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1. Introduction 

Rational expectations models have proved to be a workhorse for the analysis of situations 

involving uncertainty and private information. An important aim has been to provide a 

workable model of Hayek’s (1945) idea that prices aggregate the dispersed information 

of agents in the economy, given agents’ dual role as index of scarcity and conveyors of 

information. However, the concept of a rational expectations equilibrium (REE) is not 

without problems—and this is especially true of fully revealing REE in competitive 

markets. The concept has two main difficulties. First, the equilibrium need not be 

implementable; that is, it may not be possible to find a trading mechanism (in a well-

specified game) that delivers the fully revealing REE. Second, if information is costly to 

acquire, then agents at a fully revealing REE will have no incentive to purchase 

information and so the equilibrium breaks down (this is the “paradox of informationally 

efficient markets”; see Grossman and Stiglitz 1980). An added problem arises if the 

competitive REE is defined in a finite-agent economy, since then traders realize that 

prices convey information but do not realize the impact of their actions on the price (this 

is the “schizophrenia” problem of Hellwig 1980). These problems are typically overcome 

by considering noisy REE in large economies. Indeed, noise traders in competitive 

models have prevented trade from collapsing.1 

 

This paper presents a simple, competitive, large-market model without noise traders and 

in which the valuation of each trader has a common and a private value component. It 

shows how to obtain a privately revealing equilibrium in a well-specified game where 

each trader submits a demand schedule and has incentives to rely on his private signal 

and on the price. In a privately revealing equilibrium the price and the private signal of a 

trader are sufficient statistics for the trader in the market. The equilibrium is efficient, 

preserves incentives to acquire information, and overcomes the problems of fully 

revealing REE without reliance on noise trading. Furthermore, the Bayesian equilibrium 

in demand schedules obtained in the large market is not an artifact of the continuum 

specification for traders. We verify that the large limit market well approximates large 

finite markets in which traders are strategic and have incentives to influence prices, thus 
                                                 
1 See, for example, Diamond and Verrecchia (1981) and Admati (1985). 
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providing a foundation for REE with rational traders in the context of the model 

presented. In addition, the model admits a reinterpretation in which behavioral traders 

coexist with rational traders (under an approach similar to that of Serrano-Padial 2010). 

 

The model is of the linear-normal variety, as in Grossman and Stiglitz (1980), and it 

assumes declining marginal valuations. It is quite tractable and allows us to address the 

case of a good with exogenous supply as well as the case of a double auction; in addition, 

it enables us to characterize explicitly not only information acquisition but also rates of 

convergence of finite markets to the continuum limit. The model admits interpretation in 

terms of both financial markets and markets for goods. 

 

We find that there is a unique linear equilibrium that is privately revealing and efficient. 

In equilibrium, a high price indicates a high valuation, and this reduces responsiveness to 

price when there is private information. Indeed, demand schedules in this case are steeper 

and there is a greater extent of adverse selection in the market (which increases with the 

correlation of valuations and the noise in the signals). If the information effect is large 

enough, demand schedules may be upward sloping. Demand becomes steeper also as the 

slope of marginal valuation is steeper and as the slope of exogenous supply is flatter. The 

second of these observations can be reinterpreted as an inverse measure of the mass of 

“value” behavioral traders in a double auction market. Then we find that the demand of 

rational traders is upward sloping for a large enough mass of behavioral traders and also 

that the amount of mispricing increases with this mass. The case of a downward-sloping 

exogenous supply of the good allows us to capture complementarities among the agents 

in the market, makes aggregate excess demand upward sloping, and can be interpreted in 

terms of the presence of “momentum” or “positive-feedback” behavioral traders. 

Mispricing is then more severe than with value behavioral traders, and it increases as 

rational traders increase relative to momentum traders. Rational traders benefit more from 

the presence of momentum traders than from that of value traders. 

 

If the signals are costly to acquire and if traders face a convex cost of acquiring precision, 

then there is an upper bound on the correlation of valuation parameters below which there 
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are incentives to purchase some precision. This upper bound is decreasing in the 

precision of the prior and in the marginal cost of acquiring precision; this bound is 1—

that is, perfect correlation—when the marginal cost (at zero precision) of acquiring 

precision is zero or when the prior is diffuse. A more diffuse prior or less correlation 

among valuations induces more efforts to acquire information. The rate at which 

equilibria in finite replica markets (with n  traders and corresponding exogenous supply) 

approach the equilibrium in the continuum economy is 1 n , the same rate at which the 

average signal of the traders tends to the limit average valuation parameter. Convergence 

accelerates as we approach a common value environment with better signals or with less 

prior uncertainty. The corresponding (per capita) welfare loss in the finite market with 

respect to the limit market is of the order of 1 n , and again convergence is faster when 

closer to the common value case or when there is less prior uncertainty. However, the 

effect of noise in the signals is ambiguous here because it has opposing effects on 

allocative and distributive efficiency. The rate of convergence of prices, 1 n , is slower 

than the rate of convergence to price-taking behavior, 1 n , with a corresponding 

dissipation rate of the (per capita) welfare loss due to market power, 21 n . 

 

The model developed here can be applied to explaining how banks bid for liquidity in 

central bank auctions (or how bidders behave in Treasury auctions) and to assessing the 

effect of pollution damages on market outcomes. In particular, the model can be used to 

simulate the impact of a financial crisis on central bank liquidity auctions. 

 

This paper is related to at least four strands of the literature. First, it is related to work on 

information aggregation, and on the foundations of REE in auction games, that developed 

from the pioneering studies of Wilson (1977) and Milgrom (1981) and have more 

recently been extended by Pesendorfer and Swinkels (1997). The convergence to price 

taking and to efficiency as double auction markets grow large has been analyzed in 

Wilson (1985), Satterthwaite and Williams (1989), and Rustichini, Satterthwaite, and 

Williams (1994). Along these lines, Cripps and Swinkels (2006) also allow private and 

common value components of uncertainty. Our results on the model’s double auction 
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version are more closely related to Reny and Perry (2006), who present a double auction 

model with a unique and privately revealing REE that is implementable as a Bayesian 

equilibrium in symmetric increasing bidding strategies; they also offer an approximation 

in a finite large market. Given the nature of our own model, the results presented here 

deal with multi-unit demands and enable characterizations of an equilibrium’s 

comparative static properties and of information acquisition. Furthermore, the model 

allows us to study convergence rates and to analyze the effect of an exogenous supply of 

the good. 

 

Second, a parallel literature on information aggregation has developed in the context of 

Cournot markets (Palfrey 1985; Vives 1988). Third, the literature on strategic 

competition in terms of schedules in uniform price auctions has developed from the 

seminal work of Wilson (1979) and Kyle (1989) (see also Wang and Zender 2002). Vives 

(2011a,b) considers strategic supply competition and provides a finite-trader counterpart 

to the model in this paper. Consistently with the analysis in double auction settings, we 

find that price taking obtains at a rate of 1 n  whereas efficiency is achieved at the rate 
21 n  (where n  is the number of traders).2 

 

Finally, the fourth strand to which this paper is related is the growing literature on 

behavioral models (e.g., De Long et al. 1990; Daniel, Hirshleifer, and Subrahmanyam 

1998; Hong and Stein 1999; Serrano-Padial 2010). This connection will be emphasized 

throughout our discussion. 

 

The balance of the paper is organized as follows. Section 2 presents the model. Section 3 

summarizes the problems with the concept of a fully revealing REE and introduces our 

approach. Section 4 characterizes the equilibrium and its properties; Section 5 presents 

some extensions of the model. Section 6 deals with information acquisition, and Section 

7 considers large but finite markets. Finally, the Appendix gathers some of the proofs. 

 

                                                 
2 See Rostek and Weretka (2010) for an asymmetric correlation structure for valuation parameters. 
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2. The model 

A continuum of traders—indexed in the unit interval  0,1i , which is endowed with the 

Lebesgue measure—face a linear, downward-sloping inverse supply for a homogenous 

good p x    . Here , 0    and x  denotes aggregate quantity in our continuum 

economy (and also per capita quantity, since we have normalized the measure of traders 

to 1). We have 
1

0 ix x di  , where ix  is the individual quantity demanded by trader i . We 

interpret 0ix   to mean that the trader is a (net) supplier. 

 

Traders are assumed to be risk neutral. The profits of trader i  when the price is p  are 

  2

2i i i ip x x    , 

where i  is a value private to the trader and ix  is a marginal transaction or opportunity 

cost (it could also be interpreted as a proxy for risk aversion). 

 

We assume that i  is normally distributed (with mean    and variance 2
 ). The 

parameters i  and j , j i , are correlated with correlation coefficient  0,1  . We 

therefore have 2cov ,i j        for j i . Trader i  receives a signal i i is    ; all 

signals are of the same precision, and i is normally distributed with   0iE    and 

  2var i   . Error terms in the signals are correlated neither with themselves nor with 

the i  parameters. 

 

Our information structure encompasses the case of a common value and also that of 

private values. If 1  , the valuation parameters are perfectly correlated and we are in a 

common value model. When 0 1  , we are in a private values model if signals are 

perfect and 2 0   for all i; traders receive idiosyncratic, imperfectly correlated shocks, 

and each trader observes her shock with no measurement error. If 0  , then the 
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parameters are independent and we are in an independent values model. Under our 

assumption of normality, conditional expectations are affine.3 

 

Let the average valuation parameter be j dj   , normally distributed with mean   

and 2cov , vari           
  .4 An equivalent formulation that highlights the aggregate 

and idiosyncratic components of uncertainty is to let i i      and observe that 

i i    , where cov , 0i    
  and cov , 0i j      for i j . We adopt the convention 

that the average of independent and identically distributed random variables with mean 

zero is zero.5 We then have i i is s di di di          almost surely, since 0i di   

according to our convention. Note that if 0   then   (a.s.). 

 

3. Rational expectations equilibria and the schedule game 

In this section we begin by defining REE and expounding on its problems. We then move 

on to our game-theoretic approach and interpretations of the model. 

 

3.1. Rational expectations equilibrium 

A (competitive) rational expectations equilibrium is a (measurable) price function 

mapping the average valuation (state of the world)   into prices  P   and a set of trades 

 ,  0,1ix i , such that the following two statements hold. 

                                                 
3 With normal distributions there is positive probability that prices and quantities are negative in 

equilibrium. We can control for this if necessary by restricting the variances of the distributions and of 
the parameters  ,  ,  , and  . 

4 This can be justified as the continuum analogue of the finite case with n  traders. Then, under our 
assumptions, the average parameter n  is normally distributed with mean  , 

     2 1var 1 1n n n      , and    cov , varn i n    . The result is obtained by letting n  tend to 
infinity. 

5 See Vives (1988) for a justification of this convention. In any event, we will see that the equilibrium in 
the continuum economy is the limit of equilibria in the appropriate finite economies under the standard 
laws of large numbers. 
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(1) Trader i  maximizes its expected profit, ,i iE s p   , conditional on knowing the 

functional relationship     as well as the underlying distributions of the 

random variables. 

(2) Markets clear:    
1 1

0
 0iZ p x di p     . 

Thus each trader optimizes while taking prices as given, as in the usual competitive 

equilibrium, but infers from prices the relevant information. 

 

This equilibrium concept is problematic. Consider the common value case ( 1  ); we 

shall present a fully revealing REE that is not, however, implementable. Suppose there is 

a competitive equilibrium of a full information market in which the traders know  . At 

this equilibrium, price equals marginal benefit, ip x   ; therefore, individual demand 

is  1
ix p   . The equilibrium price is given by the market-clearing condition 

  0Z p   and is equal to    p       . This allocation is also a fully 

revealing REE of our economy (Grossman 1981). Indeed, looking at the price allows 

each trader to learn  , which is the only relevant uncertainty, and the allocation is a REE 

equilibrium because firms optimize and markets clear. However, this REE has a strange 

property: the price is fully revealing even though a trader’s demand is independent of the 

signals received. How has the information been incorporated into the price? In other 

words, what is the game and the market microstructure that yields such a result? In this 

case we cannot find a game that delivers as an equilibrium the fully revealing REE.6 

 

3.2. The schedule game 

We will restrict our attention to REE that are the outcome of a well-specified game—that 

is, implementable REE. The natural way to implement competitive REE in our context is 

                                                 
6 If we were to insist that prices be measurable in excess demand functions, then the fully revealing REE 

would not exist (see Beja 1977; Anderson and Sonnenschein 1982). However, fully revealing REE are 
implementable if each agent is informationally “small” or irrelevant in the sense that his private 
information can be predicted from the joint information of other agents (Palfrey and Srivastava 1986; 
Postlewaite and Schmeidler 1986; Blume and Easley 1990). 
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to consider competition among demand functions (see Wilson 1979; Kyle 1989) in a 

market where each trader is negligible.7 

 

We assume that traders compete in terms of their demand functions for the exogenous 

supply of the good. The game’s timing is as follows. At 0t  , random variables    0,1i i



 

are drawn but not observed. At 1t  , traders observe their own private signals,    0,1i i
s


, 

and submit demand functions  ,i iX s   with  ,i i ix X s p , where p  is the market price. 

The strategy of a trader is therefore a map from the signal space to the space of demand 

functions. At 2t   the market clears, demands are aggregated and crossed with supply to 

obtain an equilibrium price, 8  and payoffs are collected. An implementable REE is 

associated with a Bayesian Nash equilibrium of the game in demand functions. Hereafter 

we discuss only the linear Bayesian demand function equilibrium (DFE). 

 

3.3. Interpretations of the model 

The model and game admit several interpretations in terms of financial markets and 

markets for goods as long as there are enough participants to justify the use of the 

continuum model assumption (this issue is dealt formally with in Section 7). 

 

The good may be a financial asset such as central bank funds or Treasury notes, and the 

traders are the bidders (banks and other intermediaries) in the auction who use demand 

functions. In the open-market operation of central bank funds, the average valuation   is 

related to the price (interest rate) in the secondary interbank market and   may reflect 

the structure of a counterparty’s pool of collateral. A bidder bank must offer the central 

bank collateral in exchange for funds, and the bidder’s first preference is to offer the least 

liquid one. Given an increased allotment of funds, the bank must offer more liquid types 

of collateral at a higher opportunity cost; this implies a declining marginal valuation for 

                                                 
7 See Gul and Postlewaite (1992) and Mas-Colell and Vives (1993) for results on the implementation of 

efficient allocations in large economies. 

8 If there is no market-clearing price then assume that the market closes; if there are many market-
clearing prices, choose the one that maximizes volume. 
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the bidder.9 The marginal value for funds of bank i  has the idiosyncratic component 

i i     , which is uncorrelated with the like component of other banks. Bank i  

receives an imperfect signal about its overall valuation i . In a Treasury auction, bidders 

will have private information related to different expectations about the future resale 

value   of the securities (e.g., different beliefs concerning how future inflation will 

affect securities denominated in nominal terms) and to the idiosyncratic liquidity needs of 

traders.10 We should expect that the common value component is more significant in 

Treasury auctions than in central bank auctions, since the main dealers buy Treasury bills 

primarily for resale.11 

 

The good could also be an input (such as labor of uncertain productivity) whose traders 

are the firms that want to purchase it. Our model also accommodates the case where firms 

compete in supply functions to fill an exogenous demand, as in procurement auctions. In 

this case we assume that   , since i  is now a cost parameter and typically 0ix  . 

For example, i  could be a unit ex post pollution or emission penalty to be levied on the 

firm and about which the producer has some private information. 

 

4. Bayesian demand function equilibrium 

In this section we use Proposition 1 to characterize the symmetric12 equilibrium of the 

demand schedule game before discussing its properties. We then extend the range of the 

model to double auctions and inelastic supply, market structures with complementarities, 

and behavioral traders. 

                                                 
9 See Ewerhart, Cassola, and Valla (2010). 

10 For example, Hortaçsu and Kastl (2008) cannot reject the hypothesis that bidders in Canadian 3-month 
T-bill auctions have private values. 

11 See Bindseil, Nyborg, and Strebulaev (2005). 

12 The symmetry requirement could be relaxed. Then the (linear and symmetric) equilibrium would be 
unique in the class of (linear) equilibria with uniformly bounded second moments (equivalently, in the 
class of equilibria with linear price functional of the type  P  ). 
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Proposition 1. Let  0,1   and 2 2
     . Then there is a unique symmetric DFE 

given by 

    1, ,i i i iX s p E s p p b as cp         . 

Here 

      1 1, 1 , 1 ,
1

a b a c a
M

   
  

      


 

and   2 21M      . Moreover, 0a   and 1 1c a      . Also, c  is 

decreasing in M and   and is increasing in  ;  1 0Z ' c      ; and the equilibrium 

price is given by 

p  
 






. 

Proof: See the Appendix. 

 

It is worthwhile to highlight some properties of this equilibrium. 

 

The equilibrium is, first of all, privately revealing.13 The price p  reveals the average 

parameter   and, for trader i , either pair  ,is p  or  ,is   is a sufficient statistic for the 

joint information in the market. In particular, at equilibrium we have 

, ,i i i iE s p E s        
 . The privately revealing character of the equilibrium implies 

that the incentives to acquire information are preserved. 

 

Second, the equilibrium is efficient: it is a price-taking equilibrium, the price reveals  , 

and firms act with a sufficient statistic for the shared information in the economy.14 

Indeed, at equilibrium we have that price equals marginal benefit with full (shared) 

                                                 
13 See Allen (1981). 

14 A fully revealing REE must be ex post Pareto optimal. The reason is that it can be viewed as the 
competitive equilibrium of an economy with fully informed agents and so, according to the first 
welfare theorem, it cannot be improved on by a social planner with access to the pooled information of 
agents (Grossman 1981). 
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information: ,i i ip E s x     
 . This would not be the case if traders had market 

power, since then a wedge would be introduced between price and marginal benefit (see 

Vives 2011a). Neither would the equilibrium be efficient if price were noisy, since then a 

trader would not take into account the information externality that her trade has on other 

traders through the effect on the informativeness of the price (see, e.g., Amador and Weill 

2010; Vives 2011c). 

 

In the common value case, the equilibrium breaks down. If 1   (and 20    ) then, 

as stated in Section 3, there is a fully revealing REE but it is not implementable (indeed, a 

linear equilibrium does not exist). 

 

When signals are perfect ( 2 0   and    12 21 0M    


   ), we have that 

1a c   , 0b  , and  1
i ix p   . Bidders have nothing to learn from prices, and 

the equilibrium is just the usual complete information competitive equilibrium (which, 

we remark, is independent of  ). When 0M  , bidders learn from prices and the 

demand functions are steeper: 1c  . Indeed, the larger is M  (which is increasing in   

and in 2 2
    and can be viewed as an index of adverse selection), the more the price 

serves to inform about the common value component and the steeper are the demand 

functions (lower c ). The response to a price increase is to reduce the amount demanded 

according to the usual scarcity effect, but this impulse is moderated (or even reversed) by 

an information effect because a high price conveys the good news that the average 

valuation is high. Indeed, if 1 M   then 0c  ; for larger values of M , we have 

0c   and demand is upward sloping.15 As M   we have that 0a  , b    , 

and 1c   . Then the linear equilibrium collapses because, in the limit, traders put no 

weight on their private signals. We have already seen that when 1   (and 20    ) 

there is a fully revealing REE that is not implementable. When signals are pure noise 

                                                 
15 C. Wilson (1980) finds an upward-sloping demand schedule in a market with asymmetric information 

whose quality is known only to the sellers. 
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( 2
   ), the equilibrium is    1X p p    because ,i iE s p      (even if 

1  ). However, this equilibrium is not the limit of DFE as 2
   ( M  ). 

 

If 0   then the price conveys no information on values, 1c  , and 

   1,i i iX s p E s p      . Again this is not the limit of DFE as 0  . However, it 

can be checked that there is no discontinuity in outcomes. 

 

5. Extensions 

In this section we extend the model to some boundary cases and new interpretations: 

inelastic supply and double auctions, complementarities, and behavioral traders. 

 

5.1. Inelastic supply and double auctions 

The case in which an auctioneer supplies q  units of the good is easily accommodated by 

letting    and q    . From the inverse supply function we obtain the average 

quantity  y p q    ; then c a  and  1b a q  . Here demand is always 

downward sloping, and the strategy of a trader is    ,i iX s p b a s p    and p q   . 

The good can be in zero net supply ( 0q  ) as in a double auction, in which case 0b   

and p   .16 A trader is a buyer or a seller depending on whether her private signal is 

larger or smaller than the price. 

 

Reny and Perry (2006) obtain a related result in a double auction with a unit mass of 

traders, each of whom desires at most one unit of the good. Each trader receives a 

conditionally independent signal about the random value of the good. The value of the 

good and the signals of the agents are assumed to be strictly affiliated (and the densities 

of the random variables are smooth and positive on the unit interval). It is assumed also 

that the valuation of a trader is (strictly) increasing in his signal and (weakly) increasing 

in the good’s value. In contrast to our model, in Reny and Perry’s model there is a 
                                                 
16  In this case there is also a no-trade equilibrium. 
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common value for the good but the payoff of a trader depends directly on the signal he 

receives. This signal provides a private value component to the trader’s valuation. 

 

Once traders have received their signals, they submit bids to the auctioneer. A buyer 

(resp., seller) indicates the maximum (minimum) price she is willing to pay for (resp., for 

which he is willing to sell) the desired unit. The auctioneer then uses the bids to form 

supply and demand schedules and finds a market-clearing price. Buyers whose bids are 

above the market-clearing price obtain one unit, and those with bids below the market-

clearing price come away with nothing. 

 

Unlike the case for our DFE, traders in a double action cannot condition on the market 

price because they submit a single bid that is contingent only on private information. 

Nonetheless, there is a unique (and privately revealing) REE that is implementable as a 

Bayesian equilibrium of the double auction in symmetric increasing bidding strategies. 

The equilibrium is privately revealing because the price reveals the value of the good and 

this, together with the signal received by a trader, determines his payoff. The equilibrium 

is efficient because the privately revealing REE is just the competitive equilibrium when 

the state is known. This REE is implementable as a double auction even in a pure 

common value case (when the valuation of a trader is independent of his signal), in 

contrast to the demand competition model, owing to the double auction mechanism 

whereby bids are for a single unit. At the REE both buyers and sellers are indifferent 

between using (or not) their private signal, so they might as well use it. 

 

Reny and Perry (2006) also provide a strategic foundation for the rational expectations 

equilibrium in a finite-market counterpart of the double auction continuum model. This 

issue is addressed in Section 7.2 to follow. 

 

5.2. Complementarities 

Letting 0   allows for complementarities. For example, if traders are suppliers ( 0ix  ) 

then 0   means that increasing the aggregate quantity leads to price increases, a 

dynamic typical of network goods; conversely, if traders are demanders ( 0ix  ) then 
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0   means that increasing the aggregate quantity lowers the price, as may occur with 

labor supply when the income effect dominates. We can allow negative values of   

with 0      . The last inequality ensures that   0E p   in equilibrium and 

implies that 0    (since 0   ). When 0   we have that 1 c a     and that 

c increases in M; in other words, the exogenous supply is downward sloping and an 

increase in M  makes demand flatter. Furthermore, excess demand is upward sloping: 

 1 0Z c       . Now the information and the scarcity effect work in the same 

direction, and a high price conveys the unequivocal bad news that the average valuation 

is low. 

 

5.3. Behavioral traders in a double auction 

Consider a double auction—say, with zero net supply ( 0q  ), equilibrium 

   ,i iX s p a s p  , and price p   . Introduce a mass of   1



 boundedly rational 

traders who supply the good according to the fixed schedule  y p    . We shall 

interpret 0   as meaning that “value” traders predominate and 0   as meaning that 

“momentum” or “positive-feedback” traders dominate. Value traders sell when the price 

is high, whereas momentum traders sell when it is low.17 We are in the context of our 

model (provided that 0   ), Proposition 1 applies, and rational traders adjust by 

using the strategy  ,i iX s p b as cp    with c a  if 0   and c a  if 0  . That is, 

rational traders use a steeper demand schedule with value traders and a flatter one with 

momentum traders. Note that demand will be upward sloping ( 0c  ) for a large enough 

mass of value behavioral traders (i.e., when M  ). 

 

The presence of behavioral traders makes total excess demand flatter (i.e., 

  11 1 1 1Z c M            is increasing in   1



), and with momentum traders 

                                                 
17 See Hirshleifer (2001) for a survey of behavioral biases in asset pricing; see Asness, Moskowitz, and 

Pedersen (2009) for an empirical analysis of the returns to value and momentum trading. 
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( 0  ) the excess demand slopes upward ( 0Z   ). Since     21var 1 varp  
     

  

and since 0   , it follows that price volatility increases with   and therefore 

decreases with the mass of behavioral traders. It can be checked that expected profits of 

rational traders are always larger with behavioral traders and that they decrease with .18 

These profits are minimal when     and there are no behavioral traders, and they are 

maximal when    . This means that expected profits increase with the mass of 

behavioral traders,   1



, when value traders predominate and decrease with the mass of 

behavioral traders when momentum traders predominate. Expected profits are higher 

when 0  , so rational traders would prefer to have momentum traders around. 

 

The amount of mispricing due to the presence of behavioral traders is easily seen to be 

p   
 

  


  , 

which is decreasing in   . In words: when value trading predominates ( 0  ), the 

mispricing is increasing in its mass, 1  ; when momentum trading predominates ( 0  ), 

the level of mispricing is higher but the level decreases with the mass of momentum 

traders,   1



. De Long et al. (1990) also find that increasing the proportion of rational 

traders relative to positive-feedback traders may increase the amount of mispricing. An 

alternative measure of mispricing is   21var 1 varp   
        

  , from which we 

conclude that mispricing is increasing in   and in 2
 . This finding is consistent with 

behavioral models in which greater uncertainty and more adverse selection (in our model, 

increasing in  ) increase misvaluation (see, e.g., Daniel, Hirshleifer, and Subrahmanyam 

1998; Hong and Stein 1999). 

 

Serrano-Padial (2010) studies a pure common value double auction with a continuum of 

traders, a fraction of whom are naïve (in the sense that they use a fixed bidding strategy 

                                                 
18 See the expression for expected profits in the proof of Proposition 2. 
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independent of what other traders do). In his model, nonnegligible amounts of naïve trade 

are compatible with fully revealing prices. 

 

6. Information acquisition 

Now suppose that, in a first stage of the game, private signals must be purchased at a 

cost, which is increasing and convex in the precision 21   of the signal,19 according 

to a smooth function  H   that satisfies  0 0H   with 0H    for 0  , and 0H   . 

Hence there are nonincreasing returns to information acquisition. At a second stage, 

traders receive signals according to the precision purchased and compete in demand 

functions. The following result summarizes our analysis of symmetric equilibria of the 

two-stage game. 

 

Proposition 2. Let  0,1  . There is a unique symmetric equilibrium in the two-stage 

game with costly information acquisition where * 0   if    122 0H


  and * 0   if 

 1 2 0H       , in which case *
  is decreasing in  ,  , and  . Otherwise 

there is no equilibrium. 

 

Proof: Suppose that, at the first stage, all traders but i  have chosen a precision 0  . 

Then the market equilibrium (which is unaffected by the actions of a single trader) 

exhibits, according to Proposition 1, the price     p       , a price that 

reveals  . Trader i  receives a signal with precision 
i

  and chooses ix  to maximize 

  2,
2i i i iE s p x x     

 , 

which yields the first-order condition ,i i iE s p x      
 . Expected profits are given by 

  2

2i iE E x     , where  ,i i ix E s p     
  and    p       . Note that 

                                                 
19 For a random variable  , we use   to denote 21  . 
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 iE   does not depend on   because the equilibrium reveals  . We remark that 

 , 1i i i i iE s s         
  , where 

 
 

1
1

i

i

i


 

 


  



 

    and     22 vari i iE x E x x             

with   ( )/( )iE x        and 

      

     

2

2
22 1 1 2 1

1 1var var 1

1 1 1 .
i

i i i i i

i

x s

  

         

         
  

           

       



 

We can use this fact to obtain 

 
      

   

21 22

2 2

1 2

2 1
i

i

iE
 

 

          
       

                

. 

It follows that the marginal benefit of increasing the precision of information is 

   
  

2

2

1

2 1i
i

iE

  

 
    

 


  
. 

Observe that this marginal benefit is decreasing in 
i

  provided that 1   (and thus  

 iE   is strictly concave in 
i

 ). Let 

     iE
H 




  




 


. 

Then   0    and 0  . We have that   12 2(0) (1 ) 2 (0) 0H  


     if and only 

if  1 2 0H       , in which case there is a unique interior solution *
  to the 

equation   0   . Note that *
  is decreasing in  ,  , and   because   is. 

 

For    we have that 0   at a candidate equilibrium. Since 

 
 2

1

2i i

iE

  


   




 
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when no trader other than i purchases information (the price then is 

   p        and the expression for  
iiE     is the same as when 0  ), 

it follows that 0   is an equilibrium only if      120 2 0 0H 


   . Otherwise 

(i.e., if    122 0H


 ), it will benefit a single trader to purchase information and 

there is no symmetric equilibrium in the game. (In fact, we can show that neither is there 

an asymmetric equilibrium in the class of trading strategies with bounded second 

moments.)  

 

A more diffuse prior or less correlation of valuations induces more acquisition of 

information. In particular, when 1   an equilibrium exists if  0 0H    or if the prior is 

diffuse (   small). As    we have * 0  , and the demand function equilibrium 

collapses. 

 

It is worth remarking that the same equilibrium would obtain in a one-shot game where 

traders choose simultaneously the demand function and the precision of the signal. This 

corresponds to the case where information acquisition is covert (nonobservable). The 

equivalence of the games follows from the existence of a continuum of traders. 

 

Hence we see that the incentives to acquire information are preserved because the 

equilibrium is privately revealing—as long as we are not too close to the common value 

case, or otherwise the marginal cost of acquiring information at zero precision is zero 

(and 1  ). Jackson (1991) shows the possibility of fully revealing prices in a common 

value environment with costly information acquisition (and under some specific 

parametric assumptions) when there is a finite number of agents. 

 

Application. Consider the example of banks bidding for liquidity and the impact of a 

crisis. In this scenario we may expect that the correlation  of the values of the banks 

increases (equivalently, that the volatility of the price   in the secondary market for 

liquidity increases) and that   also increases as it becomes more costly to supply more 
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liquid collateral. The direct effect of an increase in   or   is to make the demand 

schedules of the banks steeper (Proposition 1), and this effect is reinforced by the induced 

decrease in information precision ( *
  goes down, according to Proposition 2). The effect 

of the crisis is thus that demand schedules are steeper and the signals noisier. These 

effects are consistent with the empirical evidence gathered by Cassola, Hortaçsu, and 

Kastl (2009) when studying European Central Bank auctions. These authors find that the 

aggregate bid curve became steeper after the subprime crisis in August 2007.20 When our 

model is interpreted as representing behavioral traders, we find that such a crisis would 

increase mispricing because it is increasing in   and in  for 0  , when the value 

traders predominate. 

 

7. Finite markets and convergence to the limit equilibrium 

The question arises of whether the results obtained in the large market are simply an 

artifact of the continuum specification. In this section, we answer this question in the 

negative. We show that the equilibria in finite markets tend to the equilibrium of the 

continuum economy as the market grows large, which justifies our use of a continuum 

model to approximate the large market with demand function competition. We illustrate 

the argument with the double auction case. 

 

7.1. The convergence result 

Consider the following replica economy. Suppose that inverse supply is given by 

  1
nP y yn    ; here y  is total quantity and n  is the number of traders (buyers), each 

with same benefit function as before. Increasing n  will increase the number of buyers 

and increase the supply at the same rate. Denote with subscript n  the magnitudes in the 

n -replica market. The information structure is the finite-trader counterpart of the 

structure described in Section 2. We have that 

                                                 
20  Market power leading  to bid shading may reinforce the steepness of the bid curve (see Vives (2011a)). 
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     1 2
1

 , 1 1n
n ii

n N n n     


     and cov , varn i n        
  . Note also that 

 2 ,n N       in mean square and that cov , varn        
   .21 

 

It follows from Proposition 1 in Vives (2011a) that, for  0,1  , there is a unique 

(symmetric) DFE of the form  ,n i n n i nX s p b a s c p    for any n . The equilibrium is 

privately revealing, and the price reveals the average signal of the traders, ns . 

Furthermore, by Section S.4 in Vives (2011b), for  0,1   there is a symmetric 

equilibrium of the game with covert information acquisition in the n-replica market—

provided that the cost of information acquisition at zero precision is not too high. 

 

The following proposition establishes that, as n  grows large, the equilibria of finite 

markets converge to the limit equilibrium. Denote by ETS (resp., 1ETSnn ) the per capita 

expected total surplus in the continuum (resp., in the n -replica markets). 

 

Proposition 3. Consider the n-replica market. 

 

(i) Let  0,1  . For given 2 0  , the symmetric DFE of the n-replica market converge 

to the limit equilibrium as n tends to infinity: 

(a) n
na a , n

nc c , and n
nb b ; 

(b) 0n
np p   in mean square at rate 1 n  with 

 
2

2 AVn
nnE p p 

 
       

, 

where   2 2AV 1        if 0   and   14 2 2AV     


   if 0  ; 

(c) the per capita welfare loss 1WL ETS ETS 0n
n nn    at the rate 1 n , and the 

total welfare loss 
                                                 
21 See the Appendix for definitions of “in mean square” and of convergence (and rates of convergence) 

for random variables. 
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 
 
  

2 4

2 2

1AVWL
2 2 1

n
nn 

 

 
     


 

  
. 

(ii) Let  0,  , where  1 2 0 0H      . Then the equilibrium * 0   of the 

continuum economy with endogenous information acquisition is the limit of the unique 

equilibrium  * n  of the covert information acquisition game with replica markets for n 

large. 

 

Proof: See the Appendix. 

 

7.2. Illustration of the argument in the double auction case 

Consider the double auction case (with inelastic per capita supply of q ) to illustrate the 

argument for (a) and (b) in Proposition 3(i). 

 

Suppose that traders j i  employ linear strategies,  j jX s , p b as cp    . Then the 

market-clearing condition,  ,j ij i
X s p x nq


  , 0c  , implies that trader i faces a 

residual inverse supply: 

    1
, where 1 and 1i i i j

j i
p I dx d n c I d n b a s qn





 
         

 
 . 

The (endogenous) parameter d  is the slope of inverse residual supply and the wedge 

introduced by market power. All the information that the price provides to trader i  about 

the signals of others is contained in the intercept iI . The information available to trader i  

is  is , p  or, equivalently,  i is ,I . Trader i  chooses ix  to maximize 

   2 2

2 2i i i i i i i i i i i iE s , p x E s , p p x x E s , p I dx x                     . 

The first-order condition (FOC) is  i i iE s , p p d x       . An equilibrium requires 

that 0d  .22 

 
                                                 
22 The second-order sufficient condition is fulfilled when 0d  . 
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A trader bids according to  i i ip E s , p d x       , and competitive bidding obtains 

when 0d  . A buyer ( 0ix  ) underbids, i i ip E s , p x      ; since 0d  , a seller 

( 0ix  ) overbids, i i ip E s , p x      . 

 

From the FOC and the normal updating formulas for i iE s , p   , we immediately obtain 

the coefficients of the linear equilibrium strategy: 

 
  

2, , ,
1 1

n
n i n n i n n

n

n MX s p b a s c p c
n M
 

   
 

 

where 

     
 
    

22

2 2 2 2

11

1 1 1 1
andn n n

n

n
M a d

   

 

      
 

     
    

for    1
1n nd n c


  . Now, in the finite economy (unlike the elastic exogenous supply 

case), we require 2 0nn M    in order to guarantee the existence of an equilibrium 

(i.e., to obtain 0nd   and 0nc  ). (Observe that the inequality is always fulfilled for n  

large because nM  is bounded.) The reason for this requirement is that, if the inequality 

does not hold, then traders will seek to exploit their market power by submitting vertical 

schedules, and that is incompatible with the existence of equilibrium when there is no 

elastic exogenous supply. 

 

The equilibrium price np  reveals the average signal ns ; therefore, 

i i n i i nE s , p E s ,s          and 1
1

n
i i n n ni

n E s ,s E s 


         . Averaging the FOCs, we 

obtain that    n n n n n nE s p d x d q         
    and hence 

 n n n np E s d q     
  . 
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We have that      , 1n
n i iX s p a q a s p    , the trading strategy in the double 

auction in the limit economy.23 Furthermore, n
np p q     in mean square at the 

rate 1 n . This follows because 0n
nd   and n

n n
E s    

   in mean square (given 

that n
n    and   0n

ii
n   in mean square, both at rate 1 n ). In fact, we 

have  2
AVn

n n
nE E s       

   , where   2 2AV 1        if 0   and 

  14 2 2AV     


   if 0  . This means that the convergence is faster (in terms of 

asymptotic variance) the closer we are to the common value case, the less prior 

uncertainty there is, and the less noisy are the signals (if 0  ).24 The market power 

distortion    1
1n nd n c


   (i.e., the amount of over- or underbidding) is of the order 

1 n . 

 
Reny and Perry (2006) provide a strategic foundation for the Bayesian equilibrium/REE 

of the double auction in their continuum model. In a finite-market counterpart of their 

double auction continuum model, the authors use a symmetry-preserving rationing rule25 

to prove that, with enough buyers and sellers and with a sufficiently fine grid of prices, 

the following statement holds: generically in the valuation functions of the traders and the 

fineness of the grid, there is a Bayesian equilibrium in monotonically increasing bid 

functions that is very close to the unique REE of the continuum economy. The strategy of 

their involved proof is to show an appropriate continuity property for the equilibrium in 

the limit market. The main obstacle in the proof is that, with a finite number of traders,  

                                                 
23 This statement is proved as follows:   11 1n n

c a M    if 0   (since then n

nM M ), 

and 1

n n
c   if 0   (since then 0nM  ); furthermore, n

na a  because 

   11 0n

n nd n c 
   . It can be checked similarly that  1n

nb a q . 

24 If 0   then    ; in this case, more noise in the signals makes  n n
E s   closer to  , which 

speeds up convergence. See the Appendix for the definition of the asymptotic variance of convergence. 

25 In the double auction with a finite number of buyers and sellers, a rationing rule must be established 
for traders who bid exactly the market-clearing price. 
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in the double auction the strategies of buyers and sellers are not symmetric. 26  The 

incentives of buyers to underbid and of sellers to overbid in order to affect the price 

disappear as the market grows large and price-taking behavior obtains. In our DFE, the 

strategy of a trader is symmetric and the trader perceives that her influence on the price is 

given by 0nd  . A buyer underbids and a seller overbids, and the incentives to 

manipulate the market also disappear as n grows and 0nd  . We can in addition 

characterize the rate at which this happens (and at which convergence to the limit 

equilibrium obtains) and distinguish between the dissipation of market power and the 

averaging of noise terms. 

 

7.3. Summary and interpretation of results in the elastic supply case 

In a finite n -replica market, traders have the capacity to influence prices; the price 

reveals the average signal of the traders ns , which is a noisy estimate of n . We find that, 

for n  large, such an equilibrium is close to the equilibrium in the limit economy where 

traders have no market power and where the price reveals the average parameter  . 

Convergence to the equilibrium of the continuum economy occurs as 1 n , the rate at 

which the average signal ns  of the traders (or the average estimate n n
E s  

  ) tends to 

the average parameter   in the continuum economy. Convergence to price-taking 

behavior is faster (at the rate 1 n , since nd  is of the order 1 n ; see Proposition 7 in Vives 

2011a), but convergence to the limit is delayed by the slower convergence of the agents’ 

average signal. However, this latter convergence is faster (in terms of asymptotic 

variance) as we approach a common value environment (i.e., as 1  ), when there are 

better signals (low 2
  for 0  ), and/or with less prior uncertainty (low 2

 ). 

 

In the finite market, the per capita welfare loss (with respect to that in the limit market) is 

of the order of 1 n ; see part (c) of Proposition 3(i). Here again, convergence is faster (in 
                                                 
26 The consequence is that the signal of each agent need not be affiliated with the order statistics of the 

bids of other agents. This failure of “single crossing” implies that standard proofs from auction theory, 
which rely on relationships between affiliation and order statistics with symmetric strategies, do not 
apply here. 
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terms of asymptotic variance) when closer to the common value case and slower if there 

is more prior uncertainty. The effect of noise in the signals is ambiguous if 0   since 

an increase in 2
  will tend to raise allocative inefficiency while diminish distributive 

inefficiency. The reason is that the expression for total expected welfare loss in the finite 

market, 

      2 2WL 2n n in in n E x x E u u               

(where in in nu x x    and i iu x x   ), has two components on the right-hand side; the first 

component reflects allocative inefficiency (is the average quantity at the right level?), and 

the second reflects distributive inefficiency (is a given average quantity efficiently 

distributed among market participants?). The first term converges to 

 2 2((1 ) ) 2( )         if 0  , and the second term converges to 

 2 4 2 2(1 ) 2 ((1 ) )           as n  . Increases in the correlation of parameters 

  or in the precision of the prior   12
  


  will decrease both terms; however, the first 

term increases with 2
  whereas the second term decreases with 2

  (since more noise in 

the signals aligns more individual and average quantities).27  

 

The overall convergence result is again driven by the rate of information aggregation and 

not by the faster rate of convergence to price-taking behavior, which implies a welfare 

loss of the order of 21 n  (cf. Proposition 7 in Vives 2011a). This latter result is consistent 

with results on the asymptotic dissipation of inefficiency that have been obtained in the 

double auction literature, which culminated in the work of Cripps and Swinkels (2006); 

these authors employed a generalized private value setting in which bidders can be 

asymmetric and can demand or supply multiple units. 

 

                                                 
27 When 0  , an increase in the noise of the signals reduces both terms. 
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Appendix 
 
Proof of Proposition 1: Trader i  chooses ix  to maximize 

  2, , ,
2i i i i i iE s p x E s p p x            

which yields the FOC ,i i ip E s p x      . Positing linear strategies 

 ,i iX s p b as cp    while using the inverse supply function p x     and our 

convention is di   , we obtain (provided that 1 0c  ) an expression for the price 

   11p c b a         . The vector  , ,i is   is normally distributed with 

   i iE E E s      
  and with variance–covariance matrix 

2 1

1 1
1


  

  



 
 
 
 
 

, 

where         . It follows that  , 1i i iE s s         
   for 

2 2 1(1 / (1 ) )        . Given joint normality of the stochastic variables  , ,i is  , we 

obtain 
2 2 2

2 2 2 2

2 2 2 2

~ ,
i

i

D
s N D
p C D D D D

  

   

  

    
    

   

    
         

            

. 

Here    11C c b      and    11D c a   . If we use the projection theorem 

for normal random variables and assume that 0a  , then 

  
 

    
22 2

2 22 2 2 2

1
,

11 1i i i
CE s p s p

D D
 

    

  
       


           
. 

Using the first-order condition, we obtain 

  
 
     2

22 2

2 2 2 2 2

1 11
1 1 1i

b cs p
a a

 

     

    
         

     
       

 

 ;ib as cp     
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then, using the method of undetermined coefficients, we obtain the following system of 

equations: 

 
  

  

  
 

2

2 2

2

2 2

2

2 2

1
1

1

1
1

1

a

b b
a

c
c

a



 



 



 

 
   

   
  

 
  




  


   
  

  
  

 

The solution to this system gives the result because for  0,1  , 2 0  , and 2
    

we have that  1 0c a      , and 

      

    

 
     

2 2

2

2 2

1 2 1 2

2 2

1 1 ,
11 1

1 ,
1

1 1 1 .
1

a
M

b a

c a

 



 

 

 

   

  
   

    
 

  

 

 
 

    
 

 
   

 

 

It is immediate that 0a  , that 1 1c a       for 0  , and that c  decreases in M 

and   but increases in  . Finally, we can use    11p c b a          together 

with the expressions for the equilibrium coefficients to show that 

   p        and    x       .  

 

Measures of speed of convergence. We say that the sequence (of real numbers) nb  is of 

the order n  (  a real number) whenever n nn b k   for some nonzero constant k .28 

The constant of convergence k  is a refined measure of the speed of convergence. We say 

that the sequence of random variables  ny  converges in mean square to zero at the rate 

1 rn (or that ny  is of the order 1 rn ) if  2
nE y 

  converges to zero at the rate 1 rn  

                                                 
28  This definition is stronger than necessary but it will suffice for our purposes. 
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(i.e., if  2
nE y 

   is of the order 1 rn ). Given that       22 varn n nE y E y y     , a 

sequence  ny  such that   0nE y   and  var ny  is of order 1 n  and converges to zero at 

the rate 1 n .  A more refined measure of the speed of convergence for a given 

convergence rate is provided by the asymptotic variance. Suppose that  2 0n
nE y    

at the rate 1 rn and   0nE y  . Then the asymptotic variance of convergence is given by 

the constant  2lim r
nn

n E y


 
   . A higher asymptotic variance means that the speed of 

convergence is slower. 

 

Proof of Proposition 3: 

(i)(a) From the proof of Proposition 7 in Vives (2011b) we have that 
1 1

1n n

M

M
c c   


  , where 

 

2

21
M 





 
  if 0   and 1

n nc   if 0  . 

Furthermore,  
    

2

2 2

11

1
n

n na d a

 

 

  
 

 
    because 

   11 1 0n
n nd n n c

    . Note that   11n
nnd c


  , which is equal to 

   11 1 1 M 
    if 0   or to   11 1 

   if 0  . Convergence for nb  follows 

similarly. 

 

(i)(b) From Proposition 1 in Vives (2011a) we have that 

   n n nn
x E s d        

  , where    1 1
n i n ii i

s n s n      , 

 1n n n nn
E s s        

   , and  2 1var varn n n n           
  . It follows that 

   
   

22

2 2

1 1
var var

1 1n n n n

n
E s

n n


 

 
  

  

 
            

  . Observe that 0n
nd   and 

n
n n

E s    
   in mean square (since n

n    and   0n
ii

n   in mean 

square, both at rate 1 n ). It is immediate that 
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      
  

2 2

2 2 2

2
21 1 1

1n n

n n

n n
E E s  

  


   

  
     

  
      
    and 

 2
AVn

n n
nE E s       

   , where   2 2AV 1        if 0   and 

  14 2 2AV     


   if 0  . We have that    x       , that 

        
  

2
2

n nn

n

n
E s d

d
E x x E

     

   

   

  

             

  
  , and that both nd  and 

 2

n n
E E s       

    are of order 1 n ; hence we obtain 

   
2 2AVn

nnE x x       
  . Therefore, 0n

nx x    in mean square. The results 

follow since  n np p x x    . 

 

(i)(c) Total surplus (per capita) in the continuum and in the n-replica markets are given, 

respectively, by 

1 2

0
TS

2 2i i i
xx x di x           

   


    and   1 1 2

1
TS

2 2

n
n

n i i i n
i

xn n x x x   



        
   

 
 . 

We can then write the expected welfare loss as 

          2 21WL TS TS 2n n n in iE n E E x x E u u                 , 

where in in nu x x    and i iu x x    (this follows as in the proof of Proposition 3 in Vives 

2011a). We already know from the proof of part (i)(b) that 

   2 2AVn
nnE x x        . 

We also know that    in n in nu t t d    and  i iu t   , where n n nt E s   
  , 

 
             

2 2 2

2 2 2 2 2 2
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t E | s ,s s s  
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        

   
          

      ,
 

and  , 1i i i it E s s         
   for 

 
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
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


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 

. As a result, 
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                
  . 
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Further computations yield 

        
2

1 2 2 2 21 2n i n n nE s s d n d nd                  
  . 
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; since nd  is of order 1 n , we 

have 
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    . It follows that 
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. 

 

(ii) Let  iE   be the expected profits of trader i  when the other traders j i  have 

information precision   and use identical strategies based on linear demand schedules 

with coefficients  , ,b a c . Suppose that trader i  has precision 
i

  and optimizes his 

demand schedule. If we put    11 1nd n n c
   , then it follows from Section S.4 in 

Vives (2011b) that 

   
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 

       

   
 

      
. 

Interior symmetric equilibria for information precision are characterized by the solution 

of     0n H     , where nd  is given by Proposition 1 in Vives (2011a) for any 

particular  . Let         12
00 lim 2 2 0n n nd

      


     and 

   00 limn nd d
   . The existence condition for an interior symmetric equilibrium 

is    0 0nH   . Note that     120 2n
n  


  because  0 0n

nd   . Therefore, if 

       12 20 1 2 0 0H  


     (given that   0,1 2 0H     ), then 

   122 0 0H


   and the condition    0 0nH    is fulfilled for n  large. Observe 
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that, since 0n
nd  , we have    

  
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n
n

 




   
  

 
 . For n  large there is a 

unique symmetric equilibrium of the information acquisition game  * n , the solution to 

     ' 0n n H         . This is easily checked because, for n  large,  n    is 

strictly decreasing in  . It follows that  * * 0n     (where  * 0   ) as n  .  
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