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This paper applies different copulas in order to investigate the complex dependence structure 
between EU emission allowance (EUA) futures returns and those of other commodities, 
equity and energy indices. The analysis yields important insights into the relationship between 
carbon, commodities and financial markets. First of all, we find a significant relationship 
between EUA returns and those of the other considered variables that is most appropriately 
modeled by a Gaussian and Student-t copula. These results contradict some earlier studies that 
report no statistically significant or even negative correlations between returns of emission 
allowances and other financial variables. Secondly, considering time-varying copulas shows 
that the estimated copula parameters are not constant over time. We find in particular that the 
dependence is stronger during the period of the financial crisis. In a Value-at-Risk (VaR) 
analysis, finally, we further illustrate the advantages of copula methods. In particular the 
Student-t copula provides an appropriate quantification of VaR at different confidence levels 
while other models fail to specify the risk correctly. This analysis shows that ignoring the 
actual nature of dependence might lead to an underestimation of the risk for portfolios 
combining EUAs with commodities or equity investments. 
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1 Introduction

Under the Kyoto Protocol the EU has committed to reducing greenhouse gas
(GHG) emissions by 8% compared to the 1990 level by the years 2008-2012.
In order to give a price to carbon emissions and to incentivize the reduction
of the respective GHG, an EU-wide CO2 emissions trading system (EU ETS)
has been set up. Thus, the right to emit a particular amount of CO2 has
become a tradable commodity and is now a factor of production that is sub-
ject to stochastic price changes. This new market not only requires regulated
emitters to run an adequate risk management, it also provides new business
development opportunities for market intermediaries and service providers like
brokers or marketeers. However, it is essential for carbon market players to
learn about price dynamics in order to realize trading as well as risk strategies
and investment decisions.

Since the beginning of the emission trading in 2005, a number of studies have
analyzed the behavior of emission allowance prices. Benz and Trück (2009),
Daskalakis et al. (2009) as well as Paolella and Taschini (2008) provide an
econometric analysis of the behavior of allowance prices and investigate differ-
ent models for the dynamics of short-term spot prices. Other studies have been
investigating derivative products in EUA markets like convenience yields and
the term structure of futures prices (Trück et al., 2006), as well as the effects of
options trading on market volatility (Chevallier et al., 2009b). Böhringer and
Lange (2005) and Schleich et al. (2006) conduct simulation studies on CO2

market prices with respect to changes in different market design parameters.

The aim of this paper is to provide a thorough analysis of the dependence
structure between EUA returns and those of other financial variables and
commodities. As EUAs are a factor of production, it is plausible to assume
that changes in emission allowance prices are related to the dynamics of other
commodity markets. We contribute to the literature in the three dimensions.
First of all, we apply different copula models in order to investigate the na-
ture of dependence between EUA returns and those of other financial assets.
Copulas are generally a very flexible method to model the relationship be-
tween different variables. Among the advantages are the possibility to account
for different types of tail dependence of the return series under consideration.
Thus, the application of copulas yields considerably closer insights than e.g.
the application of linear correlation models. To our best knowledge, this paper
is a pioneer study on copulas in the area of carbon market research. Secondly,
we apply time-varying copulas in order to investigate whether the relation-
ships under consideration are constant over time. This procedure allows us to
study as to whether influencing factors on carbon prices changed over time and
whether or not the financial crisis had an impact on the dependence between
the considered variables. Finally, we conduct a risk management analysis in or-
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der to further illustrate the usefulness of the application of copulas. It is often
argued that EUA prices are more strongly influenced by policy measures and
regulatory changes than other commodities and could, in consequence, poten-
tially be used for portfolio diversification, see e.g. Chevallier (2009). Therefore,
we provide a risk analysis by comparing benchmark models including e.g. a
standard variance-covariance approach to the estimated copula models with
respect to the quantification of the risk. We show how a misspecification of
the actual dependence structure might not only lead to an inappropriate spec-
ification of the portfolio return distribution, but also underestimate the risks
from joint extreme returns.

The remainder of the paper is organized as follows. Section 2 provides a brief
description of the market mechanism for CO2 emission allowances, a classifi-
cation of the assets as well as price drivers of the market. Section 3 provides
a review of different copula models with respect to estimation, model test-
ing, modeling the dependence structure and risk analysis. Section 4 describes
the considered data and presents the empirical results of our study. Section 5
concludes and gives suggestions for future work.

2 The European Emission Trading Scheme

2.1 Regulatory Setting

This section briefly discusses the regulatory setting of the EU ETS. The
scheme affects combustion installations exceeding 20 MW including different
kinds of industries like metal, cement, paper, glass as well as power generation
and refineries. In total, the EU-ETS includes some 12500 installations, repre-
senting approximately 40% of EU’s GHG emissions. From 2013 onwards the
system will cover additional GHG emissions such as perfluorcarbons (PFCs)
and dinitrogen monoxide (N2O). After an initial pilot trading period (2005-
2007), new national allocation plans (NAPs) have been issued for the second
trading phase from 2008-2012. From 2013 a third trading period will run until
2020. In the third period the NAPs will be replaced by unified rules apply-
ing to all member states. Generally, allowances may either be allocated free
of charge or auctioned. According to the European Commission the impor-
tance of auctioning will further increase over time. However, it is important
to note that the annual quantity of allocated emission allowances is limited
and already specified by the EU-Directive until 2020. Some regulatory settings
are particularly important, as they shape compliance behavior and, thus, are
likely to have price effects. Under the current system, banking - the storage
of unused certificates - gives more leeway for complying parties and smoothes
prices. A detailed analysis of banking and borrowing rules is provided by Al-
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berola and Chevallier (2009). Another particularity of the current framework
is a period of allocation overlap: allowances for the new compliance year are
obtained in February, whereas the EUAs due for the previous year have to be
submitted in April.

Generally, a lack of allowances requires a company to either buy a sufficient
amount of EUAs or to invest in some plant-specific process improvements. A
third option is the purchase of additional allowances and emission credits from
Clean Development Mechanism (CDM) or Joint Implementation (JI) projects,
the so-called Flexible Mechanisms under the Kyoto Protocol. Failure to submit
a sufficient amount of allowances results in sanction payments of 100 Euro per
missing ton of CO2 allowance. In addition, companies have to surrender the
missing allowance. As a consequence, participating companies face several risks
specific to emissions trading. In particular, price risk of fluctuating allowance
prices and volume risk, due to unexpected fluctuations in energy demand
the emitters do not know ex ante their exact demand for EUAs, have to be
considered. Naturally, market generic risks – like counterparty, operational,
reputational, etc. – are also present. For a discussion see e.g. Bokenkamp
et al. (2005).

2.2 Classifying Carbon Emission Allowances

Having outlined some important regulatory issues, the nature of EUAs is now
discussed in more detail. Due to a number of specific features, EUAs are
different to traditional commodities. What is sold is essentially the lack or
absence of CO2. Therefore, emissions are said to become either an asset or
a liability for the obligation to deliver allowances that cover those emissions
(PointCarbon, 2004). Benz and Trück (2009) point out the differences between
emission allowances and classical stocks. Demand and value of a stock is based
on profit expectations of the underlying firm. Certainly, resource scarcity plays
a role in this price formation process. The CO2 allowance price, however, is
much more directly determined by the expected market scarcity, which is
externally set by the European commission.

Another insightful approach for specifying CO2 emission allowances is their
consideration as a factor of production (Fichtner, 2004). The shortage of emis-
sion allowances by reducing the emissions cap for the commitment periods
classifies the assets as ‘normal’ factors of production - they can be ‘exhausted’
for the production of CO2. After their redemption or at the end of the com-
mitment period when they expire, they are then removed from the market.
Accordingly, it seems more adequate to compare the right to emit CO2 with
other operating materials or commodities than with a traditional equity share.
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2.3 CO2 Price Drivers

In order to set up a comprehensive analysis, it is of great importance to iden-
tify the key price determinants of the CO2 emission allowances. Following the
investigation of SO2 permit prices by Burtraw (1996), we categorize the prin-
ciple driving factors of CO2 allowance prices into (i) policy and regulatory
issues and (ii) market fundamentals that directly concern the production of
CO2 and thus demand and supply of CO2 allowances.

Regulatory settings, as in part (i), are likely to shape long-term level of prices.
For our pricing model we are interested in the determinants of short-term
price behavior. Policy changes may lead to sudden price changes if the market
is suprised by decisions concerning the NAPs or a change of the European
commitment to reduce 30% instead of 20% until 2020. Hence, the consequences
of changes in such regulatory or policy issues may be sudden price jumps
and phases of extreme volatility (Gronwald and Ketterer (2009), Sanin and
Violante (2009)). Chevallier et al. (2009a) specifically investigate the EUA
price drop in April 2007 and show that the market perception of risk changed
substantially during that period.

Incorporating part (ii), allowance prices fundamentally depend on the emis-
sion level of CO2 which is influenced by factors like economic growth or fuel
prices. Some comprehensive research on determinants has been conducted by
Alberola et al. (2008), Mansanet-Bataller et al. (2007) or Chesney and Tas-
chini (2008). An important force is weather data, such as temperature, rain
fall and wind speed. Hintermann (2010) detects a negative effect of availabil-
ity of hydropower in Nordic countries during the first trading phase. Rickels
et al. (2010) confirm this result for the second trading phase and find the
same relationship with wind power: higher wind speeds in Germany lead to
lower EUA prices. Mansanet-Bataller et al. (2007), Rickels et al. (2007) and
Alberola et al. (2008) show that extremely hot or cold days have a positive
effect on EUA prices.

Also energy variables have a clearly identified impact on the prices of emission
allowances (Chevallier, 2009). For example, an electricity producer switching
from ‘cheap-but-dirty’ coal to ‘expensive-but-cleaner’ gas can significantly re-
duce emissions per MWh of produced electricity. Therefore, fuel-switching
from coal to gas implies less emissions to be covered with permits and the
price of EUAs should be dependent on prices of gas and coal, see e.g. Fehr
and Hinz (2006). With respect to the influence of energy prices on carbon
prices, the literature discovers relatively robust patterns. Mansanet-Bataller
et al. (2007) find positive effects of oil and gas prices on EUA forward prices
in Phase I, while there is no significant influence of the coal price. The same
results are given by Hintermann (2010). In a study by Rickels et al. (2007),

5



coal shows up with a negative sign. Similarly, Alberola et al. (2008) reports a
negative effect of coal on carbon prices and detect positive effects of gas, oil
and electricity prices.

The dependence of carbon and energy prices is studied in bidirectional manner.
On the one hand, electricity and commodity prices are identified as fundamen-
tal factors for carbon prices. On the other hand, the price effect of emissions
trading on energy prices is traced. Kara et al. (2008) report that the EU emis-
sions trading has a price increasing effect on electricity prices in Finland - but
the authors do not consider daily or weekly data. For Germany, Hirschhausen
and Zachmann (2008) show that carbon price changes are passed through to
wholesale power prices. This effect, however, is asymmetric, as carbon price
increases have a stronger impact. Daskalakis and Markellos (2009) confirm the
asymmetry, but in their estimations a falling carbon price has a larger effect
on electricity prices. Bunn and Fezzi (2007) investigate the economic impact of
the EU ETS for carbon on wholesale electricity and gas prices in the UK. Using
a structural co-integrated VAR model, they conclude that the prices of car-
bon and gas jointly influence the equilibrium price of electricity and estimate
the transmission of shocks between gas, carbon and power prices. Nazifi and
Milunovich (2010) apply a restricted VAR model in first differences to test for
existence of causal relationship and long-run links between the price of carbon
and the prices of energy fuels and electricity. They apply Granger-causality
tests and generalized impulse response analysis and their results suggest that
the dynamics of energy prices are rather independent from the price of carbon
emissions permits for the considered time period. However, they find weak
evidence of Granger-causality running from carbon futures prices to natural
gas prices. Reinaud (2007) investigates the interaction between CO2 allowance
and electricity prices and the impact on the industry’s electricity purchasing
strategies in Europe. While the author concludes that there is no universal an-
swer on how the EU ETS has affected electricity prices, at least some evidence
for the CO2 cost pass-through into electricity prices was provided during the
abrupt fall of the CO2 price in May 2006. The fall by ten Euros per tonne of
CO2 was immediately followed by a drop in wholesale electricity prices by five
to ten Euros per MWh in several markets. Reinaud (2007) further argues that
this electricity price adjustment is directly attributable to the CO2 price fall,
since it was not connected to other energy market movements that could also
affect electricity prices. Generally, the results of the influence of carbon prices
on other commodity prices are varied: so far there seems to be no common
agreement whether the price of carbon emission allowances has a significant
influence on energy markets or not.

The literature, however, paid less attention to the relationship of emission
allowance prices with financial variables. Rising carbon prices, as a factor of
production, could be related to additional costs and uncertainties for produc-
ers and consumers and might have an adverse effect on equity markets in
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general or equities of certain industries in particular. Kosobud et al. (2005)
find no statistically significant correlations between monthly returns of SO2

emission allowance prices in the US market and returns from various financial
investments. Hintermann (2010) spots no influence of the British FTSE eq-
uity index during the first trading phase of the EU ETS. Oberndorfer (2009)
examines the impact of stock returns of large electricity companies on carbon
prices. He identifies a positive effect that varies across countries. Veith et al.
(2009) employ a multifactor model and confirm this finding for the first trad-
ing phase. Daskalakis et al. (2009) detect negative correlations of EUA futures
with equity market returns what may offer significant diversification opportu-
nities to European equity investors. They argue that the factors determining
stock and bond prices are substantially different from those affecting emission
permits. In a study on the relationship between macroeconomic variables and
carbon futures, Chevallier (2009) finds that stock and bond markets - as prox-
ies for macroeconomic risk - have little influence on EUA futures. The author
suggests that emission allowances are an too easily storable commodity and
therefore not prone to react to macroeconomic shocks as much as stock mar-
kets. Chevallier (2009) therefore suggests that the use of emission allowance
prices for diversification purposes should be further investigated.

To our best knowledge, so far there has been no empirical study concentrat-
ing mainly on the dependence structure between EUA returns and those of
other financial variables or commodity markets. Next to standard approaches
investigating linear dependence by correlation analysis in our study we also
apply different copulas to model the complex dependence structure between
the return series of carbon emission, commodity and equity markets.

3 Copula Models

Recently, the application of copulas became very popular in empirical finance.
One reason for this is certainly that copulas are a flexible instrument for mod-
eling the dependence structure between returns of financial time series. They
allow for capturing different types of tail dependence between the variables
under consideration. Thus, the application of copulas yields deeper insights
into the dependence structure of financial variables. Moreover, there has been
some general criticism towards the assumptions of multivariate normality for
the joint distribution of asset returns and the use of a covariance matrix as the
natural measure of dependence between financial assets. As shown in studies
such as Jondeau and Rockinger (2006a), Junker et al. (2006), Luciano and
Marena (2003) or McNeil et al. (2005), using correlations may not appropri-
ately describe the dependence structure between financial assets and, in conse-
quence, could lead to inadequate measurement of the risk of joint extreme price
movements. The application of copula methods is suggested for modeling the
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dependence structure of the asset returns in order to overcome this problem. 1

For an excellent overview on copula methods in finance, see e.g. Cherubini
et al. (2004), where the range of applications of copula methods includes var-
ious topics such as portfolio analysis, derivative pricing as well as credit risk
analysis. With respect to analyzing the dependence structure between differ-
ent financial assets, copula models, as alternative to the multivariate normal
model, do not necessarily require assumptions of joint normality for the distri-
butions. Instead a copula allows joining arbitrary marginal distributions into
their one dimensional multivariate distribution. Therefore, a wide range of
dependence structures can be captured by using different copulas. The multi-
variate joint distribution can be decomposed into marginal distributions and
an appropriate functional form for the dependence between the asset returns.

This section provides a brief review on the estimation and goodness-of-fit tests
for copulas that will be used in the subsequent empirical analysis. Since this
can be considered as a pioneer study on applying and testing different copula
models to emission allowance markets, we also briefly illustrate some basic
concepts of copula families and the dependence measure Kendall’s τ .

3.1 Copula Functions

A copula is a function that combines marginal distributions to form a joint
multivariate distribution. The concept was initially introduced by Sklar (1959),
but has only gained high popularity in modeling financial or economic vari-
ables in the last two decades. For an introduction to copulas see e.g. Nelsen
(1999) or Joe (1997), for applications to various issues in financial economics
and econometrics, see e.g. Cherubini et al. (2004), McNeil et al. (2005), Frey
and McNeil (2003) and Hull and White (2004) to name just a few. Longin
and Solnik (2001) empirically show that asset returns are more highly cor-
related during volatile markets and during market downturns. According to
Dowd (2004) the strength of the copula stems from its feature that it does not
require any assumption regarding the joint distributions among the financial
assets in a portfolio. Overall, the use of copulas offers the advantage that the
nature of dependence can be modeled in a more general as well as flexible
setting than using only linear dependence that is captured by correlation.

A copula is the distribution function of a random vector in R
n with standard

uniform marginals. Let X = (X1, . . . , Xn)′ be a random vector of real-valued
random variables whose dependence structure is completely described by the
joint distribution function

1 Note, however, that the Gaussian copula with the assumption of normal marginals
coincides with the multivariate normal distribution and, thus, is fully characterized
by the correlation coefficient.
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F (x1, . . . , xn) = P (X1 < x1, . . . , Xn < xn). (1)

Each random variable Xi has a marginal distribution of Fi that is assumed to
be continuous for simplicity. The transformation of a continuous random vari-
able X with its own distribution function F results in a random variable F (X)
which is uniformly distributed over [0, 1]. Thus transforming equation (1)
component-wise yields

F (x1, . . . , xn) = P (X1 < x1, . . . , Xn < xn)

= P [F1(X1) < F1(x1), . . . , Fn(Xn) < Fn(xn)]

= C(F1(x1), . . . , Fn(xn)), (2)

where the function C can be identified as a joint distribution function with
standard uniform marginals — the copula of the random vector X. Equation
(2) illustrates how the copula combines the marginals to the joint distribution.
The copula framework can be generalized for any collection of marginal dis-
tributions and joint distributions. In our application we will mainly consider
the bivariate case with a function C(u, v) such that,

C(u, v) = C[F (x), G(y)]. (3)

Then the function C(u, v) is defined as a copula function which relates the
marginal distribution functions F (x) and G(y) into their joint probability dis-
tribution. Moreover, if marginal distributions F (x) and G(y) are continuous,
the copula function C(u, v) is unique, see e.g. Sklar (1959).

3.2 Examples of copulas

The literature reports a wide range of different copulas, see e.g. Joe (1997)
or Nelsen (1999) for an overview of the most common parametric families of
copulas. In the following we will describe four of the most commonly applied
copulas: the Gaussian, Student-t, Clayton and Gumbel copula.

We will start with the multivariate Gaussian and Student-t copula that belong
to the class of elliptical copulas. The probably most intensively used copula
in financial applications is the Gaussian copula. It is constructed from the
multivariate normal distribution and is denoted by

CN
ρ (u1, . . . , ud) = Φd

Σ(Φ−1(u1), . . . , Φ
−1(ud)) (4)
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Hereby, Φ denotes the the standard normal cumulative distribution function,
Φ−1 the inverse of the standard normal cumulative distribution function and
Φd

Σ the standard multivariate Normal distribution with correlation matrix Σ.
Applying CN

ρ to two univariate standard normally distributed random vari-
ables results in a standard bivariate normal distribution with correlation co-
efficient ρ. Further note that, since the copula and the marginals can be ar-
bitrarily combined, this (and any other) copula can be applied to any set of
univariate random variables. The outcome will then surely not be multivariate
normal, but the resulting multivariate distribution has inherited the depen-
dence structure from the multivariate normal distribution. The multivariate
normal copula correlates the random variables rather near the mean and,
therefore, fails to incorporate dependence in the tail. The Student-t copula, in
contrast, is able to capture tail dependence. This copula is denoted by:

TΣ,v(u1, u2, . . . , ud) = tΣ,v(t
−1

v (u1), t
−1

v (u1), . . . , t
−1

v (ud)) (5)

where tΣ,v is the multivariate Student-t distribution with v degrees of freedom
and correlation matrix Σ. Depending on the degrees of freedom parameter,
the Student-t copula can also determine the strength of the tail dependence.
Generally, low values of the parameter v indicate strong tail dependence.

The elliptical copulas discussed have in common that they can be used to
model symmetric tail dependence. It is, however, a common occurrence for
economic and financial variables to exhibit tail-dependence in only one of the
tails, either the upper right or lower left tail. For example, tail-dependence in
the lower left tail indicates that the two variables show simultaneous extreme
negative returns while high positive returns in one of the variables may not
affect the other variable that much. To model asymmetric tail dependence,
so-called Archimedean copulas can be used, see e.g. Cherubini et al. (2004).
Two of the most prominent members of the family of Archimedean copulas are
the Clayton and Gumbel copula that will be briefly described in the following.
The Clayton copula is an asymmetric Archimedean copula, exhibiting greater
dependence in the negative lower tail than in the positive upper one. The
multivariate Clayton copula is denoted by:

CCl
θ (u1, ..., ud) =

[

d
∑

i=1

u−θ
i − d + 1

]1/θ

, (6)

For the Clayton copula, the parameter θ > 0 can be interpreted as a measure
of the degree of dependence. The greater θ, the stronger is the dependence be-
tween the considered variables, in particular in the lower left tail. The Gumbel
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Fig. 1. Scatter plot of simulated dependence structure of ranks for different copulas
with the same Kendal’s τ = 0.5. The graph illustrates the dependence between
the ranks for the Gaussian (upper left panel), the Student-t (upper right panel),
Clayton (lower left panel) and Gumbel copula (lower right panel).

copula, in contrast, exhibits greater dependence in the upper right tail and is
denoted by:

CGu
φ (u1, ..., ud) = exp



−

{

d
∑

i=1

(−ln(ui)
φ

}1/φ


 , (7)

where φ > 1 indicates the dependence between the random variables X1, ...Xd.

Often Kendall’s τ is used for characterizing the dependence structure. Kendall’s
τ is a rank-based measure of dependence that provides consistent estimation of
the true underlying copula as it is shown for example in Deheuvels (1979). 2

Values of τ range from −1 to +1, while in the case of independence τ will
be 0, see e.g. Nelsen (1999). In the case of a bivariate one-parameter copula,
Kendall’s τ is an appropriate dependence measure, as there is a one-to-one
relationship between the copula parameter and Kendall’s τ .

2 Another rank-based measure of dependence is Spearman’s ρ. Cherubini et al.
(2004) explains there measures as well as their differences in greater detail.
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For the purposes of illustrating the different copula models discussed above,
Figure 1 shows scatter plots for four different copula functions based on the
same Kendall’s τ = 0.5. The graph illustrates the symmetric dependence struc-
ture for the Gaussian and Student-t copula, while the Student-t copula exhibits
more tail dependence in the lower left and upper right tail in comparison to
the Gaussian one. Further the asymmetric Clayton copula exhibits greater de-
pendence in the negative lower tail, while the Gumbel copula exhibits greater
dependence in the positive upper tail as illustrated by the graph.

3.3 Estimation procedure

As asserted above, copulas offer an alternative to the correlation coefficient as
it comes to modeling the dependence structure. Different approaches to esti-
mate copulas have been suggested in the literature. In this paper the copula
parameters are estimated using the transforms from the empirical marginal
distribution function F̂i(xi) by canonical maximum likelihood (CML) estima-
tion (Bouye et al., 2000). 3 In this case the vector of parameters is estimated
semi-parametrically by maximizing the loglikelihood for the copula density
using the empirical marginals F̂i(xi).

Due to the conditional heteroscedasticity usually present in financial time se-
ries instead of modeling the unconditional return distribution we concentrate
on the conditional returns and adopt the framework of semiparametric copula-
based multivariate dynamic (SCOMDY) models suggested by Chen and Fan
(2006). As the name suggests, this class of models arises from a combination of
methods. In these models, the conditional mean and the conditional variance of
a multivariate time series are specified parametrically while the joint distribu-
tion takes a semiparametric form using a parametric copula and nonparametric
marginals. The method creates additional flexibility. The typical non-normal
movements of financial time series may be captured more accurately. Still,
the copula estimation remains low-dimensional and allows to represent vari-
ous nonlinear and, asymmetric dependence structures (Linton and Yan, 2011).

3 In the bivariate case, based on the estimated value of τ , the dependence parame-
ter for the chosen copula can be calculated as a function of τ . For the Gaussian,
Student-t, Clayton and Gumbel copula this is straightforward and as pointed out
by Genest et al. (2009) under weak regularity conditions on the copula family, this
yields a consistent estimator of the dependence parameter. Note, however, that for
the Student-t copula as indicated by equation (5) also the degrees of freedom para-
meter needs to be estimated. Due to its simplicity in comparison to other estimation
techniques, copula estimation via rank transformation and Kendall’s τ is often ap-
plied in practical applications. Unfortunately, it is limited to a bivariate setting
because it makes inference on the dependence structure of the multivariate model
from a chosen dependence coefficient.
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Following the notation by Chen and Fan (2006), (Y ′

t , X
′

t), t = 1, ...n denotes a
vector stochastic process, where Yt is a d-dimensional process of endogenous
and Xt is a vector of exogenous variables. A SCOMDY models is then defined
as follows:

Yt = µt(θ1) +
√

Ht(θ)ǫt, (8)

where the vector µt(θ1) denotes the true conditional mean parameters and the
vector Ht(θ) the true conditional variance, both for given values of Yt−1, Yt−2, ...
and Xt, Xt−1, .... The innovations in vector ǫt are i.i.d. with zero mean and unit
variance and have the distribution function F (ǫ) = C(F1(ǫ1)), ..., Fd(ǫd) with
Fj(·) as true but unknown continuous marginal and C(u1, ..., ud) as true copula
function.

Various non-linear models can be used for modeling the conditional mean and
the conditional variance. Thus, in combination with the variety of available
copula models, this approach allows a great extent of flexibility for the final
model specification. For a more thorough description of the SCOMDY model
class the reader is referred to the original paper by Chen and Fan (2006). The
estimation procedure can be summarized the following way:

• Estimate all conditional mean and variance parameters in order to obtain
standardized innovations.

• In a second step, the empirical distribution function of these standardized
innovations, denoted as F̂j(µj,t(θ)), (j=1,...,d), is estimated nonparametri-
cally. Section 4.3 describes this step for our dataset.

• Finally, the copula dependence parameter is derived by using the copula
specification (as in (4) to (7)) and its density C(F̂1(ǫ1,t(θ)),..., F̂d(ǫd,t(θ)))
for maximization of the loglikelihood (Trivedi and Zimmer, 2005).

3.4 Goodness-of-fit Tests

One of the challenges is deciding on which copula provides the best fit to
the actual dependence structure of the data. Berg and Bakken (2006) note
that information criteria such as e.g. Akaike’s Information Criterion (AIC)
are generally not able to provide any understanding about the power of the
decision rule employed. Instead, goodness-of-fit (GOF) approaches are more
powerful in deciding whether to reject or accept parametric copulas, making
them the preferred choice in empirical applications, see e.g. Genest et al. (2006,
2009), Panchenko (2005), Berg and Bakken (2006). Therefore, in our empirical
analysis, for selecting the most appropriate among a set of copulas, we decided
to use goodness-of-fit tests that investigate the distance between the estimated
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and the so-called empirical copula, see e.g. Genest et al. (2006, 2009). The
empirical copula basically represents an observed frequency and is calculated
from the empirical margins. The distance between estimated and empirical
copula is then evaluated using the so-called Cramér-Von Mises test statistic.
The parametric copula that is closest to the empirical copula is the most
appropriate choice.

The following section describes the procedure in greater detail. Empirical cop-
ulas were introduced by Deheuvels (1979) under the name of empirical depen-
dence functions. Let (X1i, ..., Xni) be n observations of the random variable
Xi. Then the empirical marginal cdf for a random variable Xi is:

F̂i(xi) =
1

n + 1

n
∑

j=1

I(Xji ≤ xi) i = 1, .., d (9)

where I(·) denotes the indicator function returning the value of 1 if Xji ≤ xi

and 0 otherwise. Further, in the denominator n + 1 is used to keep the em-
pirical cdf to be smaller than 1. Note that the empirical marginal distribution
converges towards the actual distribution function for n approaching infin-
ity. Defining the empirical probability integral transforms uji = F̂i(xji) for
i = 1, .., d; j = 1, .., n, for the vector u = (u1, .., ud), using the marginal
cdf’s, the empirical copula is given by

Cemp(u) =
1

n + 1

n
∑

j=1

I(F̂1(xj1) ≤ u1), ...., F̂d(xjd) ≤ ud)) (10)

=
1

n + 1

n
∑

j=1

I(U1 ≤ u1, ...., Ud ≤ ud) (11)

According to e.g. Tsukahara (2005), the empirical copula is a consistent esti-
mator of the true copula and, thus, is a well-accepted benchmark for copula
goodness-of-fit tests. 4 The distance between the empirical and the estimated
copula is measured using the Cramér-Von Mises statistic:

Sn =
n

∑

i=1

[Cemp(Ui) − Cθ(Ui)]
2

We concentrate on so-called ‘blanket tests’, where the implementation does

4 Note that the empirical copula is not a copula according to the definition by
Deheuvels (1979), but rather the observed frequency of P (U1 ≤ u1, ...., Ud ≤ ud).
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not require an arbitrary categorization of the data or any strategic choice
of smoothing parameters, weight functions or kernels. Genest et al. (2009)
provide various options for such tests by conducting a large Monte Carlo ex-
periment and report particularly good results for the blanket tests using ranks
or the Rosenblatt transform. With respect to the chosen distance measure, the
authors recommend the so-called Cramér-Von Mises statistic. Based on these
results, we only describe tests based on ranks that use the Cramér-Von Mises
for measuring the difference between the estimates and the empirical copula. 5

For the suggested approach the test procedure for investigating whether the
dependence structure of a multivariate distribution is well-represented by a
specific parametric family of copulas can be roughly summarized as follows:

1. Based on the empirical cdfs for the marginal series, estimate the empirical
copula Cemp(Ui) and the parametric copula Cθ(Ui).

2. Using the Cramér-Von Mises statistic, calculate the distance between the
empirical and estimated copula:

Sn =
n

∑

i=1

[Cemp(Ui) − Cθ(Ui)]
2

3. In a bootstrap procedure, for some large integer D, the following steps are
repeated:

(1) Generate a random sample from Cθ and compute the associated rank
vectors (U∗

1 , ..., U∗

n) as well as the empirical copula Cemp∗(u).
(2) Estimate the parametric copula Cθ∗ .

(3) Determine S∗

n =
∑n

i=1[C
emp∗(Ui) − Cθ∗(Ui)]

2 for the generated sample.

4. From the D bootstrap samples, an approximate p-value, measuring the
goodness-of-fit of the copula, can be calculated as the fraction of simulations
where S∗

n > Sn.

If the considered copula provides a good fit to the actual dependence struc-
ture of the data, we should expect to get high p-values, while for a copula
providing a bad fit to the actual data, we will expect the p-value to be low.
In this case, depending on the level of confidence, the hypothesis that the
dependence structure of a multivariate distribution is well-represented by a
specific parametric family of copulas will be rejected. Note that for the case

5 Berg and Bakken (2006) or Genest et al. (2009) describe various alternative tests.
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where several copula families cannot be rejected by the goodness-of-fit tests,
an alternative approach as specified in e.g. Chen and Fan (2006); Diks et al.
(2010) needs to be implemented. These tests are particularly designed to com-
pare competing copula models based on their in-sample (Chen and Fan, 2006)
or out-of-sample (Diks et al., 2010) loglikelihood scores.

4 Empirical Analysis

4.1 The Data

In this section we will investigate the dependence structure between daily re-
turns from traded emission allowance contracts and various other financial
variables during the time period January 2, 2008 to December 31, 2009. The
existing literature discusses the factors which are most important for carbon
prices. Based on this research, we examine a number of variables from com-
modity and financial markets. The literature identifies energy prices to exert
a strong influence on carbon prices, due to fuel-switching in the power sector.
Therefore, from commodity markets, we use gas and coal futures returns as
well as 2010 oil futures returns. The gas and oil futures are obtained from
the International Commodity Exchange (ICE). Data on coal futures as well
as electricity futures (Phelix baseload futures) are taken from the European
Energy Exchange (EEX) in Leipzig. Data on EUA prices are obtained from
the London-based European Climate Exchange (ECX). As emission levels are
related to economic activity, we take stock markets as a proxy for economic
development. In addition to the broader European stock market index, the
Eurostoxx 50, we consider the more energy-specific DJ Europe Energy Stock
Index (E1ENE) and the European Renewable Energy Index (ERIXP). One
may assume that the relationship between carbon prices and energy-related
stocks is particularly strong. For our analysis we consider log-returns that are
calculated as rt = ln(Pt+1/Pt) from the original price series.

4.2 Estimation results for the marginal series

Following the SCOMDY approach described in section 3.3, in a first step we
need to find an appropriate model for the marginals. Thus, we need to esti-
mate the parameters for the conditional mean µj,t(θ1) and conditional variance
hj,t(θ) equations. We focus on different ARMA-GARCH specifications for each
of the considered series and abstain from using additional exogenous variables.
In order to avoid overfitting, the best model is chosen based on Akaike’s In-
formation Criterion (AIC) and Bayesian Information Criterion (BIC). Table
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Time Series Suggested Model

EUA futures ARMA(1,0)-GARCH(1,1)

Coal futures ARMA(1,0)-GARCH(2,3)

Oil 2010 futures ARMA(0,0)-GARCH(1,1)

Gas futures ARMA(0,1)-GARCH(1,2)

EEX futures ARMA(1,0)-GARCH(1,3)

Eurostoxx 50 Spot ARMA(1,0)-GARCH(1,2)

E1ENE Spot ARMA(1,0)-GARCH(1,2)

ERIXP Spot ARMA(1,1)-GARCH(1,1)

Table 1
Best model among the fitted ARMA-GARCH models for each of the considered
time series. The choice of the best model is based on AIC and BIC model selection
criteria.

1 summarizes the results for the considered series indicating for each series
the model that provided the best results according to the considered model
parsimony criteria. The outcome of this procedure are standardized residuals
which will be used in the subsequent empirical analysis.

In order to test for i.i.d property of the standardized residuals, the BDS test
for independence was applied to the standardized residuals. The BDS test is
a portmanteau test for time based dependence in a series and can be used
to examine whether the residuals are independent and identically distributed.
We found that for none of the considered series, the null hypothesis of i.i.d
could be rejected, such that in the following we assume that all standardized
residuals exhibit the desired i.i.d. property necessary for copula estimation. 6

For ease of readability, we will henceforth adhere to the expression returns
instead of using standardized residuals.

4.3 Estimation results for the copula functions

In a next step we investigate the dependence structure between the returns
from EUA and the other considered commodities and financial variables based
on the fitted models for the marginal return series. As pointed out in section
3.3, applying SCOMDY models, the next step after estimating the parame-
ters for the marginal series is to estimate the empirical distribution functions
F̂j(µj,t(θ)). This has the advantage that the possibly unknown distribution for
the returns is not required, since the empirical marginal cdf can be used. The

6 The detailed results are available from the authors upon request.
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Asset τ̂ θ̂ φ̂ ρ̂N ρ̂t

Coal futures 0.2458** 0.5250 1.2666 0.3680 0.3744 (v̂ = 27.90)

Oil 2010 futures -0.0544 0.0000 1.0000 -0.0696 -0.0711 (v̂ > 1000)

Gas futures 0.1140** 0.2114 1.1175 0.1804 0.1857 (v̂ = 14.96)

EEX futures 0.4135** 0.9840 1.6010 0.5920 0.6008 (v̂ = 14.19)

Eurostoxx 50 Spot 0.1818** 0.3473 1.2055 0.2954 0.2984 (v̂ = 21.47)

E1ENE Spot 0.2651** 0.5732 1.3067 0.3937 0.4044 (v̂ = 8.82)

ERIXP Spot 0.2005** 0.4761 1.2115 0.3169 0.3203 (v̂ = 12.31)

Table 2
Kendall’s τ̂ and estimated copula dependence parameters θ̂ for the Clayton, φ̂ for
the Gumbel, ρ̂N for the Gaussian and ρ̂t for the Student-t copula for standardized
residuals of 2010 EUA futures and the considered assets. For Kendall’s τ we also re-
port the results of a significance test with H0 : τ = 0. The asterix denotes significant
rejection of the null hypothesis at the 1% ** and 5% * level.

CML method is then applied to the transforms from the empirical distribution
function to estimate the dependence parameters θ̂ for the Clayton, φ̂ for the
Gumbel and the copula correlation parameters ρ̂G for the Gaussian and ρ̂t

for the Student-t copula. Note that for the Student-t copula also the degrees
of freedom parameter v needs to be estimated such that the results for the
copula correlation parameters ρ̂G and ρ̂t are not necessarily identical.

We also estimate Kendall’s τ̂ for each of the bivariate series and conduct a
significance test for the dependence between the returns with H0 : τ = 0
versus H0 : τ 6= 0. The test is non-parametric, as it does not rely on any
assumptions on the distributions of two variables X and Y . Then under a null
hypothesis of X and Y being independent, the sampling distribution of τ will
have an expected value of zero. Note that the precise distribution cannot be
characterized in terms of common distributions, however, it can be calculated
exactly for small samples. For larger samples, commonly an approximation to
the normal distribution, with zero mean and variance 2(2n + 5)/9n(n − 1) is
used. For further details on the test we refer to Prokhorov (2001).

We find significant dependence at the 1% level between EUA returns and the
other return series except for the oil futures where the estimated coefficient for
Kendall’s τ is not significant at the 1% or 5% level. The results are displayed
in Table 2. We find that Kendall’s τ ranges from approximately -0.05 to 0.41
for the different series while the Gaussian and Student-t copula correlation
parameters range from approximately -0.07 to 0.60. The highest dependence
can be observed between the returns of 2010 EUA and electricity futures con-
tracts while we observe the lowest rank dependence and correlation between
2010 EUA and oil futures contracts. Interestingly, here the estimated coeffi-
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cients for Kendall’s τ , ρG and ρt are slightly negative. However, in 2008 and
2009 the oil futures behaved quite particular, dropping from a peak at 140
Dollars to a price remaining at around 80 Dollars. This may explain the weak
correlation and the negative sign. There is not only a significant dependence
between commodity and EUA futures contracts but also between EUAs and
equity markets. In fact the returns of stock market indices like Eurostoxx 50
and the energy specific index E1ENE and the renewable energy index ERIXP
seem to exhibit even a higher degree of dependence with EUA futures returns
than for example oil and gas futures. Generally, our results contradict some
of the earlier studies by Kosobud et al. (2005) and Daskalakis et al. (2009)
on the dependence between emission allowance certificates and other financial
assets. While the former found no statistically significant correlations between
returns of SO2 emission allowances and returns from other financial variables,
the latter observed that EUA futures returns were negatively correlated with
equity market returns during the pilot trading period.

Figure 2 provides a plot of the standardized residuals for daily EUA 2010 fu-
tures versus coal futures, the rank transforms of the standardized residuals for
EUA 2010 futures versus coal futures, a 3d histogram of the rank transforms,
and the fit of the Student-t copula to the transforms. The analogous graphs
are also provided for the series daily EUA 2010 futures versus E1ENE returns
in Figure 3.

In order to investigate which of the copula describes the dependence structure
best, we use the Cramér-Von Mises statistic to measure the distance between
the empirical and estimated copulas. Since the distance between the estimated
and empirical copula alone is not sufficient to determine whether any of the
models really provides a good fit to the data, goodness-of-fit tests proposed
by Genest et al. (2009) are conducted. Recall that for these tests, the null hy-
pothesis is that the examined copula provides an appropriate fit to the data.
Following the test procedure described in the previous section, for each of the
copula families, we create D = 1000 bootstrap samples 7 and for each sam-
ple determine the distance between the empirical and estimated copula. The
samples are then used to calculate p-values with respect to the null hypothe-
sis. The p-value provides the level of significance at which the null hypothesis
would be rejected and therefore a measure of how much evidence we have
against the null hypothesis of an appropriate fit of the suggested copula. Re-
sults for the Cramér-Von Mises statistic as well as p-values for the considered
copula families are presented in Table 3.

The results indicate that for the majority of the considered bivariate series
the Student-t copula yields the smallest distance between the estimated and

7 This is the number of bootstrap samples that is also applied in Genest et al.
(2009) providing good results for the considered goodness-of-fit tests.
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Fig. 2. Plot of standardized residuals for daily EUA 2010 futures versus coal futures
(upper left panel), ranks for daily EUA 2010 Futures standardized residuals versus
ranks for coal futures standardized residuals (upper right panel), 3d histogram of
rank transforms for daily EUA 2010 futures versus coal futures (lower left panel)
and fit of the Student-t copula to the rank transforms (lower right panel).

the empirical copula. The distance is the smallest for five of the considered
bivariate series, while it yields the second smallest distance for the other two
pairs. Interestingly, also the Gaussian copula provides distances that are only
slightly higher than those of the Student-t copula and significantly smaller
than those of the Clayton and Gumbel copula. Only for the relationship be-
tween EUA futures and Eurostoxx 50 spot returns, the Gumbel copula yields
the smallest distance. For the relationship between EUA futures and ERIXP
spot returns, the Clayton copula yields the smallest distance.

Our results are also confirmed by the conducted bootstrap goodness-of-fit
tests. We find that the Student-t and Gaussian copula perform best for most
of the considered series. An appropriate fit of the Gaussian and Student-t
copula to the dependence structure cannot be rejected for any of the series at
the 5% significance level. On the other hand, at the 5% significance level, the
hypothesis of an appropriate fit of the Clayton and Gumbel copula is rejected
for five out of seven series. At this level of significance only for the dependence
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Fig. 3. Plot of standardized residuals for daily EUA 2010 futures versus E1ENE
returns (upper left panel), ranks for daily EUA 2010 futures standardized residuals
versus ranks of E1ENE standardized residuals (upper right panel), 3d histogram of
ranks transforms for daily EUA 2010 futures versus E1ENE (lower left panel) and
fit of the Student-t copula to the rank transforms (lower right panel).

structure between EUA and gas futures (Clayton and Gumbel), EUA futures
and ERIXP spot (Clayton) and EUA futures and Eurostoxx 50 (Gumbel)
an appropriate fit of the copulas is not rejected. For the Gumbel copula an
appropriate fit is even rejected at the 1% level for most of the series. Note that
an appropriate fit of the Clayton copula to the dependence structure between
2010 EUA and oil futures returns cannot be rejected at the 1% level despite
the large distance between the empirical and estimated copula. This confirms
results by Genest et al. (2009) who state that the power of goodness-of-fit
tests for copulas is often small when the dependence between the variables is
low and a comparably small number of observations can be considered.

Overall, we find that the elliptical Gaussian and Student-t copula provide an
appropriate fit to all considered bivariate return series. Thus, given the rather
symmetric dependence structure for most of the considered variables, the find-
ings of Hirschhausen and Zachmann (2008) and Daskalakis and Markellos
(2009) on an asymmetric relationship cannot be confirmed by our study. Note,

21



Asset Clayton Gumbel Gaussian Student-t

Coal futures 0.0326 (0.036*) 0.0557 (0.000**) 0.0167 (0.536) 0.0162 (0.601)

Oil 2010 futures 0.0702 (0.014*) 0.0702 (0.000**) 0.0328 (0.064) 0.0324 (0.062)

Gas futures 0.0177 (0.471) 0.0211 (0.158) 0.0164 (0.585) 0.0151 (0.654)

EEX futures 0.1537 (0.000**) 0.0521 (0.000**) 0.0085 (0.980) 0.0083 (0.938)

Eurostoxx 50 0.0519 (0.002**) 0.0162 (0.478) 0.0235 (0.242) 0.0235 (0.205)

E1ENE 0.0557 (0.003**) 0.0471 (0.000**) 0.0155 (0.635) 0.0130 (0.797)

ERIXP 0.0193 (0.333) 0.0478 (0.000**) 0.0239 (0.209) 0.0220 (0.264)

Table 3
Distance between estimated and empirical copula for the considered series. Consis-
tently, either the Student-t or the Clayton copula yields the lowest distance accord-
ing to Cramér-Von Mises statistic. In brackets results for p-value based on bootstrap
goodness-of-fit test (Genest et al, 2009). The asterix denote rejection of the copula
model at the 1% ** and 5% * significance level.

however, that the conducted goodness-of-fit tests are not able to provide in-
formation on which copula provides the best fit to the data. The tests do
neither reject the Gaussian nor the Student-t at the 1% or 5% level for any
of the series and for most of the considered return series provide p-values of
a magnitude greater then 0.2. It should be pointed out that in order to de-
cide which model is closer to the true model among a set of considered models
that cannot be rejected, alternative tests as described in Chen and Fan (2006);
Diks et al. (2010) would be required. As this pioneer application of copulas
in the area of carbon pricing research is more interested in providing general
insights rather than finding the ultimate model specification, we leave this
investigation to future work. In this spirit, we proceed with the application
of time-varying copulas in the next section and the investigation of the per-
formance of the Gaussian and Student-t copula in an empirical analysis on
Value-at-Risk quantification for exemplary portfolios containing EUA futures
contracts in Section 4.5.

4.4 Time-Varying Copulas

To investigate the nature of the dependence through time, we further apply
a time-varying estimation of the copula parameters for the bivariate series.
Hereby, we decide to estimate the different copula parameters using a rolling
window approach as it is applied e.g. in Giacomini et al. (2009); Grégoire
et al. (2008). Again we consider a conditional approach such that in a first
step we estimate ARMA-GARCH models for each return series and calculate
the standardized residuals. Then in a second step the empirical distribution
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function is applied to the standardized residuals and the copula models are
estimated based on the derived ranks. We decided to choose a window length
of 126 trading days what corresponds to approximately six months. Thus,
the first six month period considers returns from January 3, 2008 to June
30, 2008 while the last window uses data from July 6, 2009 to December
31, 2009. Note that more advanced approaches on the estimation of time-
varying copulas, also with respect to the optimal choice of window length,
have been suggested e.g. by Patton (2006); Rodriguez (2007); Giacomini et al.
(2009) but our aim in this section is to provide a simple and rather descriptive
analysis of the dependence structure through time. Figure 4 shows a plot of the
estimated copula parameters for the Clayton, Gumbel and Student-t copula
for the relationship between EUA futures returns and coal, electricity and
gas futures returns as well as Eurostoxx 50, E1ENE and ERIXP spot returns
respectively. Note that for all series the estimated dependence parameter for
the Gaussian copula was almost identical to the Student-t copula parameter.
Therefore, these parameters are not provided in the graphs.

For most of the considered series, we find that the estimated copula parame-
ters exhibit time-variation. We generally find that the dependence between
EUA futures and the considered commodity futures is increasing during the
period of the financial crisis in the second half of 2008. On the other hand,
the dependence between the return series seems to decrease to a lower level
during 2009, in particular in the second half. This confirms general results
on time-varying correlation or dependence suggesting that returns from finan-
cial markets exhibit higher dependence during periods of economic or market
downturn.

The degree of time-variation, however, is considerably different for some of the
relationships under investigation. The dependence structure between returns
of EUAs and coal futures exhibits a particularly strong change: the copula
parameters start to increase for samples beginning in the second half of 2008,
e.g. the parameter of the Clayton copula parameter rises from approximately
0.4 to a value higher than 1. This indicates that joint downward movements
of the two series occur considerably more often during this period of time.
The parameters of the Student-t and the Gumbel copula exhibit a similar
behavior, but in a more retained manner. The relationship between EUA and
electricity futures is generally found to be stronger for the entire time horizon.
The relationship of EUA and gas futures seems to change only by the end
of 2008. As for coal the estimated dependence parameters from summer 2009
onwards remained relatively constant.

Analyzing the relationship between EUA futures returns and the considered
equity indices yields further interesting insights. While the dynamics of the
dependence structure between EUA futures and the energy index E1ENE spot
returns through time are quite similar to those of commodity markets, we
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Fig. 4. Plot of estimated copula parameters for Clayton (blue), Gumbel (green) and
Student-t (red) copula for a six month rolling window period. The first window
covers observations from January to June 2008, while the last period covers obser-
vations from July - December 2009. The graphs show the results for dependence
structure between returns for daily EUA 2010 futures and coal futures (upper left
panel), Electricity futures (upper right panel), Gas futures (middle left panel), Eu-
rostoxx 50 spot contracts (middle right panel), E1ENE - DJ Europe Energy Stock
Index spot contracts (lower left panel) and ERIXP - European Renewable Energy
Index spot contracts (lower right panel).

find different results for the relationship between EUA futures and Eurostoxx
50 as well as ERIXP spot returns: here the dependence is very low during
the first six months of 2008. The estimated parameters for the Clayton and
Student-t copula are close to zero while the parameter for the Gumbel copula
is approximately one, indicating that the dependence is very weak during this
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period. However, three months later the dependence becomes stronger and
the estimated parameters for all of the considered copulas start to increase.
For the Eurostoxx 50, this increase continues until August 2009, while for
the ERIXP the parameters rise significantly until February 2009. In absolute
terms all copula parameters rise, in relative terms the increase is much higher
in the Student-t and the Clayton copula. This suggests that joint downward
movements have been more pronounced during the financial crises. Towards
the end of the investigated period we find a slightly decreasing dependence
structure between EUAs and all of the considered equity indices. It is worth
mentioning that conclusions as to whether there is a structural break or a
significant change in the dependence structure during the considered period
require further statistical tests as suggested by Patton (2006) or Giacomini
et al. (2009). Note, however, that when investigating structural breaks related
to the financial crises in October 2008, Chevallier (2010) finds no clear evidence
of a fundamental change in EUA and related markets.

4.5 Risk Management Analysis

As mentioned in Section 2, EUA prices are more likely to be influenced rather
by policy measures and regulatory changes than conventional commodities.
Therefore, one could assume that their price behavior This specific feature
makes EUAs a potential asset for portfolio diversification. Therefore, we ex-
tend the present analysis to a risk management perspective and consider differ-
ent exemplary portfolios with investments in several of the considered assets.
We test the Gaussian and Student-t copula models against two benchmark ap-
proaches: a standard (static) multivariate variance-covariance approach and
a univariate AR-GARCH type model that is applied directly to the created
return series of the constructed portfolios. The forecasting performance of
the models is investigated by conducting an out-of-sample analysis comparing
one-day-ahead VaR and distributional forecasts for the portfolios. We report
the results for portfolios with equal weights in each of the assets, however,
we would like to point out that conducting robustness checks with variation
of the portfolio weights and included assets did not change the quality of the
results. In the following results for four different portfolios will be reported:

• Portfolio 1 (PF1) with equal 25% weight for the following futures contracts:
EUA, coal, oil and gas.

• Portfolio 2 (PF2) with equal 25% weiht for the following futures contracts:
EUA, coal, gas and electricity.

• Portfolio 3 (PF3) with equal 25% weight for the following assets:
EUA, electricity, Eurostoxx 50 and ERIXP.

• Portfolio 4 (PF4) with equal 25% weight for the following assets:
EUA, Eurostoxx 50, E1ENE and ERIXP.
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4.5.1 Value-at-Risk Analysis

In a first step, for each portfolio (PF1-PF4) we create the return series based on
the assumed equal weights w = 0.25 for each asset. Then in an out-of-sample
forecasting study the performance of the copula models is tested against a
standard multivariate normal (variance-covariance) approach and a univari-
ate AR(1)-GARCH(1,1) model for the portfolio return series. Note that the
multivariate normal approach does not consider the conditional variance of
the individual assets, so we would expect the forecasts to vary significantly
less through time for this model. Therefore, one would also assume that the
model will not be able to react to significant volatility changes in any of the
assets and might underestimate the risk in particular during times of high
volatility.

With respect to copula models, we decided to examine the forecasting per-
formance using the Gaussian and Student-t for the multivariate dependence
structure between the returns of the individual assets. Note that while these
copulas provided an appropriate fit to the dependence structure in the bi-
variate case, we cannot generally extrapolate these results to a multivariate
setting. Therefore, before conducting our risk analysis, the fit of the Gaussian
and Student-t copula to the dependence structure between the individual as-
sets of the portfolios was tested using the goodness-of-fit tests described in
section 3.4 and 4.3. The results indicated that an appropriate fit both of the
Gaussian and Student-t to the multivariate data could not be rejected. 8

Similar to section 4.4, also our risk analysis is conducted using a rolling window
of t = 126 days length, corresponding roughly to six months of observations.
For the univariate model, we derive the distributional forecast for the returns
simply based on the fitted AR-GARCH model and the most recent forecast for
the conditional volatility. For the benchmark variance-covariance approach,
we simply assume that the return series and dependence structure can be
described by a multivariate normal distribution. Under this assumption we
simply need to estimate the variance-covariance matrix Σ for the return series.
Then using portfolio theory, based on the mean of the marginal return series,
the given portfolio weights and the estimated variance-covariance matrix, we
can calculate a distributional forecast of portfolio returns for the next day.
For the copula approach, we apply the discussed SCOMDY model with an
AR(1)-GARCH(1,1) process for the marginal series. 9 Therefore, for each time

8 Detailed results for these tests are not reported here, however, they are available
on request to the authors.
9 Since the analysis was conducted in a rolling window setting, different AR-
GARCH type models will provide the best fit to the data at different points in
time. Since choosing the optimal model for each series at any time step based on
a parsimonious model selection criteria would be tedious, we decided to stick to a
simple AR(1)-GARCH(1,1) that generally provided a good fit to all of the series.
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Fig. 5. Exemplary plot of return distribution forecast (left panel) and tail of return
distribution forecast (right panel) for multivariate normal and Student-t copula ap-
proach with (v = 8.03) for Portfolio 4. For both plots the blue line is the probability
density for the multivariate normal approach, while the red line provides the sim-
ulated density for a model using the Student-t copula to model the dependence
structure between the rank transforms.

step, we initially fit an AR-GARCH model to the individual return series
and calculate the standardized residuals. Then, using the transforms from the
empirical distribution function for the standardized residuals, the Gaussian
and Student-t copula are fitted to the multivariate series. Thus, for each time
step we estimate the multivariate Gaussian and Student-t copula, hence the
correlation matrix ĈGaussian and ĈStudent as well as the degrees of freedom
parameter v̂ for the Student-t copula. Then we use the estimated copulas to
simulate 10000 vectors of dependent uniformly distributed random variables
(u1, u2, u3, u4) from both copulas. In a next step, the inverse of the empirical
distribution function and the conditional forecast for the volatility for the
marginal series are used to calculate the simulated conditional asset returns
for the series. Finally, using the portfolio weights we can then determine a
simulated return distribution for the portfolio in t + 1.

An exemplary plot of the simulated return distribution for two of the methods
and Portfolio 4 is provided in Figure 5. Here the distributional forecast for
one of the time steps using the Student-t copula model in comparison to a
standard variance-covariance approach is plotted. Our results indicate that
the standard variance-covariance approach provides a lower estimate for the
risk in particular in the extreme tail of the distribution. Generally, for the
model using the Student-t copula, the simulated portfolio return distributions
often exhibit some skewness and excess kurtosis.

We now report the results for the out-of-sample analysis comparing one-day-
ahead VaR and distributional forecasts for the different portfolios. The first six
months were chosen as calibration period such that forecasts for the time pe-
riod July 1, 2008 to December 31, 2009 are compared. As mentioned above, the
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Fig. 6. Portfolio returns and 99%-VaR forecasts for Porfolio 4. The VaR forecasts are
based on using a univariate GARCH model for the portfolio return series (red) and
standard multivariate normal approach (green) (left panel) and for the conditional
copula model using a Student-t (red) and Gaussian (green) copula (right panel).

forecasts are determined using a rolling window technique with re-estimation
of the marginal distributions and dependence parameters after each time step.
Thus, the length of the in-sample period is fixed with 126 trading days, while
the start date and end date successively increase by one observation. Figure 6
provides a plot of the actual portfolio returns as well as the estimated 99%-VaR
forecasts for Portfolio 4 using the univariate AR-GARCH model, a standard
multivariate normal approach as well as the conditional copula models using
a Student-t and Gaussian copula. The left panel illustrates that since the mul-
tivariate normal approach does not take into account conditional volatility,
there is significantly less variation in the VaR forecasts. Thus, during periods
of extreme returns like in October - December 2008 the model continuously
underestimates the risk. On the other hand, the second benchmark model,
namely the univariate AR-GARCH model for the portfolio returns seems to
provide reasonable forecasts for the 99%-VaR. The right panel shows that also
the considered copula models seem to provide an appropriate quantification of
the 99%-VaR with only a small number of VaR exceptions. From a firs glance,
we also observe that there is only a minor difference with respect to VaR quan-
tification between the Gaussian and Student-t copula model. A more rigorous
analysis based on VaR exceptions and distributional will be conducted in the
following.

Given the estimated model parameters for the marginal distributions and de-
pendence structure, we are able to calculate a model dependent confidence
interval for the next observation of the portfolio return yt+1. Following Ku-
piec (1995); Christoffersen (1998); Christoffersen and Diebold (2000); Hull
(2007), we evaluate the quality of the VaR forecasts by comparing the nom-
inal number of exceptions of the models to the true number of exceptions.
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Since comparing the nominal and true coverage may be sensitive to the choice
of the confidence level α, we decided to investigate the coverage for three dif-
ferent values of α. Thus, for each of the models we calculate the VaR for the
95%, 99% and 99.9% confidence level. If the model implied VaR forecasts are
accurate, the percentage of exceedances should be approximately 5%, 1% and
0.1%, respectively. We further conduct a statistical test investigating whether
a model provides an acceptable number of VaR exceptions. The test is based
on the binomial distribution and simply investigates whether the number of
exceedances is significantly higher than the expected number for p = 0.05,
p = 0.01, and p = 0.001. The null hypothesis is that the model provides an
adequate number of exceptions, such that rejection of the null indicates that
the model significantly misspecifies VaR estimates.

With a total number of 385 days, the expected number of VaR exceptions is
approximately 19.25 for the 95%, 3.85 for the 99% and 0.385 for the 99.9%
confidence level. Table 4 reports the actual number and fraction of exceedances
as well as the results for the significance test for the number of VaR exceptions.
We find that for a vast majority of considered portfolios and confidence levels
the copula models are superior to the benchmark models with respect to the
difference between the actual and expected number of exceedances.

For the 95% confidence level all models provide a slightly higher number of ex-
ceedances than expected. However, in particular for the portfolios containing
investments in commodities and equity (PF3 and PF4), the coverage is worse
for the univariate GARCH and the multivariate normal model. For these port-
folios, both copula approaches provide a better estimation of the risk quantile
and yield a lower number of exceptions than the benchmark models. Also, the
conducted tests for VaR exceptions indicate that for Portfolio 3 and 4 a cor-
rect specification of VaR levels is rejected at the 5% - often even at the 1% -
significance level both for the multivariate normal and the univariate GARCH
model. On the other hand, an appropriate specification of VaR for Portfolio
3 and 4 cannot be rejected for the Student-t copula at any of the considered
VaR confidence level.

For the 99% and 99.9% confidence levels the copula models seem to provide
better VaR estimates. Here, the univariate GARCH and the multivariate nor-
mal approach do not yield appropriate VaR forecasts such that the observed
number of exceptions for any of the considered portfolios consistently exceeds
the expected number. Clearly better results are obtained for both copula mod-
els, where the nominal number of exceptions for the considered confidence
levels is much closer to the theoretical number as can be seen in Table 4.

Overall, in terms of backtesting the VaR models the copula approach consis-
tently outperforms the multivariate normal model. The univariate GARCH
yields better results than the multivariate normal model, but still shows a

29



95% VaR 99% VaR 99.9% VaR

Portfolio # Exc. Fraction # Exc. Fraction # Exc. Fraction

PF1 Univariate 31 8.05%** 6 1.56% 3 0.78%**

PF2 Univariate 28 7.27%* 8 2.08%* 2 0.52%*

PF3 Univariate 31 8.05%** 8 2.08%* 2 0.52%*

PF4 Univariate 27 7.01%* 9 2.34%** 2 0.52%*

95% VaR 99% VaR 99.9% VaR

Portfolio # Exc. Fraction # Exc. Fraction # Exc. Fraction

PF1 MVN 25 6.49% 12 3.12%** 2 0.52%*

PF2 MVN 26 6.75% 9 2.34%** 2 0.52%*

PF3 MVN 28 7.67%* 14 3.64%** 6 1.56%**

PF4 MVN 28 7.67%* 11 2.86%** 6 1.56%**

95% VaR 99% VaR 99.9% VaR

Portfolio # Exc. Fraction # Exc. Fraction # Exc. Fraction

PF1 Gaussian 26 6.75% 6 1.56% 0 0.00%

PF2 Gaussian 24 6.23% 4 1.04% 1 0.26%

PF3 Gaussian 21 5.45% 5 1.30% 3 0.78%**

PF4 Gaussian 21 5.45% 3 0.78% 2 0.52%*

95% VaR 99% VaR 99.9% VaR

Portfolio # Exc. Fraction # Exc. Fraction # Exc. Fraction

PF1 Student-t 26 6.75% 6 1.56% 0 0.00%

PF2 Student-t 24 6.23% 4 1.04% 0 0.00%

PF3 Student-t 21 5.45% 6 1.56% 1 0.26%

PF4 Student-t 21 5.45% 3 0.78% 1 0.26%

Table 4
Number and fraction of exceedances for 95%-, 99%-, and 99.9%-VaR for the uni-
variate GARCH model and the multivariate normal (MVN) as well as the Gaussian
and Student-t copula approach. The asterix denotes rejection of an appropriate VaR
specification of the model for specific confidence level at 1% ** and 5% * significance
(Hull, 2007).
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higher number of exceptions than the copula models almost at all confidence
levels. In comparison to the Gaussian copula, the Student-t copula provides
very similar results for the 95% and 99% confidence levels and slightly bet-
ter results at the 99.9% confidence level. Furthermore, an appropriate VaR
specification is rejected for almost all portfolios for the two benchmark mod-
els, while it is only rejected twice for the Gaussian copula and never for the
Student-t copula. So we conclude that the Student-t copula model yields the
best results for VaR specification.

4.5.2 Distributional Forecasts

In a second step we investigate the ability of the models to provide accurate
forecasts of the portfolio return distribution. Tests, being based on confidence
intervals only, may be unstable in the sense that they are sensitive to the
choice of the confidence level α. Therefore, we also apply tests that investigate
the complete distributional forecast, instead of a number of quantiles only.
Evaluating the accuracy of the density forecasts we perform a distributional
test following Crnkovic and Drachman (1996) and Diebold et al. (1998). We
are interested in the distribution of the return yt+1, t > 0, which is forecasted
at time t. Further, let f(yt+1) be the probability density and

F (yt+1) =

yt+1
∫

−∞

f(x)dx (12)

be the associated distribution function of yt+1. To conduct the test, we deter-
mine F̂ (yt+1) by using the estimates for the marginal return distributions and
copula or correlation parameters from the rolling window in-sample period.
Based on this information we can calculate a rolling forecast of the portfolio
return distribution for the next day. Rosenblatt (1952) shows that if F̂ is the
correct forecast for the distribution, the transformation of yt, namely

ut+1 =

yt+1
∫

−∞

f̂(x)dx = F̂ (yt+1), (13)

is i.i.d. uniformly on [0, 1]. Crnkovic and Drachman (1996) and Diebold et al.
(1998) provide tests that can be used to investigate violations of either inde-
pendence or uniformity in the forecasts.

Testing for uniformity, Crnkovic and Drachman (1996) suggest to use a test
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based on the distance between the empirical and the theoretical cumulative
distribution function of the uniform distribution. This may be done using e.g.
the Kuiper statistic DKuiper = D+ + D− with D+ = sup{Fn(u) − F̂ (u)} and

D− = sup{F̂ (u) − Fn(u)}. Hereby Fn(u) denotes the empirical distribution
function for the probability integral transforms of the one-day ahead return
forecasts and F̂ (u) is the cdf of the uniform distribution. Table 5 presents the
results for the conducted tests.

Again, we find that the Gaussian and Student-t copula models generally pro-
vide better results than the multivariate normal model and the univariate
GARCH model. Probability integral transforms of the one-day ahead return
forecasts for the multivariate normal model are non-uniformly distributed. For
Portfolio 1, 2 and 3, the test rejects the hypothesis of a uniform distribution
even at the 1% level while for Portfolio 4 the uniformity assumption is re-
jected at the 5% level. In comparison to the univariate model, the Gaussian
and Student-t copula model perform better for Portfolio 1 and 2, while the
univariate model provides the smallest distance to the uniform distribution
for Portfolio 3 and 4. However, while the appropriateness of the three models
is not rejected for Portfolio 3 and 4, the Student-t copula model is the only
one that cannot be rejected at the 1% level for Portfolio 1. For Portfolio 2,
appropriate distributional forecasts are rejected for all considered models.

Furthermore, all models seem to provide better forecasts for PF3 and PF4 with
a higher share in equity indices while they perform worse for PF1 and PF2
consisting of commodity futures only. Further, in terms of density forecasting,
the Student-t copula model clearly outperforms the multivariate normal model
and seems to deliver slightly better results than the univarate GARCH and
Gaussian copula approach.

Overall, our results suggest that copula models are particularly useful for risk
management purposes and short-term forecasting of future return distribu-
tions for portfolios containing investments in emission allowances. These re-
sults could be important not only for risk management or hedging, but also for
the purpose of portfolio optimization. Deviating from the standard variance-
covariance approach could be of interest in particular when not only the mean
and variance but also higher moments of the portfolio return distribution are
considered or when risk-adjusted measures are used, see e.g. Jondeau and
Rockinger (2006b); Jorion (2001); Keating and Shadwick (2002). Note that
our results were also robust when alternative portfolio weights, combination
of assets and different window sizes for the rolling estimation were considered.
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PF1 PF2 PF3 PF4

Univariate GARCH 0.1311** 0.1367** 0.0593 0.0577

Multivariate Normal 0.1183** 0.1149** 0.1121** 0.0985*

Gaussian Copula 0.1063** 0.1055** 0.0750 0.0710

Student-t Copula 0.0966* 0.1054** 0.0807 0.707

Table 5
Results for Kuiper test statistics. The asterix denote rejection of the model at the
1% ** and 5% * significance level, for n=386 observations.

5 Conclusions

The aim of this paper is to deepen the understanding of the relationship
between European carbon, commodity and financial markets. We apply dif-
ferent copulas in order to analyze the dependence structure between EUA
futures returns and those of other financial assets and commodities during
the Kyoto commitment period. Copulas offer great flexibility for modeling the
relationship between different financial variables. The application of copulas
also yields insights with respect to nonlinear dependence and tail dependence
between the considered variables. Thus, we first investigate which copulas are
most appropriate to model the dependence structure. Second, we deal with
the question whether or not the dependence structure exhibits time-varying
properties. The latter is motivated by examining whether the relationship be-
tween the considered variables has changed over time and whether or not the
financial crisis had an influence on the dependence between EUA futures and
other financial variables. The usefulness of copulas is further illustrated in a
Value-at-Risk analysis. Within this part, we seize the argument that carbon
emission allowances can be used for portfolio diversification purposes as regu-
latory decisions are said to be an important influence factor of EUA prices. We
consider different portfolios combining investments in EUAs with several other
assets and test the Student-t as well as the Gaussian copula model against two
benchmark models: a standard variance-covariance approach and a univariate
AR-GARCH model that is applied directly to the portfolio returns. We con-
duct an out-of-sample analysis in which we compare one-day-ahead VaR and
distributional forecasts for the constructed portfolios.

The following insights emerge from these efforts. First, a significant positive
dependence structure is found between EUA futures and coal, gas and elec-
tricity futures returns as well as between EUA futures and equity spot returns.
Only between EUA and oil futures we find the dependence to be rather in-
significant. Our results at least somehow contradict earlier studies by Kosobud
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et al. (2005) and Daskalakis et al. (2009) suggesting no statistically significant
or even negative correlations between emission allowances and other financial
variables. On the other hand, we confirm results by Mansanet-Bataller et al.
(2007) and Hintermann (2010) who find positive effects of several commodity
prices on EUA forward prices. Regarding the nature of dependence, we find
evidence of a symmetric dependence structure between EUAs and other finan-
cial assets. For the majority of the considered bivariate series, the Student-t
and Gaussian copula are most appropriate, significantly outperforming both
the Clayton and Gumbel copula with respect to a goodness-of-fit test for the
distance between the estimated and empirical copula.

Second, we obtain insightful results on time-variation of the estimated copula
parameters. In particular we find a stronger dependence between EUA futures
returns and most of the considered variables during the global financial crisis.
This confirms general results on asset returns from financial markets exhibiting
higher dependence during periods of extreme economic or market downturn.

Finally, our risk analysis illustrates that applying a standard variance-covariance
approach to the multivariate series is likely to underestimate the kurtosis and
in particular the tail risk of the portfolio return distribution. Also the applica-
tion of an AR-GARCH model to the portfolio returns underestimates the risk
in the lower extreme tail. Overall, with respect to both interval and density
forecasts, the Student-t copula model generally performs better than all the
other considered models, including the implemented Gaussian copula model,
what could be considered as indication for some tail dependence.

In a nutshell, our results recommend copulas as an appropriate tool for de-
scribing the dependence structure between returns from EUA contracts and
those of other financial variables. The application of copulas might also be
particularly useful for risk management purposes and short-term forecasting
for investments in a portfolio containing emission allowances. Given the po-
tential tail dependence, our findings are also relevant for investors or portfolio
managers, in particular when higher moments of the portfolio return distribu-
tion or risk-adjusted measures are considered, see e.g. Jondeau and Rockinger
(2006b); Jorion (2001); Keating and Shadwick (2002).
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