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The means of contest design may include differential taxation of the prize. This paper 
establishes that, given a revenue-maximizing contest designer who faces a balanced-budget 
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two senses. First, it ensures exceptional equitable final prize valuations. Second, it is 
effective; it yields total contestants’ efforts that are larger than those obtained under almost 
any Tullock-type lottery. Furthermore, when a budget surplus is allowed, the superiority of 
optimal taxation under the APA is preserved in terms of equity and effectiveness relative to 
optimal taxation under any contest success function. 
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1. Introduction 

Applications of contest theory include promotional competitions, litigation, internal 

labor market tournaments, rent-seeking, R&D races, political and public policy 

competitions and sports, Konrad (2009), Congleton et al. (2008). Contest design may 

involve the endogenous determination of relevant institutional characteristics by 

contest designers; economic and political entrepreneurs who wish to maximize the 

total efforts made by the contestants. These characteristics may include various forms 

of discrimination between the contestants. In particular, discrimination can take the 

form of differential taxation of the contested prize.1 Such taxation determines the 

actual stakes of the contestants from the prize, given their initial prize valuations. If an 

effort (revenue)-maximizing contest designer faces a balanced-budget constraint, 

then, by definition, if one contestant's possible winning of the prize is subjected to a 

tax, then the possible winning of the prize by another contestant must be associated 

with a negative tax, viz., the granting of a subsidy. In a two-contestant setting, optimal 

differential taxation (discrimination) may therefore result in an increase or a decrease 

in the gap between the contestants' stakes from the prize. The effect of the designer's 

preferred tax-subsidy scheme on the contestants' actual stakes from the prize hinges 

on the contest-success function (CSF) – the rule that determines the contestants’ 

chances of winning the prize, given their exerted efforts in trying to win the prize.2 In 

light of the existing results in the contest literature, see Konrad (2009), one might 

intuitively expect that equalization of stakes is always the optimal strategy for a 

revenue-maximizing contest designer. Such expectation is plausible because equal 

stakes imply maximal competition that apparently induces the largest contestants' 

efforts, as in Gradstein (1995).  

 The first objective of this paper is to show that this expectation is indeed 

realized when the CSF is the widely used all-pay auction (APA). However, as will be 

shown, the fulfillment of this expectation under an APA is the exception rather than 

the rule. That is, in general, this seemingly plausible expectation is not fulfilled. This 

is the case when the CSF is the most commonly assumed lottery, Tullock (1980), and, 

in particular, the simple lottery that will be used to diagrammatically illustrate our 

                                                            

1 Alternative forms of discrimination via the control of the contest success function are examined in 
Clark and Riis (2000), Epstein et al. (2011a), (2011b), Franke (2007) , Franke et al. (2011) and Lien 
(1990). 
2 For a recent study on the meaning and rationalization of CSFs, see Corchon and Dahm (2010). 
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claim. Whereas stake equalization is optimal in the APA case, it is not optimal in the 

lottery case, although the optimal taxation scheme reduces the gap between the 

contestants' stakes from the prize, but does not eliminate it. The proof of the extreme 

equalitarian nature of optimal differential taxation under an APA has to deal with two 

possibilities. In the first possibility, the difference between the contestants’ stakes is 

mild and there is an inverse relationship between their taxes. Consequently, the use of 

the well known properties of the equilibrium strategies in an APA enables a 

straightforward proof. In contrast, in the second possibility, the asymmetry between 

the contestants’ prize valuations is large, the balanced budget constraint allows direct 

(not inverse) relationship between the taxes imposed on the contestants and, in turn, 

an increase in the sum of their prize valuations. This complicates matters and requires 

a different more subtle proof strategy. The challenge of clarifying the economic 

intuition behind the second part of the proof can nevertheless be met by applying 

standard microeconomic arguments. As we will show, the different more equalitarian 

nature of optimal taxation under the APA is due to the different relationship between 

the balanced-budget curve and the equi-effort curves under an APA and under a 

lottery. We also supplement the intuitive justification of the optimal taxation scheme 

under an APA and under a lottery with an economic interpretation. The proposed 

interpretation stresses the different role of leveling the playing field in attaining the 

maximal revenue via optimal taxation under these CSFs. 

 The second objective of the paper is to compare the appeal of the optimal 

differential taxation of the prize under the APA and any Tullock-type lottery in terms 

of their effectiveness as a means of revenue maximization for a contest designer who 

determines his preferred taxation scheme subject to a balanced-budget constraint. It 

turns out that optimal taxation yields larger revenue (total efforts) under the APA than 

under almost any lottery and, in particular, the simple lottery3. Finally, we establish 

that optimal differential taxation under the APA is the most effective means of 

generating revenue when a budget surplus is allowed. 

 The remainder of the paper is laid out as follows. In the next section we 

present the contest designer’s problem under the balanced-budget constraint. The 

                                                            

3 When the contestants stakes are given, the APA does not necessarily yield larger efforts than the 
simple lottery, as shown by Fang (2002),  Epstein et al. (2011b). In our setting where the stakes can be 
controlled, the efforts under the APA are always larger than or equal to those obtained under any 
lottery. 
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optimal taxation scheme under the APA is presented in Section 3 We clarify the 

economic intuition behind the proof of the first result establishing the superiority of 

the APA in terms of equity, by applying standard microeconomic arguments. The 

exceptional nature of the first result is clarified by contrasting it with the non-extreme 

equalitarian nature of optimal taxation under almost any Tullock-type lottery. The 

superior effectiveness of optimal taxation under the APA as a means of generating 

efforts is established in Section 4. Concluding remarks are presented in Section 5. The 

proofs of the three main results that deal with optimal taxation under a balanced-

budget constraint are relegated to an Appendix. 

 

2. The problem of the contest designer under a balanced-budget constraint 

In our contest there are two risk-neutral contestants, the high and low benefit 

contestants, 1 and 2. The prize valuations of the contestants are denoted by 1n  and 2n  

and, with no loss of generality, we assume that 1 2n n  or 1

2

1nk
n

   and that the 

contest designer has complete information on the contestants’ prize valuations. Given 

the contestants’ fixed prize valuations and the CSF, the function ),( 21 xxpi that 

specifies the contestants’ winning probability given their efforts 1x  and 2x , the 

expected net payoff (surplus) of contestant i is: 

 

(1)                         iiii xnxxpuE  ),( 21 ,  (i=1,2) 

 

Direct discrimination via differential taxation of the contested prize that 

affects the contestants’ actual prize valuations, 1n  and 2n , is a pair of (positive or 

negative) amounts, 1  and 2  that changes the prize valuations to  11 n  and 

 22 n . A contest designer who applies such a taxation scheme must ensure that the 

transformed prize valuations are positive. Otherwise the contestants will not 

voluntarily take part in the contest and the designer’s revenue will be equal to zero. 

We also assume that the contest designer faces a balanced-budget constraint, that is, 

1  and 2  must also satisfy the requirement that the designer’s expected expenditures 
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are equal to zero, that is, 02211   pp .4 This ex-ante balanced-budget constraint is 

reasonable when the designer is "risk neutral" in the sense that he does not mind to 

face an ex-post deficit situation after the outcome of the contest has been revealed. 

The balanced-budget constraint is more plausible when the designer controls a series 

of identical contests that are held during a fixed period (typically weekly, monthly or 

quarterly contests that are held during the budget year). In such a case, the designer 

actually tries to ensure that during the relevant period the net transfers between the 

contestants are cancelled out such that his budget is balanced. 

In the optimal contest design setting, the objective function of the contest 

designer is: 

 

(2)     1 2G x x   
 

The designer maximizes his objective function (2) subject to the relevant constraints 

by selecting 1  and 2 , given the anticipated Nash equilibrium efforts of the 

contestants. The particular choice of the taxation scheme together with its 

corresponding efforts of the contestants, constitute the equilibrium of the game. The 

contest game that we study has therefore a two-stage structure. In the first stage the 

designer determines the taxation scheme. In the second stage the contestants make 

decisions on their exerted efforts taking as given the (positive and negative) taxes 

levied on the prize. 

 

3. The superiority of the APA in terms of equity 

Under the APA, the certain winner is the contestant who makes the largest effort. That 

is, the APA is given by: 

 

(3)                                














21

21

21

211

     if        0
     if     .50
     if        1

,
x x
x x
x x

xxp  

 

                                                            

4 The possibility of a balanced-budget constraint faced by the contest designer has not been dealt with 
in the contest literature. The possibility of caps on the contestants’ efforts has been examined, for 
example, by Che and Gale (1998), Ujhelyi (2009). 
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Given a tax scheme implemented by 1  and 2 , the two contestants maximize their 

expected payoffs: 

 

(4)      1112111 , xnxxpuE    and       2222112 ,1 xnxxpuE    

 

If the stake of contestant 1 is larger than or equal to the stake of contestant 2, that is, 

02211   nn , then the optimal efforts of the contestants and their 

corresponding equilibrium winning probabilities are given, as is well known (see 

Konrad (2009)), by: 

 

(5)     22
*
1 5.0  nx ,  

 11

2
22*

2 2 





n

nx ,  11

22*
1 2

1






n

np  and  11

22*
2 2 






n

np   

 

In turn, the objective function of the contest designer is: 

 

(6)         
 

  
 11

221122

11

2
2222*

2
*
1 222 
















n

nnn
n

nnxxGA  

 

The designer selects a taxation scheme  21 , such that he maximizes the 

contestants’ equilibrium efforts (6), subject to the balanced-budget constraint, 

02211   pp . Since 0ip , ,2,1i  the budget constraint implies that 021  . 

Taking into account the equilibrium efforts of the contestants and assuming that 

02211   nn 5, the balanced-budget constraint takes the form: 

 

(7)                           0
22

1 2
11

22
1

11

22
2211 















 






n
n

n
npp  

 

or, equivalently, 

 

(8)                               02 22212211   nnn  

                                                            

5 Later on we discuss the other possible case where 01122   nn . 
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The designer’s problem is, therefore, given by:  

 

    
 

      
0

020
..

2,

2211

222122112211

11

221122*
2

*
1

21

















nn
nnnpp

ts

n
nnnxxMax

 

 

Our first result specifies the optimal taxation scheme under the APA. 

  

Proposition 1: The optimal taxation scheme under the APA equalizes the contestants 

final stakes, that is,       212121 5.0,5.0, nnnn  . 

Proof: See Appendix. 

Let us clarify the idea of the proof by using Figures 1 and 2 and the well 

known properties of the equilibrium strategies under the APA. First, notice that the 

balanced-budget constraint requires that a move from the initial situation involves 

opposite-sign changes in the contestants’ stakes and that 21 0    (the designer 

does not increase the stake of contestant 1 and reduce the stake of contestant 2 

because such a strategy increases the gap between the contestants’ stakes, so the 

intensity of the competition and, in turn, the contestants’ efforts are reduced).  

Two feasible taxation schemes are represented by points D and E. Obviously, 

the scheme  21 ,  represented by E that equalizes the contestants' final stakes is 

feasible (satisfies the balanced-budget constraint). Applying this strategy the designer 

imposes a tax (grants a subsidy) equal to half of the gap between the initial stakes on 

contestants 1 (to contestant 2) and this equalizes the winning probabilities of the 

contestants, so the balanced-budget constraint is indeed satisfied. This scheme 

generates larger efforts than the scheme     0,0, 21   represented by D, because it 

increases the intensity of competition and, in turn, the contestants’ efforts. The 

feasible (potentially optimal) schemes for the designer are those represented by points 

on the curve connecting points D and E where   05.0 121  nn . 

The crucial issue to which we now turn is the reason that the optimal taxation 

scheme is the equalitarian scheme represented by point E. To answer this question, we 

proceed by clarifying the properties of the equi-effort and balanced-budget curves.  
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A typical equi-effort AG  curve is given by  
 11

2
2222

22 








n

nnG A . In the 

 21 ,  plane, this curve is positively-sloped since an increase in 1  reduces the 

intensity of competition and, in turn, the contestants’ efforts. To bring total effort back 

to its original level, 2 must be increased. Similarly, a reduction in the stake of 

contestant 1 or an increase in the stake of contestant 2 result in an increase in total 

effort. Four typical equi-effort curves A
AG , B

AG , C
AG  and E

AG , C
A

B
A

A
A

E
A GGGG  ,  

are presented in Figures 1 and 2. These curves are positively-sloped and concave.  

As already noted, in the neighborhood of point D, the balanced-budget curve 

is negatively sloped. In addition, the curve is also concave. These properties imply 

that, in the relevant range where 02211   nn , the balanced-budget curve can 

be always negatively sloped, as in Figure 1. In such a case, the optimality of the 

equalitarian tax scheme could be directly inferred from the equilibrium properties of 

the APA (see, for example, Baye et al. (1993), equation (10)) that imply that an 

increase of the lower stake or a decrease in the higher stake, viz., stake equalization, 

positively affect the total efforts. Alternatively, one could argue that in an all-pay 

auction equilibrium, the sum of the players’ expenditures is weakly less than the 

lower prize valuation 2n . This follows from the players’ equilibrium mixed strategies, 

which are uniform on [0, 2n ] . Thus, the optimal tax scheme maximizes the lower of 

the two players’ valuations, i.e., equates these valuations.  In fact, when the balanced-

budget curve is always negatively sloped, one can immediately realize that the 

optimal point cannot be interior and lie on the negatively-sloped part of the balanced-

budget curve because at such a point the positive slope of the equi-effort curve is 

larger than the negative slope of the balanced-budget curve, as at points A, B, C in 

Figure 1. Hence, the optimal point in Figure 1 is E.  

What complicates the proof, however, is the fact that, with sufficiently 

asymmetric players, the balanced-budget curve can also be positively sloped and have 

the typical shape depicted in Figure 2.6 Note that in such a case the balanced-budget 

constraint enables a simultaneous increase in the contestants’ prize valuations and, in 

turn, an invrease in the sum of these valuations beyond the initial )( 21 nn  . So the 

                                                            

6 As shown in the proof, the two possible shapes of the balanced-budget curve presented in Figure 1 
and in Figure 2 are, respectively, obtained when 31  k  and 3k . 
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two alternative straightforward proofs based on the equilibrium properties of the APA 

or on the comparison of the positive and negative slopes of the equi-effort and 

balanced-budget curves can no longer be used. To face the challenge of this 

possibility, we prove that the optimal taxation scheme is represented by the extreme 

point E, and not by an interior tax scheme represented by a point between A and E in 

Figure 2, by establishing that, at any point in the positively-sloped part of the 

balanced-budget curve, the positive slope of the equi-effort curve is larger than the 

positive slope of the balanced-budget curve. In economic terms, at any point in the 

positively-sloped part of the balanced-budget curve, any move towards E has two 

contrasting effects on the intensity of competition; the reduction in the stake of 

contestant 1 increases the intensity of competition and, in turn, the contestants’ 

efforts, whereas the reduction in the stake of contestant 2 decreases the intensity of 

competition and, in turn, the contestants’ efforts. Since the former effect is dominant, 

any move toward E increases the contestants’ effort. That is, point E represents the 

optimal equalitarian taxation scheme. 

 

Figure 1: The APA case where 31  k  

 

  

  

1  

)(5.0 21 nn   

)(5.0
 

21 nn
GMaxG A

E
A




  

C  

2  

Balanced-budget 
constraint 

D   

A  

A
AG  


  

 

0  )(5.0 21 nn   

B
AG  

C
AG  

  
  B  

 
E    
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Figure 2: The APA case where 3k  

 

  

 

In light of the existing results in the contest literature, see Konrad (2009), one 

may intuitively expect that equalization of stakes is always the optimal strategy for a 

revenue-maximizing contest designer. At first glance, such expectation is plausible 

because equal stakes imply maximal competition that apparently induces the largest 

efforts. Our next objective is to explain why the fulfillment of this expectation under 

an APA is the exception rather than the rule. The extreme nature of the APA results in 

an extreme optimal taxation scheme (the optimal point E is not interior). In contrast, 

optimal taxation under the widely studied lottery CSFs proposed by Tullock (1980), is 

not extreme; it reduces the gap between the contestants’ stakes, but does not eliminate 

it. A Tullock-type lottery is given by:  

 

(9)                       



21

1
211 ),(

xx
xxxp


  

 

1  

)(5.0 21 nn   

)(5.0
 

21 nn
GMaxG A

E
A




  

C  

2  

Balanced-budget 
constraint 

D  
  

A  

A
AG  


  

 

0  )(5.0 21 nn   

B
AG  

C
AG  


  

   

B  

 
E  
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where 0 . The CSF is a simple lottery, apparently the most commonly assumed 

CSF in the rent-seeking literature, when 1 . In this case, a contestant’s probability 

of winning the contest is equal to his relative effort.  

Given a taxation scheme represented by 1  and 2 , the two contestants 

maximize their expected payoffs: 

 

(10)      111
21

1
1 xn

xx
x

uE 


 



 and     222
21

2
2 xn

xx
xuE 


 



 

 

Let 
22

11








n
na . By the first order conditions, 

  

(11)        
 2

11*
1

1





 
a

nax  and  
 2

22*
2

1






 

a
nax   

 

and, therefore, 

 

(12)    
 2

2211*
2

*
1

1





 

a
nnaxxGL  

(13)                     
11 

 



a
ap  and 

1
1

2 
 a

p  

 

and the balanced-budget constraint takes the form 

 

(14)   0
1

1
1 212211 





  



aa
app  

or 

 

(15)     021  a  

 

The designer’s problem is therefore: 
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(16)  

   
 

 

0   .5
0   .4

011   .3
01   .2

00   .1
..

1,

22

11

212211

2
2211*

2
*
1

21





































n
n

a
a

app
ts

a
nnaxxMax

 

 

Note that constraints 2 and 3 guarantee that the contestants’ utilities are not negative 

as well as the fulfillment of the second-order conditions in the contestants’ 

maximization problems.7 The solution of this problem yields our second result. 

 

Proposition 2: When 1k , the optimal taxation scheme under any Tullock-type 

lottery with 20   does not equalize th e contestants’ final s takes, but preserves 

their relative magnitude. That is,       212121 5.0,5.0, nnnn   and 

021  . 

Proof: See Appendix. 

That is, if the contestants’ initial stakes are different, then a designer who chooses a 

taxation scheme subject to a balanced-budget constraint does not have an incentive to 

eliminate the gap between the contestants' prize valuations and the reduced initially 

higher stake is still larger than the increased initially lower stake. To illustrate this 

result in a tractable geometric way, consider the special case of a simple lottery 

( 1 ) where the designer has an incentive to reduce the gap between the 

contestants’ stakes but not to eliminate it. The diagrammatic illustration of the typical 

interior equilibrium in this case appears in Figure 3. Whereas the typical shape of the 

balanced-budget curve is unchanged, the equi-effort curves are now negatively sloped 

and convex. Furthermore, at point A, which represents the equalitarian taxation 

scheme, the slope of the balanced-budget curve is larger than the slope of the equi-

effort curve. This implies that the point E, which represents the interior equilibrium 

taxation scheme, must be to the right of A. That is, the reduced stake of contestant 1 is  

 

                                                            

S See Epstein et al. (2011b). 
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Figure 3: The simple lottery case 

 

  
 

still larger than the increased stake of contestant 2. The equalitarian taxation scheme 

represented by point A enables the designer to neutralize the initial difference in the 

contestants’ stakes and thus increase the intensity of competition and, in turn, the 

contestants’ efforts relative to the initial situation represented by point B. The move 

from point A to point E enables the designer to further increase the contestants’ 

efforts by fully taking advantage of the potential “income effect” associated with a 

scheme that increases the sum of the final stakes from ( )21 nn   at A to 

)( 2211   nn  at E (by Proposition 2, the optimal taxation scheme satisfies 

021  ). This positive income effect dominates the negative effect on total efforts 

due to the reduced competition associated with the creation of a gap between the 

contestants’ final stakes. 

1  

)(5.0 21 nn   

LGMax   

A  

  

2  

)(5.0 21 nn   15.0 n  

Balanced-budget 
constraint 

  

E  

B  
 

C  

E
1  

E
2  

2 Max  

A
LG  

B
LG
  

  

 

 

0  
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 It seems to us that Proposition 2 has significant implications in public 

economics.8 In particular, it can be used to explain why contingent taxation of the 

prize won in a lottery contest between two lobbyists representing two interest groups, 

such as, the "rich" and the "poor" or "consumers" and a "monopoly", tends to preserve 

the initial ex-ante inequality between the interest groups represented by the lobbyists. 

Such applications certainly deserve further examination, which is beyond the scope of 

the current work.  

 

4. The superiority of the APA in terms of revenue maximization 

If the designer faces a balanced-budget constraint, then optimal taxation under the 

APA yields total efforts that are equal to the average of the initial stakes. These efforts 

are larger than those obtained under almost any Tullock-type lottery and, in any event, 

they are always larger than or equal to those obtained under any lottery. 

 

Proposition 3: The total efforts of the contestants corresponding to the optimal 

taxation scheme und er the APA are equa l to th e average prize valuation, 

 215.0 nnGA  . These total efforts are larger than or equal to those obtained under 

any Tullock-type lottery with 20   .  

Proof: See Appendix. 

 

As shown in the proof, the maximal efforts under an APA can also be secured under a 

Tullock-type lottery with the exponent   being equal to 2. In other words, maximal 

performance of optimal differential taxation can be attained in the mixed-strategy 

equilibrium of the extreme logit CSF where   (the APA) or in the pure-strategy 

equilibrium of the extreme logit CSF where 2 . Note that such equivalence has 

the flavor of the neutrality result obtained in Alcalde and Dahm (2010). However, in 

our setting of contest design, the contestants' maximal efforts are larger than those 

obtained in the setting of Alcalde and Dahm (2010) because we allow discrimination 

between the contestants via the optimal scheme of differential taxation of the prize. 

                                                            

8 Applications in other disciplines, e.g., evolutionary biology, also seem natural because the assumption 
of contest resolution based on a lottery and the assumption of effort maximization (by nature) seem 
plausible.  
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Let us explain the intuition behind Proposition 3. For 1k  and 2 , it can be 

verified that, at the point representing the optimal taxation scheme, the slope of the 

balanced-budget curve is still larger than the slope of the equi-effort curve. This 

means that the designer is aware of the kind of “income effect” described in the last 

paragraph of the preceding section. So why does not he take advantage of this effect 

and increase the contestants’ efforts by creating a gap between their final stakes (see 

Proposition 2). The reason is that, when the designer modifies the contestants’ prize 

valuations, he must be certain that his intervention preserves the contestants’ 

incentives to take part in the contest. When 2 , it is known that the existence of a 

pure-strategy equilibrium requires that the contestants’ stakes are equal. The designer 

must therefore equalize the stakes because otherwise the contestant with the lower 

prize valuation attains a negative utility, which prevents his participation in the 

contest. Hence, when the contestants’ stakes are equalized, despite the existence of 

the “income effect”, its application is not feasible; the utility of each contestant is 

equal to zero and any modification of the stakes by resorting to taxation will result in 

the withdraw of the lower-stake player from the contest and, in turn, in the reduction 

of the total efforts to zero. The above explanation implies that a change in the 

exponent of the lottery from 2  to 2  enables the designer to increase the 

contestants’ efforts by taking advantage of the “income effect” (note that for 2 , 

taxation that equalizes the stakes results in positive utility for both of the players). So 

how can 2  yield the maximal efforts  215.0 nnGL  . The answer to this 

question is that the move from equal stakes to non-equal stakes involves two negative 

effects that reduce the contestants’ efforts. First, the move implies reduced 

competition that reduces the contestants’ incentive to exert effort. Second, the 

reduction in   means that the impact of effort on the winning probability is reduced, 

and this effect also lowers the contestants’ incentive to exert effort. The combined 

negative effect more than counterbalances the positive “income effect” and this 

explains why the maximal efforts are attained at 2 .  

 Finally, suppose that the contestants’ participation in the contest is voluntary 

and the designer does not face a balanced-budget constraint and any surplus is 

allowed. The utility of the contest designer is now given by the contestants’ efforts 

and the net expected surplus in the budget used for the differential taxation of the 

prize. That is, his objective function is given by 
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  
   













2211
11

221122

2



 pp

n
nnn . When budget surplus is allowed, the 

sum of the contestants’ efforts and the surplus in the budget of the contest designer 

can be equal to the stake of contestant 1, 1n .  The proof is straightforward. The 

designer can now reduce contestant 2’s stake to zero, 22 n , and contestant 1’s 

stake almost to zero,  11 n . Such a taxation scheme induces contestant 2 not to 

take part in the contest and contestant 1 to make a negligible effort, which guarantees 

his winning. The contestants’ efforts therefore converge to zero, the designer 

expropriates almost all the stake of contestant 1 so his benefit is equal to 1n . This 

‘take it or leave it’ - type result has been obtained in the literature by applying 

different mechanisms. In the current study, it is obtained by resorting to optimal 

differential taxation of the prize. A similar result has been derived in Nti (2004) by 

applying a Tullock-type lottery and a transformation of the contestants’ efforts that is 

equivalent to the setting of a reservation effort 1n  for contestant 1. If contestant 1’s 

effort is smaller than the reservation effort, then contestant 2 wins the contest. 

Alternatively, we could use a first-price APA with a reservation price of 1n  (see 

Hillman and Riley, 1989). 

 

5. Conclusion 

As in a standard public finance context, taxation in a contest setting has efficiency and 

distributional implications. In this study efficiency (inefficiency) is measured in terms 

of the total efforts exerted by the contestants and the distributional effect is measured 

by the gap between the contestants’ relevant final prize valuations. 

Optimal contest design can be implemented by applying direct discrimination 

that affects the contestants’ prize valuations via differential taxation of the prize. 

Interestingly, when the contest designer faces a balanced-budget constraint, 

differential taxation of the prize under the APA is sufficient to secure the exertion of 

the largest efforts by the contestants, relative to optimal taxation under any Tullock-

type lottery. Such superiority is attained without resorting to structural discrimination 

that affects the parameters of the contest success function, as in Clark and Riis (2000), 

Epstein et al. (2011a), (2011b), Franke (2007), Franke et al. (2011) and Lien (1990), 

which may be difficult to control or even illegal. Furthermore, allowing taxation that 
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result in a budget surplus, the optimal differential taxation scheme under the APA 

generates the maximal possible total efforts, which are equal to the highest 

contestant’s value of the prize. 

Optimal taxation under the APA is also superior in terms of equity: equality of 

the contestants’ final prize valuations. When the contest designer faces a balanced-

budget constraint, optimal taxation under the APA eliminates the gap between the 

contestants’ initial prize valuations. Such equalization of the contestants’ stakes is an 

exception and not the rule. In fact, it is not obtained under almost any Tullock-type 

lottery and we conjecture that this finding is more general. That is, optimal taxation 

under any regular lottery that satisfies some standard properties closes the gap 

between the contestants’ stakes from the prize, but does not eliminate it. The 

economic rationale of this finding is due to the dominance of the positive “income 

effect” on total efforts, which is attained by taxation that increases the sum of the final 

stakes, over the negative “inequality effect”; the negative effect on total efforts of the 

preserved stake inequality, which implies giving up some potential extra competition 

between the contestants that could enhance the exertion of efforts. Note that the 

existence of the “income effect” in our strategic contest setting crucially depends on 

two assumptions: the initial difference between the contestants’ prize valuations and 

the balanced-budget constraint that enables taxation that can increase the initial sum 

of the contestants’ stakes. But, under the APA, these necessary assumptions are not 

sufficient to ensure the existence of a positive “income effect”. The reason is that in 

the case of an APA, the equi-effort curves are positively sloped and not negatively 

sloped as in the case of a lottery when the stakes are equalized. This means that an 

interior optimal taxation can only be obtained along the positively-sloped part of the 

balanced-budget constraint (see Figure 2). But in this range the optimal taxation 

scheme is not interior; it yields equal final stakes because any feasible alternative 

taxation scheme that involves a simultaneous increase of the equal stakes of the 

contestants negatively affects their total efforts. The increase in the stake of contestant 

1 reduces the intensity of competition and, in turn, the exerted efforts. This decline in 

the exerted efforts is moderated, but not neutralized or more than counter balanced, by 

the required increase in the stake of contestant 2 while moving along the positively-

sloped part of the balanced-budget curve. In other words, in the case of an APA, when 

the contestants’ stakes are equalized, the “income effect” (the effect on total efforts of 

the increase in the sum of the contestants’ stakes) is negative. So the designer prefers 
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the equalitarian corner solution. Finally, we have shown that when a surplus is 

allowed in the contest designer’s budget, again, optimal taxation under the APA 

almost eliminates the gap between the contestants’ initial prize valuations; the prize of 

one contestant is reduced to zero and the prize of the other contestant is reduced to a 

positive value slightly higher than zero. 
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Appendix 

Proposition 1: The optimal taxation scheme under the APA equalizes the contestants 

final stakes, that is,       212121 5.0,5.0, nnnn  . 

Proof: The proof includes three parts. We first clarify the properties of the feasible 

(potentially equilibrium) strategies  21 , . For these strategies, we describe in Part 2 

the properties of the balanced-budget constraint (bbc). We then present in the third 

part the properties of an equi-effort curve and by comparing its slope to that of the 

balanced-budget curve complete the proof.  

Part 1: Let us show that in equilibrium, if 1k , then    0,0, 21   and if 1k , 

then   2121 05.0   nn . 

Since 05.0
2

11

22

1



















 n
nGA , 05.0

11

22

2












 n
nGA  and, by the bbc, 

021  , considering a deviation from    0,0, 21  , the designer does not have an 

incentive to reduce 2  (so 02  ) or increase 1  (so 01  ). That is, in any 

equilibrium, 21 0    must be satisfied. 

 When 1k  ( 21 nnn  ), by (6), for    0,0, 21  , the total efforts are 

equal to n
n

nn


22

2

. It can be easily verified, by (6), that any alternative feasible 

taxation scheme attains smaller efforts. Henceforth we therefore assume that 1k . 

 When 1k , by (6), for    0,0, 21  , the total efforts are equal to 

k
nn

2
21  and for the feasible stake-equalizing scheme 

      212121 5.0,5.0, nnnn  , the total efforts are equal to  215.0 nn  . Since, 

for 1k ,  
k
nnnn

2
5.0 21

21


  , we can conclude that    0,0, 21   does not 

maximize the contestants’ efforts. Hence, for 1k , in equilibrium, 21 0   .  

 Let us complete the proof of Part 1 (establish that, in equilibrium, 

  1215.0  nn ) by showing that when  2111 5.0 nnn   , the 

corresponding efforts cannot be maximal.  
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Let       212121 5.0,5.0, nnnnEE   be our benchmark taxation scheme, 

where  212211 5.0 nnnn EE   , efforts are equal to 

 21
11

222222 5.0
22

nn
n
nnnG E

EEE
E
A 


















 






  and 1

22

11

11

22 







E

E

E

E

n
n

n
n





 . 

Starting from this scheme, let us reduce 1  below  215.0 nn   and show that such a 

change reduces the  efforts, independent of the balanced-budget constraint:9 

(i) If, after the reduction in 1 , 2211   nn , then efforts are still given by (6), 


















 





11

222222

22 


n
nnnGA , and 22111122   nnnn EE . 

Therefore, 
22

2222  


 nn E

 and 
11

22

11

22 1













n
n

n
n

E

E

 and, consequently, the 

move from E
AG  to the new AG  reduces the efforts. 

(ii) If, after the reduction in 1 , 2211   nn , then efforts are given by 









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
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
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
22

111111

22 


n
nnnGA  and 111122   nnn EE . Therefore, 

22
1122  


 nn E

 and 
22

11

11

22 1













n
n

n
n

E

E

 and consequently the move from E
AG  to 

the new AG  reduces the total efforts. 

 

Part 2: In this part we examine the properties of the bbc for the relevant schemes 

satisfying   2121 05.0   nn . The bbc can be written as 

     02 2111122
2
2  nnn  . Since 21 0   , the solution of this 

equation must be the positive root. That is: 

(A.1)  
     

2
24

)(
5.0

2111
2

1221
12

nnnn 



 . 

A taxation scheme  21,  that satisfies the bbc has the following properties: 

a.  02211   nn  iff       212121 5.0,5.0, nnnn  . 

b. If   05.0 121  nn , then  02211   nn . 

                                                            

9 In this range, it is possible that the contestant who initially has the higher stake becomes the one with 
the lower stake and then, under the balanced-budget constraint (8), the roles of contestants 1 and 2 are 
reversed. Therefore, the constraint (8) is no longer applicable.   
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c. For 02211   nn , the function (A.1) that defines the bb-curve is (i) 

concave, 02
1

2
2





  and (ii) at    0,0, 21  , 0

1

2 



 . 

The proof of property a is straightforward and therefore omitted.  

To prove property b, note that in the range   05.0 121  nn  on the bb-

curve, only in the extreme point where  211 5.0 nn  , the contestants’ stakes are 

equal, that is, 2211   nn . In the other extreme point where 01  , 

2211   nn . Hence, by the continuity of the bbc (A.1), for every 1 , 

  05.0 121  nn , we get that 2211   nn .  

To prove property c, notice that according to (A.1), the slope of the bb-curve is: 

(A.2)          5.0

2111
2

12112
1

2 24745.05.0

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
 nnnnn 

  

and, therefore, 

(A.3)  
       
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Substituting 01   in (A.2), we get that 021
1

2 

 k

 .  

Let us, finally, find out what is the value of 1  that yields the maximal value 

of )( 12   on the bb-curve. By (A.2), for    0,0, 21  , we get that 0
1

2 



  and for 

      212121 5.0,5.0, nnnn  , we get that 
13
3

1

2








k
k




.  By (A.3), the 

function )( 12   defining the bb-curve is concave in the relevant range 

  05.0 121  nn . Therefore, for 3k , )( 12   has a negative slope at 01  , a 

positive slope at  211 5.0 nn   and a zero slope at some intermediate value 1 , 

  05.0 121  nn , that yields the maximal value of 2 . Notice that when 3k , 

0
1

2 



  for any 1 ,    05.0 121  nn . That is, the bb-curve is declining in the 

relevant domain and the maximal value of  212 5.0 nn   is obtained at 

 211 5.0 nn  .   
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 For 3k  and   05.0 121  nn , an increase in 1  is always associated 

with a decrease in 2 . Since 0
1






AG  and 0
2






AG , we directly get that the  

maximal efforts are obtained in the equalitarian scheme 

      212121 5.0,5.0, nnnn  .  But when 3k  and   05.0 121  nn , an 

increase in 1  can be associated with an increase in 2 . The optimality of the 

equalitarian tax scheme needs therefore to be proved taking into account also this 

possibility (an increasing bb-curve). The third part of the proof establishes the 

optimality of        212121 5.0,5.0, nnnn   also in this case.  

 

Part 3: An equi-effort curve (ee-curve) AG  is defined for 02211   nn  as 

follows  
 11

2
2222

22 








n

nnG A . Let us show that the function  12   that defines 

AG  is positively sloped, 0
1

2 



 , and concave, 02

1

2
2





 . Differentiating the 

function  12   we get 0
215.0

5.0

11

22

2

11

22

11

22

2

11

22

1

2 































































n
n

n
n

n
n
n
n

. Letting 

11

22








n
nb , we get that 0

21

2

1

2 






b
b


  and 

 

  2
11

1

2

2
1

2
2

21

12

bn

bbb

























 . 

Substituting 
b

b
21

2

1

2







 , we get that  

  
0

21
12

3
11

22

2
1

2
2










bn
bb


 . Given the 

properties of the bb-curve and the ee-curve, we will complete the proof by showing 

that, for   05.0 121  nn , where, 2211   nn  (see Part 2), at every point 

on the bb-curve, the slope of the ee-curve is larger than the slope of the bb-curve. 

Substituting 
11

22








n
nb  in the bbc, we get that 
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    0
22

1 2
11

22
1

11

22 














 






n
n

n
n , or   05.05.01 21   bb  or 

21

12





b .10 

We have to show that    
 221

2211
2

2
22

21 






 n

nn
b

b , where the LHS (RHS) 

expression is the slope of the ee-curve (bb-curve). This inequality can be equivalently 

written as 
   

 2221

12211
2 22
21 







 n
nn

b
b . Dividing the nominator and 

denominator of the RHS by  11 n  we get 

11

22

11

21

11

1

11

22
2

22

21





























n
n

n

nn
n

b
b  and, in 

terms of b, we get 
b

n

n
b

b
b











11

21

11

1
2

22

21






. Since the denominator of the RHS 

expression is negative (because 21 0    and  0b ), 

 b
n

bb
n

b 2122
11

1

11

212 


























 . After some algebraic manipulations, this 

inequality takes the form: 

         02121121 21
2

1
11

2 


 


bb
n

bbb  

Substituting 
21

12





b  (which has been calculated above) in all the terms in the 

above inequality with the exception of  21 bb  , we get after some algebraic 

manipulations that the above inequality is equivalent to 

    02221211221 21

2

21

1

21

1
1

1121

12 














































 











n

bb  or 

  02321
11

11

21

212 




























n
nbb . Since   05.0 121  nn , 

   05.022 221111  nnnnn   and, therefore, 02

11

11 





n
n . Since 

                                                            

10 Note that the condition   05.0 121  nn  requires that 21 0   . Therefore, 021  .  
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03

21

21 



  (because 21 0   ) and 0b , we get that, for 

  05.0 121  nn ,   02321
11

11

21

212 




























n
nbb .        Q.E.D 

 

Proposition 2: When 1k  the optimal taxation scheme under any Tullo ck-type 

lottery with 20   does not equalize th e contestants’ final s takes, but preserves 

their relative magnitude. That is,       212121 5.0,5.0, nnnn   and 

021  .11 

Proof: The proof is based on three lemmas. 

 

Lemma 1: For 20   , the total efforts obtained in the designer’s problem, (16), 

satisfy: 

a. For any  21 , ,  
   22112

2211 25.0
1









 nn
a

nna . 

b. For the equilibrium taxation scheme  EE
21 , , 

   
 2

2211
21

1
25.0








 


a
nnann

EE

. 

Proof of Lemma 1: 

a. Consider the expression 
 21






a
ac . Since 

 31
1













 a
a

a
c , the maximal value of 

c, which is equal to 0.25, is reached at 1a  (notice that the second order condition is 

satisfied at 1a , 
  02

2





a
c ). Hence, for any  21 , : 

 
   22112

2211 25.0
1









 nn
a

nna . 

b. The selection of       212121 5.0,5.0, nnnn  , which satisfied all the 

constraints in the designer’s problem (16), yields total efforts that are equal to 

 2125.0 nn  . Hence,    
 2

2211
21

1
25.0








 


a
nnann

EE

.         Q.E.D   

                                                            

11 For 1k , it can be shown that in equilibrium    0,0, 21  .  
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Lemma 2: In equilibrium, for 20   and 1k , 21 0   . 

Proof of Lemma 2: The proof consists of two steps. 

Step 1 - Since 0ip , 2,1i , the balanced-budget constraint (14) implies that 

021  . Let us first show that 21 0   . Suppose to the contrary that, in 

equilibrium, the inequalities 21 0    are not satisfied. Since 021  , this implies 

that 12 0    and, therefore, after the change in the contestants’ stakes, the stake of 

contestant 1 (2) is increased (decreased), 1
22

11 







n
na . By the balanced-budget 

constraint (15), 112    a  and using the result 1a , we get that 

112    a  or 021   . The total efforts, even if constraints 2 and 3 in the 

designer’s problem (16) are disregarded, are not larger than  221125.0   nn . 

Clearly, under the constraints 2 and 3, the total contestants’ efforts cannot be larger 

than this amount. Since 021   , the equilibrium total efforts are smaller than 

 2125.0 nn  . But this contradicts part (b) of Lemma 1, which implies that the 

assumption 12 0    cannot be true. Hence, 21 0   . 

Step 2 - Let us prove that for 1k ,    0,0, 21   is not optimal. Together with the 

conditions established in step 1, 21 0   , this will complete the proof establishing 

that, in equilibrium, 21 0   . Let us then show that the selection of 

      212121 5.0,5.0, nnnn   is superior to the selection of    0,0, 21  , 

that is,  
 

 212
21 25.0

1
nn

k
nnk




 




. This latter inequality is equivalent to 

 210  k , which is always satisfied since 1k .          Q.E.D 

 

Lemma 3: An equi-effort curve LG  is defined by 

     
    22211

22112211














nn

nnnnG L . 

a. If 1k , then at the point representing       212121 5.0,5.0, nnnn  , 

(1) The slope of the equi-effort curve 
1

2




  is equal to 1 . 
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(2) In the margin, an increase in i ,  2,1i , increases total efforts. 

(3) The slope of the balanced-budget curve 
1

2




  is larger than 1 . 

b. For 20   and 1k , in equilibrium 1
22

11 







n
na  (the stake of contestant 

1 (2) is reduced (increased), but the final stake of 1 is still larger than that of 2) 

and therefore 021  . 

Proof of Lemma 3: 

a.(1) and a.(2). Given an equi-effort curve LG .  

 

          
          

    42211

221111
1

112211

2

2211112211
1

11

22
1

2











































nn

nnnnnn

nnnnnn

nG L

 

or, after some simplification, 

     
 3

1

1 1
11







 



 
 a

aaaaaaG L  

In a similar way we get that 

     
 32 1

1111










 
 a

aaaaG L  

The slope of an equi-effort curve is therefore equal to 

     
     1111

11

1

2

1

2















aaaa
aaaaa

G

G

L

L














 

For       212121 5.0,5.0, nnnn  , 1a . For 1a  we get that 




25.0
21







 LL GG  and 1

1

2 



 . This means that in the neighborhood of 

      212121 5.0,5.0, nnnn  , an equi-effort curve is negatively sloped and an 

increase in 1  or in 2  increases the total efforts (an increase in total efforts shifts an 

equi-effort curve upward in the ),( 21   plane).  
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a.(3) From the implicit form of the balanced-budget constraint (15) we get that 

    0222111    nn . Therefore, the slope of the balanced-budget curve is 

equal to    
   









222
1

22

111
1

11

1

2













nn
nn  or   

 



 






 

1
1

22

11
1

1

2

n
na  and, 

therefore, the slope at       212121 5.0,5.0, nnnn   is 

 
 2121

2121

1

2

nnnn
nnnn












 . Since    21212121 nnnnnnnn   , the 

slope of the balanced-budget curve at       212121 5.0,5.0, nnnn   satisfies 

1
1

2 



 .12 

b. Let us show that a move from       212121 5.0,5.0, nnnn  , where 1a , 

that involves a marginal increase in 1 , which preserves the balanced-budget 

constraint, increases total efforts. This will prove that, in equilibrium, 1a .  

 A marginal change in 1a , which is due to a marginal increase in 1  that 

preserves the balanced-budget constraint, still satisfies constraints 2 and 3 in the 

designer’s problem (16), because at 1a  these constraints are satisfied as strict 

inequalities ( 02  ). By Lemma 3 part (a), at the point which represents 

      212121 5.0,5.0, nnnn  , the slope of the balanced-budget curve 

(
1

21





  ) is larger than the slope of the equi-effort curve ( 1
1

2 



 ). Therefore, 

starting from this point, a marginal increase in 1  accompanied by the required 

change in 2 , such that the balanced-budget curve is still satisfied, increases the total 

efforts. Note that if the slope of the balanced budget curve is positive (not positive) an 

increase (a decrease) in 2  is required. We have shown then that 1a . Let us show 

that, in equilibrium, 1)0(  a  is impossible. Suppose to the contrary that 1a . By 

Lemma 2, 21 0   , the balanced-budget constraint, 021  a and the 

assumption 1a , we get that 112    a  or 021   . By Lemma 1 part (a), 

                                                            

12 For 10    , 01
1

2 





 . For 21  , there are three possibilities. (1) If 

1
1






k , then 

01
1

2 





 . (2) If 

1
1






k , then 0

1

2 



 . (3) If 

1
1



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



. But this contradicts the second part of Lemma 

1. We therefore obtain that the assumption 1a  cannot be satisfied. In equilibrium, 

then 1a  and 1a  cannot be satisfied. That is, 1a . By the balanced-budget 

constraint we get that 112    a  and this proves the second part of Proposition 

2, that is, 021  .            Q.E.D 

 

Proposition 3: The total efforts of the contestants corresponding to the optimal 

taxation scheme und er the APA are equa l to th e average prize valuation, 

 215.0 nnGA  . These total efforts are larger than or equal to those obtained under 

any Tullock-type lottery with 20   . 

Proof:  The proof will use the following lemma and its consequences. 

 

Lemma 4: In equilibrium, for 20   , 

a. 21 0   . 

b. 1a  and, therefore, 021   . 

Proof of Lemma 4: 

a. See step 1 in the proof of Lemma 2. 

b. Let us show that, in equilibrium, 1)0(  a  is impossible. Suppose to the contrary 

that 1a . This means that 21 0   . That is, the weak inequalities obtained in the 

first part of the lemma cannot be satisfied as equalities because such equalities mean 

that 021    and so 1
2

1  k
n
na , which contradicts the assumption 1a . By 

the balanced-budget constraint, 021  a , the assumption 1a  and the 

conclusion that 21 0   , we get that 112    a  or 021   . This latter 

inequality means that the equilibrium efforts are smaller than  2125.0 nn  , which 

contradicts part (b) of Lemma 1.             Q.E.D 

 

Recall that by Lemma 1 part (a), for 20   , 
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Suppose now that the designer wishes to maximize the total efforts 

 22110.25   nn . That is, he faces the problem:  

(2.A)     

   

 

0   .6
0   .5

02   .4
011   .3

01   .2

0   .1
..

25.0
,,

 

22

11

21

2211
*
2

*
1

21
































n
n

a
a

a
ts

nnxxMax

 

Let us show that the maximal efforts for this problem are equal to  2150. nn  . Since 

this amount can be attained by a Tullock-type lottery with 2  (see Lemma 1 part 

(b)), inequality (1.A) implies that the maximal efforts under a Tullock-type lottery is 

also  2150. nn  , which will complete the proof of Proposition 3. 

Consider problem (2.A) and let 1k .13 Since, by Lemma 4 part (b), in 

equilibrium, 1a . The fulfillment of the constraint 1a  and constraint 4 imply that 

constraint 2 is also satisfied. We can therefore omit constraint 2 and add the constraint 

01  a  to obtain the following equivalent designer’s problem:  

 (3.A)    
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The Lagrangian function is: 
                                                            

13 For 1k , it can be shown that for every   satisfying 20   , in equilibrium,    0,0, 21  . 
This implies that in this case the designer will choose 2  and that total efforts will be equal to those 
obtained under the APA, that is , nnn  21 . This also implies that for 20   , total efforts do not 
exceed   nnn  5.025.0 21  , which is smaller than n.     
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and, in addition, by Lemma 4 part (a), in equilibrium, 21 0    and 021  . 

The following Kuhn-Tucker conditions must therefore be satisfied: 

021 a  

   0111   a       011   a     01   

  022      02      02   

  013 a     01 a     03   

Hence, 

  0125.0
22

3

22

1

11
22

1

1
1






















 

















nn
aa

n
aL  

  01125.0
22

3
22

11
22

1
2





































n
a

n
a

n
aL  

     0ln1ln25.0 21112211 

 


 aaaaannL  

021
1



 


aL  

Suppose that, in equilibrium, 2 , so 02  . In this case, in equilibrium, 1a  

(see Lemma 3 part (b)) and, therefore, 03  . Given these requirements, let us 

consider the following two possibilities:  

Possibility 1:   011   a . In this case, 01   and we therefore get that: 
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By (4.A), since 21 0   , we get that: 
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and, by (5.A), we get that: 

(7.A)     aann ln25.0 112211    
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Since, in equilibrium, 021  (Lemma 4 part (b)), the LHS expression in (7.A) is 

positive, so the RHS expression must be positive. Since 21 0    and 1a  

(Lemma 4 part (a) and lemma 3 part (b)), 01  , because otherwise the RHS in (7.A) 

equals zero. But this implies that if  aa ln11    is positive, then 01   (since 

01   and 0ln a ), which contradicts inequality (6.A). We have thus obtained that, 

in equilibrium, 2  and   011   a  cannot hold. 

Possibility 2:   011   a  (recall that we have assumed that 2  and, 

therefore, 1a ). Note that this possibility requires that 1  and that 
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By (8.A) and (9.A), we get the taxation scheme  21, : 
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Let us show that, in equilibrium, this taxation scheme is impossible. From (9.A) we 

get that   01 12    and, therefore,   02 212    or    2221 . 

We therefore get that: 

(11.A)        225.025.0 2212211 nnnn  

Notice that the selection of       212121 5.0,5.0, nnnn   and 2  satisfies 

all the constraints in (3.A) and yield total efforts that are equal to  215.0 nn  . Let us 

show that the total efforts in our case are smaller than this amount and this 

contradiction would imply that the assumption that, in equilibrium,   011   a , 

together with 2 , is impossible. Given (11.A), we have to show that 

    21221 5.0225.0 nnnn   . This latter inequality can be written as 

      22 212 nn  and since 21   , we have to prove that, in 

equilibrium, 212 nn  . 
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By substituting 2 , see (10.A), in the last inequality we get that we have to 

prove the following inequality: 
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Finally, let us prove inequality (12.A) by showing that the coefficient of 1n  in the 

LHS of (12.A) is smaller than 1. We have to show then that  
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    or   11

1
  . Since 

21  ,the last inequality is satisfied and, therefore, inequality (12.A) is also 

satisfied. 

The conclusion from the two possibilities is that, in equilibrium, 2 . By 

constraints 2 and 4 in problem (3.A), this implies that 1a . Therefore, by the 

balanced-budget constraint, we get that 021    and, since 1a , we get that, in 

equilibrium,       212121 5.0,5.0, nnnn  . The maximal total efforts are 

therefore equal to  215.0 nn  . That is, for any  , 21  , the maximal efforts are 

smaller than  215.0 nn  .             Q.E.D 
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