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1 Introduction

May the best man win! Following this dictum, in many areas of life con-
tests are used with the objective of selecting the most able. In business,
entrepreneurs conduct job interviews or assessment centers in order to hire
or promote the agent with the highest skills. In politics, elections are run
where the candidates try to convince the voters of their abilities for holding
office. In sports, athletes compete against each other in order to single out
the strongest one.

But is it really the most gifted one who has the best chance of winning
such a selection contest? Is the winner of the famous Tour de France really
the most talented cyclist or simply the guy who fears least the consequences
of doping? Is the president-elect indeed best suited for holding office or
just the one who had the guts to invest more money into the campaign?
Seemingly, an agent’s success during a contest does not depend on her skills
only but also on her attitude towards risk.

Despite this observation, the economic literature on asymmetric contests
has mainly focussed on models where agents differ in just one dimension. In
particular, the influence of skill heterogeneity and asymmetric risk aversion
on the probability of winning a contest have not yet been analyzed simultane-
ously but only apart. On the one hand, Baik (1994) shows that, with respect
to skills, the more talented agent has, ceteris paribus, the higher probability
of winning the contest. On the other hand, authors like Skaperdas and Gan
(1995) or Cornes and Hartley (2003) demonstrate for the case of constant
absolute risk aversion that the less risk averse agent invests, ceteris paribus,
more and has a higher probability of winning.

Given these results, now consider a contest between agent A, who is high
skilled but highly risk averse, and agent B, who is low skilled but barely risk
averse. Two natural questions arise: i) Who has the higher probability of
winning the contest and who spends more effort? ii) How does the design of
the contest, e.g. the amount of prize money, impact the winning probabilities
and effort levels?

To study this topic more closely, I engage a simple model of a two-person
Tullock-contest where agents differ in both their skill levels and their degree
of constant absolute risk aversion.1 Maximizing their expected payoff, the
agents simultaneously choose the effort levels they invest in order to win the
contest. It is shown that the agent’s probability of winning is increasing
(decreasing) in the own (opponent’s) skill level but, starting from the sym-

1Note the difference to the models of Hvide (2002) and Hvide and Kristiansen (2003),
where both players have the same attitude towards risk ex-ante but where risk taking is a
strategic variable that is endogenously determined in the equilibrium of the contest.
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metric benchmark, decreasing (increasing) in the own (opponent’s) degree of
risk aversion. One concludes that both the chance of winning and the effort
level may be higher for a low-skilled agent with a low degree of risk aversion
than for a high-skilled agent with a high degree of risk-aversion. These situ-
ations occur if and only if the agents’ difference in risk aversion – measured
by the ratio of degrees of risk aversion – is bigger than their difference in
talent – measured by the ratio of skill levels – and the rent of the contest,
i.e. the prize money, is sufficiently high.

In many situations, especially in selection contests, an outcome where
the venturesome beats the gifted is undesirable.2 The designer of the contest
should therefore take measures in order to reduce the riskiness of the contest
if she does not want to discriminate against risk averse agents. However, this
is not a trivial task. As the analysis demonstrates, for example, if the agents’
difference in risk aversion is larger than their difference in talent, the agents’
winning probabilities will not be monotonic with respect to the contest rent.
Put differently, there is some optimal prize money maximizing the chance of
the gifted.

The remainder of this paper is organized as follows: The formal model is
set up in Section 2 and used to derive the main results in Section 3. Finally,
applications and possible extensions are discussed in Section 4.

2 General Framework of the Contest

In this section, I first introduce the basic assumptions used in the analysis
of the contest game. I then consider the individual maximization problems
and derive a general expression characterizing the winning probabilities in the
equilibrium of this game. Using this expression, I finally show that the agent’s
probability of winning is increasing (decreasing) in the own (opponent’s) skill
level.

2.1 Basic assumptions

There are N agents participating in a winner-take-all contest competing for
some rent R > 0. Each agent i ∈ {1, . . . , N} has an initial wealth endowment
Ii and can spend some resources xi ∈ [0, Ii] in order to improve her probability
of winning pi. This probability is determined by the following contest success

2In the context of sales contests, Bono (2008) characterizes a situation where it might
be desirable to promote less risk averse managers, since they exert, ceteris paribus, more
effort.
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function (CSF):

pi :=
fi(xi)

∑N

j=1 fj(xj)
, (1)

where fi : [0, Ii] → R
+
0 is an increasing concave function of xi satisfying

fi(0) = 0. For the sake of concreteness and ease of calculation, assume
N = 2 and

fi(xi) := θixi, (2)

where θi > 0 is a parameter expressing agent i’s skill level. θi is also referred
to as agent i’s talent for the task required within the contest. Note that
equation (2) states, reasonably enough, a complementarity between talent
and effort, which is standard in the related literature (e.g. Baik, 1994).

Introducing risk aversion into the analysis of contests I follow the ap-
proach proposed by Skaperdas and Gan (1995) and Cornes and Hartley
(2003), respectively, and assume that the preferences of agent i can be ex-
pressed by the following utility function which exhibits constant absolute risk
aversion (CARA):

ui(Wi) := −e−αiWi , (3)

where αi is agent i’s constant degree of absolute risk aversion. I include the
limit case of a risk-neutral player i with ui(Wi) = Wi into the analysis, and
refer to this situation as one in which αi = 0.

2.2 From individual objectives to equilibrium

The contest is organized as a simultaneous move game. The players choose
their effort levels xi in order to maximize their expected utility Eui from
consumption Wi, which equals Ii − xi + R if agent i wins the contest and
Ii − xi otherwise. Hence, for i, j ∈ {1, 2}, i 6= j,

Eui = piui(Ii − xi + R) + (1 − pi)ui(Ii − xi)

= −
[

θixi

θ1x1 + θ2x2

e−α1(Ii−xi+R) +
θjxj

θ1x1 + θ2x2

e−α1(Ii−xi)

]

.

For ease of notation, define

p′i :=
∂pi

∂xi

= θi

θjxj

(θ1x1 + θ2x2)2
≥ 0, (4)

p′′i :=
∂2pi

∂x2
i

= − 2θ2
i

θ1x1 + θ2x2

θjxj

(θ1x1 + θ2x2)2
≤ 0, (5)

β(α) :=
α

1 − e−αR
> 0, (6)

δ(α) :=
αe−αR

1 − e−αR
= e−αRβ(α) > 0. (7)
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Using the identity eX =
∑∞

k=0
Xk

k!
for any real X, it is easily verified that β

is an increasing function of α and δ is a decreasing function of α (Skaperdas
and Gan, 1995, supplementary appendix to Proposition 2). The first order
condition (FOC) for an interior solution of agent i’s maximization problem
yields

p′i = β(αi)(pie
−αiR + 1 − pi). (8)

Equation (8) implicitly defines the reaction function of agent i, i.e. her opti-
mal effort xi as a function of the opponent’s effort xj. Under the assumptions
made, the rent seeking game has a unique Nash equilibrium in pure strate-
gies, as shown by Cornes and Hartley (2003, Propostioin 3.3) and Yamazaki
(2008), respectively. In order to compute this equilibrium under different
parameter constellations, divide the FOC of agent 1 by the FOC of agent 2,

and note that
p′1
p′2

= x2

x1
. Denoting by q := p2

p1
= θ2x2

θ1x1
the competitive balance

of the contest,3 this yields

θ1

θ2

q =
β(α1)

β(α2)
· e−α1R + q

qe−α2R + 1
. (9)

Equation (9) can be transformed into a quadratic equation for the compet-

itive balance in equilibrium; as θ2δ(α1)
θ1δ(α2)

> 0, only the positive root yields a
feasible solution q > 0, i.e.

q =

√

θ2δ(α1)

θ1δ(α2)
+

(
θ1β(α2) − θ2β(α1)

2θ1δ(α2)

)2

− θ1β(α2) − θ2β(α1)

2θ1δ(α2)
. (10)

A value q < 1 indicates that agent 1’s probability of winning exceeds the one
of agent 2, i.e. p1 > p2, and vice versa for q > 1. Note that q depends, ceteris
paribus, only on the ratio of skill levels but not on their exakt values.4

2.3 Comparative statics w.r.t. skill levels

As intuition suggests, being talented always redounds to the contestant’s
advantage. A formal proof of Proposition 1 can be found in Appendix A.

Proposition 1 The agent’s probability of winning is increasing (decreasing)
in the own (opponent’s) skill level, i.e. ∂q

∂θ1
< 0 < ∂q

∂θ2
.

3Some authors use the difference in winning probabilities as an alternative measure of
‘competitive balance’ or ‘closeness’ of the contest (see e.g. Runkel, 2006a,b).

4For θ := θ2

θ1

, one has q =

√

θδ(α1)
δ(α2)

+
(

β(α2)−θβ(α1)
2δ(α2)

)2

− β(α2)−θβ(α1)
2δ(α2)

. Hence, without

loss of generality, θ1 might be normalized to 1.
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3 Specific Scenarios of Heterogeneity

In this section, I compare the outcome of the contest for different scenarios of
heterogeneity among the contestants and derive a series of further compara-
tive static results. I start with the case of symmetric, i.e. identical, players
as a benchmark. I then analyze successively how the outcome changes if one
introduces heterogeneity between the agents with respect to their skills only,
their risk attitude only, and both skill and risk aversion.

3.1 The symmetric benchmark

In this subsection, I derive the equilibrium of the contest as well as its com-
parative statics properties for the case of identical players.

Proposition 2 Suppose θ1 = θ2 = θ > 0 and α1 = α2 = α ≥ 0.

(a) The equilibrium is symmetric with equal winning probabilities p∗1 = p∗2 =
1
2

(i.e. q = 1) and effort levels, which do not depend on the skill level
θ:

x∗
1 = x∗

2 = x∗
sym

:=







R
4

if α = 0

eαR−1
2α(eαR+1)

if α > 0

(b) The effort levels are increasing in the prize:
∂x∗

sym

∂R
> 0.

(c) The effort levels are decreasing in the degree of risk aversion:
∂x∗

sym

∂α
< 0.

The proof can be found in Appendix A. Parts (a) and (b) of Proposition
2 are straightforward generalizations of the respective results in the case of
risk-neutral players (Baik, 1994) and, as such, very intuitive: The intensity
of competition among equal competitors does not depend on the (skill) level
the contest takes place at, but is positively related to the rent offered.

Part (c) of Proposition 2 resolves the general ambiguity result of Konrad
and Schlesinger (1997) for the case of preferences with CARA. Note that
a higher degree of risk aversion has two opposing effects on the individual
investment decision. On the one hand, there is the so called gambling effect :
Since participation in the contest comes along with an uncertain payment, it
may be regarded as a lottery, which the agents invest the less into the more
risk averse they are. On the other hand, there is a so called effect of self-
protection: By spending more effort, the players can reduce their probability
of loosing the contest. Therefore, the more risk averse they are the more
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they invest. Under our assumptions, the gambling effect outweighs the effect
of self protection.

Traditionally, the literature conducts the comparative statics with respect
to the dissipation rate, which is defined as the fraction ρ of the rent that is

‘wasted’ in form of aggregate effort, i.e. ρ :=
∑N

j=1 xj

R
.

Corollary 1 For θ1 = θ2 = θ > 0 and α1 = α2 = α > 0, the equilibrium
rent dissipation rate equals

ρsym =
eαR − 1

αR(eαR + 1)
< 1

and is decreasing in both the prize R and the degree of risk aversion α.

The proof can be found in Appendix A. As shown by Hillman and Samet
(1987) in a more general framework, less than the full rent will be dissipated
if agents are risk averse. The comparative statics of Corollary 1 are in line
with the simulations run by Hillman and Katz (1984) for the case of logarith-
mic utilities and with the results in Long and Vousden (1987) for contests
with rents that are divisible among agents.5 Put differently, for the case
of preferences with CARA, the intuition holds that less of the rent will be
wasted if the agents are more risk averse or if the stakes are higher.

3.2 Asymmetric skills

In this subsection, I derive the equilibrium of the contest as well as its com-
parative statics properties for the case of players with the same degree of risk
aversion but different skill levels.

Proposition 3 Suppose, without loss of generality, θ1 > θ2 > 0 and α1 =
α2 = α ≥ 0.

(a) In equilibrium,

1 > q =







θ2

θ1
if α = 0

√

θ2

θ1
+
(

eαR

2
θ1−θ2

θ1

)2

− eαR

2
θ1−θ2

θ1
if α > 0,

i.e. the player with the higher skill level has the better probability of
winning, p∗1 > p∗2.

5They contrast, though, to the diametric result in Fabella (1992). However, Konrad
and Schlesinger (1997, footnote 11) report that his “result is not correct as the paper
contains several serious errors”.
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(b) (i) Under risk neutrality (α = 0), competitive balance is independent
of the prize, i.e. ∂q

∂R
= 0.

(ii) In the case of risk aversion (α > 0), the higher the prize, the better
the winning probability of the more talented agent, i.e. ∂q

∂R
< 0.

(c) The higher the degree of risk aversion, the better the winning probability
of the more talented agent, i.e. ∂q

∂α
< 0.

The proof can be found in Appendix A. Part (a) of Proposition 3 is a
straightforward generalization of the respective result in the case of risk-
neutral players (Baik, 1994) and, as such, very intuitive: The more talented
agent has the better chance of winning and, according to Proposition 1,
this probability is the higher the larger the gap in skills is. Part (b) of
Proposition 3 shows that the neutrality result for risk neutral agents (Runkel,
2006a, Proposition 1 (b)) does not hold for risk averse players: A higher prize
increases the ‘riskiness’ of the contest which is worse for the less skilled agent
being more likely to loose. A similar intuition also drives the result in Part
(c) of Proposition 3.

Can there also be said something about the equilibrium effort levels? If
the agents are risk neutral, they will exert the same effort level x∗

1 = x∗
2 =

Rθ1θ2

(θ1+θ2)2
in equilibrium, which will be maximal for equal skills θ1 = θ2 (Baik,

1994). Under risk aversion, however, the equilibrium effort levels will differ
if and only if agents differ in skills. To see this, consider the relative effort
ξ :=

x∗

2

x∗

1

= θ1

θ2
q in equilibrium; then the following statements hold.

Corollary 2 Suppose, without loss of generality, θ1 > θ2 > 0 and α1 = α2 =
α > 0.

(a) The higher the skill level of agent i the higher her relative equilibrium
effort, i.e. ∂ξ

∂θ1
< 0 < ∂ξ

∂θ2
.

(b) In equilibrium, the agent with the higher skill level exerts more effort,
i.e. x∗

1 > x∗
2.

The proof can be found in Appendix A. The results confirm the comple-
mentary character of effort and skill and back up the much cited anecdotal
evidence for talent to come along with diligence.

3.3 Asymmetric risk aversion

In this subsection, I derive the equilibrium of the contest as well as its com-
parative statics properties for the case of players with the same skill level but
different degrees of risk aversion.
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Proposition 4 Suppose, without loss of generality, θ1 = θ2 = θ > 0 and
α1 > α2 ≥ 0.

(a) In equilibrium,

q =

√

δ(α1)

δ(α2)
+

(
1

2

β(α2) − β(α1)

δ(α2)

)2

− 1

2

β(α2) − β(α1)

δ(α2)
.

(b) The player with the higher degree of risk aversion exerts less effort and
has the smaller probability of winning, i.e. x∗

1 < x∗
2 and p∗1 < p∗2.

(c) The higher the prize, the smaller the winning probability of the more
risk averse agent, i.e. ∂q

∂R
> 0.

The proof can be found in Appendix A. Part (b) of Proposition 4 reproduces
the respective results in Skaperdas and Gan (1995, Proposition 2b), Cornes
and Hartley (2003, Proposition 3.4), and Bono (2008, Proposition 1) for the
specific framework at hand. The intuition here is similar to the corresponding
result in the symmetric equilibrium. Since, under the assumptions made,
the gambling effect outweighs the effect of self-protection, the less risk averse
agent will spend more effort and thus have a higher chance of winning the
contest. An analogous reasoning explains the result of Part (c). An increasing
prize raises the ‘riskiness’ of the contest which is worse for the more risk
averse agent. Figure 1 illustrates these results displaying the graph of q(R)
for θ1 = 1, θ2 = 1, α1 = 1, and α2 = 1

4
.

3.4 Asymmetric skills and risk aversion

In this subsection, I allow for both asymmetric skills and risk aversion. Fo-
cussing on the non-trivial cases, I assume that agent 1 has a higher skill
level and, at the same time, a higher degree of risk aversion than agent 2.
Therefore, agent 1 is called the gifted and agent 2 is called the venturesome.
I compare the agents’ winning probabilities as well as effort levels in equi-
librium and conduct a comparative statics analysis with respect to the rent
R.

Resuming the previous results, part (a) of Proposition 3 shows, on the
one hand, that for some equal degree of risk aversion, agent 1 with the higher
skill level has the higher chance of winning. On the other hand, Part (b) of
Proposition 4 states that, in the case of equal skills, agent 1 will have a smaller
winning probability if he has a higher degree of risk aversion. Therefore,
whether the gifted or the venturesome has the better chance of winning will
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Figure 1: Asymmetric risk aversion

generally depend on the relative differences in skill and risk aversion. In
particular, by the continuity of the relevant functions, the implicit functions
theorem implies the following

Corollary 3 There exists a set of parameter values with θ1 > θ2 and α1 > α2

such that q > 1, i.e. p∗1 < p∗2.

Corollary 3 characterizes a situation where the presence of heterogeneity with
respect to the agents’ attitude towards risk induces some kind of failure of
the contest: The probability of selecting the agent with the lower skills is
higher than the probability of selecting the agent with the higher skills. Put
differently, the venturesome has a superior chance of beating the gifted.

Moreover, note that a higher rent on the one hand increases the chance
of winning for the agent with the higher skill level (Proposition 3(c)), but on
the other hand decreases the chance of winning for the agent with the higher
degree of risk aversion (Proposition 4(c)). Consequently, from the viewpoint
of contest design, it is a priori not clear how the prize of the contest should
be chosen in order to minimize the winning probability of the venturesome
for not ending up in the undesirable situation characterized by Corollary 3.
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These remarks raise two questions: First, under what circumstances is
the venturesome more likely to win than the gifted? Second, how does the
prize money impact the chance for such an undesirable outcome? As the
main result of this paper, these questions are answered by the following

Proposition 5 Suppose θ1 > θ2 > 0 and α1 > α2 > 0.

(a) If θ1

θ2
≥ α1

α2
, then

(i) q < 1 for all R > 0,

(ii) ∂q

∂R
< 0.

(b) If θ1

θ2
< α1

α2
, then there exist cut-off values R0, R̃0, R1, R̃1 with R0 ≤ R1,

R0 ≤ R̃0, and R1 ≤ R̃1 such that

(i) q is decreasing for all R < R0,

(ii) q < 1 for all R < R1,

(iii) q ≥ 1 for all R ≥ R̃1,

(iv) q is increasing for all R ≥ R̃0.

The proof can be found in Appendix A. Part (a) of Proposition 5 shows
that the winning probability for the gifted will always be higher than for the
venturesome if the ratio of the agents’ skill levels is at least as high as the ratio
of their degrees of risk aversion. In this case, differences in skills predominate
differences in risk behavior and, hence, the results resemble the case in which
agents differ only in talent. Particularly, a higher prize increases the chance
of winning for the agent with the higher skill level (as in Proposition 3(c)).
Figure 2 illustrates these results displaying the graph of q(R) for θ1 = 1,
θ2 = 1

2
, α1 = 1, and α2 = 1

2
.

As part (b) of Proposition 5 shows, things will be slightly more compli-
cated if the ratio of the agents’ skill levels is smaller than the ratio of their
degrees of risk aversion. In this case, again the winning probability for the
gifted will be higher than for the venturesome (and increasing) if the rent
is sufficiently small. However, if the rent exceeds a certain threshold, the
opposite will be true: the winning probability for the venturesome will be
higher than for the gifted (and increasing). Moreover, all simulations run
confirm that R0 = R̃0 and R1 = R̃1. In fact, I could not falsify tightening
part (b) of Proposition 5 as follows.

Conjecture 1 If θ1

θ2
< α1

α2
, then there exist cut-off values 0 < R0 < R1 such

that

11



0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

q

Figure 2: Predominance of differences in skills

(a) q ≥ 1 ⇔ R ≥ R1 (with equality for R = R1),

(b) ∂q

∂R
≥ 0 ⇔ R ≥ R0 (with equality for R = R0).

To get an intuition for this result, note that rising stakes increase the riskiness
of the contest as perceived by risk averse agents. Hence, for low rents, risk
considerations do not play much of a role and skill differences are the pre-
dominant factor. However, as the rents increase, differences in risk aversion
become more and more important. Consequently, from a certain threshold
R0 on, the winning probability of the venturesome starts to increase as the
stakes become higher, and it even exceeds the winning probability of the
gifted as the rent rises above R1. Figure 3 illustrates these results displaying
the graph of q(R) for θ1 = 1, θ2 = 1

2
, α1 = 1, and α2 = 1

4
.

Similar results hold for the corresponding effort levels. In order to specify
the respective properties, remember the definition of relative equilibrium
effort ξ :=

x∗

2

x∗

1

= θ1

θ2
q.

Corollary 4 Suppose θ1 > θ2 > 0 and α1 > α2 > 0.

(a) If θ1

θ2
≥ α1

α2
, then
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Figure 3: Predominance of differences in risk aversion

(i) ∂ξ

∂R
< 0,

(ii) ξ < 1 for all R > 0.

(b) If θ1

θ2
< α1

α2
and Conjecture 1 holds, then

(i) ∂ξ

∂R
≥ 0 ⇔ R ≥ R0 (with equality for R = R0),

(ii) there exists a cut-off value R̄ with R0 < R̄ < R1 such that ξ ≥
1 ⇔ R ≥ R̄ (with equality for R = R̄).

The proof can be found in Appendix A. In case that differences in skills pre-
dominate differences in risk behavior, again, the results resemble the case in
which agents differ only in talent (c.f. Corollary 2): In equilibrium, the agent
with the higher skill level exerts more effort. Moreover, since his winning
probability increases as the rent rises, so does his relative equilibrium effort.

However, if the ratio of the agents’ skill levels is smaller than the ratio of
their degrees of risk aversion, the effort of the gifted will be higher than the
effort of the venturesome if and only if the rent is sufficiently small. Since
the winning probability of the venturesome is increasing in the rent if and
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only if R > R0, the same must be true for his relative effort. Moreover, since
the venturesome has a higher chance of winning than the gifted for all rents
above R1 despite his lower skills, his effort must exceed the one of the gifted
from an even lower threshold R̄ on.

In order to study how the thresholds R0 and R1 depend on the ratio of
skills and the levels of risk aversion, I have run a large number of numerical
simulations leading to the following

Conjecture 2 Suppose θ1

θ2
< α1

α2
and define R0 and R1 as in Conjecture 1.

Then, ceteris paribus, R0 and R1 are locally

(a) increasing functions of θ1

θ2
,

(b) decreasing functions of α1,

(c) increasing functions of α2.

Though these statements have not yet been proven analytically, the intuition
behind them is straightforward. As the skill ratio increases, the relative im-
portance of differences in skills compared to differences in the levels of risk
aversion increases. Consequently, the region in which the winning probability
of the gifted exceeds that of the venturesome (is increasing) becomes larger.
The same consequences arise as the gifted gets less risk averse or the venture-
some gets more risk averse, since again the relative importance of differences
in skills compared to differences in the levels of risk aversion increases.

4 Concluding Remarks

I have examined the chance of winning a Tullock-contest when participants
differ in both their talent and their attitude towards risk. For the case of
CARA preferences, it has been shown that the agent’s probability of winning
is increasing (decreasing) in the own (opponent’s) skill level but, starting from
the symmetric benchmark, decreasing (increasing) in the own (opponent’s)
degree of risk aversion. If the difference in skill levels is small while the
difference in risk aversion is big, both the winning probability and the effort
chosen are higher for a low-skilled agent with a low degree of risk aversion
than for a high-skilled agent with a high degree of risk-aversion whenever the
prize money is sufficiently high.

Put differently, there are situations in which the agent with the higher
skill level might nevertheless be very likely to lose the contest if, at the same
time, she exhibits a higher degree of risk aversion. Such an outcome often is
undesirable, especially in the case of a selection contest. A selection contest
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aims at finding out who is most productive in fulfilling a certain task and,
hence, wants to rank the agents according to their skills rather than attitude
towards risk. Examples range from job interviews or promotion contests
over political elections to tournaments in sports with its dictum: May the
best man win!

Therefore, a selection contest should be designed in order to reduce the
riskiness of the game. In the model at hand, the only parameter available
for contest design is the contest prize.6 It has been shown that if the agents’
difference in risk aversion is bigger than their difference in talent, there is
some finite prize money maximizing the chance of the gifted. Put differently,
the model makes an argument for weakening the agents’ incentives in the
provision of effort in order to improve the performance of selection. To
emphasize this point, in the following I briefly discuss the applications of the
model to the fields of labor economics, political economy, and sport economics
as well as the respective implications.

In a promotion contest, the rent R can be interpreted as the differential
between the manager’s wage levels before and after promotion. In situations
where differences in the degrees of risk aversion predominate differences in
skill levels, the analysis suggests that large wage differentials may lead to
inefficient promotion decisions in the sense that the venturesome is promoted
instead of the gifted. This gives rise to the following hypothesis: In industries
with large wage differentials promoted managers are less risk averse than
in industries with low wage differentials. At the same time, this reasoning
makes an argument for weakening the managers’ incentives by moderate wage
differentials.7

In a political election, R may be interpreted as the rent from being elected
and holding office. With a similar reasoning as above, high such rents might
induce a high probability of electing the venturesome instead of the gifted.
This could justify comparatively low salaries from political offices.

The basically positive character of our analysis allows to apply the model
equally to alternative goals of the contest designer. In many sports contests,
for example, the closeness of the game exerts a positive externality on some
related markets. Hence, the organizer of the event may not aim at maxi-
mizing the chance of the gifted but try to design a competition that is as
balanced as possible (see e.g. Runkel, 2006a). The model at hand answers
the question how the prize money should be chosen in order to achieve this

6To extend the analysis in this direction, one could think of a framework in which the
contest designer has more instruments at hand. Imagine, for example, a situation where
the designer can influence the agents’ effort costs (which are normalized to 1 in our model).

7Limiting of wages for top managers has been set highly on the political agenda in
many countries after the financial crisis of 2008.
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goal. Again, the optimal rent is finite.
Our analysis applies to a wide variety of real world situations. For in-

stance, many scandals in business, politics, and sports lead to the impression
that the agent’s success during a selection contest is not always based on
superior skills but the result of cheating. Sportsmen dope, politicians betray,
managers bribe. In real life, besides plain effort, cheating is an illegal but of-
ten applied possibility for the agent to enhance the probability of winning. It
is rather intuitive that the availability of a cheating technology has a strong
impact on the riskiness of the contest. Hence, the model can be engaged in
order to investigate how the availability of such a technology influences the
relative winning probabilities of the gifted and the venturesome.

A Appendix

Proof of Proposition 1.

Since q depends, ceteris paribus, only on the ratio of skill levels θ := θ2

θ1
, it

is sufficient to show that ∂q

∂θ
> 0. Differentiating q with respect to θ and

rearranging terms yields

∂q

∂θ
=

2δ1δ2 + θβ2
1 − β1β2 + 2δ2β1

√·
(2δ2)2

√· ,

where I use the shortcuts βi := β(αi) and δi := δ(αi) for i ∈ {1, 2} as well as
√· :=

√

θδ1
δ2

+
(

β2−θβ1

2δ2

)2

. Hence, ∂q

∂θ
> 0 if and only if

2δ2β1

√
· > β1β2 − θβ2

1 − 2δ1δ2. (11)

If the right hand side of inequality (11) is negative, the statement is obviously
true; if it is non-negative, inequality (11) is equivalent to

4δ2
2β

2
1

(

θδ1

δ2

+

(
β2 − θβ1

2δ2

)2
)

> (β1β2 − θβ2
1 − 2δ1δ2)

2

⇔ β1β2 > δ1δ2

⇔ β1β2 > e−α1Rβ1e
−α2Rβ2

⇔ 1 > e−(α1+α2)R.

The last inequality is true for all positive values of R as long as at least one
of the players is risk averse. For the case of both players being risk-neutral,
see Proposition 3.

�
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Proof of Proposition 2.

Since the case of risk neutral agents is discussed extensively in the literature
(see e.g. Baik, 1994), I concentrate on risk averse agents.

(a) For θ1 = θ2 = θ > 0 and α1 = α2 = α > 0 equation (10) immediately
implies q = 1. Hence, the equilibrium is symmetric with equal winning
probabilities p∗1 = p∗2 = 1

2
and effort levels x∗

1 = x∗
2 = x∗

sym, which may
be easily computed from the FOC (8).

(b)
∂x∗

sym

∂R
= eαR

(eαR−1)2
> 0.

(c) Using the identity eX =
∑∞

k=0
Xk

k!
for any real X, one verifies that

∂x∗
sym

∂α
=

1 + 2αReαR − e2αR

2α2(eαR + 1)2
< 0.

�

Proof of Corollary 1.

The equilibrium rent dissipation rate can be computed immediately from the
equilibrium effort levels in Proposition 2. Denoting A := αR one calculates

∂ρsym

∂A
=

1 + 2AeA − e2A

A2(eA + 1)2
< 0,

where the last inequality is verified, again, using the identity eX =
∑∞

k=0
Xk

k!

for any real X. From this inequality it is also apparent that ρsym < 1.

�

Proof of Proposition 3.

(a) The case of risk neutral agents is due to Baik (1994). Hence, I con-
centrate once more on risk averse agents. For θ1 > θ2 > 0 and
α1 = α2 = α > 0, the value of q can be immediately computed from
equation (10). Moreover, θ1 − θ2 > 0 and, hence,

q =

√

θ2

θ1

+

(
eαR

2

θ1 − θ2

θ1

)2

− eαR

2

θ1 − θ2

θ1

<

√

θ2

θ1

< 1.

(b) (i) Trivial.
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(c) and (b) (ii) Again denoting A := αR, one has to show that ∂q

∂A
< 0.

Using θ1 − θ2 > 0, one easily verifies that this is equivalent to

eA

2

θ1 − θ2

θ1

<

√

θ2

θ1

+

(
eA

2

θ1 − θ2

θ1

)2

,

which is obviously true.

�

Proof of Corollary 2.

Suppose θ1 > θ2 > 0 and α1 = α2 = α > 0.

(a) One has to show that ∂ξ

∂θ1
< 0 < ∂ξ

∂θ2
. One easily verifies that either

inequality is equivalent to

1 +
e2αR

2

θ1 − θ2

θ2

<

√

θ1

θ2

e2αR +

(
e2αR

2

θ1 − θ2

θ2

)2

,

which is true as 1 < e2αR.

(b) Noting that ξ|θ1=θ2
= 1 and applying part (a) one concludes ξ < 1,

i.e. x∗
1 > x∗

2, for all θ1 > θ2.

�

Proof of Proposition 4.

Suppose θ1 = θ2 = θ > 0 and α1 ≥ α2 > 0.

(a) The value of q can be immediately computed from equation (10).

(b) An elegant and rigorous proof of this result can be found in Cornes and
Hartley (2003). Here, I first give a direct proof for sufficiently small
differences in risk aversion along the lines of Skaperdas and Gan (1995,
Proposition 2b). Put differently, it is shown that α1 = α2+ε, with ε > 0
sufficiently small, implies x∗

1 < x∗
2 and p∗1 < p∗2. Later on, however, the

general statement will be implied by Proposition 5 (c.f. Appendix A,
Corollary 5).
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Evaluating

∂q

∂α1

=
1

2





√

δ(α1)

δ(α2)
+

(
1

2

β(α2) − β(α1)

δ(α2)

)2




−1

·
[
δ′(α1)

δ(α2)
− 1

2

β′(α1)

δ(α2)

β(α2) − β(α1)

δ(α2)

]

+
1

2

β′(α1)

δ(α2)

at α1 = α2 = α yields

∂q

∂α1 |α1=α2=α

=
1

2

δ′(α) + β′(α)

δ(α)
> 0 (12)

which is positive, since δ(α) > 0 and

δ′(α) + β′(α) =
e2αR − (1 + 2αReαR)

(eαR − 1)2
> 0.

The last inequality can be verified using the identity eX =
∑∞

k=0
Xk

k!
for

any real X.

Applying the result (12) and noting that q|α1=α2
= 1 for symmetric

agents, one finds ε̄ > 0 such that α1 = α2 + ε implies q > 1 and thus
p∗1 < p∗2 for all 0 < ε < ε̄. However, as θ1 = θ2, p∗1 < p∗2 is possible if
and only if x∗

1 < x∗
2.

(c) The higher the prize, the smaller the winning probability of the more
risk averse agent, i.e. ∂q

∂R
> 0: The statement will be implied by Propo-

sition 5 (c.f. Appendix A, Corollary 5).

�

Proofs of Proposition 5 and Corollary 4.

Before beginning the proofs, note that θ1

θ2
≥ α1

α2
is equivalent to θ1α2 ≥ θ2α1

and that θ1

θ2
< α1

α2
is equivalent to θ1α2 < θ2α1. Furthermore, for brevity, the

following definitions are made:

a := a(R) :=
θ2δ(α1)

θ1δ(α2)

=
θ2α1e

−α1R

1 − e−α1R
· 1 − e−α2R

θ1α2e−α2R

=
θ2α1

θ1α2

· e−α1R

e−α2R
· 1 − e−α2R

1 − e−α1R
> 0,

(13)
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b := b(R) :=
θ1β(α2) − θ2β(α1)

2θ1δ(α2)

=
θ1α2

1 − e−α2R
· 1 − e−α2R

2θ1α2e−α2R
− θ2α1

1 − e−α1R
· 1 − e−α2R

2θ1α2e−α2R

=
1

2e−α2R
− 1 − e−α2R

1 − e−α1R
· θ2α1

2θ1α2e−α2R

=
1

2e−α2R

[

1 − 1 − e−α2R

1 − e−α1R
· θ2α1

θ1α2

]

,

(14)

ξ′ :=
∂ξ

∂R
, ξ′′ :=

∂2ξ

∂R2
for any function ξ ∈ {q, a, b, β(α), δ(α)}.

Thus,

q =

√

θ2δ(α1)

θ1δ(α2)
+

(
θ1β(α2) − θ2β(α1)

2θ1δ(α2)

)2

− θ1β(α2) − θ2β(α1)

2θ1δ(α2)

can be written as
q =

√
a + b2 − b

and q′ as

q′ =
a′ + 2bb′

2
√

a + b2
− b′

=
a′

2
√

a + b2
+

b√
a + b2

︸ ︷︷ ︸

<1

·b′ − b′

=
a′

2
√

a + b2
+ b′ ·

(
b√

a + b2
− 1

)

︸ ︷︷ ︸

<0

.

(15)

The proofs of Proposition 5 and Corollary 4 will repeatedly make use of
the following limit result.

Lemma 1 For θ1 ≥ θ2 > 0, α1 ≥ α2 > 0 and R > 0 the following hold:

(a) lim
R→0

q = θ2

θ1
.

(b) lim
R→0

ξ = 1.

As Lemma 1 shows, for very small rents, risk considerations do not play a
role: The agents winning probabilities are solely determined by the skill ratio
because their investments coincide.
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Proof.

(a) First, the limits of a and b for R → 0 are considered and afterwards
the limit of q is calculated. For R → 0 all e−αiR tend to 1, yielding

a =
θ2α1

θ1α2

· e−α1R

e−α2R
︸ ︷︷ ︸

→1

·

→0
︷ ︸︸ ︷

1 − e−α2R

1 − e−α1R

︸ ︷︷ ︸

→0

for R → 0.

Thus, l’Hôpital’s rule can be applied. The sign
l′H
= indicates that, ac-

cording to l’Hôpital’s rule, the expression on the left of the sign is equal
to the expression on the right of the sign.

lim
R→0

1 − e−α2R

1 − e−α1R

l′H
= lim

R→0

α2e
−α2R

α1e−α1R
=

α2

α1

and hence,

a =
θ2α1

θ1α2

· e−α1R

e−α2R
︸ ︷︷ ︸

→1

· 1 − e−α2R

1 − e−α1R
︸ ︷︷ ︸

→
α2
α1

−→ θ2

θ1

for R → 0.

Analogously,

b =
1

2 e−α2R

︸ ︷︷ ︸

→1

− 1 − e−α2R

1 − e−α1R
︸ ︷︷ ︸

→
α2
α1

· θ2α1

2θ1α2 e−α2R

︸ ︷︷ ︸

→1

for R → 0,

yielding

lim
R→0

b =
1

2
− α2

α1

· θ2α1

2θ1α2

=
1

2
− 1

2
· θ2

θ1

.

Hence, for R → 0,

q −→
√

θ2

θ1

+
1

4
− 1

2
· θ2

θ1

+
1

4
· θ2

2

θ2
1

︸ ︷︷ ︸

( 1
2
+ 1

2
·
θ2
θ1

)2

−1

2
+

1

2
· θ2

θ1

=
1

2
+

1

2
· θ2

θ1

− 1

2
+

1

2
· θ2

θ1

=
θ2

θ1

.

(b) Using the definition of relative equilibrium effort ξ :=
x∗

2

x∗

1

= θ1

θ2
q, the

statement follows immediately from part (a).

�
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Proof of Proposition 5.

(a) Let θ1

θ2
≥ α1

α2
.

(i) I first show that q < 1. According to equation (14),

b =
θ1β(α2) − θ2β(α1)

2θ1δ(α2)
=

1

2e−α2R

[

1 − 1 − e−α2R

1 − e−α1R
· θ2α1

θ1α2

]

> 0.

For θ1 > θ2, α1 > α2 and with δ decreasing in α one has a < 1 according
to (13). Therefore,

q =
√

a + b2 − b ≤
√

a +
√

b2 − b =
√

a < 1.

(ii) I now show that q′ < 0. According to equation (15), this is the case
if and only if

a′

2
√

a + b2
< b′ ·

(

1 − b√
a + b2

)

︸ ︷︷ ︸

>0

. (16)

Using equations (6) and (7), one easily verifies that

β′(α) = δ′(α) = −β(α)δ(α) < 0 (17)

and
β(α) − δ(α) = α.

Having said this, one computes

a′ =
θ2δ(α1)

θ1δ(α2)
[β(α2) − β(α1)] < 0 (18)

and

b′ =
θ1β(α2)[β(α2) − δ(α2)] − θ2β(α1)[β(α2) − δ(α1)]

2θ1δ(α2)
. (19)

The inequality in (18) is due to the fact that β is increasing in α. Hence,
for b′ ≥ 0, (16) is trivially satisfied. Now, consider the case of b′ < 0.
Then (16) is equivalent to

a′

2b′
>

√
a + b2 − b = q.
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Since q < 1, it is sufficient to show a′

2b′
> 1. Remembering b′ < 0 and

denoting βi := β(αi) and δi := δ(αi) for i ∈ {1, 2}, this is equivalent to

a′ < 2b′

⇔ θ2δ1β2 − θ2δ1β1 < θ1β2β2 − θ1δ2β2 − θ2β1β2 + θ2δ1β1

⇔ 0 < 2θ2δ1β1 − θ2β1β2 − θ2δ1β2 + θ1β2 (β2 − δ2)
︸ ︷︷ ︸

α2

⇔ 0 < 2θ2δ1(β1 − β2) + θ2β2 (δ1 − β1)
︸ ︷︷ ︸

−α1

+θ1β2α2

⇔ 0 < 2θ2δ1 (β1 − β2)
︸ ︷︷ ︸

>0

+β2 (θ1α2 − θ2α1)
︸ ︷︷ ︸

≥0

.

(b) Now let θ1

θ2
< α1

α2
. Note again that according to Lemma 1

lim
R→0

q =
θ2

θ1

< 1. (20)

In the following it is shown that

lim
R→∞

q = ∞, (21)

lim
R→∞

q′ = ∞, (22)

lim
R→0

q′ = −(α1 + α2)θ2(θ1 − θ2)

2θ1(θ1 + θ2)
< 0. (23)

The results (20)–(23) imply the existence of values R0, R̃0, R1, R̃1 with
R0 ≤ R1, R̃0 and R1 ≤ R̃1 such that

q is decreasing for all R < R0,

q is increasing for all R ≥ R̃0,

q < 1 for all R < R1,

q ≥ 1 for all R ≥ R̃1.

In order to show R0 = R̃0 and R1 = R̃1 and hereby prove Conjecture
1, it would be sufficient to demonstrate that q has at most one ex-
tremum. Though I have not been able to prove this result analytically,
all simulations run confirm it.

Proof of equation (21): Using equation (13), α1 > α2 implies

a =
θ2α1

θ1α2

· eR(−α1+α2)
︸ ︷︷ ︸

→0

· 1 − e−α2R

1 − e−α1R
︸ ︷︷ ︸

→1

−→ 0 for R → ∞.
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Using equation (14), θ1α2 < θ2α1 implies

b =
1

2 e−α2R

︸ ︷︷ ︸

→0

[

1 − 1 − e−α2R

1 − e−α1R
· θ2α1

θ1α2

]

︸ ︷︷ ︸

→1−
θ2α1
θ1α2

<0

−→ −∞ for R → ∞.

Now, the limit in (21) follows from q =
√

a + b2 − b.

Proof of equation (22): From equation (18) one computes

a′ =
θ2α1

θ1α2

· e−(α1−α2)R ·
(−α1 + α2 + α1e

−α2R − α2e
−α1R

(1 − e−α1R)2

)

︸ ︷︷ ︸

=:Ha′

. (24)

Obviously, lim
R→∞

a′ = 0. Moreover, equation (13) implies lim
R→∞

a = 0.

From equation (19) one computes

b′ = eα2R








θ1α2

2θ1

− θ2α1

2θ1α2

·
(

α2 − α2e
−α1R − α1e

−α1R + α1e
−(α1+α2)R

(1 − e−α1R)2

)

︸ ︷︷ ︸

=:Hb′








.

(25)
Since θ1α2 < θ2α1,

lim
R→∞

b′ = lim
R→∞

eα2R

[
θ1α2

2θ1

− θ2α1

2θ1

]

= −∞.

Similarly, equation (14) implies

lim
R→∞

b = lim
R→∞

eα2R

[
θ1α2 − θ2α1

2θ1α2

]

= −∞.

Using these results it is straightforward to see that

q′ =
a′

2
√

a + b2
− b′

(

1 − b√
a + b2

)

→ ∞ for R → ∞.

Note that the term in brackets exceeds one for R sufficiently large.

Proof of equation (23): Equation (24) implies

lim
R→0

a′ =
θ2α1

θ1α2

· lim
R→0

Ha′ =
θ2(α2 − α1)

2θ1

,
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where L’Hospital’s rule is applied twice in order to compute lim
R→0

Ha′ .

Similarly, equation (25) implies

lim
R→0

b′ =
α2

2
− θ2α1

2θ1α2

· lim
R→0

Hb′ =
2θ1α2 − θ2α1 − θ2α2

4θ1

,

where, again, L’Hospital’s rule is applied twice in order to compute
lim
R→0

Hb′ . Moreover, recall from the proof of Lemma 1 that

lim
R→0

a =
θ2

θ1

, lim
R→0

b =
1

2
− 1

2

θ2

θ1

, and lim
R→0

√
a + b2 =

1

2
+

1

2

θ2

θ1

.

Given these results and using equation (15) one computes

lim
R→0

q′ =

θ2(α2−α1)
2θ1

1 + θ2

θ1

+
2θ1α2 − θ2α1 − θ2α2

4θ1

·
(

1
2
− 1

2
· θ2

θ1

1
2

+ 1
2
· θ2

θ1

− 1

)

=

θ2(α2−α1)
2θ1

θ1+θ2

θ1

+
2θ1α2 − θ2α1 − θ2α2

4θ1

·





1
2
− 1

2
· θ2

θ1
−
(

1
2

+ 1
2
· θ2

θ1

)

1
2

+ 1
2
· θ2

θ1





=
θ2(α2−α1)

2

θ1 + θ2

+
2θ1α2 − θ2α1 − θ2α2

4θ1

·
(

− θ2

θ1

θ1+θ2

2θ1

)

=
θ2(α2−α1)

2

θ1 + θ2

−
2θ2 · 2θ1α2−θ2α1−θ2α2

4θ1

θ1 + θ2

=
1

θ1 + θ2

·
(

θ1θ2α2 − θ1θ2α1 − 2θ1θ2α2 + θ2
2α1 + θ2

2α2

2θ1

)

= − θ2(θ1 − θ2)(α1 + α2)

2θ1(θ1 + θ2)
< 0.

(26)

�

Proof of Corollary 4.

Recalling the definition of ξ :=
x∗

2

x∗

1

= θ1

θ2
q, the statements follow immediately

from Proposition 5 and Lemma 1.

�
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Completing the Proof of Proposition 4.

The following Corollary 5 extends Proposition 5 to the case in which agents
are equally skilled thereby completing the proof of Proposition 4.

Corollary 5

Suppose Conjecture 1 holds. If θ1 = θ2 and α1 > α2 > 0 then R0 = R1 = 0.

Proof.

Note that for θ1 = θ2 one has θ1α2 < θ2α1. In Lemma 1 it has already been
shown that q tends to θ2

θ1
for R → 0, which equals one if θ1 = θ2. Given that

Conjecture 1 holds, q has at most one extremum for R ≥ 0. Hence, it is
sufficient to show that q′ tends to zero for R → 0. However, this is obvious
from (26).

�
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