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Abstract 
 
An inherent problem with comparing and ranking competing Value at Risk (VaR) and 
Expected shortfall (ES) models is that they measure only a single realization of the underlying 
data generation process. The question is whether there is any significant statistical difference 
in the performance of different models. Is it only a matter of chance that in a particular market 
and in particular time period a certain model performs better than some other? It all comes 
down to a question whether something that we subjectively perceive as different is actually 
statistically different. We introduce a new methodology for ranking and comparing the 
performance of VaR and ES models based on a nonparametric ANOVA test. The relative 
performance of VaR and ES models is analysed using daily returns for sixteen stock market 
indices (eight each from developed and emerging markets) prior to and during the global 
financial crisis. Results show that for a large number of different models there is no 
statistically significant difference in their performance. The top performers are conditional 
extreme value GARCH model, models based on volatility updating and nonparametric 
mirrored historical simulation. ES backtesting results are similar to VaR results with the 
models being even more closely matched. The same models that were the top performers in 
VaR comparison also perform significantly better in ES estimation. 
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1 Introduction 

 The years leading up to the recent financial market turbulence have been characterized 

by exceptionally high growth of the world economy accompanied by moderate inflation. This 

strong performance resulted in unusually high returns in financial markets, especially in 

emerging and Anglo-Saxon countries. Risk premia and volatilities were exceptionally low 

across a very wide spectrum of assets including bonds, stocks, foreign exchange, and 

derivatives in general.  Perception of a low risk environment and strong growth prospects 

were further fuelled by historically low interest rates, booming real-estate prices and 

expanding monetary aggregates. The high level of asset prices kept leverage ratios low, while 

the combination of strong income flows and historically low interest rates did the same with 

debt service ratios. However in 2005 Alan Greenspan (2005) noted: “…history has not dealt 

kindly with the aftermath of protracted periods of low risk premiums.” Indeed, historically 

risk premia and Value at Risk (VaR) measures tend to be at their lowest immediately prior to 

the outbreak of a crisis or a period of exceptionally high market volatility. In 2007 Knight 

(2007) warned: “We might be witnessing the proliferation of… ‘option-like’ payoff patterns 

in the financial system,” whereby investors assumed positions that yielded modest but steady 

income streams in times of prosperity but which could result in large, discontinuous losses in 

times of crisis.  This “pattern” can be attributed to the introduction of new instruments and 

patterns of behaviour that raised the risk of extreme events while giving a false impression of 

a low-risk environment. In hindsight, it is clear that these warnings should have been heeded.  

The non-linear payoffs during worsening market conditions, combined with the assumptions 

of normality and IID behaviour widely used in VaR models, wrecked havoc on financial 

institutions, led to a massive need for government intervention in financial markets and 

created wide-spread doubts about VaR models not only in the eyes of academic community 
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but also among regulators (see CEBS guidelines, 2009).  Institutional users are the only ones 

still defending the use of VaR as the only acceptable risk measure, mostly due to their very 

relaxed treatment of the true level of risk in banking portfolios (for example see ESBG, 

2010).  

Since its introduction VaR as a risk measure has been criticized theoretically, 

especially for the fact that these models do not account for the extent of losses that could be 

suffered beyond the specified threshold.  In the eyes of investors and regulators, these 

extreme losses are precisely what a risk measure should flag. VaR is, however, inherently 

incapable of distinguishing between situations where losses in the tail are only slightly worse 

than the threshold, and those where they are overwhelming.  It provides only a lower bound 

for losses in the tail and thus has a bias toward optimism instead of the conservatism that is 

generally thought to be beneficial in risk management.  

An alternative measure of risk that quantifies losses that might be encountered in the 

tail is the Expected Shortfall (ES). While VaR represents a minimum loss one expects at a 

determined confidence level, ES is the expected value of that loss, provided that the loss is 

equal to or greater than the VaR.  Artzner, et al. (1997, 1999) have shown, using an axiomatic 

approach to define a satisfactory or “coherent” risk measure, that VaR fails a coherency test 

because it does not universally exhibit sub-additivity, whereby the risk of a combined 

portfolio cannot be greater than the sum of the risks associated with any possible division of 

that portfolio. VaR can only be made sub-additive if the implausible assumption that returns 

are elliptically distributed is imposed.  In this case, however, VaR and ES are equivalent and 

give exactly the same information (see Embrechts, et al., 1999). Even though VaR measures 

have substantial theoretical flaws, they have been imposed on financial institutions as a 

regulatory obligation under Basel I, II and III rules.  ES, on the other hand, although a 

coherent measure of risk, has not been approved by regulators to calculate capital 
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requirements.  This failure is actually quite surprising given that VaR and ES are inherently 

connected in the sense that ES figures can be easily calculated from the VaR surface in the 

tail. Perhaps because of this lack of approval, ES has not been as extensively studied as VaR 

in empirical research. Estimation techniques that have been developed for VaR measures in 

the past decades, however, can easily be employed to yield superior ES forecasts. This means 

that advances in VaR estimation need not be lost with the adoption of coherent risk measures 

into regulatory framework. The inherent connection between VaR and ES is extremely 

helpful for financial institutions, since all the building blocks required for VaR estimation 

(databases, risk drivers, calculation routines, etc.) are also needed for estimation of ES. Thus, 

if an institution already has the capacity to calculate VaR, it needs only small adjustments to 

produce estimates of a coherent risk measure, such as ES.  Such a measure should be valuable 

for internal purposes even before it is required by regulators.  

As opposed to the purely VaR-oriented literature, the empirical literature that 

compares VaR and ES has been limited in both emerging and developed markets. Gencay, 

Selcuk, and Ulugulyagci (2003) and Gencay and Selcuk (2004) analyzed the performance of 

unconditional Extreme Value Theory (EVT) models against variance-covariance and 

historical simulation models in nine emerging countries.  They found that an unconditional 

EVT model outperformed classical VaR models at extreme confidence levels. Maghyereh 

and Al-Zoubi (2006) investigated the relative performance of popular VaR models against an 

unconditional EVT methodology for seven Middle Eastern and North African countries. 

Again EVT models outperformed classical variance-covariance and historical simulation 

models in most cases. Similar results were reported by Mendes (2000) for Latin American 

countries. Cotter (2004 and 2007) tested a parametric EVT and Gaussian estimates of VaR 

and ES in six Asian markets during the Asian crisis and five equity indexes from European 

markets.  He found that EVT estimates are superior under both VaR and ES risk measures 
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looking at both the Kupiec and Christoffersen criterions, although it was hard to reach any 

conclusion regarding the significance of these differences. Nyströmand and Skoglund (2002) 

tested the performance of VaR models on a wide range of assets in developed countries and 

found that for quantiles higher than the 98 percentile the use of unconditional EVT models 

made a substantial predictive contribution and that the generalized Pareto distribution more 

accurately modelled the empirically observed tails than the normal distribution. In contrast to 

these findings, however, Silva and Mendes (2003) found that the performance of an 

unconditional EVT model is not satisfactory in meeting Basel II criteria in Asian stock 

markets since it is overly conservative and thus very expensive for banks. 

To remedy the problems of the unconditional estimation that is traditional in EVT, 

McNeil and Frey (2000) developed a conditional EVT approach to both VaR and ES 

estimation and showed empirically that the traditional parametric VaR models with normal 

density fail to accurately estimate losses during financial crises. They, along with many 

others (see Acerbi et al. 2001, Yamai and Yoshiba, 2002 and Inui and Kijima, 2005), 

advocated the use of ES as an alternative risk measure with good theoretical properties. 

Overall, the literature strongly suggests that although ES provides superior risk measures to 

VaR, these have not been as exhaustively studied as VaR measures.  

Apart from these well known “technical” problems there is also a usually overlooked 

systemic problem with risk model comparison and ranking.  When evaluating and backtesting 

VaR/ES figures we are looking at only a single realization of the underlying data generation 

process. Consequently our judgement on the performance of particular risk models is based 

only on the performance of the model with regards to a single realization. The VaR model 

comparison literature is vast but it rarely addresses the question of whether there is truly any 

significant statistical difference in the performance of different models. Is it only a game of 

chance that in a particular market and in particular time period a certain model performs 
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better than some other, or does a certain model consistently and statistically significantly 

outperform some another model?  

In this paper we first develop a new methodology for VaR and ES model comparison 

which allows us to rank competing VaR/ES models.  Next, we provide an empirical 

investigation and tail risk assessment of a wide array of VaR and ES models in both 

developed and emerging countries prior to and during the global financial crisis.   

The following VaR models are analyzed in the paper:1  

(a) Normal simple moving average (VCV) method,  

(b) RiskMetrics system,  

(c) Historical simulation,  

(d) Mirrored historical simulation, 

(e) Kernel historical approach,  

(f) BRW (time weighted) simulation with decay factors of 0.97 and 0.99,  

(g) GARCH model, 

(h) Filtered Historical simulation (FHS) method, 

(i) Unconditional EVT approach using Generalized Pareto distribution (GPD) and 

(j) Conditional EVT approach. 

 

The ES models analyzed in the paper are: 

(a) VCV with GPD, 

(b) RiskMetrics with GPD, 

(c) GARCH with GPD, 

(d) Bootstrapped historical simulation,  

                                                 

1 For a good overview of a wide range of VaR and ES models see, for example, Dowd (2005). 
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(e) Bootstrapped “mirrored” historical simulation,  

(f) Bootstrapped kernel historical approach,  

(g) Bootstrapped BRW simulation, 

(h) FHS-ES approach, 

(i) Conditional EVT approach and 

(j) Unconditional EVT approach. 

 

2 Value at Risk and Expected Shortfall 

VaR is usually defined as: 

“the maximum potential loss that a portfolio can suffer within a fixed confidence level (cl) 

during a holding period.”  

Let ( )ZtX t ∈,  be a strictly stationary time series representing daily observations of 

the negative log return for a financial asset. The dynamics of X are given by: 

tttt ZX σμ +=         (1) 

where the innovations Z are IID with zero mean, unit variance and marginal distribution 

function Fz(z).  It is typical to assume that μt and σt are measurable with respect to ψt-1 (the 

information set up to time t-1) and that Fx(x) denotes the marginal distribution of (Xt).  For a 

horizon hp, )(|...1
xF

thptt XX ψ++ ++  denotes the predictive distribution of the return over the next hp 

days, given the information set up to and including day t.  From a tail event perspective, for a 

given confidence level cl (0 < cl < 1), the unconditional VaRcl(X) is a quantile of the marginal 

distribution denoted by: 

{ }clxFRxXVaR Xcl ≥∈= )(:inf)(       (2) 
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while the conditional VaRcl(X) is a quantile of the predictive distribution for the return over 

the next hp days denoted by: 

{ }clxFRxXVaR
thptt XX

t
hpcl ≥∈=

++ ++ )(:inf)( |..., 1 ψ .    (3) 

This definition can sometimes be misleading because VaR does not actually represent 

maximum losses since, as we have seen, a portfolio can lose much more than suggested by 

VaR depending on the shape of the tail of the distribution. A more insightful definition of 

VaR, based on equation (2), is: 

“VaR is the minimum potential loss that a portfolio can suffer in the 100(1-cl)% worst cases 

during a holding period,”  

or 

“VaR is the maximum potential loss that a portfolio can suffer in the 100cl% best cases 

during a holding period.” 

VaR can be thought of as “the best possible outcome among a set of the worst case 

scenarios” and, therefore, systematically underestimates the potential losses associated with 

any specific confidence level. Both VaR and ES contain implicit assumptions regarding 

agents’ risk aversion.  If a user has a ‘well-behaved’ risk-aversion function, then the weights 

will rise smoothly, and the more risk-averse the user, the more rapidly the weights will rise.  

Given that VaR explicitly weights all losses greater than that at the confidence level as zero it 

actually assumes that agents are risk-loving (i.e., have negative risk-aversion) in the tail 

region.  ES, in contrast, is characterized by all losses in the tail region (i.e., the 100(1-cl)% 

largest losses) having an identical weight. This implies that the investor is risk-neutral in the 

tail region.  Both assumptions seem highly unlikely in real life.  

Following equation (2), the unconditional ES is defined as: 

[ ] ∫ ∞−

−−=>=
VaR

clcl dxxxfclXVaRXXEXES )()(|)( 1    (4) 
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while the conditional ES can be expressed as: 

⎥
⎦

⎤
⎢
⎣

⎡
>= ∑∑

=
+

=
+ t

t
hpcl

hp

j
jt

hp

j
jt

t
hpcl XVaRXXEXES ψ),(|)( ,

11
,    (5) 

ES is very appealing as a risk measure because it sums all values of x, weighted by 

f(x), from minus infinity to VaR threshold, thus taking into account the magnitude of 

potential losses beyond VaR threshold. ES has been referred to in the literature under many 

names including Expected tail loss (ETL), Conditional VaR (CVaR), tail VaR, tail 

conditional expectation, and mean excess loss. ES has been used by insurance practitioners, 

especially casualty insurers, for a long time as conditional average claim size. For continuous 

loss distributions, the ES at a given confidence level is the expected loss given that the loss is 

greater or equal to the VaR at that level. For distributions with possible discontinuities it has 

a more subtle definition and can differ depending on whether the loss is strictly greater to the 

VaR (CVaR+) or is greater than or equal to the VaR (CVaR-). CVaR+ is also known as “mean 

shortfall”, although the seemingly identical term “expected shortfall” has been interpreted by 

Acerbi, et al. (2001) as a synonym for CVaR itself. CVaR- in also known as “tail VaR” 

(Artzner, et al. 1999).  

Although, as discussed above, ES (CVaR) is a coherent measure of risk, it has its own 

problems.  Yamai and Yoshiba (2002) find that even ES, although better at forecasting the 

true level of risk, it is not reliable during periods of market turmoil and can also give overly 

optimistic results. Kondor and Varga-Haszonits (2008) find that whenever there is an asset in 

a portfolio that dominates, with regards to risk and reward, others in a given sample, the 

portfolio’s return cannot be maximized under any coherent measure on that sample, including 

ES.  In periods of high volatility and/or extreme price spikes, classical, widely used VaR 

models prove to be overly liberal and optimistic.  
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One possible avenue for improving risk models’ estimates lies in extreme value 

theory (EVT), which specifically models the extreme price changes (i.e., the tails of the 

return distribution). Focusing on extreme returns rather than the entire distribution seems 

natural since, by definition, risk management is concerned with measuring the economic 

impact of rare events. 

 EVT provides a framework for analyzing extreme (rare) events using historical data. 

By definition, extreme events are rare, meaning that their estimates are often required for 

levels of a process that are greater that those in the available data. EVT is based on the 

Extreme Value Theorem, a relative of the widely used Central Limit Theorem.  Suppose we 

have a set of observed returns drawn from an unknown distribution.  The EVT says that as 

the sample size increases, in the limit, the distribution of extreme returns converges to: 

⎪
⎩

⎪
⎨

⎧

=−

≠⎟
⎠
⎞

⎜
⎝
⎛ −

+−=
−−

−

01

011)(
/)(

1

,,

ξ

ξ
σ

μξ
σμ

ξ

μσξ

ife

ifx
xG

x

 
[ ]
[ ]⎩

⎨
⎧

<−
≥∞

∈
0/,
0,

ξξσμμ
ξμ

if
if

x  (6) 

where, μ is the distribution mean, σ is the dispersion of the distribution and ξ indicates the 

heaviness of the tails.   

When μ = 0 and σ = 1, the representation is known as the standard Generalized Pareto 

distribution (GPD). The GPD embeds a number of other distributions. For the analysis of 

financial time series the most relevant is the heavy-tailed Fréchet distribution in which case 

the tail index, ξ > 0. 

It is important to be aware of the limitations implied by the EVT paradigm. EVT 

models are developed using asymptotic arguments, which can create difficulties when applied 

to finite samples. In order to estimate the tails of the loss distribution we use the result from 

asymptotic theory that for a sufficiently high threshold u, Fu(y) ≈ Gξ,β(u)(y). An 

approximation of F(x), for X>u, can be obtained as: 
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[ ] )()()(1)( ,, uFuxGuFxF u +−−= σξ      (7) 

An estimate of F(u) can also be obtained non-parametrically by means of the 

empirical cdf: 

nknuF /)()(ˆ −=         (8) 

where k represents the number of observations exceeding the threshold u and n the total 

number of observations. By substituting equation (7) into equation (8), the following estimate 

for F(x) is obtained: 

ξ

σ
ξ

1

ˆ
ˆ11)(ˆ
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⎛ −
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⎛ −

+−=
uxxG u    (9) 

where ξ̂  and σ̂ are the maximum likelihood estimates of ξ and σ. This equation can be 

inverted to obtain a quantile of the underlying distribution, which is actually the VaR. For cl 

≥ F(u) VaR is calculated as: 

⎟
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Assuming that ξ < 1, ES is calculated as: 

ξ
ξσ

ξ −
−

+
−

=
−

= ∫ 11
)(

1
1 1 uVaR

dxFq
cl

ES cl

cl xcl .     (11) 

The estimation of return distributions of financial time series using the EVT has been 

studied by McNeil (1997); Embrechts, et. al. (1999), Danielsson and de Vries (1997); and 

Danielsson, Hartmann and de Vries (1998), among others. In all these papers, however, the 

focus has been on estimating an unconditional (stationary) distribution of asset returns. None 

of the unconditional EVT-based methods for quantile estimation yields estimates that are 

easily updated to reflect the recent volatility. Given the conditional heteroskedasticity of most 
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financial data, McNeil and Frey (2000) developed a conditional EVT approach combining 

GARCH volatility forecasting with EVT tail estimation, which in empirical testing provides 

very good conditional and unconditional risk coverage. 

EVT models are also plagued by problems in the estimation of tail index (see, for 

example, Diebold, Schuermann, and Stroughair (2000)). Although a number of methods have 

been proposed for estimation of tail indices, none provide robust results when analyzed over 

changing sample periods or with the inclusion or omission of extreme values (outliers). 

Parametric ES estimates, even those based on the GPD distribution, are highly sensitive to 

functional form misspecification. Simpler parametric models cannot adequately adapt to 

sudden changes in volatility levels.  Nonparametric ES models such as calculating the ES 

from historical data regarding tail losses are, by definition, unresponsive to shifts in market 

regimes and the occurrence of extreme events.  

  

3 Methodology for comparing and ranking VaR and ES 

models 

In the risk literature there are a number of methods that test the hypothesis whether a 

certain model is better than some other model, such as Diebold and Mariano (1995) equal 

predictive ability (EPA), White (2000) reality check (RC) and Hansen (2005) superior 

predictive ability (SPA). The question of interest in all of these tests is whether an alternative 

forecast is better than the benchmark forecast, or equivalently, whether the best alternative 

forecasting model is better than the benchmark. This question can be addressed by testing the 

null hypothesis that the benchmark is not inferior to any alternative forecast. For a more 

complete discussion on this issue, see Sullivan, Timmermann, and White (2003) and 

references therein. Such tests are useful for a forecaster who wants to explore whether a 
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better forecasting model than the model currently being used is available. After a search over 

several alternative models, the relevant question is whether the observed excess performance 

by an alternative model is significant or not. Tests for equal predictive ability (EPA), in a 

general setting, were proposed by Diebold and Mariano (1995) and extended by West (1996), 

to accommodate the situation where forecasts involve estimated parameters. A test for 

comparing multiple nested models was given by Harvey and Newbold (2000) and Mc-

Cracken (2000) derived results for the case with estimated parameters and non-differentiable 

loss functions, such as the mean absolute deviation loss function. West and McCracken 

(1998) developed regression-based tests and other extensions were made by Harvey, 

Leybourne, and Newbold (1998), West (2001), and Clark and McCracken (2001) who 

considered tests for forecast encompassing.  

There is an inherent problem with comparing and ranking competing VaR and ES 

models since we are usually measuring only a single realization of the underlying data 

generation process. The question is whether there is any significant statistical difference in 

the performance of different models. Although at first it might seam that the difference 

between models is obvious, we are often faced with situations where one model is preferred 

for one market or security but inferior to another model for a different sample or time period.  

Is it only a matter of chance that in a particular market and in particular time period a certain 

model performs better than some other? It all comes down to a question whether something 

that we subjectively perceive as different is actually statistically different. We propose a 

simple nonparametric approach to making statistical comparisons between competing risk 

models that allows us to rank different VaR and ES models depending on their performance 

under the metric of our choice.  
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  The proposed ranking procedure for competing VaR/ES models is performed according 

to Lopez score for VaR models and modified Blanco-Ihle error statistic for ES models. The 

reason for using different measurement metrics stems from the simple fact that metrics 

intended to measure VaR performance need to measure the frequency and distance of VaR 

exceedances while ES metrics measure the closeness of fit between realized and forecasted 

excess losses.  The proposed ranking procedure consists of: 

1) Fitting an ARMA-GARCH model to the time series in order to obtain IID observations. 

2) Estimating the empirical CDF of each time series (applying it to the non-tail regions of 

distribution) with a Gaussian kernel. This smoothes the CDF estimates, eliminating the 

staircase pattern of unsmoothed sample CDFs.  

3) Finding the upper and lower thresholds such that x% of the residuals are reserved for each 

tail and fitting the amount by which those extreme residuals in each tail fall beyond the 

associated threshold to a parametric GPD. 

4) Generating N simulated paths for the residuals from the obtained semi-parametric 

distribution (each path is T observations long) 

5) Adding the ARMA-GARCH model to the residuals to obtain N x T simulated time series 

returns 

6) Calculating VaR/ES for each of the N x T simulated returns for each VaR/ES model 

7) Calculating N Lopez/modified Blanco-Ihle scores for each of the N VaR/ES - simulated 

return pairs, for each VaR/ES model 

8)  Comparing if the mean values of the Lopez/modified Blanco-Ihle scores for different 

VaR/ES models are significantly different from each other. For this purpose one-way 

ANOVA approach is employed. The purpose of one-way ANOVA is to find out whether 

data from several groups have a common mean. The p-value returned by ANOVA 

depends on assumptions about the random disturbances in the model equation. For the p-
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value to be correct, these disturbances need to be independent, normally distributed, and 

have constant variance. 

9) Checking for autoregression, heteroskedasticity and normality in the Lopez/modified 

Blanco-Ihle scores. If the data is not normally distributed it needs to be transformed to 

uniform variates by empirical CDF and then to normal via inverse CDF after which one-

way ANOVA can be calculated. Critical values used for the multiple comparisons are 

based on Tukey-Kramer honestly significant difference criterion since it is optimal for 

balanced one-way ANOVA. An alternative that we use in this paper is the non-parametric 

Kruskal-Wallis test (a nonparametric version of one-way ANOVA) which makes only 

mild assumptions about the data and is appropriate when the distribution of the data is 

non-normal. The assumption behind this test is that the measurements come from a 

continuous, but not necessarily a normal, distribution. The test is based on an analysis of 

variance using the ranks of the data values, not the data values themselves. 

An obvious limitation of this approach is the assumption that the description of the central 

mass and the tails of the process distribution are adequate i.e. that the underlying process is 

well described by the visible realization. This is not an unusual or strong assumption and is 

made in all the models that are used in practice.  We do not accept, however, that the single 

visible realization of the underlying process is the “ultimate truth” but, by simulating the data, 

allow for stochastic randomness. Even so, when thinking about the nature of forecasting one 

is always faced with inherent problem of forecasting the future by using only visible past 

data. 
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4 Data and backtesting methodology 

We analyze the performance of the various VaR and ES models summarized in Table 

1 using the log of daily returns of eight equity indices from developed markets (US - Dow 

Jones Industrial (DJIN), Nasdaq, S&P 500, Russell 2000 (RTY); Japan – Nikkei; Germany – 

DAX; France – CAC; and UK - FTSE) and eight emerging markets (Brazil – Bovespa; 

Russia - CRTX; India – Sensex; South Africa – Jalsh; Malaysia – KLCI; Mexico – Mexbol; 

Hong Kong - Heng Seng; and Taiwan - Taipei).  Returns were collected from the Bloomberg 

website for the period January 1, 2000 through July 1, 2010. In order to differentiate between 

“normal” and stressed market conditions we choose two backtesting periods consisting of 750 

observations each. The period between June/July 2004 and June/July 2007 forms the pre-

crisis backtesting period, and the period between June/July 2007 and July 2010 forms the 

crisis backtesting period. VaR and ES figures were calculated for a one-day ahead horizon 

and 99 percent confidence level. Based using the proposed ranking procedure the VaR 

models are tested using: Kupiec test, Christoffersen Unconditional Coverage (UC), 

Conditional Coverage (CC) and Independence (IND) test, and Lopez and Blanco-Ihle tests as 

well as root mean squared error (RMSE) and mean average percentage error (MAPE) 

statistics. The Christoffersen UC test is problematic because it gives a distorted image of VaR 

models´ performance. Since it is chi-square distributed with one degree of freedom, 

deviations from the test’s expected value that occur on the conservative side (i.e. with number 

of exceedances lower than their expected value) are penalized more severely.  This 

characteristic is not compatible with risk-averse or risk-neutral assumptions. Thus, from the 

regulatory standpoint, the Kupiec binomial test is preferable to the Christoffersen UC test 

because it is more desirable to have positive than negative deviations.  The same logic 

extends to Christoffersen conditional coverage (CC) test, which should also be treated 
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sceptically since it automatically disadvantages VaR models that err on the conservative side. 

Blanco and Ihle (1998) suggested evaluating forecasts according to a loss function equal to: 
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This loss function allows for the sizes of tail losses to influence the rankings of VaR 

models. Models that generate higher tail losses would generate higher values under this size-

adjusted loss function than models that generate lower tail losses, ceteris paribus. The 

problem with the Blanco-Ihle loss function is that it compares the calculated VaR with tail 

losses, which does not make sense since VaR forecasts only the least possible tail losses. 

Since VaR does not contain any information about the size of the expected tail loss, the 

Blanco-Ihle loss function only measures the discrepancy between the lowest possible tail loss 

and actual tail losses. The Blanco-Ihle loss function can easily be modified to compare ES 

with the actual value of the tail loss, a more meaningful comparison.  The modified function 

equals:  

⎪⎩

⎪
⎨
⎧

≤

>
−

=

tt

tt
t

tt

t

VaRLif

VaRLif
ES

ESL
C

0
        (13) 

In order to select superior ES models, each model will be graded by four symmetrical error 

statistics: the mean absolute error (MAE), two versions of the root mean squared error 

(RMSE), and the proposed ES modification of the Blanco-Ihle loss function. Among these 

error statistics, ES modification of the Blanco-Ihle loss function is probably the most 

informative, since it compares the tail loss to ES while taking into account the relative size of 

the tail loss compared to the difference between the two. In our two-stage backtesting 

procedure, the best performing VaR/ES model must first satisfy both the Kupiec and 



18 

Christoffersen independence (IND) tests and then provide superior tail loss forecasts, in the 

sense of minimizing the error statistics. 

 

5 Backtesting results and findings 

 To secure the same out-of-the-sample backtesting period for all of the examined stock 

indices, the out-of-the-sample data sets are formed by removing the 1.500 most recent 

observations from each stock index and forming two sub-periods of 750 days. The first sub-

period from June/July 2004 to June/July 2007 represents the pre-crisis period. The second 

sub-period from June/July 2007 to July 2010 represents the crisis period. The remaining 

observations are used to calculate the VaR and ES starting values and calibrate volatility. The 

length of the tail-loss data set used for backtesting depends on the number of errors generated 

by each VaR model. The quality of ES forecasts depends on both the ES estimation model 

and the quality of the VaR forecast. This dependence can be easily seen from the simple fact 

that a loss that might fall in the extreme range under one VaR model and, as such, be 

included in the ES forecast might not exceed another, more conservative, VaR measure.  

 Data from all the analyzed stock indices shows leptokurtosis, asymmetry and 

significant heteroskedasticity, with autoregression being especially pronounced in the 

emerging markets. Based on the Akaike and Bayesian information criterion asymmetric 

EGARCH representation of volatility with GED and Student’s t distribution was used to 

capture the dynamics of data-generating processes. The asymmetry parameter in the 

EGARCH model was significantly different from zero for most of the indexes.2 The 

asymmetry parameter, which controls the asymmetric impact of positive and negative shocks 

                                                 

2 For the BOVESPA, CRTX, JALSH, KLCI and HENG SENG indices the asymmetric impact is not 
significantly different from zero.  Results are available from the authors on request. 
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on conditional variance, indicates significantly higher conditional volatility after negative 

shocks.  

Estimation of the tail index parameter is crucial in applying EVT models, which are directly 

linked to threshold value u which defines the level above which returns are considered 

extreme. The threshold value for each index was determined by comparing the Hill estimator 

with the mean excess plot and the quantile-quantile (QQ) plot (Danielsson and de Vries, 

1997). The same procedure of estimating the threshold value was also performed on IID 

innovations required for the implementation of the McNeil and Frey (2000) EVT-GARCH 

model. Maximum likelihood estimates (MLE) of the shape (tail index) and scale (sigma) 

parameters for the GPD, during the pre-crisis and crisis period, for the analyzed stock 

indices’ threshold losses (losses surpassing the threshold value set by Hill estimator), and 

threshold innovations are presented in Table 2.  The mean excess and QQ plots, Hill 

estimator and MLE all show that tail indexes for both developed and emerging countries are 

greater than zero, implying empirically fat tails and that the GPD belongs to the Fréchet and 

Gumbel domains of attraction. This clearly shows that the normal distribution is 

inappropriate for modelling tail returns.  In the pre-crisis period the tail indexes vary between 

-0.195 (FTSE) and 0.129 (NIKKEI) for the developed markets and between -0.074 

(MEXBOL) and 0.173 (HENG SENG) for the emerging markets. During the crisis most of 

the tail indexes changed substantially and ranged between -0.042 (NASDAQ) and 0.18 

(S&P500) for the developed markets and between -0.099 (MEXBOL) and 0.251 (JALSH) for 

the emerging markets. The greatest changes in the size of the tail index between the two 

periods were recorded for FTSE (0.253) and CRTX (0.214). The distribution of tail losses for 

the stock indices in South Africa, Hong Kong and Russia shows that they may not even have 
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a finite fourth moment, since the estimated tail index is around 0.253. The tails of the 

innovations from the analysed time series are similar to the values of returns.  Since we are 

measuring the tail index of the extreme left (negative) tail of the distribution of returns, the 

impact of severe crashes in the stock markets is directly reflected in the increased size of the 

extreme left tail. The visible change in the fatness of the left tail (high tail index) in the 

majority of markets is a clear warning sign that the dynamics of the markets have shifted 

towards a more extreme end of the spectrum. 

 As is visible from table 3a, during the pre crisis period, in both developed and 

emerging markets, satisfactory performance with regards to Basel and independence criteria 

is recorded for nonparametric models (HS, MHS and KHS) as well as FHS and extreme value 

based approaches. Very weak performance is recoded for BRW, VCV, RiskMetrics and Hull-

White models. As we shall see, the performance of the tested VaR models is significantly 

different during the crisis period. In developing markets good performance is recorded for the 

Hull-White, GPD and EVT-GARCH models.  

 For the crisis period, for which the VaR models performance with regards to Basel 

and independence criteria is presented in table 3b, we make a distinction between the 

standard EVT GARCH model and EVT GARCH (L) model, where L stands for a longer time 

series. We introduce two EVT GARCH models and this notation because we find an 

interesting pattern of behaviour – if we use the standard rolling window for GARCH 

parameters (calculated just in the crisis period) and from that calculate standardized 

innovations, EVT GARCH forecasts are very poor. This is due to the very thin tail indicated 

by fitting the GPD. If, instead, we use a longer period such as 6 years, results are much better 

since the GPD tail is closer to what we might expect. At first sight this finding indicates 

                                                 

3 For ξ>0, E[Xk] is infinite for k >1/ξ. The number of finite moments is ascertained by the value of ξ: if 0.25 ≤ ξ 
≤ 0.5 the second and higher moments are infinite; if ξ ≤ 0.25, the fourth and higher moments are infinite. 
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counter-intuitive behaviour (if we are using newer information we should have better 

volatility forecasts ergo better risk measures).  In reality, if we are using a very accurate 

volatility forecast reflecting the current environment there is a lack of outliers and 

standardized innovations are bunched around zero with their tails exponentially decreasing. 

When calculating GPD parameters from such a innovation series it is logical to obtain low, or 

even negative, estimates of the tail parameter. The paradox lies in the fact that if the volatility 

estimate is fairly good but not perfect there will be outliers in the standardized innovations 

series which will lead to higher a GPD tail index and thus actually increase the accuracy of 

EVT GARCH VaR forecasts. In emerging markets only the EVT GARCH (L) and MHS 250 

models performed satisfactorily, again with a clear distinction between standard and 

prolonged EVT GARCH models. 

Overall we find good performance across both developed and emerging markets for 

extreme value based approaches. Mirrored historical simulation, a simple extension of 

historical simulation, yielded surprisingly good risk coverage and satisfied the backtesting 

criteria for a great majority of stock indices tested. Backtest results also show that the kernel 

historical approach VaR estimator, although inferior to mirrored historical simulation, 

delivers significant variance and mean square error reductions when compared to plain 

historical simulation. This difference is similar to that found by Song and Tang (2005). 

It is also useful to analyze the averages of VaR forecasts for the models that satisfy 

the Basel II/III-required Kupiec test as well as the Christoffersen independence criterion. 

Rankings according to the minimum average VaR value (provided the Basel II/III criteria and 

Christoffersen independence test at a 5 percent significance level are satisfied) are presented 

in Table 4. For all of the indices in both developed and emerging markets, GPD and HW 

models provide the highest VaR estimates, with HW providing very high values during the 

crisis period. This characteristic makes them the most conservative but also the most 
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expensive in terms of capital requirements for financial institutions. During the precrisis 

period for the developed markets, the GARCH model yielded the lowest average VaR four 

out of eight times (Nikkei, DAX, CAC and FTSE index) followed by BRW simulation with a 

decay factor of 0.99, which was the best performer in two cases (DJIN and Nasdaq index). 

For emerging markets, the performance of GARCH model is even better, yielding the lowest 

average VaR for five out of eight indices (BOVE, Mexbol, KLCI, SENSEX and Heng Seng 

index). During the crisis period for the developed countries EVT GARCH (L) was the top 

performer (S&P 500, DJI, NASDAQ and FTSE index), followed by FHS model (RTY, 

Nikkei, DAX). For emerging markets, both GARCH and FHS models were the best 

performers for three indexes. In summary, among VaR models that satisfy the Basel criteria, 

the FHS and GARCH models provided the lowest average VaR in most cases, making them 

the models with the lowest opportunity cost of holding idle capital. Results of the Lopez size 

adjusted test, presented in tables 5a and 5b, are very similar to the minimal average VaR 

values, especially in the crisis period with the EVT-GARCH model having the best Lopez 

score in the developed markets and FHS model having the best score in the emerging 

markets. 

According to the conventional investment logic one might expect that the 

performance of VaR models is better adapted to developed and liquid markets than emerging 

ones. Our backtesting results during the crisis period, however, show quite the opposite.  

Nonparametric models (especially mirrored HS models), as well as parametric GARCH and 

FHS models, perform far better in emerging markets than developed ones. These results 

confirm that regulators and investors should change their traditional perception that since 

emerging markets are more volatile and less developed they need more robust risk measures, 

while VaR models are adequate for “tranquil” and “well behaved” developed markets. One 

explanation for such nonconformist VaR performance is based on the simple fact that since 
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the emerging markets are usually more volatile and experience more frequent market crashes, 

parameters of VaR models are more attuned to such events. Thus, if the observation windows 

used for nonparametric VaR models are long enough, they will contain a significant number 

of past crashes and parameters of the classical parametric and EVT VaR models will be more 

in line with the volatile and crash prone environment. On the other hand, developed markets, 

having experienced positive and steady growth for almost a decade, mislead the VaR models 

by lacking high volatility and crashes in the information set. In such circumstances, 

regulators and investors should be even more worried about the reality and usefulness of 

traditional VaR risk measures when applied to portfolios containing mostly stocks from 

developed markets as opposed to emerging ones. 

To backtest the various ES models, we ranked the models by their ability to yield 

minimal loss functions, i.e. the minimum departure from the reported tail loss values. 

Rankings of the ES models according to modified Blanco-Ihle error statistics at the 99 

percent confidence level are presented in Table 6.  According to the modified Blanco-Ihle 

statistic, in the pre-crisis period, both in the developed and emerging markets, the 

bootstrapped MHS model was the best performing ES model. In the developed markets the 

basic bootstrap historical simulation model followed closely. In emerging markets, 

bootstrapped FHS and GPD model were ranked as second and third performers. The worst 

performers across all the markets were the VCV, RiskMetrics and GARCH models with GPD 

distribution. During the crisis period, both in the developed and emerging markets 

bootstrapped FHS, MHS and EVT GARCH were the best performing ES models. The worst 

performing models were again the VCV, RiskMetrics and GARCH models with GPD 

distribution.  

In summary, backtesting results show that bootstrapped mirrored historical simulation 

is the superior ES measure. We find no benefit to using a kernel approach instead of 
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bootstrapped historical simulation. This finding is similar to that reported in Song (2008) for 

plain historical simulation. The underlying reason that there is no benefit from kernel 

smoothing of ES estimates lies in the fact that the unconditional ES is a mean parameter, 

which can be estimated accurately by simple averaging and therefore does not call for 

additional data smoothing. It is also interesting to note that, although historical simulation 

models are clearly inferior to EVT models in VaR estimation, in ES estimation bootstrapping 

historical exceedances over VaR performs better than theoretically well-founded EVT 

models. 

Going beyond standard VaR/ES performance reporting, we apply the methodology 

presented in section 3 to test whether there is any statistically significant difference in the 

performance of the various VaR and ES models. The data is simulated based on the 

distribution of returns in the crisis period. For each index, 2,000 simulations were performed 

with length of each simulated index being 1.000 data points. Since we are using Lopez size 

adjusted score (modified Blanco-Ihle) metrics for VaR (ES) model comparison, the closer the 

score of an individual model is to zero, the better the performance. After obtaining  2,000 

Lopez size adjusted (modified Blanco-Ihle) scores for each VaR (ES) model and for each of 

sixteen index data generating processes we apply a non-parametric Kruskal-Wallis test to 

determine the existence of statistically significant differences between competing VaR (ES) 

models. Results are reported in Table 7. If the simulated mean value of the VaR(ES) model 

lies outside of the 95% confidence interval of all the other tested models that model is ranked 

according to its relative performance. If a model is not significantly different from all the 

other models it shares the same ranking as the models not significantly different from it. 

Analysing the VaR model performance on simulated data, presented in table 7a, for a large 

number of different models there is no statistical difference in their performance. When 

looking at overall performance in the developed markets the best performing VaR model that 
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is statistically different from other tested models is the conditional EVT GARCH model, 

followed by the unconditional GPD model. Even in the summary results across eight 

developed markets there is no statistical difference between the FHS and BRW (λ=0.99) 

models. In the emerging markets overall the best model is MHS 250, followed by EVT 

GARCH model. Similarly to the developed markets there is again an overlapping between the 

FHS and MHS 500 models. The statistically worst performing VaR models across both 

markets are the simplest models, the Normal VCV, plain historical simulation and 

RiskMetrics models. Overall, the statistically significant top performers are conditional EVT 

GARCH, models based on volatility updating (HW and FHS) and nonparametric mirrored 

historical simulation. Since our metric of choice is the size adjusted Lopez score, these 

models provide the closest fit to the actual level of risk encountered in the analysed markets.   

ES backtesting results are similar to VaR results with the models being even more 

closely matched. A noticeable difference from the VaR results is that the mirrored historical 

simulation model is similar in rank or even superior to the conditional EVT GARCH model. 

In the developed markets the best ES models were MHS 250 and FHS followed by 

conditional and unconditional extreme value based models. In the emerging markets EVT 

GARCH is the best performing model followed by both MHS models and FHS. Again the 

same models that were the top performers in the VaR comparison perform significantly better 

then other tested models. We find no benefit to using a kernel approach instead of 

bootstrapped historical simulation.  It is interesting to note that, although historical simulation 

models are clearly inferior to EVT models in VaR estimation, in ES estimation bootstrapping 

historical exceedances over VaR often perform better than theoretically better-founded EVT 

models.  
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6 Conclusion  

Our findings show that the mainstream opinion that VaR models are better adapted to 

developed and liquid markets as opposed to the emerging ones is ill founded, especially 

during a crisis period. Regulators, as well as investors, should change their misperception that 

since, emerging markets are more volatile and less developed, only they need more robust 

risk measures and using VaR models is adequate for “tranquil” and “well behaved” 

developed markets. A protracted period of prosperity and tranquillity is precisely why VaR 

models underperform especially severely during the crisis in the developed markets. Such 

circumstances mislead VaR models in the developed markets since, unlike the emerging 

markets, they lack sever volatility and crashes in the information set used in parameter 

estimation. In such circumstances regulators should be even more wary about the usefulness 

of traditional VaR risk measures when applied to portfolios containing mostly stocks from 

developed markets. As our results warn, greater attention must be given to realistically 

modelling the tails of the distribution and choosing the most realistic approach to VaR and 

ES modelling even if it means lower investment profits. Although the industry is opposing 

such moves, due to inevitable rise in required capital reserves and lower short-term 

profitability, in order to construct a sound risk management framework regulators must take 

into account the fragility VaR models which also extends to a degree to ES models. As we 

show there is far less difference between competing VaR/ES models than thought and only a 

few models are significantly superior. Our results cast doubt on VaR/ES model comparison 

studies since they mostly measure the performance of the analysed risk models on a single 

realization od the data generating process. As we have shown such evaluation of model 

performance can often be misleading.  
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Table 1 Overview of VaR and ES models  
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Table 2a Maximum likelihood estimates of shape and scale parameter of the GPD for negative returns and 

innovations, 750 observations, period June/July 2004 - June/July 2007 

 
estimate s.e. threshold estimate s.e. threshold estimate s.e. threshold estimate s.e. threshold

Tail index -0,037 0,094 2,518 0,017 0,137 1,610 0,061 0,147 3,569 0,042 0,144 1,508
Sigma 1,189 0,161 0,531 0,102 1,010 0,204 0,535 0,107

Tail index 0,014 0,096 2,175 0,199 0,166 2,017 0,055 0,146 3,273 -0,092 0,126 1,476
Sigma 0,993 0,134 0,431 0,093 1,266 0,255 0,828 0,155

Tail index -0,195 0,112 2,246 -0,029 0,120 1,344 -0,012 0,137 4,934 -0,100 0,125 1,510
Sigma 1,231 0,217 0,645 0,111 1,987 0,387 0,775 0,144

Tail index 0,129 0,157 2,757 0,016 0,141 1,593 0,146 0,159 2,209 0,014 0,141 1,509
Sigma 0,741 0,154 0,660 0,130 0,800 0,168 0,636 0,126

Tail index 0,102 0,112 1,625 0,167 0,145 1,396 0,049 0,162 1,781 0,263 0,175 1,448
Sigma 0,682 0,101 0,475 0,090 0,911 0,250 0,438 0,097

Tail index 0,062 0,147 2,252 0,124 0,156 1,502 -0,074 0,128 2,659 0,078 0,150 1,632
Sigma 0,656 0,133 0,516 0,107 1,230 0,232 0,499 0,102

Tail index -0,013 0,116 3,335 0,045 0,130 1,425 0,173 0,119 2,050 -0,086 0,127 1,558
Sigma 1,031 0,224 0,522 0,093 0,762 0,118 0,627 0,118

Tail index 0,082 0,107 2,127 0,028 0,142 1,568 0,002 0,139 3,212 0,027 0,142 1,419
Sigma 0,630 0,092 0,475 0,094 0,944 0,196 0,772 0,153

Innovations

DAX ( 09.08.2004 - 16.07.2007) BOVESPA (03.06.2004 - 14.06.2007)

CAC (20.08.2004 - 24.07.2007) SENSEX (17.06.2004 - 14.06.2007)

Returns Innovations Returns

FTSE (23.07.2004 - 12.07.2007) CRTX (01.06.2004 - 18.06.2007)

NIKKEI (20.05.2004 - 06.06.2007) JALSH (01.07.2004 - 29.06.2007)

DJIN (16.07.2004 - 10.07.2007) KLCI (08.06.2004 - 19.06.2007)

SP500 (16.07.2004 - 10.07.2007) MEXBOL (20.07.2004 - 05.07.2007)

NASDAQ (16.07.2004 - 10.07.2007) HENG SENG (02.06.2004 - 13.06.2007)

RTY (16.07.2004 - 10.07.2007) TAIPEI (15.06.2004 - 27.06.2007)
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Table 2b Maximum likelihood estimates of shape and scale parameter of the GPD for negative returns and 

innovations, 750 observations, period June/July 2007 – July 2010 

 
estimate s.e. threshold estimate s.e. threshold estimate s.e. threshold estimate s.e. threshold

Tail index 0,111 0,078 2,697 0,007 0,116 1,250 0,132 0,157 4,263 -0,146 0,118 1,622
Sigma 1,472 0,172 0,622 0,102 1,393 0,291 0,566 0,103

Tail index 0,031 0,143 3,851 0,250 0,173 2,172 0,067 0,148 4,094 0,015 0,141 1,448
Sigma 1,130 0,225 0,420 0,092 1,367 0,277 0,620 0,122

Tail index 0,058 0,125 2,722 -0,118 0,162 1,524 0,202 0,167 6,226 -0,071 0,129 1,394
Sigma 1,185 0,203 0,647 0,145 2,407 0,518 0,674 0,127

Tail index 0,076 0,149 3,421 0,048 0,206 1,879 0,251 0,173 3,077 -0,122 0,107 1,431
Sigma 1,633 0,332 0,425 0,109 0,781 0,171 0,510 0,083

Tail index 0,000 0,139 2,911 -0,234 0,069 1,019 0,093 0,152 1,983 0,077 0,149 1,381
Sigma 1,365 0,268 0,831 0,097 1,151 0,236 0,668 0,136

Tail index 0,180 0,164 3,128 -0,011 0,170 2,020 -0,099 0,115 3,368 -0,089 0,098 1,204
Sigma 1,189 0,253 0,560 0,085 1,201 0,206 0,686 0,100

Tail index -0,042 0,133 4,264 -0,065 0,139 1,688 0,218 0,169 3,776 -0,073 0,109 1,376
Sigma 1,536 0,295 0,614 0,105 1,235 0,267 0,504 0,081

Tail index 0,061 0,147 3,608 0,152 0,204 1,966 -0,047 0,094 3,129 -0,169 0,093 1,309
Sigma 1,562 0,316 0,350 0,094 0,989 0,135 0,732 0,106

NASDAQ (11.07.2007 - 01.07.2010) HENG SENG (14.06.2007 - 01.07.2010)

RTY (11.07.2007 - 01.07.2010) TAIPEI (28.06.2007 - 01.07.2010)

DJIN (11.07.2007 - 01.07.2010) KLCI (20.06.2007 - 01.07.2010)

SP500 (11.07.2007 - 01.07.2010) MEXBOL (06.07.2007 - 01.07.2010)

FTSE (13.07.2007 - 01.07.2010) CRTX (19.06.2007 - 01.07.2010)

NIKKEI (07.06.2007 - 01.07.2010) JALSH (02.07.2007 - 01.07.2010)

Innovations

DAX ( 17.07.2007 - 01.07.2010) BOVESPA (15.06.2007 - 01.07.2010)

CAC (25.07.2007 - 01.07.2010) SENSEX (15.06.2007 - 01.07.2010)

Returns Innovations Returns
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Table 3a Number of VaR model successes according to Kupiec and Christoffersen independence tests at 5 and 

10% significance level, 99% confidence level, 750 observations (June/July 2004 - June/July 2007) 

 

Kupiec test* 5 8 8 8 8 8 2 7
Kupiec test** 2 8 8 8 8 8 1 7
Independence*** 8 7 7 7 7 7 7 5

Kupiec test* 2 1 6 8 2 8 8
Kupiec test** 2 1 6 8 1 8 8
Independence*** 7 3 8 8 6 8 8

Kupiec test* 7 6 8 8 8 8 3 8
Kupiec test** 5 6 8 8 8 7 2 6
Independence*** 6 6 6 6 7 5 8 7

Kupiec test* 2 0 5 8 3 8 8
Kupiec test** 0 0 2 8 2 8 8
Independence*** 5 5 8 8 7 8 8

FHS HW EVT 
GARCH GPDVCV Risk 

Metrics GARCH

Emerging markets (8)

HS 250 HS 500 MHS 
250

MHS 
500

KHS 
250

KHS 
500

BRW 
λ=0,97

BRW 
λ=0,99

FHS HW EVT 
GARCH GPDVCV Risk 

Metrics GARCH

Developed markets (8)

HS 250 HS 500 MHS 
250

MHS 
500

KHS 
250

KHS 
500

BRW 
λ=0,97

BRW 
λ=0,99

 

* 5% significance level 

** 10% significance level 

*** Christoffersen (1998) independence tests at 5% significance level 

HS n – historical simulation model with n day moving window; MHS n - “mirrored” historical simulation model 

with n day moving window; KHS n – kernel historical approach with n day moving window; BRW - Boudoukh, 

Richardson, Whitelaw (time weighted) simulation model, λ - decay factor; VCV – normally distributed 

variance-covariance model; GARCH – parametric EGARCH(p, q) model with GED or T distributed 

innovations; FHS – Filtered historical simulation Barone-Adesi et. al. (1999); HW – Hull-White (1998) model; 

EVT-GARCH – McNeil, Frey (2002) conditional EVT model, GPD – unconditional EVT model using 

Generalized Pareto distribution; 

 

Table 3b Number of VaR model successes according to Kupiec and Christoffersen independence tests at 5 and 

10% significance level, 99% confidence level, 750 observations (June/July 2007 – July 2010) 



35 

 

Kupiec test* 0 0 1 1 1 1 0 3
Kupiec test** 0 0 1 0 1 0 0 2
Independence*** 7 6 8 8 8 7 8 8

Kupiec test* 0 0 1 3 7 2 8 8
Kupiec test** 0 0 1 0 7 2 8 7
Independence*** 6 8 8 8 5 8 7 8

Kupiec test* 1 1 8 6 5 1 0 5
Kupiec test** 1 1 7 6 2 1 0 5
Independence*** 6 5 7 6 7 6 7 6

Kupiec test* 0 0 4 6 5 3 8 6
Kupiec test** 0 0 4 5 4 3 6 6
Independence*** 6 6 8 8 5 8 8 7

Developed markets (8)

HS 250 HS 500 MHS 
250

MHS 
500

KHS 
250 KHS 500 BRW 

λ=0,97
BRW 
λ=0,99

VCV Risk 
Metrics GARCH FHS HW EVT 

GARCH
EVT 

GARCH (L) GPD

Emerging markets (8)

HS 250 HS 500 MHS 
250

MHS 
500

KHS 
250 KHS 500 BRW 

λ=0,97
BRW 
λ=0,99

VCV Risk 
Metrics GARCH FHS HW EVT 

GARCH
EVT 

GARCH (L) GPD

 

* 5% significance level 

** 10% significance level 

*** Christoffersen (1998) independence tests at 5% significance level 

 
 

 

 

 

 

 

 

 

Table 4a VaR ranking according to minimal average VaR values, 99% confidence level, 750 observations 

(June/July 2004 - June/July2007) 
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 S&P 500 DJIN NASDAQ RTY NIKKEI FTSE DAX CAC
HS 250 1,55 1,57 2,07 2,40 2,85 1,81 2,35 2,25
HS 500 1,70 1,73 2,35 2,50 3,12 1,98 2,85 2,51

MHS 250 1,72 1,76 2,26 2,66 3,05 1,94 2,48 2,35
MHS 500 2,00 2,04 2,64 2,69 3,22 2,30 3,08 2,81
KHS 250 1,63 1,66 2,23 2,59 3,06 1,92 2,53 2,37
KHS 500 1,78 1,78 2,44 2,59 3,26 2,08 2,93 2,60

BRW λ=0,97 1,50 1,48 2,01 2,30* 2,67 1,62 2,21 2,02
BRW λ=0,99 1,60** 1,62** 2,13 2,46 2,97 1,85 2,44 2,33
Normal VCV 1,51 1,49 2,11 2,47 2,56 1,51 2,04 1,86
Risk Metrics 1,46* 1,43* 1,95** 2,32 2,33* 1,47* 1,93* 1,79

GARCH 1,52 1,49 1,99 2,38 2,48** 1,51** 2,00** 1,86*
HW 1,76 1,70 2,10 2,59 3,38 2,24 2,60 2,54
FHS 1,81 1,75 2,30 2,67 2,68 1,83 3,07 2,06

EVT GARCH 2,07 2,06 2,24 2,37 3,34 1,78 2,16 2,73
GPD 3,44 3,29 3,90 3,45 4,22 2,84 3,44 3,28

JALSH BOVE MEXBOL KLCI CRTX SENSEX H SENG TAIPEI
HS 250 2,65 3,94 2,92 1,53 6,04 3,68 2,37 3,39
HS 500 2,51 4,07 2,74 1,58 5,82 3,58 2,38 3,42

MHS 250 3,26 4,35 3,40 1,82 6,92 4,37 2,54 3,63
MHS 500 3,15 4,61 3,28 1,96 6,50 4,01 2,71 4,07
KHS 250 2,85 4,23 3,12 1,64 6,56 4,03 2,51 3,58
KHS 500 2,75 4,23 2,83 1,66 6,06 3,74 2,47 3,57

BRW λ=0,97 2,41 3,75 2,64 1,45 5,52 3,35 2,27 2,85
BRW λ=0,99 2,69 4,08 2,94 1,59 6,28 3,83 2,47 3,41
Normal VCV 2,32* 3,64 2,53 1,35 4,85 3,18 2,05 2,54**
Risk Metrics 2,24 3,37* 2,47* 1,31* 4,45* 2,79* 1,95* 2,18*

GARCH 2,33 3,49** 2,59** 1,36** 4,62 2,84** 2,08** 2,23
HW 3,80 4,20 4,33 2,29 7,06 4,93 2,71 3,08
FHS 2,61** 4,08 3,00 1,75 5,37** 3,51 2,31 2,74

EVT GARCH 3,00 4,03 3,05 2,24 5,65 3,77 2,11 3,58
GPD 5,18 5,29 4,74 4,66 8,80 6,56 4,00 4,31  

Grey areas mark VaR models which satisfied the Kupiec (1995) and the Christoffersen (1998) independence test 

at 5% significance level, * lowest average VaR value, ** lowest average VaR value for a model which satisfies 

the Kupiec and the Christoffersen independence test 

 

 

 

 

 

 

 

Table 4b VaR ranking according to minimal average VaR values, 99% confidence level, 750 observations 

(June/July 2007 - July 2010) 
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 S&P 500 DJIN NASDAQ RTY NIKKEI FTSE DAX CAC
HS 250 4,98 4,40 4,61 5,40 5,87 4,43 4,67 4,74
HS 500 4,70 4,29 4,47 5,43 5,46 4,39 4,61 4,99

MHS 250 5,53 4,88 5,52 5,94 6,10 5,29 5,54 5,75
MHS 500 5,69 5,22 5,15 6,14 6,87 5,80 5,47 6,18
KHS 250 5,15 4,57 4,99 5,76 6,05 4,85 4,87 5,03
KHS 500 4,98 4,43 4,64 5,62 5,77 4,59 4,84 5,07

BRW λ=0,97 4,06 3,60 3,94 4,56 4,47 3,80 3,92 4,09
BRW λ=0,99 4,92 4,37 4,72 5,40 5,65 4,55 4,65 4,75
Normal VCV 4,07 3,70 4,19 4,97 4,55 3,84 4,00 4,20
Risk Metrics 3,90 3,54 4,05 4,86 4,32 3,72 3,86 4,15

GARCH 4,00 3,65 4,16 4,90 4,32 3,75 3,94 4,19
HW 13,70 12,38 11,18 14,08 12,75 10,76 10,20 10,69
FHS 3,85 3,68 3,88 4,73** 4,20** 3,67 3,84** 3,93

EVT GARCH 4,32 3,62 4,35 4,91 4,06 3,70 4,81 6,44
EVT GARCH (L) 4,89** 5,00** 4,91** 5,27 5,03 3,78** 4,85 5,08

GPD 8,43 6,23 6,37 8,22 8,92 6,19 5,23 5,53**
JALSH BOVE MEXBOL KLCI CRTX SENSEX H SENG TAIPEI

HS 250 4,25 5,83 4,28 2,96** 9,37 5,27 5,62 4,41
HS 500 4,29 6,10 4,67 3,13 9,52 5,44 5,67 4,37

MHS 250 4,80 7,24 5,18 3,23 10,53 5,96 7,06 4,84
MHS 500 5,21 7,22 5,44 3,35 12,16 6,22 7,09 4,91
KHS 250 4,55 6,34 4,61 3,09 9,90 5,62 5,98 4,64
KHS 500 4,58 6,22 4,78 3,22 10,31 5,71 5,92 4,54

BRW λ=0,97 3,60 5,06 3,93 2,41 7,76 4,73 4,71 4,11
BRW λ=0,99 4,22 6,06 4,57 2,97 9,30 5,39 5,55 4,52
Normal VCV 3,87 5,29 4,06 2,46 7,56 4,98 5,28 3,86
Risk Metrics 3,70 4,96 3,75 2,20 7,27 4,66 5,02 3,81

GARCH 3,79 5,14** 3,96 2,26 7,31 4,79** 5,11** 3,98
HW 7,81 9,98 8,40 5,28 21,66 11,39 13,04 8,21
FHS 3,87** 5,36 4,25 2,59 7,71** 5,26 4,78 4,34**

EVT GARCH 2,90 3,99 4,34 3,54 8,24 6,02 4,28 3,97
EVT GARCH (L) 4,07 5,52 5,09** 3,54 8,71 7,49 5,29 4,65

GPD 6,69 8,74 4,39 6,56 18,11 7,30 9,68 4,03  

Grey areas mark VaR models which satisfied the Kupiec (1995) and the Christoffersen (1998) independence test 

at 5% significance level, * lowest average VaR value, ** lowest average VaR value for a model which satisfies 

the Kupiec and the Christoffersen independence test 

 

 

 

 

 

 

 

Table 5a VaR ranking according to minimal Lopez size adjusted score, 99% confidence level, 750 observations 

(June/July 2004 - June/July2007) 
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 S&P 500 DJIN NASDAQ RTY NIKKEI FTSE DAX CAC
HS 250 4,05 3,04 1,04 1,05 4,06 4,05 3,05 3,05
HS 500 1,04 0,03** -1,97 0,04 1,04 0,06 0,04 0,05

MHS 250 -0,98 -0,98 -2,97 0,03** -0,96 0,04** -1,97 -1,97
MHS 500 -2,98 -1,98 -3,98 -0,97 -1,97 0,04 -1,97 0,03**
KHS 250 2,04 1,03 -1,97 -1,97 1,05 1,04 1,03 -0,96
KHS 500 -0,97** -0,97 -2,98 0,04 -0,96 0,05 0,03** 0,04

BRW λ=0,97 7,06 5,06 4,06 2,06 6,08 6,05 3,06 8,06
BRW λ=0,99 2,03 -0,96 -0,97 -0,96 0,05 5,04 0,04 0,03
Normal VCV 4,05 5,05 0,04** 1,05 9,10 11,08 9,08 9,08
Risk Metrics 9,06 7,07 2,06 5,06 7,09 8,07 7,09 7,07

GARCH 4,04 4,05 1,04 0,04 2,06 2,04 2,04 2,05
HW 9,06 8,07 15,08 6,08 7,06 3,02 5,06 1,04
FHS -4,98 -1,97 -3,97 -1,97 -0,96** -2,98 -6,99 -1,97

EVT GARCH -6,98 -5,98 -2,97 0,05 -5,98 -1,98 -1,97 -6,99
GPD -7,00 -7,00 -7,00 -7,00 -7,00 -7,00 -7,00 -7,00

JALSH BOVE MEXBOL KLCI CRTX SENSEX H SENG TAIPEI
HS 250 6,11 2,07 1,09 3,10 0,16 2,11 3,05 -0,94**
HS 500 5,13 -2,94 2,11 4,11 -0,86 2,12 1,05 -2,96

MHS 250 2,07 -2,95 -1,95 0,07 -1,88 -1,92 1,04 -0,95
MHS 500 0,07** -4,96 -0,94 -1,93 -2,90 0,09 -0,97 -2,97
KHS 250 2,09 -1,95 -0,93 2,08** -1,87 -0,92 2,04 -1,95
KHS 500 3,12 -2,95 1,10 0,10 -0,87 1,11 1,04 -2,97

BRW λ=0,97 9,11 4,09 6,09 5,08 2,18 2,11 4,07 3,11
BRW λ=0,99 3,09 0,06** 3,07 1,07 0,11 0,08 0,04** -1,96
Normal VCV 9,16 3,08 7,12 6,12 9,29 11,18 10,09 3,11
Risk Metrics 7,10 7,11 10,11 7,08 9,24 10,16 6,07 5,12

GARCH 5,09 2,07 -0,94 3,06 6,16 3,11 3,05 5,11
HW 4,04 4,11 0,05** 6,04 1,10 3,05 5,04 6,06
FHS 2,05 -3,96 -3,96 -2,97 0,08** 0,05 -1,97 1,05

EVT GARCH -2,97 -3,96 -3,96 -6,00 -3,94 0,03** 1,05 -5,00
GPD -6,98 -6,98 -6,99 -7,00 -5,97 -7,00 -7,00 -7,00  

Reported figures represent Lopez (1998) test scores.  Grey areas mark VaR models satisfying the Kupiec (1995) 

and the Christoffersen (1998) independence test at 5% significance level,, ** lowest Lopez score i.e. smallest 

deviation from expected values. 

 

 

 

 

 

 

 

Table 5b VaR ranking according to minimal Lopez size adjusted score, 99% confidence level, 750 observations 

(June/July 2007 - July 2010) 
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 S&P 500 DJIN NASDAQ RTY NIKKEI FTSE DAX CAC
HS 250 15,25 14,23 16,26 14,30 8,29 10,22 6,17 10,23
HS 500 21,36 18,30 22,31 15,37 11,37 9,27 8,26 9,28

MHS 250 10,18 10,15 8,15 6,20 4,23 4,15 1,12 6,16
MHS 500 14,26 11,22 10,21 6,25 8,32 5,21 3,18 5,21
KHS 250 11,21 10,19 12,20 8,23 4,24 5,18 2,14 7,19
KHS 500 20,33 17,27 15,27 14,33 8,34 8,24 3,24 7,26

BRW λ=0,97 16,24 11,19 17,22 15,27 9,28 9,22 11,18 12,22
BRW λ=0,99 11,21 7,17 12,20 9,24 3,24 2,19 2,15 5,18
Normal VCV 29,41 27,34 22,31 22,39 20,41 20,32 13,29 18,35
Risk Metrics 16,14 11,12 14,13 10,09 7,18 11,14 9,12 5,13

GARCH 9,09 8,08 10,09 5,06 2,10 7,12 4,10 6,10
HW -1,97 4,04 1,05** -1,96 2,05 0,03** 1,05** 1,06
FHS 15,11 8,07 14,13 3,67 3,11 10,14 3,47 8,13

EVT GARCH 4,06 8,08 4,07 5,06 4,12 7,13 -5,95 -6,98
EVT GARCH (L) -2,97** -6,00 -3,96 0,03** -1,94** 3,09 -5,95 -4,95

GPD -4,97 -3,94** -3,91 -4,93 -3,94 -4,94 1,11 1,12**
JALSH BOVE MEXBOL KLCI CRTX SENSEX H SENG TAIPEI

HS 250 6,15 7,24 10,14 1,09 7,55 4,16 13,25 6,11
HS 500 5,16 6,29 5,13 1,12 7,74 7,20 18,37 6,13

MHS 250 2,11 0,15** 2,07 0,08** 3,41 1,12 2,13 2,08
MHS 500 0,10 0,20 -1,94 1,10 2,57 2,13 11,22 4,09
KHS 250 3,12 4,19 4,09 0,09 3,46 3,12 7,17 1,09
KHS 500 4,14 5,27 5,11 2,11 6,67 7,18 17,33 5,11

BRW λ=0,97 8,17 11,25 8,13 7,14 12,48 8,19 13,27 10,14
BRW λ=0,99 2,14 4,19 1,08 1,09 5,41 2,13 9,21 0,09**
Normal VCV 13,22 13,32 16,21 8,18 16,76 15,26 18,33 17,25
Risk Metrics 12,11 10,16 11,16 11,17 10,37 12,19 5,17 14,18

GARCH 4,06 2,09 8,13 4,11 2,26 2,12 2,09 9,11
HW 4,04 6,12 0,06** 3,03 0,07 4,08 1,05** 2,08
FHS 0,03** 1,07 7,09 -2,92 1,22 -0,91** 7,13 3,07

EVT GARCH 27,22 26,32 7,08 -5,95 0,17 -1,95 11,21 9,12
EVT GARCH (L) 3,05 -0,94 -1,98 -5,95 0,16** -5,98 3,10 1,06

GPD -5,99 -4,94 8,14 -6,97 -5,95 -3,95 -6,96 9,14  

Reported figures represent Lopez (1998) test scores.  Grey areas mark VaR models satisfying the Kupiec (1995) 

and the Christoffersen (1998) independence test at 5% significance level,, ** lowest Lopez score i.e. smallest 

deviation from expected values. 

 

 

 

 

 

 

 

Table 6a Ranking of ES model according to modified Blanco-Ihle error statistic, 99% confidence level, 750 

observations (June/July 2004 - June/July2007) 
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 S&P500 DJIN NASDAQ RTY NIKKEI FTSE DAX CAC Total
VCV GPD 11 12 11 12 12 13 13 12 12
RM GPD 13 13 13 13 13 12 11 13 13

GARCH GPD 12 11 12 11 11 11 12 11 11
Bootstr FHS 4 4 5 1 1 5 1 4 2

Bootstr HS250 1 3 7 9 4 6 3 5 4
Bootstr HS500 8 7 2 7 5 8 5 7 6

Bootstr KHS250 5 6 9 5 9 10 8 9 9
Bootstr KHS500 6 5 4 8 8 9 10 8 8
Bootstr MHS250 2 1 1 2 6 4 9 2 3
Bootstr MHS500 3 2 3 3 3 3 2 3 1

Bootstr BRW 7 8 6 6 7 7 6 6 7
EVT GARCH 10 10 8 4 2 2 7 1 5

GPD 9 9 10 10 10 1 4 10 10
JALSH BOVE MEXBOL KLCI CRTX SENSEX H SENG TAIPEI Total

VCV GPD 11 12 11 9 12 13 12 8 12
RM GPD 13 13 13 11 13 12 13 5 13

GARCH GPD 12 11 12 6 11 5 11 7 11
Bootstr FHS 1 1 2 1 3 6 1 3 1

Bootstr HS250 6 2 7 5 9 9 7 12 7
Bootstr HS500 7 7 5 10 5 8 5 9 6

Bootstr KHS250 9 8 9 7 10 11 8 11 10
Bootstr KHS500 8 10 8 12 6 10 6 10 9
Bootstr MHS250 4 5 1 2 2 3 4 2 2
Bootstr MHS500 5 6 6 3 8 2 2 1 3

Bootstr BRW 10 3 3 8 7 7 9 13 8
EVT GARCH 2 9 10 13 1 1 3 6 5

GPD 3 4 4 4 4 4 10 4 4 Lowest value 

marks the most successful ES model 

 

 

 

 

 

 

 

 

 

 

Table 6b Ranking of ES model according to modified Blanco-Ihle error statistic, 99% confidence level, 750 

observations (June/July 2007 - July 2010) 
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 S&P500 DJIN NASDAQ RTY NIKKEI FTSE DAX CAC Total
VCV GPD 12 12 12 12 13 12 11 12 12
RM GPD 13 13 13 13 10 13 14 13 13

GARCH GPD 14 14 14 14 12 14 13 14 14
Bootstr FHS 2 4 1 1 4 1 2 2 1

Bootstr HS250 6 6 5 6 8 6 5 7 6
Bootstr HS500 5 7 6 5 7 8 8 8 7

Bootstr KHS250 9 8 8 9 11 9 9 10 9
Bootstr KHS500 8 9 9 11 9 10 10 11 10
Bootstr MHS250 1 3 3 2 2 7 3 6 2
Bootstr MHS500 4 5 4 4 6 5 4 4 5

Bootstr BRW 10 11 10 7 14 11 12 9 11
EVT GARCH 3 2 2 8 3 2 6 1 3

EVT GARCH (L) 7 10 11 10 5 3 7 5 8
GPD 11 1 7 3 1 4 1 3 4

JALSH BOVE MEXBOL KLCI CRTX SENSEX H SENG TAIPEI Total
VCV GPD 11 13 14 10 12 13 13 13 12
RM GPD 14 14 13 9 11 14 12 12 13

GARCH GPD 13 12 12 14 9 12 14 14 14
Bootstr FHS 1 5 3 2 3 4 5 2 2

Bootstr HS250 9 7 7 5 7 7 10 7 7
Bootstr HS500 6 8 6 13 8 3 9 8 8

Bootstr KHS250 10 10 8 6 10 9 11 9 9
Bootstr KHS500 8 11 10 12 13 6 8 10 11
Bootstr MHS250 2 3 5 4 5 10 2 5 4
Bootstr MHS500 4 6 2 3 4 5 6 6 5

Bootstr BRW 7 9 11 11 14 8 7 11 10
EVT GARCH 5 4 1 7 2 2 3 1 1

EVT GARCH (L) 3 1 9 8 1 1 4 4 3
GPD 12 2 4 1 6 11 1 3 6  

Lowest value marks the most successful ES model 

 

 

 

 

 

 

 

 

 

 

Table 7a Rankings of simulated VaR models performance (N = 2.000) according to Lopez size adjusted score 
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 S&P 500 DJIN NASDAQ RTY NIKKEI FTSE DAX CAC Average
HS 250 5 5 6 6 5 6 4 6 12
HS 500 6 6 8 6 7 6 4 5 13

MHS 250 4 3 4 4 4 3 1 4 6
MHS 500 4 3 4 4 5 4 2 4 8
KHS 250 4 3 5 4 4 4 1 4 7
KHS 500 7 6 6 6 5 6 2 4 10

BRW λ=0,97 6 4 7 6 6 6 5 6 11
BRW λ=0,99 3 2 6 5 2 2 1 3 4
Normal VCV 7 6 8 7 7 8 5 7 14
Risk Metrics 5 4 6 5 5 7 5 3 9

GARCH 2 3 5 3 1 5 3 3 5
HW 2 2 3 2 3 5 2 1 3
FHS 4 2 1 2 2 6 2 5 4

EVT GARCH 1 1 2 1 1 1 3 2 1
GPD 3 1 3 2 2 1 1 1 2

JALSH BOVE MEXBOL KLCI CRTX SENSEX H SENG TAIPEI Average
HS 250 5 5 6 1 6 4 5 4 11
HS 500 5 4 3 1 6 5 6 5 10

MHS 250 2 1 2 1 4 1 1 2 1
MHS 500 1 1 2 2 4 1 3 3 3
KHS 250 3 3 3 1 4 2 3 2 5
KHS 500 4 4 3 2 5 5 5 4 9

BRW λ=0,97 6 6 4 5 7 5 5 6 12
BRW λ=0,99 2 3 1 2 5 2 4 1 4
Normal VCV 7 6 6 5 7 6 6 7 14
Risk Metrics 7 6 6 5 6 6 3 6 13

GARCH 4 2 5 4 3 2 1 5 7
HW 4 5 1 4 2 3 3 3 6
FHS 1 2 4 3 2 1 3 2 3

EVT GARCH 2 2 1 3 1 4 1 1 2
GPD 5 3 5 3 5 3 2 4 8  

Lowest value marks the most successful VaR model 

 

 

 

 

 

 

 

 

 

 

Table 7b Rankings of simulated ES models performance (N = 2.000) according to modified Blanco Ihle score 
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 S&P500 DJIN NASDAQ RTY NIKKEI FTSE DAX CAC Average
VCV GPD 8 7 7 8 7 7 5 6 10
RM GPD 8 7 8 8 7 7 6 6 11

GARCH GPD 8 7 8 8 7 7 6 6 11
Bootstr FHS 1 3 1 1 2 4 2 2 1

Bootstr HS250 4 5 3 4 4 3 3 4 5
Bootstr HS500 3 5 3 4 4 5 4 4 6

Bootstr KHS250 5 6 5 7 6 5 4 5 7
Bootstr KHS500 5 6 5 7 5 6 4 5 8
Bootstr MHS250 1 2 2 2 1 2 2 4 1
Bootstr MHS500 3 4 2 3 3 2 2 3 4

Bootstr BRW 6 7 6 5 8 6 6 5 9
EVT GARCH 2 2 1 6 2 1 3 1 2

GPD 7 1 4 2 1 1 1 2 3
JALSH BOVE MEXBOL KLCI CRTX SENSEX H SENG TAIPEI Average

VCV GPD 6 6 6 4 6 6 5 7 9
RM GPD 7 6 6 4 6 7 5 7 10

GARCH GPD 7 6 6 6 5 6 5 7 10
Bootstr FHS 1 3 2 1 1 5 2 4 3

Bootstr HS250 4 4 3 2 4 4 4 3 5
Bootstr HS500 3 4 3 5 4 2 4 3 5

Bootstr KHS250 5 5 4 2 6 4 4 5 6
Bootstr KHS500 4 5 4 5 7 3 3 5 7
Bootstr MHS250 1 2 2 2 2 3 2 3 2
Bootstr MHS500 2 4 1 1 2 3 3 1 2

Bootstr BRW 4 5 5 4 8 4 3 6 8
EVT GARCH 1 1 1 3 1 1 1 2 1

GPD 6 1 2 1 3 5 1 2 4  

Lowest value marks the most successful ES model  
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