
r

spG
sspsV >+−= .      (10) 

The interpretation of equation (10) is that the amount (s - s2) is harvested instantaneously and 

sold at price p and from that point on there is a steady-state harvest equal to natural growth, 

G2(s2).  Since the conditions in the first regime are better than the conditions in the second 

regime, it is to be expected that expression (10) for the value function V2 is the relevant one 

when the regime shift occurs. 

Deriving the value function in the case where a regime shift causes a stock collapse is 

trivial since s(t) = 0, so that h(t) = 0 for all t ≥ τ.  Therefore, we have that V2(s) = 0 for all s. 

Next we consider the first regime, before the possible event.  Harvest levels h must 

maximize the expected present value of net revenue 

2

0

1 0

{ ( ) ( ( ))}

s.t. ( ) ( ( )) ( ), (0) , ( ) 0, ( ) 0 for all ,

rt rMaxE e ph t dt e V s
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where τ is a stochastic variable.  For a constant hazard rate λ, with an exponential probability 

distribution for the point in time τ, a Pontryagin approach for deriving the optimal solution is 
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convenient (see appendix 1).  However, we want to consider the possibility that the hazard 

rate λ is not constant and that it depends on the stock s.  This can be solved with a Pontryagin 

approach as well (see appendix 1) but this is much more tedious and we prefer to develop the 

Hamilton-Jacobi-Bellman equation for the value function in the first regime, directly using 

the hazard rate. 

 Starting at time t with stock s we can approximate the probability of a regime shift in 

a small time period ∆t by λ(s(t))∆t, which is in fact the basic definition of the hazard rate λ.  

The value function, W1(s,t), is the maximal expected value of the objective function at time t 

for stock s and can therefore be written as 

1

( )
1 2

( , ) max{ ( )

(1 ( ) ) ( , ) ( ) ( )}

t t
rx

h
t

r t t

W s t e ph x dx

s t W s s t t s te V s sλ λ

+∆
−

− +∆

=

+ − ∆ + ∆ + ∆ + ∆ + ∆

∫ .   (12) 

We use the symbol W because we want to use the symbol V when we eliminate the factor e-rt 

from the resulting Hamilton-Jacobi-Bellman equation below.  By approximating the integral 

and moving the left-hand side of equation (12) to the right-hand side and dividing by ∆t, we 

get 
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2 1

1 1
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h
e ph s e V s s s W s s t t
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t

λ λ− − +∆= + + ∆ − + ∆ + ∆
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∆

.   (13) 

Taking the limit of equation (13) for ∆t→0 yields 

 2 1 1 1 10 max{ ( ) ( ) ( ) ( , ) ( , )( ( ) ) ( , )}rt rt
s t

h
e ph e s V s s W s t W s t G s h W s tλ λ− −= + − + − + . (14) 

Except for discounting, the problem is stationary again.  By defining V1(s) = ertW1(s,t), the 

Hamilton-Jacobi-Bellman equation for the first regime becomes 

 )})()((')())()()(({max0 11112 hsGsVsrVsVsVsph
h

−+−−+= λ .   (15) 

The structure of equation (15) is the same as the structure of equation (3).  The optimal 

harvest in the first regime has three basic options as well, with h = 0 when )('1 sVp < , h 
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infinite when )('1 sVp > , and h indeterminate when )('1 sVp = .  Again, we first impose the 

restriction 0 ≤ h ≤ hm.  As before we search for a positive state s1, below the carrying capacity 

K1, with h = 0 for s < s1 and h = hm for s > s1, so that all the conditions of the Hamilton-

Jacobi-Bellman equation (15) are satisfied.  If h = 0 and h = hm are the optimal harvest levels, 

equation (15) yields 
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In the limit as s approaches s1 from below in (16a) and s approaches s1 from above in (16b), 

these equations yield two equations in the two unknowns V1(s1) and V1’ (s1), if the function V1 

is continuously differentiable.  This leads to 
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Differentiation of equations (16a) and (16b) yields 
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where 

))()()((')(')()('))(')(()( 21211 sVsVssVssVsGsrsf −+−−+= λλλ .   (19) 

In order for h = 0 and h = hm to be the optimal harvest levels, we need that psV >)('1  for s < 

s1 and psV <)('1  for s > s1.  As a consequence, with equation (17), we need the left limit and 

the right limit of )(''1 sV  at s = s1 to be less than or equal to 0.  It follows from equation (18) 

that this is equivalent to f(s) ≤ 0 for s < s1 and f(s) ≥ 0 for s > s1, so that the state s1 must 

satisfy f(s1) = 0 or, using equations (19) and (17), 
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The difficulty here is that we cannot generally show that f(s) < 0 for s < s1 and f(s) > 0 for s 

> s1, as we had in the analysis of the second regime.  It is reasonable to assume that 

0)(' <sλ , because the resilience 1/λ(s) should increase if the stock s increases, and that 

0)(' 1 =Kλ .  Furthermore, we assume that 1 '(0) (0)G r λ> + .  This guarantees that f(0) < 0 

and f(K1) > 0, so that somewhere on the interval (0, K1) the function f is zero and switches 

sign from negative to positive.  Note, however, that the function f may have multiple zeros.  

If f switches from positive to negative, the solution of equation (20) separates areas where h 

= hm to the left and h = 0 to the right.  These points are not stable.  We cannot rule out the 

existence of more than one stable steady state, however, so that the optimal solution may 

depend on the initial state.  If there is an interval of singular states, instead of an isolated one, 

we need to have psV =)('1  on that interval.  It follows from equation (15) that equation (17) 

and thus equation (20) have to hold on the whole interval.  This is generally not possible.  In 

what follows, we will focus on a steady state s1, satisfying equation (20) with f(s) < 0 for s < 

s1 and f(s) > 0 for s > s1 in some neighborhood of s1.  The function V1 satisfying the 

differential equation (16), with initial condition (17), solves the Hamilton-Jacobi-Bellman 

equation (15) in this neighborhood.  It follows that the optimal solution here consists of a 

steady-state path s = s1, with h = G1(s), either preceded by a path with h = 0 if we start at a 

stock s below s1, or by a path with h = hm if we start at a stock s above s1. We note that if f 

has multiple zeros, say s1
(1) and s1

(2), then there may be an intermediate point s1
(1) < s 1

(1) < s1
(2) 

such that V1 is continuous but not necessarily differentiable at s 1
(1). We show in appendix 2 

that even in this case, the function V1 furnishes a solution of the optimization problem. 
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Equation (20) is the “golden rule” of growth when there is the possibility of a regime 

shift.  Our results will follow directly from this golden rule so that we do not give an explicit 

expression for the value function V1 where hm → ∞.2  

 

3.  Results 

We can use the results of the analysis summarized in equation (20) to provide a 

characterization of the effects of regime shift on optimal management.  We distinguish four 

cases:  a) exogenous regime shift with stock collapse, b) endogenous regime shift with stock 

collapse, c) exogenous regime shift with changed system dynamics, and d) endogenous 

regime shift with changed system dynamics. 

 

Case 1: Exogenous regime shift with stock collapse 

With a constant hazard rate λ and a stock collapse, we have that 0)(' =sλ  and V2 = 0 so that 

the condition for the steady-state stock prior to a regime shift (as shown in equation (20)) 

becomes 

.)(' 11 λ+= rsG          (21) 

This result shows that potential future regime shift increases the discount rate leading to a 

lower steady-state stock than without the possibility of collapse. 

 

Case 2: Endogenous regime shift with stock collapse 

If the hazard rate λ depends on the stock s, the condition for the steady-state stock prior to a 

regime shift with potential total stock collapse V2 = 0 becomes 

.
)(
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111
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λ
λλ

+
++=        (22) 

                                                 
2 The expressions are available from the authors upon request. 
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In this case we have two effects and the net effect is ambiguous (note that 0)(' <sλ ).  The 

effect shown in Case 1 above (the addition of the term )(sλ ) will tend to increase the 

intensity of harvest and decrease the steady-state stock.  However, the desire to avoid a 

regime shift will tend to decrease the intensity of harvest and increase the steady-state stock 

because the final term 
)(

)()('

1

111

sr

sGs

λ
λ

+
 in equation (22) is negative.  This can be seen as a form 

of endogenous discounting. The overall effect is ambiguous.  The effect of the potential 

regime shift on steady-state stock will depend on which effect dominates.  The previous 

literature has focused on this case (e.g., Reed 1988, Clarke and Reed 1994, Tsur and Zemel 

1996).   

 

Case 3: Exogenous regime shift with changed system dynamics 

If the hazard rate λ is constant and the regime shift causes a shift in system dynamics we have 

that 0)(' =sλ  and psV =)(' 12  so that the condition for the steady-state stock prior to a regime 

shift becomes 

.)(' 11 rsG =           (23) 

The steady-state stock in this case is the same as without the possibility of a regime shift.  An 

exogenous probability of regime shift that causes a change in system dynamics, but not an 

immediate change in stock levels, will not change optimal management.  Remember that s1 is 

larger than s2 (determined by equation (6)) because of the conditions on the growth functions 

G1 and G2 in section 2.  If the regime shift occurs, management will adjust to the new 

situation, with a lower steady-state value.  However, prior to regime shift it is optimal to 

manage according to the current (not future) conditions. 

 

Case 4: Endogenous regime shift with changed system dynamics 
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If the hazard rate λ depends on the stock s and a regime shift causes a shift in system 

dynamics, the condition for the steady-state stock prior to a regime shift becomes 








 −
+

+= )()(
)(

)('
)(' 1211

1

1
11 sV

p

r
sG

sr

s
rsG

λ
λ

      (24) 

which can be rewritten as 
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
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λ
λ

      (25) 

The term between brackets is positive which can be seen as follows.  With initial state s1, the 

objective in (11) is maximized by h = G1(s1).  It follows that 

1 1
1 1 1 1 2 1 2 1 2 1

0

( )
( ) { ( ) ( )} (1 ) ( ) ( ).rt r r pG s

V s E e pG s dt e V s Ee V s V s
r

τ
τ τ− − −  = + = − − + 

 
∫  (26) 

V1(s1) must be larger than V2(s1) because the maximizing h = G1(s1) must give a larger value 

than implementing the optimal harvesting policy for the second regime from the beginning.  

It follows that the term between brackets in equation (25) is positive.  Furthermore, because 

0)(' 1 <sλ , it is clear now that rsG <)(' 11 , so that optimal management is precautionary in 

this case: the potential for a regime shift will decrease the harvest rate and increase the 

steady-state stock level.  How much the steady-state stock will increase under precautionary 

optimal management depends on the difference between the growth functions (G1(s) and 

G2(s)), on the probability characteristics of the regime shift (λ(s)), and on the discount rate (r). 

 

4.  Discussion 

As we demonstrated above, for the case when regime shift causes a shift in system 

dynamics and when management actions influence the probability of a shift from a desirable 

to an undesirable regime, optimal management involves precautionary actions that reduce the 

probability of regime shift.  This result, where uncertainty regarding potentially harmful 

future consequences leads to actions that reduce potential risks, accords with much recent 
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writing in environmental and resource management on the “Precautionary Principle” (e.g. 

Lauck et al. 1998, Raffensperger and Tickner 1999).  To date, the Precautionary Principle has 

lacked rigorous justification except under rather limited conditions (Gollier et al. 2000).  

However, with an exogenous probability of regime shift (i.e., when management actions do 

not affect the probability of regime shift) and where the regime shift affects system dynamics 

but does not cause stock collapse, optimal management prior to regime shift is unaffected by 

the potential for regime shift.  Once a regime shift has occurred, management will be adjusted 

to fit the new conditions.  Any change in management prior to the regime shift involves a loss 

of profit from failing to satisfy the golden rule of growth in the initial regime. 

 These results contrast with prior results in the literature that show that the potential for 

a catastrophic collapse in stock will cause either an increase in exploitation (which is the 

opposite of precautionary action) or an ambiguous effect.  In the models of catastrophic 

collapse of a renewable resource such as a fishery, the collapse causes the stock of a 

renewable resource to fall, with either no future harvest or an eventual recovery to pre-crash 

conditions.  In either event, the collapse causes the destruction of a valuable asset.  Knowing 

that there is some potential for asset destruction, a manager will be more aggressive in 

harvesting the resource in order to gain profits prior to potential destruction.  So, for example, 

the risk of a forest fire that would destroy timber assets gives an incentive for a landowner to 

harvest timber sooner than if there were no risk of fire (Reed 1984).  This stock effect works 

to increase the manager’s discount rate in the same way that an increase in risk of mortality 

increases the discount rate for an individual.  The increase in the discount rate shifts optimal 

management towards immediate consumption and away from savings and investment.   

 We summarize the differences between our results where regime shift leads to 

changes in system dynamics and the prior literature on stock collapse in Table 1.  Regime 

shifts with changes in system dynamics (but no stock effect) do not cause a change in optimal 
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management by themselves (Case III).  Only if management actions lead to changes in the 

probability of a regime shift (via changes in the state of the system) will the potential for 

regime shift lead to changes in optimal management (Case IV).  In this case, optimal 

management is to become precautionary in the sense that a threat of future regime shift will 

cause managers to reduce current harvests and increase the stock of the resource.  For climate 

change, this would mean that consideration of the potential of future regime shifts should 

cause a decrease in current emissions of greenhouse gases.  In contrast, the potential for stock 

collapse itself causes a shift in optimal management towards more aggressive exploitation 

(Case I).  With endogenous probabilities, management tends to become more precautionary, 

but whether this is sufficient to override the stock effect is ambiguous (Case II). 

  

Table 1: Comparison of models and results 

 Exogenous Probability of 

Regime Shift 

Endogenous Probability of 

Regime Shift 

Stock Effect Case I 

Increased exploitation 

Case II 

Ambiguous result 

System Dynamics Effect Case III 

No effect 

Case IV 

Decreased exploitation 

 

We have assumed that if the regime shift occurs, it is a once and for all shift. In reality, 

however, it is likely that there will be potential for the regime to shift back again to the 

original regime or for it to shift between a number of different regimes.  In addition, there 

may be more than one threat process at work leading to the potential for multiple types of 

regime shift.  Analyzing these possibilities implies a more complicated analysis with a series 

of nested Hamilton-Jacobi-Bellman equations with value functions characterizing the 
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different regimes.  Doing so will change the results, of course, but not the logic that we find 

in our simple model above with only one potential regime shift.  Similarly, a regime shift 

may be accompanied by a partial stock collapse which will lead to intermediate results, but 

again the logic of our analysis will remain.     

Another potentially fruitful avenue for future research is to extend the model of 

uncertainty.  Using a hazard rate is a very convenient approach and it captures many 

important features of the problem.  This approach, however, does not allow for endogenous 

learning about probabilities of regime shift with additional experience or with active 

experimentation.  Experimentation to learn about system dynamics can also influence optimal 

management (e.g., Walters and Holling 1990).  Incorporating the option to learn is an 

important extension of the approach considered here.  Finally, our model assumes constant 

prices and abstracts from costs that change with harvest or stock levels.  Having a non-linear 

objective function in the control variable would make the model more difficult to solve.  In 

principle such a model could be solved, at least numerically.  We leave such extensions for 

further research. 
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Appendix 1 

a) Constant hazard rate 

In the first regime with carrying capacity K1, starting from stock levels that are higher 

than s2, harvest levels h must maximize the expected value of the revenue 

)),(()( 2

0

ττ
τ

sVedttphe rrt −− +∫        (A1) 

subject to stock dynamics with growth function G1.  For a constant hazard rate λ we can 

easily write this expected value as follows: 

∫ ∫
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or, by changing the order of integration, 
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which leads to 
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0

2
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∫
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The current value Pontryagin function for this problem reads as 

).)(()(),,( 12 hsGsVphhsP −++= µλµ      (A5) 

Maximizing with respect to the harvest h yields that h = 0, if p < µ, h = ∞, if p > µ, and h is 

singular, if p = µ.  If the optimal harvest is singular on a time interval, we have there the 

condition µ(t) = p for the co-state µ.  From the co-state equation  

))((')())((')()()( 12 tsGttsVtrt µλµλµ −−+=ɺ     (A6) 

it follows that on such an interval 
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for a constant s with h = G1(s).  Case 1 and case 3 follow immediately. 

 

b) Variable hazard rate 

 With the hazard function λ given by 

t
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t
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ττλ      (A8) 

the probability S that no regime shift has occurred up to time t is given by 
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so that the cumulative distribution function Sc for the time τ of the regime shift becomes 
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This yields as expected value of the revenue 
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which leads to 
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It is convenient to introduce a second state variable q by 
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Assuming that the hazard rate λ is a function of the stock s, the current value Pontryagin 

function for this problem reads as 

).())(())()((),,,,( 12 shsGsVsphehqsP q σλµλσµ +−++= −   (A15) 

Maximizing with respect to the harvest h yields that h = 0, if e-qp < µ, h = ∞, if e-qp > µ, and 

h is singular, if e-qp = µ.  If the optimal harvest is singular on a time interval, we have there 

the condition µ(t) = e-q(t)p for the co-state µ.  From the co-state equation in µ  
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with 

petspetqt tqtq )()( ))(()()( −− −=−= λµ ɺɺ       (A17) 

it follows, after eliminating the co-state µ and multiplying with  eq(t), that at each time t 
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Differentiating this equation with respect to time t for a constant s yields 
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From this and the co-state equation in σ  
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it follows that at each time t  
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Using this equation to eliminate eq
σ from (A18) and substituting h = G1(s) finally leads to 

)].()([
)(

)('
)

)('
1)(()(' 21

2
1 sV

p

r
sG

sr

s

p

sV
srsG −

+
+−+=

λ
λλ    (A22) 

This is equation (20) in the main text. 
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Appendix 2 

 

In this appendix, we prove a verification theorem for the value function V1 constructed in the 

main part of the article.  Recall that the function V1 satisfies the following properties: it is 

continuous and at least piecewise continuously differentiable.  Moreover, there are finitely 

many points 
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Only at the points )(
1

iss= , 1,,1 −= ni ⋯ , the function V1 may fail to be differentiable.  It is 

continuously differentiable everywhere else, satisfying there the Hamilton-Jacobi-Bellman 

equation 
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Note that the points )(
1

is  are precisely those points at which the function f , defined in the 

main text, satisfies for s in a neighbourhood of )(
1

is  that 0)( ≤sf  if )(
1

iss≤  and 0)( ≥sf  if 
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iss≥ .  It follows from this that the harvesting rule h*  solving the maximisation in (A23) is 

of the form 
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For s= s 1
( i ) there are two possibilities: 

 
{ }
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In the first case, the decision maker is indifferent between two distinct actions; and such a 

point is called an indifference point (or Skiba point, or DNS(S) point: see Grass et al. (2008)). 

 

We note that if s is the solution of the equation  
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with initial condition 0)0( ss = , then 
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We shall show that ))((* tsh  is the optimal harvesting schedule. 

 

Theorem. Let )(thh = be an admissible harvesting schedule, and let )(tss =  satisfy 

0)0( ss =  and 
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and equality obtains if and only if 

 ))(()( * tshth =  a.e. 

 

Proof. In the following, all harvesting schedules will be assumed to be admissible.  We 

introduce  

 { }(1) (1) ( ) ( )
1 1 1 1, , , , .n ns s s sΣ = ⋯  
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and make the following fundamental observation.  The subset of continuously differentiable 

harvesting schedules is dense in the set of all schedules, as is the smaller subset of 

continuously differentiable schedules for which 

 ( ) 0 whenever ( ) .h t s t′ ≠ ∈ Σ         (A25) 

Here s is stock evolution associated to the schedule h.  The latter property is a consequence of 

Sard’s theorem (see e.g. Arnol’d, 1988).  

 

Recall from appendix 1 that 
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By the observation above, if there is a harvesting schedule for which (A24) is violated, then 

there is another continuously differentiable schedule )(thh =  satisfying (A25) which also 

violates (A24).  Given this schedule, let )(tss =  be the stock evolution associated to it, and 

let )).((** tshh =  

 

For Σ∉= )(tss ,  the function V1 is differentiable and the following equation obtains: 
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All arguments (t) and s(t) are suppressed in this equation for readability. 

There is an increasing sequence 

 ⋯<<= 100 tt  

such that Σ∉= )(tss  if jtt ≠ , for any j.  Note that since the elements of Σ are isolated, the 

sequence }{ jt  has no accumulation points.  Integrating the identity (A27) from 1−jt  to t j  

yields 
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Summing these expressions over all j yields then 
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Adding equations (A26) and (A28) yields 
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    (A29) 

As h*  solves the Hamilton-Jacobi-Bellman equation, subtracting equation (A23) from 

equation (A29) yields 
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Now, if jj ttt <<−1 , then either pV >′
1  and hh ≤= *0 , or pV <′

1  and hhhm ≥= * . 

In both cases it follows that  

 0))(( *
1 ≤−− hhVp  

for almost all t > 0. Consequently 
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contradicting the violation of (A24). 

 




