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informed investors who have a one period horizon. With persistence, prices reflect average 
expectations about fundamentals and liquidity trading. Informed investors engage in 
“retrospective” learning to reassess the inference about fundamentals made at the early stage 
of the trading game. This introduces strategic complementarities in the use of information and 
can yield two stable equilibria which can be ranked in terms of liquidity, volatility, and 
informational efficiency. We establish the limits of the beauty contest analogy for financial 
markets and derive a rich set of implications to explain market anomalies, and empirical 
regularities. 
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1 Introduction

We study the drivers of asset prices in a two-period market where short-term, informed,

competitive, risk-averse agents trade on account of private information and to accommo-

date liquidity supply, facing a persistent demand from liquidity traders.

Traders’ “myopia” ranks high on the regulatory agenda testifying policy makers’ con-

cern with the possibly detrimental impact it has on the market.1 The issue has a long

tradition in economic analysis. Indeed, short term trading is at the base of Keynes’ dismal

view of financial markets. According to Keynes’ “Beauty Contest,” traders’ investment

decisions are driven by the anticipation of their peers’ changing whims, rather than by the

actual knowledge of the companies they trade. In this context it has been claimed that

this type of behavior introduces a particular form of informational inefficiency, whereby

traders tend to put a disproportionately high weight on public information in their fore-

cast of asset prices (see Allen, Morris, and Shin (2006)).

In this paper we present a two-period model of short term trading with asymmetric

information in the tradition of dynamic noisy rational expectations models (see, e.g.,

Singleton (1987), Brown and Jennings (1989)). We find that when liquidity trading is

persistent there is strategic complementarity in the use of private information and provide

sufficient conditions for it to be strong enough to generate multiple and stable equilibria

which can be ranked in terms of price informativeness, liquidity, and volatility; this

allows us to establish the limits of the beauty contest analogy for financial markets, and

deliver sharp predictions on asset pricing which are consistent with the received empirical

evidence (including noted anomalies).

Suppose a risk-averse, short term trader has a private signal on the firm’s fundamen-

tals. His willingness to speculate on such signal is directly related to how much of his

information will be reflected in the price at which he liquidates. However, and impor-

tantly, it is also inversely related to his uncertainty about such a price. Indeed, the more

1While the market presence of institutional investors, a class of investors traditionally considered as
being long termists, has steadily increased in the last two decades, their holding period has sensibly de-
creased. According to the OECD (see http://www.oecd.org/daf/fin/financial-markets/48616812.
pdf), “. . . the average holding period [of institutional investors] has fallen between one and three years
in selected OECD stock exchanges over the last twenty years. Looking further back, the drop is even
greater. For instance, in the 1980s, the average holding period in the New York stock exchange was over
5 years, compared to 5 months today.” In a recent policy paper, Haldane and Davies (2011) look at a
large panel of UK and US listed companies over the period 1980–2009, and uncover compelling evidence
of a short term investor bias which has worsened in the last 10 years of the sample. According to their
findings, due to myopic behavior a 5-year ahead cash flow ends up being discounted at a rate that would
better suit a 8-year ahead cash flow, while for 10- or 30-year ahead cash flows the effect is even more
dramatic.
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volatile the price at which he unwinds, the riskier his strategy, and the less willing to

exploit his private signal the trader becomes. But in a market with asymmetric infor-

mation, a reduced response to private information can feed back in the volatility of the

price. This is because, the less information is transmitted to the price, the larger is the

contribution of non-fundamentals trades to price volatility. Therefore, the willingness to

act on private information depends on the trader’s uncertainty over the liquidation price,

and at the same time affects such uncertainty. In this paper we show that this two-sided

loop can be responsible for the existence of multiple, stable equilibria that can be ranked

in terms of informational efficiency, liquidity, and volatility.

The crux of our argument revolves around a particular type of inference effect from the

information reflected by prices that arises when liquidity traders’ positions are correlated

across trading dates. Indeed, with persistence second period investors can retrospectively

reassess the first period inference about the fundamentals, based on the new evidence

gathered in the second period. We thus term this effect “retrospective inference.” In a

market with risk averse, asymmetrically informed investors, it is well-known that the price

impact of trades arises from the sum of an “inventory” component, and an “inference”

component.2 While in a static market the two terms are positive, in a dynamic market

retrospective inference can make the inference component turn negative. This diminishes

the price impact of trades, reducing the volatility of the asset price, and boosting traders’

response to private information. The intuition is as follows.

Suppose that second period informed investors observe a large demand for the asset. If

in the first period investors traded aggressively (weakly) on their private information, the

first period price is very (poorly) informative about the fundamentals, but poorly (very)

informative about liquidity traders’ demand. However, to price the asset risk averse

investors also need to correctly estimate the demand of liquidity traders (the fundamen-

tals). Suppose they attribute the high demand realization to liquidity traders (informed

investors). With persistence, this implies that a high demand for the asset from liquid-

ity traders (informed investors) also affected the first period aggregate demand. But for

a given price realization, this implies a lower (higher) expectation of the fundamentals.

Thus, in this case a large aggregate demand realization leads second period investors to

revise down (up) their expectation of the liquidation value. This, in turn, implies that

the inference component of the price impact offsets (reinforces) the inventory component

2The former captures the price variation due to the the change in asset exposure investors experience
when clearing the market; the latter captures the price change due to the inference investors make from
the aggregate demand for the asset.
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making the latter small (large). This diminishes (increases) first period investors’ uncer-

tainty over the price at which they unwind, boosting (lowering) their response to private

signals.

We show that when the retrospective inference loop is present but not too strong,

two stable equilibria arise. In one equilibrium (which we call the “High” Information

Equilibrium, HIE) prices are very good signals of the underlying fundamentals, volatility

is low, and liquidity is high. The other equilibrium, (which we call the “Low” Infor-

mation Equilibrium, LIE), displays instead opposite properties in terms of informational

efficiency, volatility, and liquidity. Thus, a first contribution of our paper is to refute the

view that short term trading always amplifies demand shocks or is necessarily conducive

to poorly informative prices, and “excess” volatility.3 When instead the retrospective in-

ference loop is very strong, the HIE becomes unstable, so that the only likely equilibrium

to arise is the LIE.

Our analysis shows that the strength of the retrospective inference loop depends on

traders’ reliance on prices as a source of information for their decisions. For example, when

private signals are very precise compared to exogenous public information, prices are more

informative, the loop is strong, and the HIE is unstable. When the public signal precision

increases, the loop weakens, making the HIE stable. Finally, when public information

increases further, the HIE disappears, and uniqueness occurs at the LIE. Thus, our paper

shows that public information can have an active role in selecting equilibria in a market

with short term trading.

Along the HIE, the inference component of liquidity is negative. As explained above,

this finding is due to second period traders revising downwards their first period assess-

ment of the payoff in the presence of a positive demand shock, because of retrospective

inference. Interestingly, this finding has an empirical counterpart, as some spread de-

componsition models find that, consistently with the prediction of the HIE, the inference

component of the spread can be negative.4 Thus, our model provides a theoretical jus-

tification for this empirical finding, relating it to the informational efficiency of asset

3Part of the debate on the consequences of short term trading revolves precisely around the alleged
negative impact it has on the informativeness of asset prices (see, e.g., the recently published “Kay review
of UK equity markets and long term decision making,” available at http://lawcommission.justice.

gov.uk/docs/kay-review-of-equity-markets-final-report.pdf).
4See for instance Huang and Stoll (1997), Van Ness, Van Ness, and Warr (2001), and Henker and

Wang (2006). Hamm (2010) investigates the effect of ETFs on the liquidity of underlying stocks and
estimates a spread decomposition model based on Madhavan, Richardson, and Roomans (1997). In
several of her findings the inference component of the spread is negative, which leads to the exclusion of
such “out-of-range” observations.
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prices.

Our paper also shows that in the HIE the autocovariance of short-term returns is

always positive, while along the LIE this only occurs when liquidity trading is sufficiently

persistent. Given that liquidity trading predictability is an essential ingredient of equi-

librium multiplicity, momentum is thus due to persistence. However, the patterns of

prices and price informativeness implied by the two equilibria are markedly different.

In particular, momentum along the HIE (LIE) is a sign that prices are rapidly (slowly)

converging towards the full information value. Together with our finding on the sign of

the inference component of liquidity, this offers a way to empirically discriminate across

the two equilibria.

Finally, our paper shows that the informational properties related to the beauty con-

test nature of prices depend on the equilibrium that arises. Along the LIE, we find that

traders put a high weight on public information. However, along the HIE traders over-

weight aggregate (and noisy) private information. This enables us to qualify the results

obtained by Allen, Morris, and Shin (2006).

The rest of the paper is organized as follows. In the next section we discuss the

literature related to our paper. We then analyze the static benchmark. In section 4, we

study the two-period model and present the multiplicity result, relating it to liquidity

traders’ persistence. In the following sections we relate our results to the literature

on Higher Order Expectations and derive asset pricing implications. The final section

summarizes our results and discusses their empirical implications. Most of the proofs are

relegated to the appendix.

2 Related literature

Our results are related to and have implications for three strands of the literature.

First, our paper is related to the literature that investigates the relationship between

the impact of short-term investment horizons on prices and investors’ reaction to their

private signals (see, e.g. Singleton (1987), Brown and Jennings (1989), Froot, Scharfstein,

and Stein (1992), Dow and Gorton (1994), Vives (1995), Cespa (2002), Albagli (2011)

and Vives (2008) for a survey). If prices are semi-strong efficient (as in Vives (1995))

traders do not require a compensation to increase their exposure to the asset (and the

inventory component of the price impact disappears). As a consequence, the retrospective

inference loop breaks down, and a unique equilibrium obtains. Brown and Jennings

(1989), instead analyze a model in which prices are not semi-strong efficient, with short
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term investors and where liquidity trading can be correlated. Their work provides a

rationale for “technical analysis,” showing how in the absence of semi-strong efficiency

the sequence of transaction prices provides more information than the current stock price

to forecast the final payoff. We argue that lacking semi-strong efficiency, in the presence

of correlated liquidity trading, second period investors can retrospectively evaluate the

inference made in the first period, which generates strategic complementarities in the use

of private information, and potentially yields multiple equilibria.

Other authors find that in the presence of short-term traders multiple equilibria can

arise. In this respect, part of the literature assumes an infinite horizon economy. In this

case, multiplicity arises out of the bootstrap nature of expectations in the steady state

equilibrium of an overlapping generations model with two-period lived investors. Spiegel

(1998) studies the model with symmetric information.5 Watanabe (2008) extends the

model of Spiegel (1998) to account for the possibility that investors have heterogeneous

short-lived private information.6 Other authors instead generate multiple equilibria in

finite horizon economies. Zhang (2012) shows that short-term trading generates multiple

equilibria that can be ranked in terms of price informativeness. However, multiplicity

there arises at the information acquisition stage, while we find multiplicity in the re-

sponse to private information. Furthermore, public information in the low information

equilibrium crowds out the production of private information, which is the opposite of

what happens in our case. Similarly, Avdis (2012) also finds that short-term trading can

generate multiple equilibria in information acquisition. Finally, Chen, Huang, and Zhang

(2012) analyze a model with short-term trading and in which traders receive signals of

different precisions. They show that with transient liquidity trading, multiple equilibria

in the response to private information can arise. Some of the effects in their model con-

trast with ours. In particular, one of their finding is that when public precision is high

(low), improved public information improves (lowers) price informativeness. This effect

does not arise in our model.

Second, the paper is related to the work that studies the influence of Higher Order

Expectations (HOEs) on asset prices (see Allen, Morris, and Shin (2006), Bacchetta and

5Assuming the absence of private information, our model is akin to a finite horizon version of Spiegel
(1998) and it is possible to show that in this case a unique equilibrium obtains.

6In his case too the analysis concentrates on the steady state equilibrium, which does not make his
results directly comparable to ours. Furthermore, in Watanabe (2008) fundamentals information is
short lived, whereas in our model it is long lived, which substantially changes the nature of the inference
problem faced by first period investors. Relatedly, Dennert (1991) studies an OLG extension of Grossman
and Stiglitz (1980), concentrating on the steady state solution. In his setup too private information is
short-lived.
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van Wincoop (2008), Kondor (2012), and Nimark (2007)). Allen, Morris, and Shin (2006)

find, in a model identical to ours but with transient liquidity trading, that when prices are

driven by HOEs about fundamentals, they underweight private information (with respect

to the optimal statistical weight) and are farther away from fundamentals compared to

consensus. We show that in the unique equilibrium that obtains when liquidity trading is

transient, investors dampen their response to private information and this result holds. A

similar result also holds when liquidity trading is persistent, in the LIE. However, along

the HIE the price is more strongly tied to fundamentals compared to consensus, and

overweights average private information (compared to the optimal statistical weight).7

Therefore, the beauty contest feature of asset prices does not necessarily imply that prices

are worse estimators of fundamentals compared to consensus, nor that they exhibit inertia

or react slowly to changes in the fundamentals. Bacchetta and van Wincoop (2006) study

the role of HOEs in the FX market. They show that HOEs worsen the signal extraction

problem that investors face when observing changes in the exchange rate that originate

from trades based on fundamentals information and hedging motives. In our setup this

happens in the LIE, whereas in the HIE, investors’ strong reaction to private information

eases off the signal extraction problem.

Finally, the paper is also related to the literature on limits to arbitrage. In this

respect, our multiplicity result is reminiscent of De Long et al. (1990), but in a model

with rational traders, and a finite horizon. Thus, our paper naturally relates to the strand

of this literature that views limits to arbitrage as the analysis of how “non-fundamental

demand shocks” impact asset prices in models with rational agents (Gromb and Vayanos

(2010), Vayanos and Woolley (2013)). Our contribution in this respect is twofold: first,

we prove that when such shocks display persistence, they impact in a non-trivial way

the information extraction process of rational investors, generating implications for price

efficiency and market liquidity. Second, we relate these findings to the literature on return

predictability. In fact, along the HIE, we show that momentum arises at short horizons,

while at long horizons reversal occurs in any equilibrium. Our model also predicts that

momentum is related to a high volume of informational trading, in line with the evidence

in Llorente, Michaely, Saar, and Wang (2002).

7In a related paper, we show that a similar conclusion holds in a model with long term investors (see
Cespa and Vives (2012)).
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3 The static benchmark

Consider a one-period stock market where a single risky asset with liquidation value v,

and a risk-less asset with unitary return are traded by a continuum of risk-averse, in-

formed investors in the interval [0, 1] together with liquidity traders. We assume that

v ∼ N(v̄, τ−1v ). Investors have CARA preferences (denote by γ the risk-tolerance coeffi-

cient) and maximize the expected utility of their wealth: Wi = (v − p)xi.8 Prior to the

opening of the market every informed investor i obtains private information on v, receiv-

ing a signal si = v + εi, εi ∼ N(0, τ−1ε ), and submits a demand schedule (generalized

limit order) to the market X(si, p) indicating the desired position in the risky asset for

each realization of the equilibrium price.9 Assume that v and εi are independent for all

i, and that error terms are also independent across investors. Liquidity traders submit

a random demand u (independent of all other random variables in the model), where

u ∼ N(0, τ−1u ). Finally, we make the convention that, given v, the average signal
∫ 1

0
sidi

equals v almost surely (i.e. errors cancel out in the aggregate:
∫ 1

0
εidi = 0).10

In the above CARA-normal framework, a symmetric rational expectations equilibrium

(REE) is a set of trades contingent on the information that investors have, {X(si, p) for i ∈
[0, 1]} and a price functional P (v, u) (measurable in (v, u)), such that investors in [0, 1]

optimize given their information and the market clears:∫ 1

0

xidi+ u = 0.

Given the above definition, it is easy to verify that a unique, symmetric equilibrium

in linear strategies exists in the class of equilibria with a price functional of the form

P (v, u) (see, e.g. Admati (1985), Vives (2008)). The equilibrium strategy of an investor

i is given by

X(si, p) =
a

αE
(E[v|si, p]− p),

where

a = γτ ε, (1)

denotes the responsiveness to private information, τ i ≡ (Var[v|si, p]])−1, and αE = τ ε/τ i

is the optimal statistical (Bayesian) weight to private information. Imposing market

8We assume, without loss of generality with CARA preferences, that the non-random endowment of
informed investors is zero.

9The unique equilibrium in linear strategies of this model is symmetric.
10See Section 3.1 in the Technical Appendix of Vives (2008) for a justification of the convention.
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clearing the equilibrium price is given by

p =

∫ 1

0

Ei[v]di+
αE
a
u (2)

= E[v|p] + ΛE[u|p], (3)

where E[u|p] = a(v − E[v|p]) + u, and

Λ =
Vari[v]

γ
. (4)

Equations (2), and (3) show that the price can be given two alternative representations.

According to the first one, the price reflects the consensus opinion investors hold about the

liquidation value plus the impact of the demand from liquidity traders (multiplied by the

risk-tolerance weighted uncertainty over the liquidation value). Indeed, in a static market

owing to CARA and normality, an investor’s demand is proportional to the expected gains

from trade E[v|si, p] − p. As the price aggregates all investors’ demands, it reflects the

consensus opinion
∫ 1

0
Ei[v]di shocked by the orders of liquidity traders.

According to (3), the equilibrium price reflects investors’ estimates of the fundamen-

tals v (the “semi-strong” efficient price E[v|p]) and of liquidity traders’ demand u. Indeed,

risk averse investors demand a compensation to accommodate liquidity traders’ orders.

With differential information, these are not perfectly observable from the price. Hence,

such a compensation is increasing in investors’ estimate E[u|p] scaled by Λ. In view

of (4), for a given E[u|p], the higher is investors’ uncertainty about the liquidation value

or their risk aversion, the higher is Λ, and the higher is this compensation. Therefore,

Λ captures the “inventory” component of market liquidity.11 Liquidity traders’ orders

have an additional effect on the price, through their impact on the semi-strong efficient

price E[v|p]. This effect induces an inference component which adds to the inventory

component, implying that the (reciprocal of the) liquidity of the market is measured by:

λ ≡ ∂p

∂u
= Λ + (1− αE)

aτu
τ
,

11When risk averse investors accommodate an expectedly positive demand of liquidity traders, they
require a compensation against the possibility that the liquidation value is higher than the public ex-
pectation (if instead E[u|p] < 0, investors require to pay a price lower than E[v|p] to cover the risk that
v < E[v|p]). Such a compensation is larger, the higher is the uncertainty investors face (captured by
Λ) and the wider is their expected exposure to the liquidity traders’ shock (their expected inventory,
E[u|p]).
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where τ = 1/Var[v|p] = τ v + a2τu.
12 Note that other things equal, in a static setup the

inference component magnifies the price impact of liquidity traders’ orders.

4 A two-period market with short term investors

Consider now a two-period extension of the market analyzed in the previous section. At

date 1 (2), a continuum of short-term investors in the interval [0, 1] enters the market,

loads a position in the risky asset which it unwinds in period 2 (3). Investor i has CARA

preferences (denote by γ the common risk-tolerance coefficient) and maximizes the ex-

pected utility of his short term profit πin = (pn+1 − pn)xin, n = 1, 2 (with p0 = v̄ and

p3 = v).13 The short term horizons of investors can be justified on grounds of incen-

tive reasons related to performance evaluation, or because of difficulties associated with

financing long-term investment in the presence of capital market imperfections (see Holm-

ström and Ricart i Costa (1986), and Shleifer and Vishny (1990)). An investor i who

enters the market in period 1 receives a signal si = v + εi which he recalls in the second

period, where εi ∼ N(0, τ−1ε ), v and εi are independent for all i. Furthermore, we assume

that in the second period a signal sP = v + η is publicly disclosed to the market, where

η ∼ N(0, τ−1η ) is independent of v and εi for all i. We make the convention that, given

v, the average private signal
∫ 1

0
sidi equals v almost surely (i.e., errors cancel out in the

aggregate
∫ 1

0
εidi = 0).

We restrict attention to equilibria in linear demand functions, and denote byX1(si, p1) =

a1si−ϕ1(p1), and X2(si, sP , p1, p2) = a2si+ bsP −ϕ2(p1, p2) an investor’s desired position

in the risky asset for each realization of the equilibrium price at dates 1 and 2. The

constants an, and b respectively denote an investor’s weight to private information at

date n and his weight to the public signal. The function ϕn(·) is a linear function of the

equilibrium prices.14

The position of liquidity traders is assumed to follow an AR(1) process:

θ1 = u1

θ2 = βθ1 + u2,
(5)

12The adverse selection effect comes from the signal extraction problem dealers face in this market:
since a > 0, if investors on average have good news they buy the asset, and E[v|p] increases, reflecting
this information. However, this effect cannot be told apart from the buying pressure of liquidity traders,
which also makes E[v|p] increase.

13We assume, without loss of generality, that the non-random endowment of investors is zero.
14The equilibria in linear strategies of this model are symmetric.
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where β ∈ [0, 1] and {u1, u2} is an i.i.d. normally distributed random process (indepen-

dent of all other random variables in the model) with un ∼ N(0, τ−1u ). Other authors have

adopted this assumption for liquidity traders, among which Singleton (1987), Campbell

and Kyle (1993), He and Wang (1995), Biais, Bossaerts, and Spatt (2010) and Cespa and

Vives (2012). If β = 1, {θ1, θ2} follows a random walk and we are in the usual case of

independent liquidity trade increments: u2 = θ2 − θ1 is independent from u1 (e.g., Kyle

(1985), Vives (1995)). If β = 0, then liquidity trading is i.i.d. across periods (this is the

case considered by Allen et al. (2006)).

Persistence in liquidity trading can be given several possible interpretations, depend-

ing on the frequency of observations. First, at a daily or intra-daily frequency, assuming

persistence is a simple way to capture the need of liquidity traders to break down a large

order in a series of smaller orders to minimize price impact, and is consistent with several

empirical findings (e.g., Griffin, Harris, and Topaloglu (2003), and Chordia and Subrah-

manyam (2004)). Next, Coval and Stafford (2007) show that mutual funds faced with

aggregate redemption orders engage in “fire sales,” (and purchases) creating a contempo-

raneous, uninformed, temporary negative (positive) price pressure.15 Coupling this with

the evidence documenting that capital flows to and from mutual funds are strongly related

to past performance (see, e.g. Chevalier and Ellison (1997), Sirri and Tufano (1998)), neg-

ative shocks to mutual funds’ capital can affect funds’ trades yielding a negative (positive)

impact on their performance, and feeding back to the funds’ capital outflows (inflows).

Thus, at a lower frequency, liquidity trading persistence can be seen as a reduced form as-

sumption for the effect of the performance-flow relationship on mutual funds’ holdings.16

Finally, note that while persistent liquidity trading is taken as a primitive of the model,

it can be shown to arise endogenously in a model in which liquidity traders are replaced

by rational hedgers with different investment horizons (see Cespa and Vives (2013)).17

15More in detail, Coval and Stafford (2007) argue that “fire sales” occur in mutual funds following
specialized investment strategies and with significant overlap in their holdings.

16Evidence of such a source of persistence is provided by Lou (2012), who finds that the funds’ flow
induced trades are highly persistent at a quarterly frequency.

17More specifically, suppose that we replace the first period liquidity traders with a set of hedgers in
the interval [0, 1], each of whom receives an idiosyncratic, normally distributed endowment shock θi1
(independent from the other random variables of the model). All hedgers take a position in the asset at
date 0. However, a fraction β of them (denoted by HL) have a “long term” horizon, and hold such position
until the liquidation date; the complementary fraction (denoted by HS) has a “short term” horizon, and
liquidates the position at date 2. In this model it can be shown that, in a linear equilibrium, persistence
corresponds to the β-weighted relative responsiveness to the endowment shock displayed by HL. As
hedgers’ responsiveness are endogenous, with asymmetric information this introduces a participation
externality (similar to the one in Pagano (1989), Admati and Pfleiderer (1988), and Dow (2005)) where
hedgers decisions to trade in the first period depend on market liquidity, which in turn also depends on

11



We denote by Ei1[Y ] = E[Y |si, p1], Vari1[Y ] = Var[Y |si, p1], E1[Y ] = E[Y |p1], and

Var1[Y ] = Var[Y |p1], respectively the expectation and variance of the random variable

Y formed by a date 1 investor using private and public information, and only public

information. Similar definitions for date 2 investors yield Ei2[Y ] = E[Y |si, sP , p1, p2],
Vari2[Y ] = Var[Y |si, sP , p1, p2], E2[Y ] = E[Y |sP , p1, p2], and Var2[Y ] = Var[Y |sP , p1, p2].
The variables τn and τ in denote the precisions of the investors’ forecasts of v based only on

public and on public and private information: τn = (1/Varn[v]), and τ in = (1/Varin[v]).

Letting αEn = τ ε/τ in, we have Ein[v] = αEnsin + (1− αEn)En[v].

4.1 Equilibrium pricing and restrospective inference

We start by giving a general description of the equilibrium. The following proposition

characterises equilibrium prices:

Proposition 1. At a linear equilibrium:

1. The price is given by

pn = αPn

(
v +

θn
an

)
+ (1− αPn)En[v], (6)

where θn = un + βθn−1, and an, αPn denote, respectively, the responsiveness to

private information displayed by investors and by the price at period n (see expres-

sions A.5a, A.5b, A.10, and A.11). We have that αP2 = αE2 < 1.

2. Let ∆a2 = a2 − βa1, and denote by z1 ≡ a1v + θ1, z2 ≡ ∆a2v + u2 the noisy

informational additions about v generated by informed investors, respectively in

period 1 and 2. Then z1 is observationally equivalent (o.e.) to p1, and given sP ,

{z1, z2} is o.e. to {p1, p2}.

According to (6), at period n the equilibrium price is a weighted average of the market

expectation about the fundamentals v, and the (noisy) average private information held

by investors. Rearranging this expression yields

pn − En[v] =
αPn

an
(an (v − En[v]) + θn) (7)

= ΛnEn[θn],

hedgers’ decision to trade. This introduces a new loop that can generate multiplicity with different levels
of hedging activity.
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where Λn ≡ αPn/an, implying that there is a discrepancy between pn and En[v] which, as

in the static market (see (3)), captures a premium which is proportional to the expected

stock of liquidity trading that investors accommodate at n:

Corollary 1. At a linear equilibrium, the price incorporates a premium above the semi-

strong efficient price:

pn = En[v] + ΛnEn[θn], (8)

where Λ2 = Vari2[v]/γ, and

Λ1 =
Vari1[p2]

γ
+ βΛ2. (9)

Comparing (9) with (4) shows that short term trading affects the inventory component

of liquidity. In a static market when investors absorb the demand of liquidity traders,

they are exposed to the risk coming from the randomness of v. In a dynamic market,

short term investors at date 1 face instead the risk due to the randomness of the following

period price (at which they unwind). As liquidity trading displays persistence, second

period informed investors absorb part of first period liquidity traders’ position and this

contributes to first period investors’ uncertainty over p2, yielding (9).

As in the static benchmark, besides the impact of the inventory component Λn, with

differential information the price impact also reflects an inference component as the fol-

lowing corollary shows:

Corollary 2. Let a0 = 0. At a linear equilibrium,

p1 = λ1z1 + (1− λ1a1)v̄ (10a)

p2 = λ2z2 +
τ η
τ i2

sP +
γτ 1E1[v] + βz1

γτ i2
, (10b)

where λn denotes the price impact of trades in period n = 1, 2 and is given by:

λn ≡
∂pn
∂un

=
αPn

an
+ (1− αPn)

∆anτu
τn

. (11)

According to (11) the inference component of liquidity at n = 2 is captured by

(1− αP2)
∆a2τu
τ 2

. (12)

Differently from the static benchmark, in a dynamic market the sign of this component

13



depends on the β-weighted net position of informed investors yielding net trading inten-

sity ∆a2 = a2−βa1. Indeed, denoting by xn =
∫ 1

0
xindi, n = 1, 2, market clearing implies

that:

x1 + θ1 = 0, and x2 + βθ1 + u2 = 0 =⇒ x2 − βx1 + u2 = 0.

As a result, the impact of private information in the second period depends on the change

in informed investors’ position as measured by ∆a2 = a2−βa1. This implies that the sign

of the inference component depends on the relative magnitude of a1 compared to a2/β.18

Therefore, the first period response to private information affects the informational in-

novation extracted from p1 and, when β > 0, also the one extracted from p2 (that is, z1,

and z2), as well as the sign of the inference component in λ2.

At the same time, due to short horizons a1 depends on the impact of new fundamentals

information in the second period. This is because short term investors in the first period

trade according to

X1(si, p1) = γ
Ei1[p2]− p1

Vari1[p2]
=⇒ a1 = γ

Weight to si in Ei1[p2]

Vari1[p2]
. (13)

The above expression implies that a1 is directly related to the relevance of the private

signal to forecast p2, and inversely related to investors’ uncertainty about p2. Indeed,

a private signal which is more informative about p2 heightens investors’ confidence in

their forecast of the price at which they liquidate. On the other hand, when investors

are more risk tolerant, or face lower uncertainty about p2, they bear less the risk of an

adverse price movement in the second period. Both effects thus lead investors to respond

more aggressively to their private signal. Note in particular, that for any public signal

realization, the extent to which p2 differs from p1 depends on λ2 (see (10b)). This implies

that a larger value for λ2, other things equal, increases first period investors’ uncertainty

over p2.

Summarizing, the first period response to private information depends on the impact

of new information in p2, but at the same time it also affects such impact through its

effect on z2 and λ2. This two-sided loop gives rise to strategic complementarities in the

use of private information, which can yield multiple equilibria. The crux of our argument

revolves around a particular type of inference effect from the information reflected by

prices that arises when β > 0. When liquidity trading displays persistence, second period

investors can retrospectively reassess the first period inference about the fundamentals,

18In the appendix we show that αP2 = αE2 , so that 1− αP2 ∈ (0, 1).
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based on the new evidence gathered in the second period. We thus term this effect

“retrospective inference.”

Suppose that second period informed investors observe a large demand for the asset

(i.e., z2 high). If a1 is very high (small), the first period price is very (poorly) informative

about v, but poorly (very) informative about θ1 (since z1 = a1v + θ1). However, to price

the asset investors need to correctly estimate θ2 (v) (see (8)). Suppose they attribute the

high demand realization to liquidity traders (informed investors). As β > 0, this implies

that a high demand for the asset from liquidity traders (informed investors) also affected

the first period aggregate demand. But for a given price realization p1, this implies a

lower (higher) expectation of the fundamentals (in this respect, retrospective inference

plays the same role of the “adverse fundamental” effect in Goldstein and Yang (2012)).19

Thus, in this case a large aggregate demand realization leads second period investors

to revise down (up) their expectation of the liquidation value. This, in turn, implies

that the inference component in λ2 offsets (reinforces) the inventory component. As a

consequence, the second period price impact of trade is small (large), which diminishes

(increases) first period investors’ uncertainty over p2, boosting (lowering) their response

to private signals.20

Consistent with the above intuition, we obtain the following result:

Proposition 2. Suppose τ η > 0.

• If β > 1/2, γ2τ ετu > 2(2β − 1)/(3− 2β), and τ η ≤ τ̂ η (for some τ̂ η > 0 defined in

the appendix, see (A.15c)), there always exist at least three linear equilibria where

a2 = γτ ε and a1 ∈ {a∗1, a∗∗1 , a∗∗∗1 }, with a∗1 ∈ (0, a2),

a∗∗1 ∈
(

1 + γτua2
γβτu

,
2 + 3γτua2

2γβτu

)
, a∗∗∗1 >

2 + 3γτua2
2γβτu

,

implying a∗1 < a2 < a∗∗1 < a∗∗∗1 . When

a1 =

 a∗1, then a2 − βa∗1 > 0, and λ∗2 > 0,

a∗∗1 , a
∗∗∗
1 , then a2 − βa∗∗1 < 0, and λ∗∗2 < 0.

(14)

19This is because, for given p1 and z1 = a1v+ θ1, a higher value for θ1 provides stronger evidence that
the fundamentals v is low.

20See Ganguli and Yang (2009), and Avdis (2012) for complementarities in information acquisition in
related models.
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Along these equilibria:

τ ∗n < τ ∗∗n < τ ∗∗∗n , n = 1, 2. (15)

• If β = 0, there exists a unique equilibrium with a2 = γτ ε,

γ2a2τu(a
2
2τu + τ ε + τ η)

1 + γ2τu(a22τu + 2τ ε + τ η)
< a∗1 < a2,

and λ∗2 > 0.

According to the above proposition, multiplicity requires that private information is

strongly reflected in prices (γ2τ ετu large), persistence (β) is high, and public precision (τ η)

is low. All of these conditions strengthen the retrospective inference loop. In view of (15)

we refer to the three equilibria described in the Proposition as the Low, Intermediate,

and High information equilibrium (LIE, IIE, and HIE). In the appendix we show that the

first period equilibrium responsiveness obtains as a fixed point of the following function

ψ(a1) = γ
(λ2∆a2 + τ η/τ i2)αE1

(λ2∆a2 + τ η/τ i2)2/τ i1 + λ22/τu + τ η/τ 2i2
. (16)

Numerical analysis shows that this function crosses the 45-degree line at most three

times, suggesting the three equilibria described in Proposition 2 are the only ones that

can arise (see Figure 1). Our numerical results further show that these equilibria can also

be ranked in terms of second period price impact (λ2), inventory component of liquidity

(Λn), and conditional volatility (Var1[p2]). More in detail, we have

Numerical Result 1. When multiple equilibria arise

λ∗2 > |λ∗∗2 | > |λ∗∗∗2 | (17a)

Λ∗n > Λ∗∗n > Λ∗∗∗n (17b)

Var1[p2]
∗ > Var1[p2]

∗∗ > Var1[p2]
∗∗∗. (17c)

Along the HIE, ∆a2 < 0, and the inference component of liquidity is negative. This

finding is consistent with second period traders revising downwards their first period

assessment of the payoff in the presence of a positive demand shock, due to retrospective

inference. This result is also consistent with the findings of some spread decomponsition

models (see for instance Huang and Stoll (1997), Van Ness, Van Ness, and Warr (2001),
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Figure 1: The best response mapping (16), for β = 1, γ = 1/2, τu = τ v = 10, τ η = 3,
and τ ε = 7.5.

and Henker and Wang (2006)).21 Thus, our model provides a theoretical justification for

this empirical finding.

In Figure 2 we display the effects of a change in the values of public and private signal

precision, persistence, and liquidity traders’ demand precision on the best response (16).22

As the figures show, uniqueness always obtains at the LIE and requires high public

precision, or low private precision, persistence, or liquidity traders’ precision. Intuitively,

in all of these cases the endogenous public signal (the price) becomes relatively less

informative than the exogenous public signal (sP ), and second period investors rely less

on price information. This weakens the self-reinforcing loop due to retrospective inference,

yielding a unique equilibrium.

In Figure 3 we show that the effect of an increase in public signal precision on a1

depends on the equilibrium that arises. Along the HIE (LIE), a larger τ η leads to a

reduction (increase) in a1. The reason for this non-monotonicity is that a more precise

21Interestingly, in Huang and Stoll (1997) the assumption is made that market orders are generated
by an AR(1) process, and the estimated parameter of such process turns out to be positive and close to
1. Negative inference components also occur with different spread decomposition models. For example,
Hamm (2010) investigates the effect of ETFs on the liquidity of underlying stocks and estimates a spread
decomposition model based on Madhavan, Richardson, and Roomans (1997). In several of her findings
the inference component of the spread is negative, which leads to the exclusion of such “out-of-range”
observations. See also Foucault, Pagano, and Roöell (2013), Ch. 5.2.2.

22Ex-ante public precision has little effect on the equilibrium, while the degree of risk tolerance has an
effect similar to the one of private precision.
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Figure 2: Comparative statics. We plot the best response (16) for the parameters’ value
of Figure 1 (in orange) and show the effect of a change in the values of τ η, τ ε, β, and
τu (dashed, blue curve). More in detail, in panel (a) we increase public signal precision
to τ η = 5, in panel (b) we decrease private signal precision to τ ε = 5, in panel (c) we
decrease liquidity traders’ persistence to β = .7, and in panel (d) we decrease the precision
of liquidity traders’ demand to τu = 3.5.

public signal reduces traders’ reliance on price information to forecast the fundamentals.

Thus, along both equilibria the effect of retrospective inference is weaker in the second

period. In the HIE (LIE) this increases (decreases) first period investors’ uncertainty

about p2, leading to a decrease (increase) in a1.
23

When the public signal is totally uninformative, for β > 0, the retrospective inference

loop becomes extremely strong. In this case, the best response (16) becomes discontinuous

at the IIE (which therefore disappears, see Figure 3), and we always obtain two equilibria

which can be computed in closed form:

23Along the HIE, second period investors faced with a large positive demand for the asset correct
downwards their estimate of the fundamentals, which implies that the inference component of λ2 is
negative. Other things equal, a more precise public signal reduces the absolute value of the inference
component, which works to increase first period investors’ uncertainty about p2. In the LIE, the opposite
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Figure 3: The best response mapping (16) when the public signal’s precision ranges in the
set {0, 1/10, 1/2, 3, 5}. Other parameters’ values β = 1, γ = 1/2, τu = τ v = 10, τ ε = 7.5
and τ η = 0. Note that when τ η = 0, ψ(·, τ η) diverges at the point â1 ≡ (1+γτua2)/(γβτu),
and the IIE disappears. For τ η > 0, we have ψ(â1, .1) = 3.75864, ψ(â1, .5) = 3.75862,
ψ(â1, 3) = 3.7585, and ψ(â1, 5) = 3.7584.

Corollary 3. Suppose τ η = 0.

• If β > 0, there always exist two linear equilibria where a2 = γτ ε, and a1 ∈ {a∗1, a∗∗∗1 },
with a∗1 < a2 < a∗∗∗1 (see (A.19), and (A.20), in the appendix for explicit expres-

sions). When

a1 =

 a∗1, then a2 − βa∗1 > 0, and λ∗2 > 0, (LIE)

a∗∗∗1 , then a2 − βa∗∗∗1 < 0, and λ∗∗∗2 < 0, (HIE).

Furthermore, |λ∗∗∗2 | < λ∗2, Λ∗∗∗n < Λ∗n, prices are more informative, and Var1[p2] is

lower along the HIE.

• If β = 0, there exists a unique equilibrium with a2 = γτ ε,

a∗1 =
γa22τu

1 + γa2τu
< a2.

occurs.
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Remark 1. We can draw a parallel between our model and the models with a feedback

effect of actions of investors to the value of the asset. In those papers (e.g, Ozdenoren

and Yuan (2008), Bond, Goldstein, and Prescott (2010), Dow, Goldstein, and Guembel

(2011), Goldstein, Ozdenoren, and Yuan (2013)) multiplicity of equilibria driven by com-

plementarities also arises due to the impact of the price on the value of the asset. In

our paper the price at n = 2, p2 represents the value of the asset from the perspective

of investors at n = 1 and their trading does affect p2. This corresponds to the feedback

effect from prices to values in the one-period feedback model. In Bond, Goldstein, and

Prescott (2010) it is shown that if agents use market prices when deciding on corrective

actions (say the board considers firing the CEO when the price of the stock is low),

prices adjust to reflect this use and potentially become less revealing. In Ozdenoren and

Yuan (2008), prices are informative about both the fundamentals and the likelihood of

coordination among informed investors. Multiplicity occurs then when the price is more

informative of the coordination motive rather than fundamentals. In this paper, the

strength of the feedback effect depends on the sensitivity of the asset value to the invest-

ment in the risky asset. The parallel in our model is the degree of persistence in liquidity

trading. Multiplicity tends to arise in both cases when the strength of the feedback effect

is large. Similarly as in our model, multiplicity arises also when the precision of private

information is high and base liquidity trading low. However, differently from Ozdenoren

and Yuan (2008), where an increase in public precision leads to a higher coordination

motive and multiple equilibria, in our model with no coordination motive, the result is

the opposite.

4.1.1 Stability

In this section we use the best response (16) to perform a stability analysis of the equi-

libria. To analyze the stability of equilibrium, consider the following argument. Assume

that the market is at an equilibrium point ā1, so that ā1 = ψ(ā1). Suppose now that

a small perturbation to ā1 occurs. As a consequence, first period investors modify their

weights to private information so that the aggregate weight becomes ā′1 = ψ(ā′1). If the

market goes back to the original ā1 according to the best reply dynamics with the best

response function ψ(·), then the equilibrium is stable. Otherwise it is unstable. Thus,

in a stable (unstable) equilibrium if investors other than i put a lower weight on their

signals then the price is noisier and investor i reacts by increasing less (more) than pro-

portionally the weight on his signal and contributing less (more) than proportionally to
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restore price informativeness. Formally, we have the following definition:

Definition 1 (Stability). An equilibrium is stable (unstable) if and only if its correspond-

ing value for a1 is a stable (unstable) fixed point for the best response function ψ(·) (i.e.,

if and only if its corresponding value for a1 satisfies |ψ′(a1) < 1|).

When τ η > 0, if multiple equilbria arise the IIE is always unstable.24 On the contrary,

in our simulations the LIE is always stable. Finally, the behavior of the HIE is more

complex. More in detail, for the HIE to be stable, we require private signals not to be

“too” precise compared to the public signal. Indeed, in the extreme case when τ η = 0,

we can formally analyze the best response mapping and obtain the following result:

Corollary 4. When τ η = 0, (i) ψ′(a1) < 0, and (ii) the LIE (HIE) is stable (unstable)

with respect to the best response dynamics:

|ψ′(a∗∗∗1 )| > 1 > |ψ′(a∗1)| . (18)

Intuitively, when private information is much more precise than public information,

the retrospective inference loop becomes very strong, and we approach a situation close

to that described in Corollary 3, which makes the HIE always unstable.

In Figure 4 we set β = 1, γ = 1/2, τu = τ v = 10, and partition the parameter

space {τ ε × τ η|τ η ∈ {0, .01, . . . , 10}, τ ε ∈ {.01, .02, . . . , 10}} into 5 regions, depending

on whether a unique equilibrium or multiple equilibria (ME) obtain, whether the HIE

is stable, and whether the response to private information are strategic substitutes or

strategic complements (SS or SC).25

Remark 2. It is possible to show that when prices are set by a sector of competitive,

risk-neutral market makers, a unique equilibrium arises (as in Vives (1995)). Indeed, in

this case market makers do not require an inventory-risk related compensation to clear

24This follows immediately from the fact that ψ(0) > 0, so that the best response mapping cuts the
45-degree line from below at the IIE, implying that ψ′(a∗∗1 ) > 1.

25As shown in Figure 4, depending on parameters’ values traders’ responses to private information in
the HIE and the LIE can be strategic complements or strategic substitutes. For given τ ε, the higher
is τη, the more likely it is that one of the two equilibria displays strategic complementarities. For
instance, for β = 1, γ = 1/2, τu = τv = 10, τ ε = 8, and τη = 2.5, we obtain (a∗1, a

∗∗∗
1 ) = (3.32, 4.8),

and (ψ′(a∗1), ψ′(a∗∗∗1 )) = (−0.4,−0.23). If we increase τη to 3, we obtain (a∗1, a
∗∗∗
1 ) = (3.34, 4.73), and

(ψ′(a∗1), ψ′(a∗∗∗1 )) = (−0.32, 0.03). Finally, if we further increase τη to 5 (8), the HIE disappears and we
obtain a∗1 = 3.44 (a∗1 = 3.59), with ψ′(a∗1) = −0.05 (ψ′(a∗1) = 0.25).
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Figure 4: The equilibrium set, for β = 1, γ = 1/2, τu = τ v = 10, τ η ∈ {0, .01, . . . , 10},
and τ ε ∈ {.01, .02, . . . , 10}. The black line denotes the set τ η = τ ε. For values of (τ ε, β)
in the white and yellow regions the equilibrium is unique, whereas when (τ ε, β) are in the
other regions multiple equilibria (ME), in which depending on the value of τ η vs. τ ε the
HIE can be stable or unstable, obtain.

the market, and prices are semi-strong efficient. As a consequence, the retrospective

inference loop breaks down, ensuring uniqueness.26

It is also possible to show that the equilibrium is unique when investors have no

private information (τ ε = 0). In this case our model is akin to Grossman and Miller

(1988), and investors only trade to accommodate liquidity traders’ orders. Thus, prices

are invertible in the latter’s demand, and the retrospective inference loop once again

breaks down, yielding uniqueness.

4.1.2 Equilibrium strategies

The next result characterizes investors’ strategies:

Corollary 5. At a linear equilibrium, the strategies of an informed investor are given by

X1(si, p1) =
a1
αE1

(Ei1[v]− p1) +
αP1 − αE1

αE1

E1[θ1] (19)

X2(si, sP , p1, p2) =
a2
αE2

(Ei2[v]− p2). (20)

26Note in particular that even with risk-neutral market makers, provided β > 0, a1 affects z2, and λ2.
However, failing the need to estimate θ2, retrospective inference does not arise.
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When multiple equilibria arise and

a1 =

 a∗1, then αP1 < αE1 , (∂xi2/∂p2) < 0, and Covi1[v − p2, p2 − p1] < 0

a∗∗1 , a
∗∗∗
1 , then αP1 > αE1 , (∂xi2/∂p2) > 0, and Covi1[v − p2, p2 − p1] > 0.

(21)

For β = 0, αP1 < αE1, (∂xi2/∂p2) < 0, and Covi1[v − p2, p2 − p1] < 0.

According to (20), in the second period an investor acts like in a static market.

In the first period, instead, he loads his position anticipating the second period price,

and scaling it down according to the uncertainty he faces on p2, as shown by (13). In

this case, his strategy can be expressed as the sum of two components (see (19)). The

first component captures the investor’s activity based on his private estimation of the

difference between the fundamentals and the equilibrium price. This may be seen as

akin to “long-term” speculative trading, aimed at taking advantage of the investor’s

superior information on the liquidation value of the asset, since p2 is correlated with v.

The second component captures the investor’s activity based on the extraction of order

flow, i.e. public, information. This trading is instead aimed at timing the market by

exploiting short-run movements in the asset price determined by the evolution of the

future aggregate demand. Along the HIE, the price is more driven by fundamentals. As

a consequence, when observing

E1[θ1] = a1(v − E1[v]) + θ1 > 0,

the investor infers that this realization is more driven by fundamentals information and

goes long in the asset, “chasing the trend.” This is because he anticipates that second

period investors will bid the price up when he unwinds his position, as implied by the

sign of Covi1[v− p2, p2 − p1]. Along the LIE, prices are more driven by liquidity trading,

and the trader acts instead as a “contrarian” investor.27

Remark 3. It is interesting to note that along the HIE, the asset is a Giffen good in the

second period (see (21)). Differentiating xi2 with respect to p2, we can break down the

27Note that traders in the model act as conditional momentum or contrarian investors. Indeed, a
covariance decomposition shows that

Cov[v − p2, p2 − p1] = Cov[Ei1[v − p2], Ei1[p2 − p1]] + Covi1[v − p2, p2 − p1].
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effect of a price increase into a substitution effect and an “information” effect:

∂X2(si, sP , p1, p2)

∂p2
=

a2
αE2

 ∂Ei2[v]

∂p2︸ ︷︷ ︸
Information effect

− 1︸︷︷︸
Substitution effect

 . (22)

Along the HIE retrospective inference leads investors to rely a lot on prices and prices

are very informative about the liquidation value. In this case the substitution effect is

swamped by the information effect.28 Along the LIE, the opposite happens, and the asset

is a normal good in the second period.29 Giffen goods tend to arise when learning from

uninformed investors prevails and makes the aggregate information effect dominate the

substitution effect (see e.g. Barlevy and Veronesi (2003), Yuan (2005), and Vives (2008)).

This may also happen in the presence of feedback effects where prices are informative

about both the fundamentals and the likelihood of coordination among informed investors

as the feedback effect strengthens the information effect (as in Ozdenoren and Yuan

(2008)).

Remark 4. The model can be extended to encompass the possibility that investors

receive additional private signals at each trading round. The analysis becomes more

complicated, without affecting the qualitative results. That is, in this case too we can

show that multiple equilibria with the stated properties arise as long as β > 0.

4.1.3 Dynamic adjustment

What is the effect of a shock to parameters’ values on the equilibrium of the market?

The answer to this question depends on whether the HIE is stable or not.

Starting from the case in which the HIE is stable, Figure 2 (panel (b)) implies that a

decrease in private signal precision or in risk tolerance can have a non-monotone effect on

a1 and thus on the conditional volatility of returns, and informational efficiency of prices.

To see this, consider first the case of private signal precision. Suppose that τ v = τu = 10,

τ ε = 9.5, γ = 1/2, τ η = 3, and β = 1. With these parameter values, the LIE and HIE are

respectively a∗1 = 4.001, and a∗∗∗1 = 5.606, and correspond to the intersection of the orange

best response function with the 45-degree line in Figure 5 (panel (a)). Suppose the market

28See Admati (1985) and Cespa (2005) for a discussion of the existence of Giffen assets due to infor-
mation effects in the context of a multi-asset NREE model.

29To see this, note that ∂xi2/∂p2 = (a2/αE2)(∆a2τu/λ2τ i2 − 1) = −γτ i2/(1 + γ∆a2τu). Along the
HIE (LIE), as shown in Proposition 2, 1 + γ∆a2τu < 0 (1 + γ∆a2τu > 0), which proves the result.
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coordinates on the LIE. Suppose now that the precision of the private signal decreases

to τ ε = 7. The new best response is depicted by the dashed curve in the figure. Again

we have three equilibria with the LIE and HIE given respectively by a∗,NEW1 = 2.906,

and a∗∗∗,NEW1 = 4.124.30 Which equilibrium does the market coordinate on? With

adaptive dynamics, we can see that this will be the HIE. Thus, in this case a decrease

in private signal precision determines an increase in the response to private information

and informational efficiency, and a decrease in the conditional volatility of returns (along

the initial LIE, Var1[p2] = 0.00035, while along the new HIE, Var1[p2] = 0.00013). Non-

monotonicity requires however a sufficiently large reduction in private precision.31 Indeed,

in panel (b) we repeat the same exercise, assuming that τ ε is lowered to 8. In this case,

adaptive dynamics implies that the new equilibrium along the dashed best response is the

LIE. Panel (c) and (d) show that similar effects arise with a reduction in risk tolerance.

Consider now the case in which the HIE is unstable. In this situation numerical

simulations show that starting from the HIE, the effect of a shock (even a very mild one)

to parameters’ values depends on the persistence of liquidity traders’ demand. In detail:

when β ∈ (0, 1), the equilibrium converges to the LIE; when β = 1, the market oscillates

between two non-equilibrium values, and the result is indeterminate. In Figure 6, panel

(a) we plot the best response for τ v = τu = 10, τ ε = 20, γ = 1/2, τ η = 1/2, and

β = .9. With these parameter values, the LIE and HIE are respectively a∗1 = 9.04,

and a∗∗∗1 = 12.25, and the slope of the best response at these two points is given by

ψ′(a∗1) = −.41 and ψ′(a∗∗∗1 ) = −2.12. As shown by the figure, starting from the HIE

an iterated application of the best response leads the market to coordinate on the LIE.

Consider now panel (b) where we plot the best response for τ v = τu = 10, τ ε = 15,

γ = 1/2, τ η = 1/2, and β = 1. With these parameter values, the LIE and HIE are

respectively a∗1 = 6.64, and a∗∗∗1 = 9.37, and the slope of the best response at these

two points is given by ψ′(a∗1) = −.43 and ψ′(a∗∗∗1 ) = −1.9. In this case, iterating the

application of the best response starting from the HIE (after about 380 iterations) leads

the market to oscillate between the non-equilibrium values 7.99 and 10.75. Thus, the

implication is that, provided β < 1, if the market is at the HIE a small shock to parameter

values leads it to the LIE.

30In both cases the HIE is stable case since (∂ψ/∂a1)|a1=a∗∗∗1
= −.24, and (∂ψ/∂a1)|a1=a∗∗∗,NEW1

= .35.
31Denoting respectively by ψ and ψNEW the orange and dashed best responses, non monotonicity

requires that that ψ(a∗1) > ψNEW (a∗∗,NEW1 ). If the reduction in private precision is such that ψ(a∗1) >

ψNEW (a∗∗∗,NEW1 ), the new equilibrium along the dashed best response is still the HIE, but monotonicity
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Figure 5: Adjustment to a shock when the HIE is stable. We plot the best response (16)
for τ v = τu = 10, γ = 1/2, τ η = 3, β = 1, and τ ε = 9.5 (orange). In panel (a) and
(b) we analyze the effect of a reduction in the precision of the private signal to τ ε = 7
(dashed best response, panel (a)) and τ ε = 8 (dashed best response, panel (b)). In panel
(c) and (d) we analyze the effect of a reduction in risk tolerance to γ = 1/3 (dashed best
response, panel (c)) and γ = 5/12 (dashed best response, panel (d)).

5 Average expectations and reliance on public infor-

mation

In this section we use our model to investigate the claim that when investors have a short

horizon, prices reflect the latter HOEs about fundamentals and are farther away from the

final payoff compared to average expectations (Allen, Morris, and Shin (2006)). We show

here that with liquidity trading persistence investors use their private information also to

infer the demand of liquidity traders from the first period price. Thus, the latter is driven

is restored since a∗∗∗,NEW1 < a∗1.
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Figure 6: Adjustment to a shock when the HIE is unstable. In panel (a) we plot the
best response (16) for τ v = τu = 10, τ ε = 20, γ = 1/2, τ η = 1/2, and β = .9. With
these parameter values, the LIE and HIE are respectively a∗1 = 9.04, and a∗∗∗1 = 12.25,
and the slope of the best response at these two points is given by ψ′(a∗1) = −.41 and
ψ′(a∗∗∗1 ) = −2.12. In panel (b) we plot the best response (16) for τ v = τu = 10, τ ε = 15,
γ = 1/2, τ η = 1/2, and β = 1. With these parameter values, the LIE and HIE are
respectively a∗1 = 6.64, and a∗∗∗1 = 9.37, and the slope of the best response at these two
points is given by ψ′(a∗1) = −.43 and ψ′(a∗∗∗1 ) = −1.9.

by investors’ HOEs about fundamentals and by their average expectations about liquidity

trading. This, in turn, has implications for price reliance on public information. The

consensus opinion about the fundamentals at time n is denoted by Ēn[v] ≡
∫ 1

0
Ein[v]di.

Note that Ēn[v] = αEnv + (1− αEn)En[v].

Starting from the second period, and imposing market clearing yields∫ 1

0

X2(si, sP , p1, p2)di+ θ2 = 0. (23)

Due to CARA and normality, we have

X2(si, sP , p1, p2) = γ
Ei2[v]− p2

Vari2[v]
.

Replacing the above in (23) and solving for the equilibrium price we obtain

p2 = Ē2[v] + Λ2θ2.
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Similarly, in the first period, imposing market clearing yields:∫ 1

0

X1(si, p1)di+ θ1 = 0,

and solving for the equilibrium price we obtain

p1 = Ē1[p2] +
Vari1[p2]

γ
θ1. (24)

Substituting the above obtained expression for p2 in (24) yields

p1 = Ē1

[
Ē2[v] + Λ2θ2

]
+

Vari1[p2]

γ
θ1

= Ē1

[
Ē2[v]

]
+ βΛ2Ē1 [θ1] +

Vari1[p2]

γ
θ1. (25)

According to (25), there are three terms that form the first period price: investors’ second

order average expectations over the liquidation value (Ē1[Ē2[v]]), the risk-adjusted impact

of the first period stock of liquidity trades (θ1), and investors’ average expectations over

first period liquidity trades (Ē1[θ1]). The latter arises since p2 depends on θ2, which in

turn is correlated with θ1 when β > 0. Thus, investors in period 1 are also interested in

estimating θ1.

Expression (25) implies that due to persistence in liquidity trading, the weight placed

by the price on investors’ average information is the sum of two terms: the first term

captures the impact of HOEs on v, the second term reflects the impact of investors’

average expectations over θ1. Computing

Ē1

[
Ē2[v]

]
= ᾱE1v + (1− ᾱE1)E1[v]

Ē1[θ1] = a1(1− αE1)(v − E1[v]) + θ1,

where

ᾱE1 = αE1

(
1− τ 1

τ 2
(1− αE2)

)
.

Given (25), this implies that the total weight the price places on average private infor-

mation is given by

αP1 = ᾱE1 + βΛ2a1(1− αE1). (26)

Note that for any β, ᾱE1 < αE1 . Thus, when liquidity trading is transient (β = 0) the
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first period price places a larger weight on public information than the optimal statistical

weight. This finding is in line with Morris and Shin (2002), and Allen, Morris, and Shin

(2006). The latter prove that with heterogeneous information, prices reflect investors’

HOEs about the final payoff. In this case, the law of iterated expectations does not hold,

and investors’ forecasts overweight public information. This happens because investors

anticipate the average market opinion knowing that this also depends on the public

information observed by other investors. The price is then systematically farther away

from fundamentals compared to consensus.

However, when liquidity trading is persistent, p1 also reflects investors’ average ex-

pectations about the impact of first period liquidity traders on the second period price.

Thus, an additional term adds to ᾱE1 in the expression for αP1 in (26). Along the HIE

this increases the weight of the price on fundamentals above the optimal statistical weight

as shown by the following result:

Corollary 6. Suppose τ η > 0.

1. When β ∈ (0, 1], and multiple equilibria arise if

a1 =

 a∗1, then αP1 < αE1 , and Cov[p1, v] < Cov[Ē1[v], v]

a∗∗∗1 , then αP1 > αE1 , and Cov[p1, v] > Cov[Ē1[v], v].

2. When β = 0, αP1 < αE1 and Cov[p1, v] < Cov[Ē1[v], v].

With persistent liquidity trading, along the HIE, investors escalate their response to

private information. In this case the extra weight that adds to ᾱE1 is high enough to draw

the price closer to fundamentals compared to consensus. In view of the results obtained

in Section 4.1.1 this equilibrium is stable provided that private information is not too

precise compared to the exogenous public signal. Along the equilibrium with low liquidity

the price is farther away from fundamentals compared to consensus. This equilibrium,

which shares the same properties of the one found by Allen, Morris, and Shin (2006), is

instead always stable.

Remark 5. According to Numerical Result 1 and Corollary 3, the inventory component

of liquidity is larger in the LIE than in the HIE. This offers an alternative interpretation

for Corollary 6: when prices are farther away from (closer to) fundamentals compared

to consensus, inventory risk is high (low). Empirically, this suggests that the inventory

component of liquidity should be increasing in the extent to which asset prices are farther

away from fundamentals compared to consensus.
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Remark 6. The model can be generalized in different ways: (i) adding more trading

dates, (ii) allowing second period investors to receive a new signal about the fundamentals

and (iii) assuming that the fundamentals has an additive factor structure v + δ, with

δ ∼ N(0, τ−1δ ) independent of all the other random variables in the model, and such that

no investor is informed about it.32 All these extensions complicate the analysis, without

modifying its qualitative implications. More in detail, extending the trading horizon to

more than 2 periods has the effect of widening the set of equilibria, and generating a

richer dynamic. For example, when τ η = 0 and β > 0, numerical simulations show that

typically 2(N−1) equilibria obtain. In these equilibria along some paths prices alternate

between dates in which αPn > αEn and dates in which αPn < αEn . However, in our

numerical simulations it is always possible to find an equilibrium path in which αPn > αEn

(αPn < αEn) for all n = 1, 2, . . . , N . Allowing second period investors to receive a fresh

signal still delivers the HIE and LIE with the stated properties. Finally, assuming a

factor structure for the asset payoff makes the equilibrium dependent on the solution of

a system of a cubic and a 13-degree equation. Our simulations show that, depending on

parameters’ values, 5, 3 or 1 equilibrium arise. When multiple equilibria obtain, at most

two of them are stable, and the one with the highest responsiveness to private information

inherits the properties of the HIE.

6 Asset pricing implications

In this section we investigate the asset pricing implications of our analysis. In partic-

ular, we show that liquidity trading persistence can generate positive autocovariance of

returns, without the need to impose heterogenous beliefs (as in Banerjee, Kaniel, and

Kremer (2009)) or to assume that investors’ preferences display a behavioral bias (as in,

e.g., Daniel, Hirshleifer, and Subrahmanyam (1998)). We then look at the expected vol-

ume of informational trading and, consistently with the evidence presented in Llorente,

Michaely, Saar, and Wang (2002), we find that in our setup a high volume of informa-

tional trading predicts momentum. Finally, we derive a set of empirical implications that

allow to distinguish the HIE from the LIE.

32This corresponds to the model with “residual uncertainty” analyzed by He and Wang (1995)
and Cespa and Vives (2012) among others.
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6.1 Return autocovariance

We start by computing the return autocovariance at different horizons:

Corollary 7. Suppose τ η > 0. At equilibrium:

1. For all β ∈ [0, 1], Cov[p2 − p1, p1 − v̄] < 0.

2. For β ∈ (0, 1], Cov[v − p2, p1 − v̄] < 0. For β = 0, Cov[v − p2, p1 − v̄] = 0.

3. For β ∈ (0, 1], when multiple equilibria arise, along the HIE

Cov[v − p2, p2 − p1] > 0.

If β = 0, Cov[v − p2, p2 − p1] < 0.

According to the above result, along the HIE, momentum occurs at short horizons

(close to the end of the trading horizon), whereas at a longer horizon, returns display

reversal.33 This is in line with the empirical findings on return anomalies that document

the existence of positive return autocorrelation at short horizons (ranging from six to

twelve months, see Jegadeesh and Titman (1993)), and negative autocorrelation at long

horizons (from three to five years, see De Bondt and Thaler (1985)).

The first two results derive from the fact that a given estimated first period imbalance,

E1[θ1], has an opposite effect on p1 − v̄, and p2 − p1, v − p2.
34 For the third result, a

covariance decomposition (and the normality of returns) yields:

Cov[v − p2, p2 − p1] = (27)

= Cov [E1[v − p2], E1[p2 − p1]] + Cov1[v − p2, p2 − p1]

= βΛ2
Vari1[p2]

γ
Var[E1[θ1]] +

(1 + γτu∆a2)(βa1∆a2τu − τ 1) + γτ ητuβa1
(γτ i2)2τ 1τu

.

The first term in the above decomposition captures the covariation of the conditional

returns’ forecasts E1[v − p2] and E1[p2 − p1], that is the covariance “explained” by p1.

The second term captures the conditional covariariation of returns, that is, the “residual”

covariance. All else equal, with persistence the anticipated impact of the first period

imbalance has the same sign on both the second and third period expected returns, so

33Numerical simulations show that in a model with three periods, along the HIE, both Cov[v−p3, p3−
p2] and Cov[p3 − p2, p2 − p1] are positive.

34As one can verify Cov[v − p2, p1 − v̄] = Cov[E1[v − p2], E1[p1 − v̄]] = −βΛ2Cov[E1[θ1], p1] < 0, and
Cov[p2 − p1, p1 − v̄] = Cov[E1[p2 − p1], E1[p1 − v̄]] = (βΛ2 − Λ1)Cov[E1[θ1], p1] < 0.

31



that the first term is always positive when β > 0. Intuitively, suppose that in the first

period investors estimate a selling pressure from liquidity traders. If p1 < p2 the outcome

p2 < v is more likely than p2 ≥ v, because liquidity traders’ sales of the asset are likely

to persist in the second period.35

For the second term, factoring out the impact of first period information, the joint co-

variation of returns around their expectations could be driven either by liquidity trading

or by fundamentals information. In the HIE, as prices are driven by informed traders,

the second effect predominates and returns positively covary around their means.36 Con-

versely, in the LIE, prices are more driven by liquidity trades, so that returns tend to

covary around their means in opposite directions.

When τ η = 0 all of the results obtained in Corollary 7 hold. Furthermore, we can

prove that provided β is sufficiently high, momentum occurs at short horizons also along

the LIE (numerical simulations confirm this result also for the case τ η > 0):

Corollary 8. Suppose τ η = 0. Along the LIE, for τ v < τ̂ v, there exists a value β̂ such

that for all β > β̂, Cov[v−p2, p2−p1] > 0 (the expression for τ̂ v is given in the appendix,

see equation (A.30)).

Along the LIE momentum is a sign of strong liquidity trading persistence and is due

to the effect of the covariance explained by p1 in (27). This is consistent with the fact

that in this equilibrium prices are driven by liquidity trades, so that the predictability

of returns is in this case a sign of poor informational efficiency. Indeed, it is possible to

show that when β is sufficiently large, momentum also arises in a model with no private

information.37 Along the HIE, however, momentum occurs for any value of β. This

means that even though (a very mild) persistence is required, momentum in this case

does not reflect the impact of liquidity trading. On the contrary, due to the properties

of the HIE illustrated in Proposition 2, it is rather a sign of rapid price convergence to

the fundamentals. In the next section we provide a numerical illustration of the different

properties of prices along the two equilibria.

Remark 7. Equation (27) shows that optimal investment behavior in our model departs

in a substantial way from the one of an outside observer that relies on the sign of the

35Thus, liquidity trades persistence offsets the mean reversion effect due to first period short-term
investors’ unwinding at date 2.

36Recall that in this case, Proposition 2 shows that 1 + γτu∆a2 < 0, which due to (27) immediately
implies that Cov1[v − p2, p2 − p1] > 0.

37This can be seen by computing limτε→0 Cov[v − p2, p2 − p1] = (β − γ2τvτu)/γ4τ2uτ
3
v, which implies

that momentum in this case arises when β > γ2τvτu.
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unconditional return covariance to trade. Indeed, an investor in our model engages in

momentum trading only for a stock that displays a very strong positive autocovariance.

Equivalently, he may adopt a contrarian strategy even when an outside observer would see

Cov[v−p2, p2−p1] > 0. This is because, as argued in Corollary 5, informed investors base

their decision to chase the trend or act as contrarians on the sign of Covi1[v−p2, p2−p1],
since they can perfectly anticipate E1[θ1].

6.2 Expected volume and return predictability

We now turn our attention to the implications of our results for the expected volume of

informational trading.

We start by computing the expected traded volume in the market with heteroge-

neous information net of the expected volume that obtains in the market with no private

information. This yields:38

V1 ≡
∫ 1

0

E [|X1(si, p1)|] di−
∫ 1

0

E [|X1(p1)|] di

=

∫ 1

0

√
2

π
Var [X1(si, p1)]di−

∫ 1

0

√
2

π
Var [X1(p1)]di

=

√
2

π

(√
a21τ

−1
ε + τ−1u −

√
τ−1u

)
, (28)

and

V2 ≡
∫ 1

0

E [|X2(si, p1, p2)−X1(si, p1)|] di−
∫ 1

0

E [|X2(p1, p2)−X1(p1)|] di

=

∫ 1

0

√
2

π
Var [X2(si, p1, p2)−X1(si, p1)]di−

∫ 1

0

√
2

π
Var [X2(p1, p2)−X1(p1)]di

=

√
2

π

(√
(a1 − a2)2τ−1ε + (1 + (β − 1)2)τ−1u −

√
(1 + (β − 1)2)τ−1u

)
. (29)

We measure the total volume of informational trading with V1 + V2, and obtain the

following result:

Corollary 9 (Expected volume of informational trading). Suppose τ η > 0. At equi-

librium, for all β ∈ (0, 1] the expected volume of informational trading is higher along

38In a market with no private information, investors only absorb liquidity traders’ orders. Therefore,
at equilibrium their position only reflects liquidity traders’ demand, and E[|x1|] = ((2/π)τ−1u )1/2. This
is the approach used in, e.g., He and Wang (1995).
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the HIE. When β = 0 only the equilibrium with a low volume of informational trading

survives.

Proof. Rearranging the expressions for investors’ strategies obtained in Corollary 5

yields xin = anεin − θn, for n = 1, 2. For a normally distributed random variable Y we

have

E[|Y |] =

√
2

π
Var[Y ].

Therefore, as a∗∗∗1 > a∗1, according to (28) V1 is larger along the HIE. According to (29),

V1 + V2 is an increasing function of a1 for a1 > a2, a condition that is satisfied along the

HIE. Finally, from Corollary 2 when β = 0, a∗1 < a2. 2

The intuition for the above result is straightforward: as along the HIE investors step

up the response to their signals, the position change due to private information is higher

along such equilibrium. Taken together, Corollaries 7 and 9 imply that a high volume of

informational trading in the second period predicts return continuation, no matter what

the persistence in liquidity trading is, in line with the evidence presented by Llorente,

Michaely, Saar, and Wang (2002). A low volume of informational trading, on the other

hand, can also be associated with momentum, provided liquidity trading is sufficiently

persistent. In this case, though, momentum is a signal of slow price convergence to

the liquidation value. In sum, momentum is compatible with both a high and a low

volume of informational trading, but the implications that return continuation has for

price informativeness are markedly different in the two situations.

Large trading volume is often related to the presence of disagreement among investors’

forecasts of the asset payoff (see e.g, Kandel and Pearson (1995)). In our setup, we can

measure disagreement as follows:

Disag = Var
[
Ein[v]− Ēn[v]

]
= Var[αEnεi] =

τ ε
τ 2in

. (30)

From the above expression and Proposition 2 we therefore conclude that disagreement

is low (high) along the HIE (LIE). Given Corollary 9, this implies that volume is large

in the equilibrium with low disagreement. The reason for this result is as follows. From

expressions (28) and (29) we see that volume is increasing in a21/τ ε. Using (13) we have

a21
τ ε

=

(
γ
λ2∆a2

Vari1[p2]

)2

Var[αE1εi]. (31)
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The first component on the right hand side of the above expression captures the effect of

investors’ perceived risk on volume, whereas the second term coincides with our definition

for disagreement. Along the HIE (LIE) we know that disagreement is low (high) but we

also know that investors face little (a lot of) risk over the price at which they unwind

their position. The latter effect prevails in our setup, implying that a large volume is a

proxy for low disagreement and low perceived risk. This prediction is in line with some

authors who document that large volume around earnings announcements is compatible

with convergence of opinions (see, e.g., Giannini, Irvine, and Shu (2013)).

Finally, our findings on volume are also related to Banerjee (2011) and Kondor (2012).

The former compares Difference of Opinions (DO) models to Rational Expectations (RE)

ones. One prediction is that in a DO model, differently from a RE one, the conditional

volatility of returns is negatively related to expected volume. Coupling Corollary 9 with

Numerical Result 1, this is precisely what happens in our RE setup with strategic com-

plementarities, even though investors agree on a common prior. Kondor (2012) studies

a 2-period trading model with a three-factor fundamentals and short-term trading. In-

vestors have differential information on a subset of factors and, in the presence of a noisy

public signal about the fundamentals (that is the sum of the three factors), HOEs over

the average of the factor they do not know, which is instead imperfectly observed by the

agents that absorb their positions. In this model, the public signal generates disagree-

ment, because it induces traders to compare their factor-specific private information to

the public signal, to gauge the magnitude of the missing factor. Kondor (2012) shows

that an increase in public signal informativeness, by augmenting disagreement, can gen-

erate large volume, and more informative and volatile prices (conditional on the public

signal). Our model can also produce similar patterns. However, in our setup the burst in

trades accompanied by higher price volatility is due to the fact that a sufficiently precise

public signal can stabilize the HIE.39

6.3 Empirical implications

Expression (27) and Corollary 8 clarify that momentum in our model is due to liquidity

trading persistence. The behavioral finance literature has focused on different mechanisms

39For example, setting τu = τv = 10, τ ε = 1, τη = .2, γ = 1/2, and β = 1, we obtain two stable
equilibria a∗1 = .29 and a∗∗∗1 = .86. Because of Corollary 9, volume is higher along the HIE. Furthermore,
calculating price volatility yields Var[p1]∗∗∗ = .05 and Var[p2|sP ]∗∗∗ = .07, while Var[p1]∗ = .02, and
Var[p2|sP ]∗ = .04. Thus, price volatility is 1.7 (2.6) larger in the HIE compared to the LIE in the first
(second) period.
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to explain the nature of returns’ predictability, each one requiring some form of departure

from rational behavior and implying a breakdown of market efficiency.40 Our analysis

shows instead that due to persistence, momentum can arise in a model in which all agents

are rational and in which, depending on the equilibrium that arises, a given demand shock

from liquidity traders yields stock prices that are either very informationally efficient

(along the HIE) or very poor signals of underlying fundamentals (along the LIE, provided

β is high enough).

To illustrate this point, in Figure 7 we plot the simulated price paths along the LIE,

the HIE and the unique equilibrium that obtains assuming that traders have no private

information (that is, τ ε = 0), and positions of liquidity traders at dates 1 and 2. The

plots are obtained extracting 1,000 iid normal shocks for v, u1, u2, and η, and averaging

across the prices and shocks.41

The parameters’ values are as follows: v̄ = 40, τ v = 0.01, τu = 0.1, τ ε = 1, γ =

1/2, τ η = 0.001862, and β = 1/2. With these values the HIE is stable ({a∗1, a∗∗∗1 } =

{0.012, 41.25}, and {ψ′(a∗1), ψ′(a∗∗∗1 )} = {−0.012,−0.92}) and we get momentum along

the LIE and in the equilibrium with no private information, as shown in Table 1.

LIE HIE Equilibrium with τ ε = 0

Cov[v − p2, p2 − p1] 735.019 0.000007 4.79052× 108

Cov1[v − p2, p2 − p1] −37.0281 0.000007 −284, 279

Cov[z1, p2 − p1] −801.224 −1.67227× 10−6 −5.68589× 106

E1[v − p1] −81.0874 −0.00472533 −568, 673

E1[p2 − p1] −80.1224 −1.67227× 10−7 −568, 589

Table 1: Autocovariance of returns (unconditional and conditional), return predictability
from order flows, and expected returns from liquidity provision in the numerical example.

Panel (a) displays the position of liquidity traders, which in this simulation is on aver-

40Hong and Stein Hong and Stein (2007) argue that predictability involves a departure from standard
models with rational agents. Such departure entails either the adoption of models with standard prefer-
ences, but biased beliefs as in Daniel, Hirshleifer, and Subrahmanyam (1998); alternatively, models with
non-conventional preferences and rational beliefs as in Barberis and Huang (2001); finally, predictability
can arise in models with heterogeneous agents as in Hong and Stein (1999).

41The green line in panels (b), (c) and (d) is the log of the average of the semi strong efficient prices

obtained in the simulations, that is ln((1/1, 000)
∑1,000
j=1 Enj [v]), n = 1, 2. The horizontal line in the plots

for the price paths is the log of the average value of the fundamentals ln(38.08) ≈ 3.64 in this simulation.
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Figure 7: Liquidity traders’ demand (panel (a)) and the path of prices (red) and semi
strong efficient prices (green) along the equilibrium with no private information, the LIE,
and the HIE (respectively, panel (b), (c), and (d)). Parameters’ values are as follows:
v̄ = 40, τ v = .01, τu = .1, τ ε = 1, γ = 1/2, τ η = .001862, and β = 1/2.

age positive at both dates. According to panel (b), in the absence of private information,

prices mirror liquidity traders’ demand. Indeed, as short term traders are risk averse,

they require a compensation to meet the positive demand of liquidity traders that is pro-

portional to their perceived uncertainty about the payoff. This drives p1 above v̄ in this

equilibrium. Moving to panel (c) shows that prices display a qualitatively similar behav-

ior along the LIE. However, as traders are informed, an > 0 and part of liquidity traders’

shock is accommodated by offsetting, speculative (in this numerical example sell) orders.

As such orders transmit information, they diminish investors’ perceived uncertainty about

the payoff, which implies that the price adjustment needed to accommodate θn is lower

compared to the case τ ε = 0. Thus, without private information and in the LIE, the

price path reflects liquidity traders’ position and is therefore hump-shaped. Along the

HIE (panel (d)), on the contrary, the first period price almost exactly coincides with

the semi-strong efficient price, and with the full information value. In this equilibrium,
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traders aggressively speculate (sell) against the liquidity (buy) shock θn based on their

private information. This drives p1 below v̄ and close to v, making price adjustment much

more rapid. As these trades are highly informative, they dramaticaly diminish investors’

perceived uncertainty about the payoff, which explains why the price almost coincides

with En[v], even though the risk-bearing capacity of the market is limited (γ < ∞).

In this equilibrium short term trading offsets the impact of liquidity traders’ orders on

prices, and the price path is inversely hump-shaped.

These different patterns suggest that (i) the compensation investors receive to supply

liquidity should be larger in the LIE than in the HIE, and (ii) that the short term

predictability of prices based on order flow information (z1) should be higher along the

LIE compared to the HIE. Both predictions are confirmed by the last three rows of

Table 1.42 The latter prediction is also consistent with the evidence presented by Chordia,

Roll, and Subrahmanyam (2008) who find that short-horizon return predictability from

order flows diminishes when the market is more liquid.

Combining these observations with Proposition 2 and Corollary 3 suggests a way

to identify the HIE and the LIE from the data. Our model predicts that for extreme

values of public signal precision, the LIE arises. This equilibrium is characterized by (i)

a positive inference component of the price impact, (ii) momentum or reversal depending

on the strength of persistence, (iii) high expected returns from liquidity provision and

prices that are far apart from the semi-strong efficient price, and (iv) strong short-horizon

return predictability from order imbalances. Conversely, for intermediate values of public

signal precision, the HIE can also arise. This equilibrium obtains with (i) a negative

inference component of the price impact, (ii) mild momentum, (iii) low expected returns

from liquidity provision and prices that are close to the semi-strong efficient price, and

(iv) weak short-horizon return predictability from order imbalances.

These findings offer several empirical predictions. At a daily or intra-daily level, one

could test our model’s implications by looking at the informational content of the prices of

comparable stocks that differ in terms of the sign of their respective inference components

of the spread. The prices of stocks with a negative inference component should be more

informationally efficient, or closer to their semi-strong efficient prices.

At a lower frequeny, our findings have implications for the literature that tests the

effect of strategic complementarities in asset markets. For example, Chen, Goldstein, and

42The expected returns from liquidity provision are calculated per unit of expected demand from liq-
uidity traders, E1[θ1] = 1. Note that since E1[v − p2] = −βΛ2E1[θ1], E1[p2 − p1] = (βΛ2 − Λ1)E1[θ1],
expected returns are only due to the inventory component of liquidity, consistently with our interpreta-
tion.

38



Jiang (2010) show that the sensitivity of outflows to bad past performace is stronger in

mutual funds that invest mostly in illiquid securities, than in those that invest in more

liquid securities. This is because if following bad performance some investors redeem their

shares in an illiquid fund, the latter is forced to liquidate at a steep discount. Such a

devaluation only affects the investors who do not redeem, which spurs a “run for the exit,”

that magnifies price pressure. As shown in the above simulation, in our setup the impact

of a given price pressure θn (due, e.g., to the cumulative decision to redeem) depends

on which equilibrium arises. Thus, we should expect that the sensitivity of outflows to

bad past performance should be stronger (weaker) in funds for which a large part of the

securities feature a positive (negative) inference component of the spread.

The predictions of our model are also consistent with a narrative of the recent finan-

cial crisis that emphasizes the role of private and public information. Several authors

have pointed out that investors’ selling pressure determined a reduction of asset values

below fundamentals (followed by a rebound. See, e.g. Cella, Ellul, and Giannetti (2013)).

One reason why such large corrections occurred is possibly lack of (or “slow moving”)

arbitrage capital (Duffie (2010)), which exhausted the risk bearing capacity of liquidity

suppliers. Our theory provides an alternative explanation which stresses the fact that the

informational conditions that could have allowed a milder correction were not in place.

Especially, a paucity of reliable public information (proxied by a reduction in τ η), may

have reduced the risk bearing capacity of the market, relegating most of the economy to

the LIE.43 As argued in Section 4.1.3 if the market coordinates at a HIE which, due to

poor public information is unstable, a further mild shock to public information leads it

to the LIE. Indirect evidence of such a transition can be found in the fact that “contrar-

ian,” liquidity-providing strategies proved to be especially profitable during the financial

crisis (as documented by Nagel (2012)), in line with the prediction of the LIE derived in

this section. In this respect our paper makes the additional prediction that in the cross

section, one should observe that the assets that were hit by the most extreme corrections

were those with poorer public information.44

Finally, our model can also explain the effects of stress tests’ results disclosure in the

US. Interestingly, Peristian, Morgan, and Savino (2010) in their analysis of the Supervi-

sory Capital Assessment Plan (SCAP), argue that while stress tests did not communicate

anything new to investors about which banks were in trouble, they allowed a better gauge

43For instance, Gorton and Metrick (2010) argue that in the recent crisis repo depositors “did not
know which securitized banks were most likely to fail.”

44Nagel (2012) finds that during the crisis, the stocks of small, illiquid, and high-volatility companies
offered the largest contrarian returns.
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of troubled banks’ capital shortfall. Furthermore, they also find that following SCAP an-

nouncement, the stock prices of the banks with capital gaps became more volatile than

those of the banks with no gap. Within our model, this in line with a situation in which

private information (investors’ private assessment of troubled banks’ capital gap) is not

overly less informative than public signals (the actual capital gaps), which allows the HIE

to be stable. In this situation, the provision of public information allows the market to

coordinate on the low-volatility HIE for non-gap banks, and on the LIE for gap banks.

Remark 8. We know from Jovanovic (1989) that identification problems in models with

multiple equilibria of the structural parameters governing the model are severe and that

“the set of distributions on observable outcomes that are consistent with a given structure

can be quite large.” Positive identification results are obtained in a range of papers that

use simple models with multiple equilibria (such as discrete entry or binary games; see

the account in Ackerberg, Lanier Benkard, Berry, and Pakes (2007) and Berry and Tamer

(2006)). Identification of structural parameters is achieved through equilibrium refine-

ments, shape restrictions, informational assumptions or the specification of equilibrium

selection mechanisms. Alternatively, inference can be based on the identified features of

the models with multiple equilibria (which are sets of values of the structural parameter

vector, see e.g. Ciliberto and Tamer (2009) and the refinement in Henry and Galichon

(2011)).

In our case when we have two stable equilibria there is no equilibrium refinement or

equilibrium selection mechanism to be used. A promising approach, given the presence of

strategic complementarities in our model, is the one of Echenique and Komunjer (2009)

based on monotone comparative statics (MCS) results. However, unfortunately, the type

of multiplicity that arises in our paper fails to satisfy MCS, which this literature needs

for identification. For example, Figure 3 shows that the MCS property fails to hold

with respect to the precision of the public signal. Indeed, an increase in τ η from 0 to 5,

decreases (increases) a1 along the the HIE and IIE (LIE).45

7 Conclusions

In this paper we argue that the persistence in liquidity traders’ positions has an impor-

tant effect on risk-averse, short-term investors’ response to their private signals. When

45A similar non-monotone pattern arises also with respect to other parameters of the model. Thus,
this methodology cannot be applied in our model. We however feel that given the set of empirical
implications we have derived, identification should be less of a problem.
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liquidity traders’ orders are correlated across trading dates, investors reassess the evi-

dence about the fundamentals obtained at the early trading stage, based on the new

information gathered in the market. Such “retrospective” inference can generate strate-

gic complementarities in the use of private information which can yield multiple, stable

equilibria that can be ranked in terms of price informativeness, liquidity, and volatility.

Our analysis shows that in the presence of uninformed orders’ predictability, the

impact of investors’ short horizons on the market depends on the quality of public in-

formation. When public information is not overly precise compared to private signals,

the retrospective inference channel is not too strong, and a stable equilibrium with low

volatility, and high liquidity and price informativeness arises. This equilibrium exists

along another equilibrium where prices are more volatile, less informationally efficient,

and the market is thinner. Thus, our analysis can guide the empirical literature investi-

gating the effect of investors’ horizons on market patterns to identify stock characteristics

that are associated with the high or low volatility equilibrium. For example, we show

that in the low volatility equilibrium the inference component of liquidity is negative.

Our analysis also clarifies the role of HOEs in asset pricing. With liquidity trading

persistence, prices are driven by average expectations about fundamentals and liquidity

trading. This, in contrast to the beauty contest results of Allen, Morris, and Shin (2006),

can draw prices either systematically farther away from or closer to fundamentals com-

pared to investors’ consensus (respectively, along the LIE and the HIE). We show that

when public information is either overly precise compared to private signals or very poor,

prices are farther away from fundamentals compared to consensus. However, a public sig-

nal of intermediate precision makes the HIE stable, thereby drawing prices closer to the

fundamentals compared to consensus. We also link the HIE and LIE to the magnitude

of the inventory component of liquidity, and to the returns from liquidity supply. Thus,

our analysis establishes the limits of the beauty contest analogy for financial markets and

provides empirical implications to assess the effect of HOEs on asset prices.

Finally, our paper provides an alternative interpretation for empirically documented

regularities on the patterns of return autocorrelation. As we have argued, at long horizons

returns display reversal. However, return correlation at short horizons depends on the

equilibrium that prevails in the market. In the HIE, investors escalate their response

to private information and momentum arises. Conversely, in the LIE investors scale

down their response to private signals and, when liquidity trading is not very persistent,

returns tend to revert. While this offers an explanation for returns’ predictability which

departs from behavioral assumptions, our analysis also makes the empirical prediction
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that both a high or a low volume of informational trading can predict momentum. In the

former case, this is a signal that prices rely poorly on public information and accurately

reflect fundamentals starting from the earlier stages of the trading process. In this case

momentum at short horizons proxies for a rapid price convergence to the full information

value. In the latter case, instead, prices heavily rely on public information and offer a

poor signal of fundamentals. In this case, therefore, momentum proxies for a continuing,

liquidity-driven, price pressure. The empirical literature has only recently started to

investigate the relationship between empirical regularities like the momentum effect, and

the role of HOEs in asset prices (see e.g., Verardo (2009)). Our paper offers clear empirical

predictions in this respect, uncovering the existence of two types of momentum with

very different informational properties. This can guide further research in the empirical

analysis of asset pricing anomalies.
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A Appendix

Proof of Proposition 1

Consider a candidate linear (symmetric) equilibrium and let z1 ≡ a1v + θ1 be the noisy

informational addition about v generated by informed investors in period 1 (the “infor-

mational content” of the first period order flow) and simlarly z2 ≡ ∆a2v + u2 where

∆a2 ≡ a2−βa1 for the second period. We now show that p1 is observationally equivalent

(o.e.) to z1 and that, given sP , the sequence {z1, z2} is o.e. to {p1, p2}. Consider a can-

didate linear (symmetric) equilibrium xi1 = a1si − ϕ1(p1), xi2 = a2si + bsP − ϕ2(p1, p2),

where ϕn(·) is a linear function. Letting xn ≡
∫ 1

0
xindi, and imposing market clearing in

the first period implies (due to our convention):

x1 + θ1 = 0 ⇐⇒ a1v + θ1 = ϕ1(p1). (A.1)

In the second period the market clearing condition is

x2 + βθ1 + u2 = 0 ⇐⇒ x2 − βx1 + u2 = 0

⇐⇒ a2v + bsP − ϕ2(p1, p2)− β(a1v − ϕ1(p1)) + u2 = 0

⇐⇒ ∆a2v + u2 = ϕ2(p1, p2)− βϕ1(p1)− bsP , (A.2)

where in the second line we use (A.1). From (A.1) and (A.2) it is easy to see that z1 is o.e.

to p1 and that {z1, z2} is o.e. to {p1, p2}. It thus follows that E1[v] = τ−11 (τ vv̄ + a1τuz1),

E2[v] = τ−12 (τ 1E1[v] + τ ηsP + ∆a2τuz2), Var1[v] ≡ τ−11 = (τ v + a21τu)
−1, Var2[v] ≡ τ−12 =

(τ 1 + τ η + ∆a22τu)
−1, Ein[v] = τ−1in (τnEn[v] + τ εsi), and Varin[v] ≡ τ−1in = (τn + τ ε)

−1.

To prove our argument, we proceed by backwards induction. In the last trading period

traders act as in a static model and owing to CARA and normality we have

X2(si, sP , z1, z2) = γ
Ei2[v]− p2

Vari2[v]
, (A.3)

and denoting by Ē2[v] ≡
∫ 1

0
Ei2[v]di,

p2 = Ē2[v] +
Vari2[v]

γ
θ2

= αP2

(
v +

θ2
a2

)
+ (1− αP2)E2[v], (A.4)
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where

a2 = γτ ε (A.5a)

αP2 = αE2 . (A.5b)

Rearranging (A.4) we obtain

p2 =
αP2

a2
(a2v − βa1v + βa1v + θ2) + (1− αP2)E2[v]

=

αP2

a2
+ (1− αP2)

∆a2τu
τ 2︸ ︷︷ ︸

λ2

 z2 +
τ η
τ i2

sP +
γτ 1E1[v] + βz1

γτ i2

= λ2z2 +
τ η
τ i2

sP +
βαP2

a2
z1 + (1− αP2)

τ 1
τ 2
E1[v], (A.6)

which provides an alternative expression for p2 which separates the impact on second

period “news” from the information contained in the first period price and the public

signal.

In the first period owing to CARA and normality, an agent i trades according to

X1(si, z1) = γ
Ei1[p2]− p1

Vari1[p2]
, (A.7)

where, using (A.6),

Ei1[p2] =

(
λ2∆a2 +

τ η
τ i2

)
Ei1[v] +

γτ 1E1[v] + βz1
γτ i2

, (A.8)

Vari1[p2] =

(
λ2∆a2 +

τ η
τ i2

)2
1

τ i1
+
λ22
τu

+
τ η
τ 2i2

. (A.9)

Replacing (A.8) and (A.9) in (A.7) yields

X1(si, z1) = γ
(λ2∆a2 + τ η/τ i2)Ei1[v]

Vari1[p2]
+

γ

Vari1[p2]

(
βαP2

a2
z1 + (1− αP2)

τ 1
τ 2
E1[v]

)
− γ

Vari1[p2]
p1

= a1si +
a1τ 1
τ ε

E1[v] +
γ

Vari1[p2]

(
βαP2

a2
z1 + (1− αP2)

τ 1
τ 2
E1[v]

)
− γ

Vari1[p2]
p1,

where

a1 = γ
(λ2∆a2 + τ η/τ i2)αE1

(λ2∆a2 + τ η/τ i2)2/τ i1 + λ22/τu + τ η/τ 2i2
. (A.10)
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Imposing market clearing: x1 + θ1 = 0, which implies

a1v + θ1 +
a1τ 1
τ ε

E1[v] +
γ

Vari1[p2]

(
βαP2

a2
z1 + (1− αP2)

τ 1
τ 2
E1[v]

)
=

γ

Vari1[p2]
p1.

Finally, solving for the equilibrium price and collecting terms yields

p1 = a1

(
Vari1[p2]

γ
+
βαP2

a2

)
︸ ︷︷ ︸

αP1

(
v +

θ1
a1

)
+ (1− αP1)E1[v]. (A.11)

2

Proof of Corollary 1

In the second period, rearranging (A.4), p2 = E2[v] + Λ2E2[θ2], where Λ2 = Vari2[v]/γ.

In the first period, from (A.11) we have

αP1 = a1

(
Vari1[p2]

γ
+ β

Vari2[v]

γ

)
.

By definition of the inventory component obtained in (7), Λ1 = αP1/a1. This implies

Λ1 =
Vari1[p2]

γ
+ β

Vari2[v]

γ
.

2

Proof of Corollary 2

For the second period price, see (A.6). For the first period price, we rearrange (A.11) to

obtain

p1 =

αP1

a1
+ (1− αP1)

a1τu
τ 1︸ ︷︷ ︸

λ1

 z1 + (1− αP1)
τ v
τ 1
v̄. (A.12)

2
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Proof of Proposition 2

To prove existence it suffices to note that in the first period, the equilibrium responsiveness

to private information is defined by the fixed points of the following function

ψ(a1) = γ
(λ2∆a2 + τ η/τ i2)αE1

(λ2∆a2 + τ η/τ i2)2/τ i1 + λ22/τu + τ η/τ 2i2
. (A.13)

By inspection φ(a1) ≡ a1 − ψ(a1) = 0 is a quintic in a1, and therefore always possesses a

real root. Note that at equilibrium a1 > 0, otherwise λ2∆a2 > 0, which in view of (A.13)

yields a contradiction.

Suppose that β > 0. To prove multiplicity we proceed as follows. Note that

φ(0) = −γ2τ ετu(a2 + γ(τ η + a22τu))(τ ε + τ η + a22τu + τ v) < 0 (A.14a)

φ(a2) > 0. (A.14b)

Therefore, there exists an equilibrium a∗1 ∈ (0, a2). Next, evaluating φ(·) at

a1 =
1 + γτua2
γβτu

,

yields

φ

(
1 + γτua2
γβτu

)
> 0,

while evaluating it at

a1 =
2 + 3γτua2

2γβτu
,

yields

φ

(
2 + 3γτua2

2γβτu

)
< 0,

provided

β >
1

2
(A.15a)

γ2τ ετu >
2(2β − 1)

3− 2β
(A.15b)

τ η ≤ τ̂ η ≡
(1/4β − 3/8)γa32τ

2
u + 1/2a22τu(β − 1/2)

1 + γa2τu(3/2− β)
. (A.15c)

Therefore, provided (A.15a), (A.15b), and (A.15c) are satisfied, a second equilibrium a∗∗1
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exists in the interval (
1 + γτua2
γβτu

,
2 + 3γτua2

2γβτu

)
.

Given that φ(·) is a quintic, it must have an odd number of roots, which implies that

when (A.15a), (A.15b), and (A.15c) are satisfied at least another equilibrium a∗∗∗1 must

exist in the interval (
2 + 3γτua2

2γβτu
,∞
)
.

Given the location of the roots we can conclude that 0 < a∗1 < a2 < a∗∗1 < a∗∗∗1 . Further-

more, we have

1 + γτu∆a2 =

 > 0 for a1 = a∗1

< 0 for a1 ∈ {a∗∗1 , a∗∗∗1 }

which implies that λ∗2 > 0, while λ∗∗2 < 0, and λ∗∗∗2 < 0. Finally, we prove that price

informativeness increases across the three equilibria. For τ 1 this is immediate, since it

increases in a1. For τ 2 as one can verify, given that a∗1 < a2 < a∗∗1 we have τ ∗2 < τ ∗∗2 .

Furthermore, for a2 > (1 + γτua2)/(γβτu),

∂τ 2
∂a1

> 0,

which implies τ ∗∗2 < τ ∗∗∗2 .

Suppose now that β = 0. Then, φ(·) becomes a cubic in a1:

φ(a1) = a31τu((1 + γa2τu)
2 + γ2τuτ ν)− a21γ2a2τ 2u(a22τu + τ ε + τ ν) (A.16)

+ a1(3a2τu(a2(1 + γa2τu) + γτ ν) + τ v((1 + γa2τu)
2 + γ2τ ντ v) + τ ε + γ2τu(τ ν + a22τu)

2)

− γ2a2τu(a22τu + τ ε + τ ν)(τ v + a22τu + τ ε + τ ν),

with a negative discriminant. This implies that with β = 0 there exists a unique equilib-

rium in linear strategies with first period responsiveness a∗1. To locate the equilibrium,

note that

φ

(
γ2a2τu(a

2
2τu + τ ε + τ ν)

1 + γ2τu(a22τu + 2τ ε + τ ν)

)
= − γ

2a2τ ντu(a
2
2τu + τ ε + τ ν)

1 + γ2τu(a22τu + 2τ ε + τ ν)
< 0 (A.17a)

φ(a2) = a2(τ v + τ ε(1 + γ2τu(τ ν + τ ε(3 + 2γa2τu) + τ v))) > 0. (A.17b)
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Therefore,

a∗1 ∈
(

γ2a2τu(a
2
2τu + τ ε + τ ν)

1 + γ2τu(a22τu + 2τ ε + τ ν)
, a2

)
.

Furthermore, since

ψ′(a1) ∝ 2a1τu(γ
2a2τu(a

2
2τu + τ ε + τ ν)− a1(1 + γ2τu(a

2
2τu + 2τ ε + τ ν)),

we also have that for β = 0, the weights to private information in the first period are

strategic substitutes.

2

Proof of Corollary 3

For any β ∈ [0, 1], in the second period an equilibrium must satisfy a2 = γτ ε. In the first

period, assuming τ η = 0, and using (A.10), at equilibrium a1 equilibrium must satisfy

φ1(a1) ≡ a1λ2(τ 2 + τ ε)− γτ ε∆a2τu
= a1(1 + γτu∆a2)− γ2τ ε∆a2τu = 0. (A.18)

The above equation is a quadratic in a1 which for any a2 > 0 and β > 0 possesses two

positive, real solutions:

a∗1 =
1 + γτua2(1 + β)−

√
(1 + γτua2(1 + β))2 − 4β(γτua2)2

2βγτu
(A.19)

a∗∗1 =
1 + γτua2(1 + β) +

√
(1 + γτua2(1 + β))2 − 4β(γτua2)2

2βγτu
, (A.20)

with a∗∗1 > a∗1. This proves that for β > 0 there are two linear equilibria.

Inspection of the above expressions for a1 shows that βa∗1 < a2, while βa∗∗1 > a2. The

result for λ2, Var1[p2] follows from substituting (A.19) and (A.20), respectively in λ2 and

Var1[p2]. To see that prices are more informative along the HIE note that in the first

period Var[v|z1]−1 = τ 1 = τ v + a21τu. In the second period, the price along the HIE is

more informative than along the LIE if and only if

(1 + β2 + γa2τu((1− β2) + β(1 + β2)))
√

(1 + γa2τu(1 + β))2 − 4β(γa2τu)2

γ2β2τu
> 0,
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which is always true. Given that τ i2 = τ 2 + τ ε, this also implies that Λ∗∗∗2 < Λ∗2. Finally,

substitution of (A.19) and (A.20) in Vari1[p2] shows that Vari1[p2]
∗∗∗ < Vari1[p2]

∗. In

view of (9) this implies that Λ∗∗∗1 < Λ∗1.

When β → 0, along the HIE we have

lim
β→0

1 + γτu(a2 + βγτ ε) +
√

1 + γτu(2(a2 + βγτ ε) + γτu(a2 − βγτ ε)2)
2βγτu

=∞,

while along the LIE, using l’Hospital’s rule,

lim
β→0

1 + γτu(a2 + βγτ ε)−
√

1 + γτu(2(a2 + βγτ ε) + γτu(a2 − βγτ ε)2)
2βγτu

=
γa22τu

1 + γa2τu
.

From (A.21) it then follows that in this case αP1 < αE1 . Finally, defining

a∗10 =
γa22τu

1 + γa2τu
,

and taking the limit of λ2 as β → 0 when a1 = a∗10 yields

lim
β→0

λ∗2 =
1 + γτua2

γ(τ v + (a∗10)
2τu + a22τu + τ ε)

> 0,

whereas limβ→0 λ
∗∗∗
2 = 0. 2

Proof of Corollary 4

Starting from the LIE, we need to verify that |ψ′(a∗1)| < 1, or that when a1 = a∗1,

γβa2τu < (1 + γτu∆a2)
2.

Substituting (A.19) on R.H.S. of the above inequality and rearranging yields

|ψ′(a∗1)| < 1 ⇐⇒

− 2(1 + a2γτu(1− β))(1 + a2γτu(1− β) +
√

(1 + γτua2(1 + β))2 − 4β(γτua2)2) < 0,

which is always satisfied. For the HIE, we need instead to verify that |ψ′(a∗∗∗1 )| > 1, or

that when a1 = a∗∗∗1 ,

γβa2τu > (1 + γτu∆a2)
2.
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Substituting (A.20) on R.H.S. of the above inequality and rearranging yields

|ψ′(a∗∗∗1 )| > 1 ⇐⇒

2(1 + a2γτu(1− β))(−(1 + a2γτu(1− β)) +
√

(1 + γτua2(1 + β))2 − 4β(γτua2)2) > 0,

which is always satisfied, since the first factor in the product on the R.H.S. of the above

expression is positive, while manipulating the second factor shows that√
(1 + γτua2(1 + β))2 − 4β(γτua2)2 > (1 + a2γτu(1− β)) ⇐⇒ 4a2βγτu > 0.

2

Proof of Corollary 5

In the second period, the result follows from the fact that since at equilibrium a2 = γτ ε,

a2
αE2

=
γ

Vari2[v]
.

In period 1 we have

X1(si, z1) = γ
(λ2∆a2 + τ η/τ i2)Ei1[v]

Vari1[p2]
+

γ

Vari1[p2]

(
βαP2

a2
z1 + (1− αP2)

τ 1
τ 2
E1[v]

)
− γ

Vari1[p2]
p1.

Adding and subtracting (a1/αE1)p1 from the right hand side of the above expression

yields

X1(si, z1) =
a1
αE1

(Ei1[v]− p1) +

(
a1
αE1

− γ

Vari1[p2]

)
p1 +

γ

Vari1[p2]

(
β

γτ i2
z1 +

τ 1
τ i2

E1[v]

)
.

The second and third terms in the above expression can be rewritten to obtain(
a1
αE1

− γ

Vari1[p2]

)
p1 +

γ

Vari1[p2]

(
β

γτ i2
z1 +

τ 1
τ i2

E1[v]

)
=
β(1− αP1)− γτ 1αP1

a1τ i2Vari1[p2]
E1[θ1]

=
αP1 − αE1

αE1

E1[θ1].

Note, also, that setting ρ ≡ a1/a2, we can express

αP1 = αE1

(
1 +

(βρ− 1)τ 1
τ i2

)
. (A.21)
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This implies that for a1 = a∗1, αP1 < αE1 , whereas the opposite holds for a1 ∈ {a∗∗1 , a∗∗∗1 }.
To differentiate xi2 with respect to p2, we first express the information contained in a

trader’s forecast in terms of p2. To this end we use (A.6) and write

z2 =
1

λ2

(
p2 −

τ η
τ i2

sP −
βαP2

a2
z1 − (1− αP2)

τ 1
τ 2
E1[v]

)
.

Substituting the above in Ei2[v], and differentiating xi2 with respect to p2 yields

∂xi2
∂p2

= − γτ i2
1 + γτu∆a2

.

For a1 = a∗1, we know that ∆a2 > 0, so that the information effect reinforces the substi-

tution effect and the asset is a normal good. Conversely, when multiple equilibria arise,

for a1 ∈ {a∗∗1 , a∗∗∗1 }, 1 + γτu∆a2 < 0, implying that the asset is a Giffen good.

Finally, to compute the conditional covariance we have

Covi1[v − p2, p2 − p1] = Covi1[v − p2, p2]

= Covi1[v, p2]− Vari1[p2]. (A.22)

Using (10b), we obtain

Covi1[v, p2] =
1

τ i1

(
λ2∆a2 +

τ η
τ i1

)
.

On the other hand, from (A.13) we have

Vari1[p2] =
1

τ i1

(
λ2∆a2 +

τ η
τ i2

)2

+
λ22
τu

+
τ η
τ 2i2

.

Substituting these expressions in (A.22) and rearranging yields

Covi1[v − p2, p2 − p1] = − 1

γτ i1τ i2

(
λ2(τ i2 − τ η)

τu
+

∆a2τ η
τ i2

)
.

According to Proposition 2, when a1 ∈ {a∗∗1 , a∗∗∗1 }, ∆a2 < 0 and λ2 < 0. Therefore,

Covi1[v − p2, p2 − p1] > 0. Conversely, along the LIE, the opposite occurs.

2
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Proof of Corollary 6

We have already established in Corollary 5 that along the HIE (LIE) αP1 > αE1 (αP1 <

αE1). Now, using (6) the covariance between p1 and v is given by

Cov[v, p1] = αP1

1

τ v
+ (1− αP1)

(
1

τ v
− 1

τ 1

)
, (A.23)

and carrying out a similar computation for the first period consensus opinion

Cov
[
Ē1[v], v

]
= αE1

1

τ v
+ (1− αE1)

(
1

τ v
− 1

τ 1

)
. (A.24)

We can now subtract (A.24) from (A.23) and obtain

Cov
[
p1 − Ē1[v], v

]
=
αP1 − αE1

τ 1
, (A.25)

implying that the price at time 1 over relies on public information (compared to the

optimal statistical weight) if and only if the covariance between the price and the funda-

mentals falls short of that between the consensus opinion and the fundamentals. 2

Proof of Corollary 7

To compute Cov[p2 − p1, p1 − v̄] we first note that

Cov[p2 − p1, p1 − v̄] = Cov[p2, p1]− Var[p1]. (A.26)

Next,

Cov[p2, p1] = Cov[E1[p2], E1[p1]] + Cov1[p2, p1] = Cov[E1[p2], p1].

Computing

Cov[E1[p2], p1] = Var[E1[v]] + (Λ1 + βΛ2)Cov[E1[v], E1[θ1]] + βΛ2Λ1Var[E1[θ1]]

=
a21τ 1
τ 1τ v

+ (Λ1 + βΛ2)
a1
τ 1

+ βΛ2Λ1
τ v
τ 1τu

,

and

Var[p1] =
a21τu
τ 1τ v

+ Λ2
1

τ v
τ 1τu

+ 2Λ1
a1
τ 1
.
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Substituting these expressions in (A.26) and rearranging yields

Cov[p2 − p1, p1 − v̄] = −Vari1[p2]

γ

(
Λ1

τ v
τ 1τu

+
a1
τ 1

)
< 0.

Consider now Cov[v − p2, p1 − v̄], decomposing the covariance yields

Cov[v − p2, p1 − v̄] = Cov[E1[v − p2], p1] + Cov1[v − p2, p1 − v̄]︸ ︷︷ ︸
=0

= −βΛ2 (Cov[E1[θ1], E1[v]] + Λ1Var[E1[θ1]])

= −βΛ2

(
a1
τ 1

+ Λ1
τ v
τ 1τu

)
= −βΛ2λ1

1

τu
,

which is always negative for β ∈ (0, 1], and null for β = 0. Finally, to compute Cov[v −
p2, p2 − p1] we decompose again the covariance

Cov[v − p2, p2 − p1] = Cov[E1[v − p2], E1[p2 − p1]] + Cov1[v − p2, p2 − p1].

Computing, E1[v − p2] = −βΛ2E1[θ1], and E1[p2 − p1] = (βΛ2 − Λ1)E1[θ1]. Therefore,

Cov[E1[v − p2], E1[p2 − p1]] = βΛ2
Vari1[p2]

γ
Var[E1[θ1]]. (A.27)

Next, we obtain

Cov1[v − p2, p2 − p1] =
(1 + γτu∆a2)(βa1∆a2τu − τ 1) + γτ ητuβa1

(γτ i2)2τ 1τu
. (A.28)

When a1 ∈ {a∗∗1 , a∗∗∗1 }, ∆a2 < −(γτu)
−1, and the above expression is always positive,

which implies that along the HIE Cov[v − p2, p2 − p1] > 0. 2

Proof of Corollary 8

To prove this result, we impose τ η = 0 in (A.27) and (A.28), obtaining

Cov[v − p2, p2 − p1] = − λ2
γτ i2τu

(
1− β∆a2

τ i1 − τ v
a1τ i1

)
. (A.29)

Looking at (A.29) we again verify that along the HIE there is momentum. This is true
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because in that equilibrium λ2 < 0 and ∆a2 < 0. Along the LIE momentum can occur,

depending on the persistence of liquidity trades. To see this, note that since in this

equilibrium λ2 > 0 and ∆a2 > 0, from (A.29) momentum needs

1− β∆a2
τ i1 − τ v
a1τ i1

< 0,

which can be rearranged as an (implicit) condition on the magnitude of β:

a1τ i1
∆a2(τ i1 − τ v)

< β < 1.

If β = 0, the above condition is never satisfied. Indeed, in this case there exists a unique

equilibrium in which ∆a2 = a2 > 0. Therefore, when β = 0 returns always display

reversal. If β = 1, the condition is satisfied if

a1τ v + a1(τ ε + a21τu) < ∆a2τu(τ ε + a21τu).

Isolating τ v in the above expression yields:

τ v < τ̂ v ≡
(∆a2 − a1)(τ ε + a21τu)

a1
, (A.30)

which, since a1 does not depend on τ v (see (A.19)), gives an explicit upper bound on τ v.

Hence, if τ v < τ̂ v, there exists a β̂ such that for all β ≥ β̂, when τ η = 0, momentum

occurs between the second and third period returns along the LIE. 2
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