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Abstract 
 
This paper uses long-range dependence techniques to analyse two important features of the 
US Federal Funds effective rate, namely its persistence and cyclical behaviour. It examines 
annual, monthly, bi-weekly and weekly data, from 1954 until 2010. Two models are 
considered. One is based on an I(d) specification with AR(2) disturbances and the other on 
two fractional differencing structures, one at the zero and the other at a cyclical frequency. 
Thus, the two approaches differ in the way the cyclical component of the process is modelled. 
In both cases we obtain evidence of long memory and fractional integration. The in-sample 
goodness-of-fit analysis supports the second specification in the majority of cases. An out-of-
sample forecasting experiment also suggests that the long-memory model with two fractional 
differencing parameters is the most adequate one, especially over long horizons. 
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1. Introduction  

The Federal Funds rate is the interest rate at which depository institutions in the US lend 

each other overnight (normally without a collateral) balances held at the Federal Reserve 

System (the Fed), which are known as Federal Funds. Such deposits are held in order to 

satisfy the reserve requirements of the Fed. The rate is negotiated between banks, and its 

weighted average across all transactions is known as the Federal Funds effective rate. It 

tends to be more volatile at the end of the reserve maintenance period, the so-called 

settlement Wednesday, when the requirements have to be met.1 The Federal Funds target 

rate is instead set by the Chairman of the Fed according to the directives of the Federal 

Open Market Committee (FOMC), which holds regular meetings (as well as additional 

ones when appropriate) to decide on this target. It is therefore a policy rate, used to 

influence the money supply, and to make the effective rate (which by contrast is 

determined by the interaction of demand and supply) follow it. Specifically, the Trading 

Desk of the Federal Reserve Bank of New York conducts open market operations on the 

basis of the agreed target. This is considered one of the most important indicators for 

financial markets, whose expectations can be inferred from the prices of option contracts 

on Federal Funds futures traded on the Chicago Board of Trade. 

Given the fact that the Fed implements monetary policy by setting a target for the 

effective Federal Funds rate which also affects other linked interest rates and the real 

economy through various transmission channels, it is not surprising that both the 

theoretical and the empirical literature on this topic are extensive. Theoretical contributions 

include a well-known paper by Bernanke and Blinder (1988), who propose a model of 

monetary policy transmission which they then test in a follow-up study (Bernanke and 

Blinder, 1992) showing that the Federal Funds rate is very useful to forecast real 

                                                 
1 In empirical studies, therefore, the series is often adjusted to eliminate this effect (see, e.g., Sarno and 
Thornton (2003). 
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macroeconomic variables, being a good indicator of monetary policy actions. Bartolini et 

al. (2002) instead develop a model of the interbank money market with an explicit role for 

central bank intervention and periodic reserve requirements that is consistent with the 

observed volatility pattern of the US Federal Funds rate.  

On the empirical side, some papers examine the extent to which variables targeted 

by the Fed such as the output gap and inflation can explain the effective rate (see, e.g., 

Taylor, 1993 and Clarida et al., 2000); others analyse the daily market for Federal Funds 

(e.g., Hamilton, 1996, and Taylor, 2001). An influential study by Hamilton and Jorda 

(2002) introduced the autoregressive conditional hazard model for forecasting a discrete-

valued time series such as the target; this specification is shown to outperform standard 

VAR models that are unable to differentiate between the effects of an increase in the target 

and those of an anticipated target decrease that did not take place. Other studies examine 

the predictive power of the effective rate of the target (Taylor, 2001) or other interest rates 

(e.g., Clarida et al., 2006). Sarno et al. (2005) provide the most extensive study of the 

forecasting performance of a variety of models of the Federal Funds rate proposed in the 

literature. They consider both univariate (randow walk, ARMA, EGARCH, Markov-

switching etc.) and multivariate (M-TAR, BTAR, MS-VECM) specifications, and find that 

the best forecasting model is a univariate one using the current difference between the 

effective and the target rate to forecast the future effective rate (also, combination forecasts 

only yield marginal improvements). These findings are interpreted as suggesting that the 

Fed in fact follows a forward-looking interest rate rule. 

Most of the models found in the literature to describe the behaviour of the Federal 

Funds rate (and of interest rates in general) assume nonstationarity and are based on first-

differenced series. This is true, for instance of all the univariate specifications considered 

in Sarno et al. (2005), which imply that the series are I(1), without mean reversion and 
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with permanent effects of shocks. This is a rather strong assumption that is not justified on 

theoretical grounds. The classic alternative is to assume that the Federal Funds rate and 

interest rates in general are stationary I(0) variables, and to model them as autoregressive 

processes with roots close to the unit circle, with the additional problem of the well-known 

low power of standard unit root tests. In this study we overcome this dichotomy by 

estimating fractional integration models allowing for both nonstationary and mean-

reverting behaviour. Moreover, using recent techniques based on the concept of long-range 

dependence we explicitly model two well-known features of interest rates in general which 

also appear to characterise the Federal Funds rate, namely their persistence and cyclical 

behaviour, mostly overlooked in previous studies. In particular, we use fractional 

integration methods with multiple poles or singularities in the spectrum not constrained at 

the zero frequency as in the usual case, but allowing instead for poles at zero and non-zero 

(cyclical) frequencies. In this way we are able to capture the two aforementioned features 

of interest rates: their high degree of persistence (described by the pole in the spectrum at 

the zero frequency) and their cyclical pattern (described by the pole at the non-zero 

frequency).2 Overall, our results confirm that both these stylised facts are important 

features of the stochastic behaviour of these series. Sensitivity to data frequency is then 

analysed by using annual, monthly, bi-weekly and weekly data, from 1955 until 2010.  

The remainder of the paper is structured as follows. Section 2 describes the 

econometric approach. Section 3 presents the empirical results. Section 4 provides some 

concluding remarks. 

 

2. Methodology 

We consider the following model: 

                                                 
2 Other sources of persistence/cyclical patterns are described by the short-run (ARMA) dynamics of the 
process. 



5 
 

,...,2,1t,xzy tt
T

t =+β=     (1) 

,)cos21()1( 221 tt
d

r
d uxLLwL =+−−    (2) 

where yt is the observed time series; β is a (kx1) vector of unknown parameters, and zt is a 

(kx1) vector of deterministic terms, that might include, for example, an intercept (i.e. zt = 

1) or an intercept with a linear trend (zt = (1,t)T);  L is the lag operator (i.e., Lsxt = xt-s); d1 

is the order of integration corresponding to the long-run or zero frequency; wr = 2π/r, with 

r representing the number of periods per cycle; d2 is the order of integration with respect to 

the non-zero (cyclical) frequency, and ut is assumed to be an I(0) process, defined for the 

purposes of the present study as a covariance-stationary process, with a spectral density 

function that is positive and finite at any frequency on the spectrum.  Note that d1 and d2 

are allowed to be any real values and thus are not restricted to be integers.  

 The set-up described in (1) and (2) is fairly general, including the standard ARMA 

model (with or without trends), if d1 = d2 = 0 and ut is weakly autocorrelated; the I(1) 

model if d1 = 1 or, more generally, the ARIMA case if d1 is an integer and d2 = 0; the 

standard ARFIMA specification, if d1 has a fractional value and d2 = 0, along with other 

more complex representations. 

 We now focus on equation (2), and first assume that d2 = 0. Then, for any d1 > 0, 

the spectral density function of xt is given by 

,e1)(g
2

)(f 1d2i2
u

2 −λ−λ
π

σ
=λ  

where gu(λ) corresponds to the potential ARMA structure in ut. It can be easily shown that 

this function f(λ) contains a pole or singularity at the long-run or zero frequency, i.e., 

                                         .as,)(f +→∞→ 0λλ  
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Further, note that the polynomial 1)1( dL− can be expressed in terms of its Binomial 

expansion, such that, for all real d1, 

    ,...
2

)1(1)1()1( 211
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implying that the higher the value of d1 is, the higher the degree of dependence between 

observations distant in time will be. Thus, the parameter d1 plays a crucial role in 

determining the degree of long-run persistence of the series. Examples of applications 

using this model can be found in Diebold and Rudebusch (1989), Sowell (1992), Baillie 

(1996) and Gil-Alana and Robinson (1997) among others.3  

On the other hand, if d1 = 0 in (2), then for any d2 ≠ 0, the process xt has a spectral 

density function  

( ) 2d2
r

2
u

2
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π
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=λ , 

which is characterised by a pole at a non-zero frequency, i.e., 

   .),(,as,)(f ** πλλλλ 0∈→∞→  

Moreover, the polynomial 22 )cos21( d
r LLw +−  can be expressed as a Gegenbauer 

polynomial, such that, defining rwcos=µ , for all 02 ≠d , 

   ,)()21(
0 2,22 j

j
dj

d LCLL µµ ∑=+−
∞

=

−   (4)  

where )(2, µdjC  are orthogonal Gegenbauer polynomial coefficients recursively defined 

as:  

,1)(2,0 =µdC  

,2)( 22,1 dC d µµ =  

                                                 
3 Empirical studies estimating I(d) models of this form for interest rates include Lai (1997), Tsay (2000), 
Meade and Maier (2003) and Couchman, Gounder and Su (2006).  
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(see, inter alia, Magnus et al., 1966, or Rainville, 1960, for further details). Gray et al. 

(1989, 1994) showed that this process is stationary if 5.02 <d  for 1cos <= rwµ  and if 

25.02 <d  for 1=µ . If d2 = 1, the process is said to contain a unit root cycle (Ahtola and 

Tiao, 1987; Bierens, 2001); other applications using fractional values of d2 can be found in 

Gil-Alana (2001), Anh, Knopova and Leonenko (2004) and Soares and Souza (2006). 

 In the empirical analysis we use a very general testing procedure to test the model 

given by equations (1) and (2). It was initially developed by Robinson (1994) on the basis 

of the Lagrange Multiplier (LM) principle that uses the Whittle function in the frequency 

domain. It can be applied to test the null hypothesis: 

,),(),(: 2121 o
T

oo
T

o ddddddH ≡=≡   (5) 

in (1) and (2) where d10 and d20 can be any real values, thus encompassing stationary and 

nonstationary hypotheses. The specific form of the test statistic (denoted by R̂ ) is 

presented in the Appendix. Under very general regularity conditions, Robinson (1994) 

showed that for this particular version of his tests, 

,Tas,R̂ d ∞→→ 2
2χ    (6) 

where T indicates the sample size, and “→d” stands for convergence in distribution. Thus, 

unlike in other procedures, we are in a classical large-sample testing situation. A test of (5) 

will reject Ho against the alternative Ha: d ≠ do if R̂  > 2
,2 αχ , where Prob ( 2

2χ  > 2
,2 αχ ) = α. 

Furthermore this test is the most efficient in the Pitman sense against local departures from 

the null, that is, if it is implemented against local departures of the form: Ha: d = do + δT-
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1/2, for δ ≠ 0, the limit distribution is a ),(2
2 vχ  with a non-centrality parameter v that is 

optimal under Gaussianity of ut.4 

 

3. Empirical results 

The series examined is the US Federal Funds effective rate, from 1954 till 2010, at annual, 

monthly, bi-weekly and weekly frequencies.  

[Insert Figures 1 – 3 about here] 

Figure 1 displays plots of the series at the four frequencies considered, the pattern 

being similar in all four cases. Figure 2 displays the correlograms; the two features 

mentioned above can clearly be seen: there is a slow decay in the sample autocorrelation 

values possibly due to persistence, and a cyclical pattern. The same two features are 

exhibited by the periodograms, displayed in Figure 3, with the highest peaks occurring at 

the smallest frequency (long-run persistence) and at frequency 7 corresponding to T/7 

periods per cycle, namely to approximately 8 years in all cases. 

First, we examine the degree of persistence considering only the long-run or zero 

frequency, that is, we specify a model such as (1) and (2) with d2 = 0 a priori and zt (1,t)T, 

i.e., 

,...,2,1t,xty t10t =+β+β=     (7) 

,...,2,1t,ux)L1( tt1d ==−     (8) 

with xt = 0 for t ≤ 0, under the assumption that the disturbance term ut is white noise, 

AR(1) and AR(2) respectively. Higher AR orders and other MA (ARMA) structures were 

also considered, with similar results. We employ here a simple version of Robinson’s 

(1994) procedure, testing Ho: d1 = d1o, for d1o-values from 0 to 2 with 0.001 increments, 

                                                 
4 Note, however, that Gaussianity is not necessary for the implementation of this procedure, a moment 
condition of only order 2 being required. 
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(i.e., d10 = 0, 0.001, 0.002, …, 1.999 and 2), and reporting the estimates of d1 along with 

the 95% confidence intervals of the non-rejection values of d1 based on the testing 

procedure. 

[Insert Table 1 about here] 

 We obtain estimates for the three standard cases examined in the literature, i.e., 

with no regressors in the undifferenced regression (7) (β0 = β1 = 0); with an intercept (β0 

unknown and β1 = 0); and with an intercept and a linear time trend (β0 and β1 unknown). 

The results for the time trend were found to be statistically insignificant in all cases, while 

the intercept was always significant. Thus, in what follows, we only consider the case of an 

intercept.5 As already mentioned, Table 1 displays the estimates of d1 based on the Whittle 

function in the frequency domain (Dahlhaus, 1989) along with the 95% confidence interval 

of the non-rejection values of d1 using Robinson’s (1994) method.  

 When ut is assumed to be a white noise process, the results change substantially 

depending on the data frequency. In particular, for annual data the estimated value of d1 is 

0.937 and the I(1) null hypothesis cannot be rejected. It is rejected instead for monthly and 

bi-weekly data in favour of values of d1 above 1. Finally, for weekly data, the estimated d1 

is smaller than 1 and statistically significant, implying mean reversion. When allowing for 

autocorrelated errors, if ut is assumed to be AR(1) values of d1 below 1 supporting mean 

reversion are obtained in the annual and monthly cases; for bi-weekly and weekly data, d1 

is instead slightly above 1 and the unit root null is rejected in favour of d1 > 1 in the weekly 

case. Finally, if ut is assumed to be AR(2) the unit root cannot be rejected in any single 

case and the estimated values of d1 range between 0.722 (with annual data) and 1.045 

                                                 
5 Note that with white noise ut and for t > 1 this becomes the simple driftless random walk model. 
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(weekly data). The case of AR(2) disturbances is interesting because it allows to capture 

the cyclical pattern of the series through a short-memory I(0) process for ut.6 

 Likelihood Ratio (LR) tests and other likelihood criteria (not reported) suggest that 

the model with AR(2) disturbances outperforms the others. These results, however, might 

be biased owing to the long memory in the cyclical structure of the series having been 

overlooked. Thus, we next consider a model such as (1) and (2) with zt (1,t)T, i.e., the null 

model now becomes 

,10 tt xty ++= ββ     (9) 

,ux)LLwcos21()L1( tt2d2
r1d =+−−    (10) 

again with I(0) (potentially ARMA) ut. The results, for the case of an intercept, which is 

the most realistic one on the basis of the t-values (not reported), are displayed in Table 2. 

[Insert Table 2 about here] 

 The estimated values of r and thus j = T/r (the number of periods per cycle) for the 

four series is now close to 8 years. Specifically, j is found to be 8 in the case of the annual 

data; 97 (and thus 97/12 = 8.089 years) for the monthly data; and 7.57 years (212/28 and 

424/56) for bi-weekly and weekly data. This is consistent with the plots of the 

periodograms displayed in Figure 3. Focusing now on the fractional differencing 

parameters, it can be seen that d1 is close to (although below) 1 and d2 is slightly above 0 

for the four series. For d1 the unit root null is rejected in favour of mean reversion in the 

case of annual, bi-weekly and weekly data; however, for monthly data, even though d1 is 

still below 1, the unit root null cannot be rejected at conventional significance levels. As 

for the cyclical fractional differencing parameter, d2, is estimated to be 0.094 in the annual 

case and the I(0) null hypothesis cannot be rejected. In the remaining three cases, d2 is 

significantly above 0 (thus displaying long memory), ranging from 0.145 (weekly data) to 
                                                 
6 The estimates of the AR(2) coefficients (not reported) were in all cases in the complex plane, which is 
consistent with the cyclical pattern observed in the data. 
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0.234 (monthly data). Very similar values for d1 and d2 are obtained in the case of 

autocorrelated disturbances; LR and no-autocorrelation tests strongly support the white 

noise specification for ut for each of the four series.7 

 Finally, we investigate which of the two specifications (the I(d) one with AR(2) 

disturbances or the one with the two fractional differencing structures) has a better in-

sample performance, and also better forecasting properties. For the first of these two 

purposes we employ several goodness-of-fit measures based on the likelihood function. 

For the forecasting experiment, we use instead various statistics including the modified 

Diebold and Mariano (1995) (M-DM) statistic. Remember that the two models considered 

are: 

,;)1(; 22110
1

tttttt
d

tt uuuuxLxy εφφβ ++==−+= −−  (M1) 

and 

 ,)cos21()1(; 21 2
0 tt

d
r

d
tt xLLwLxy εβ =+−−+=    (M2) 

and therefore they differ in the way the cyclical component is modelled, model (M1) and 

(M2) adopting respectively an AR(2) process and a Gegenbauer (fractional) specification 

for the d1-differenced (demeaned) series. 

 For the in-sample goodness of fit analysis we carry out first a Likelihood Ratio 

(LR) test noting that (M1) is nested in (M2). Thus, using in (M2) the equations given by 

(9) and (10) with β1 = 0, d2 = 0 and AR(2) ut we obtain (M1). The results support the (M2) 

specification for three of the four series examined. Only for the annual data (M1) seems to 

be preferable at the 5% level. This is consistent with the results displayed in Tables 1 and 

2, noting that the only confidence interval in Table 2 where d2 = 0 is not excluded is 

                                                 
7 We use here the Box-Pierce and Ljung-Box-Pierce statistics (Box and Pierce, 1970; Ljung and Box, 1978). 
 



12 
 

precisely that for the annual series. Other likelihood criteria (AIC and SIC) lead essentially 

to the same conclusions.8 

 Next we focus on the forecasting performance of the two models. For this purpose 

we calculate one- to twenty-step ahead forecasts over 20 periods for each of the four series 

at different data frequencies. The forecasts were constructed according to a recursive 

procedure conditionally upon information available up to the forecast date which changes 

recursively.  

We computed the Root Mean Squared Errors (RMSE) and the Mean Absolute 

Deviation (MAD) for the two specifications of each series. The results (not reported here 

for reasons of space, but available from the authors upon request) indicate that the 

fractional structure outperforms the AR(2) model in practically all cases.  

However, the above two criteria and other methods such as the Mean Absolute 

Prediction Error (MAPE), Mean Squared Error (MSE), etc., are purely descriptive 

devices.9 Several statistical tests for comparing different forecasting models are now 

available. One of them, widely employed in the time series literature, is the asymptotic test 

for a zero expected loss differential due to Diebold and Mariano (1995).10 Harvey, 

Leybourne and Newbold (1997) note that the Diebold-Mariano test statistic could be 

seriously over-sized as the prediction horizon increases, and therefore provide a modified 

Diebold-Mariano test statistic given by: 

,
n

n/)1h(hh21nDMDMM −+−+
=−  

                                                 
8 Note, however, that these criteria might not necessarily be the best criteria in applications involving 
fractional differences, as they focus on the short-term forecasting ability of the fitted model and may not give 
sufficient attention to the long-run properties of the fractional models (see, e.g. Hosking, 1981, 1984). 
9 The accuracy of different forecasting methods is a topic of continuing interest and research (see, e.g., 
Makridakis et al., 1998 and Makridakis and Hibon, 2000, for a review of the forecasting accuracy of 
competing forecasting models). 
10 An alternative approach is the bootstrap-based test of Ashley (1998), though his method is computationally 
more intensive. 
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where DM is the original Diebold-Mariano statistic, h is the prediction horizon and n is the 

time span for the predictions. Harvey et al. (1997) and Clark and McCracken (2001) show 

that this modified test statistic performs better than the DM test statistic, and also that the 

power of the test is improved when p-values are computed with a Student t-distribution. 

We further evaluate the relative forecast performance of the different models by 

making pairwise comparisons based on the M-DM test statistic. We consider 5, 10, 15, 20 

and 25-period ahead forecasts. The results are displayed in Table 3. 

[Insert Table 3 about here] 

 They show that for the 5-step and 10-step ahead predictions it cannot be inferred 

that one model is statistically superior to the other. By contrast, over longer horizons there 

are several cases where the fractional model (M2) outperforms (M1). However, these 

forecasting methods may have very low power under some circumstances, especially in the 

case of non-linear models (see, e.g., Costantini and Künst, 2011). Thus, these results 

should be taken with caution. 

 

4. Conclusions 

This paper uses long-range dependence techniques to analyse two important features of the 

US Federal Funds effective rate, namely its persistence and cyclical behaviour. In 

particular, it examines annual, monthly, bi-weekly and weekly data, from 1954 until 2010. 

The main results are the following. When estimating a simple I(d) model, the estimates 

suggest that d is close to 1, in some cases below 1 indicating mean reversion, and in others 

above 1 implying a rejection of the I(1) hypothesis depending on the data frequency and 

the type of disturbances considered (white noise or AR(1)). If these are modelled as AR(2), 

which is highly plausible in view of the cyclical pattern of the series under examination, 

the results indicate that the I(1) null cannot be rejected at any of the four frequencies. The 
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second model considered uses a Gegenbauer-type of process for the cyclical component, 

and therefore has two fractional differencing parameters, one corresponding to the long-run 

or zero frequency (d1), and the other to the cyclical structure (d2). When using this 

specification the results indicate that the order of integration at the zero frequency ranges 

between 0.802 (bi-weekly frequency) and 0.966 (monthly), whilst that of the cyclical 

component ranges between 0.094 (annual) and 0.234 (bi-weekly). Both the in-sample and 

out-of-sample evidence suggest that the long memory model with two fractional structures 

(one at zero and the other at the cyclical frequency) outperforms the other models. 

 Our results are not directly comparable to those of Sarno et al. (2005), who model 

the difference between the effective and the target rate, whilst we focus only on the former. 

Nevertheless, our analysis, based on letting the data speak by themselves to find the most 

suitable specification, produces valuable evidence for interest rate modelling, since it 

shows that an I(d) specification including a cyclical component outperforms both classical 

I(0) and simple I(d) models. This confirms the importance of adopting an econometric 

framework such as the one chosen here, which explicitly takes into account both 

persistence and cyclical patterns, to model the behaviour of the US Federal Funds effective 

rate and interest rates in general. 
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Appendix 

The test statistic proposed by Robinson (1994) for testing Ho (5) in the model given by  

equations (1) and (2) is given by: 
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frequencies which are bounded in the spectrum. I(λj) is the periodogram of 
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with T* as a suitable subset of the Rq Euclidean space. Finally, the 

function gu above is a known function coming from the spectral density of ut: 
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Note that these tests are purely parametric and, therefore, they require specific modelling 

assumptions about the short-memory specification of ut. Thus, if ut is white noise, gu ≡ 1, 
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and if ut is an AR process of the form φ(L)ut = εt, gu = |φ(eiλ)|-2, with σ2 = V(εt), so that the 

AR coefficients are a function of τ. 

 

 

 

 

 



17 
 

References 

Ahtola, J.. and Tiao, G.C., 1987, Distributions of least squares estimators of autoregressive 

parameters for a process with complex roots on the unit circle, Journal of Time Series 

Analysis 8, 1-14. 

Anh, V.V., V.P. Knopova and N.N. Leonenko, 2004, Continuous-time stochastic processes 

with cyclical long range dependence, Australian and New Zeeland Journal of Statistics 46, 

275-296. 

Ashley, R., 1998, A new technique for postsample model selection and validation, Journal 

of Economics Dynamics and Control 22, 647-665. 

Baillie, R.T., 1996,  Long memory processes and fractional integration in econometrics, 

Journal of Econometrics 73, 1, 5-59. 

Bartolini, L., Bertola, G. and A. Prati (2002), “Day-to-day monetary policy and the 

volatility of the Federal Funds interest rate”, Journal of Money, Credit and Banking, 34, 1, 

137-159. 

Bernanke, B.S. and A.S. Blinder (1988), “Credit, money and aggregate demand”, 

American Economic Review Papers and Proceedings, 78, 435-439. 

Bernanke, B.S. and A.S. Blinder (1992), “The Federal Funds rate and the channels of 

monetary transmission”, American Economic Review, 82, 4, 901-921. 

Bierens, H.J., 1997, Testing the unit root with drift hypothesis against nonlinear trend 

stationarity with an application to the US price level and interest rate, Journal of 

Econometrics 81, 29-64. 

Box, G.E.P. and D.A. Pierce, 1970, Distribution of residual autocorrelations in 

autoregressive integrated moving average time series models, Journal of the American 

Statistical Association 65, 1509-1526. 



18 
 

Clarida, R.H., Gali, J. and M. Gertler (2000), “Monetary policy rules and macroeconomic 

stability: evidence and some theory”, Quarterly Journal of Economics, 115, 147-180. 

Clarida, R.H., Sarno, L., Taylor, M. and L. Valente (2006), “The role of asymmetries and 

regime shifts in the term structure of interest rates”, Journal of Business, 79, 3, 1193-1224. 

Clark, T.E. and M.W. McCracken, 2001, Tests of forecast accuracy and encompassing for 

nested models, Journal of Econometrics 105, 85-110. 

Costantini, M. and R.M. Künst, 2011, On the usefulness of the Diebold and Mariano test in 

the selection of prediction models, Econometric Series 276, Institute for Advanced Studies. 

Couchman, J., R. Gounder and J.J. Su, 2006, Long memory properties of real interest rates 

for 16 countries, Applied Financial Economics Letters 2, 25-30. 

Dahlhaus, R. (1989), “Efficient Parameter Estimation for Self-similar Process”, Annals of 

Statistics, 17, 1749-1766. 

Diebold, F.X. and R.S. Mariano, 1995, Comparing predictive accuracy, Journal of 

Business, Economics and Statistics 13, 253-263. 

Diebold, F.X. and G.D. Rudebusch, 1989, Long memory and persistence in the aggregate 

output. Journal of Monetary Economics 24, 189-209. 

Gil-Alana, L.A., 2001, Testing stochastic cycles in macroeconomic time series. Journal of 

Time Series Analysis 22, 411-430. 

Gil-Alana, L.A. and P.M. Robinson, 1997, Testing of unit roots and other nonstationary 

hypotheses in macroeconomic time series. Journal of Econometrics 80, 241-268. 

Gray, H.L., Yhang, N. and Woodward, W.A., 1989, On generalized fractional processes, 

Journal of Time Series Analysis 10, 233-257. 

Gray, H.L., Yhang, N. and Woodward, W.A., 1994, On generalized fractional processes. A 

correction, Journal of Time Series Analysis 15, 561-562. 



19 
 

Hamilton, J.D. (1996), “The daily market for Federal Funds”, Journal of Political 

Economy, 5, 1135-1167. 

Hamilton, J.D. and O. Jorda (2002), “A model for the Federal Funds rate target”, Journal 

of Political Economy, 110, 1135-1167. 

Harvey, D.I., S.J. Leybourne and P. Newbold, 1997, Testing the equality of prediction 

mean squared errors, International Journal of Forecasting 13, 281-291. 

Hosking, J.R.M., 1981, Fractional differencing, Biometrika 68, 165-176. 

Hosking, J.R.M., 1984, Modelling persistence in hydrological time series using fractional 

differencing, Water Resources Research 20, 1898-1908. 

Lai, K.S., 1997, Long term persistence in the real interest rate: Some evidence of a 

fractional unit root, International Journal of Finance and Economics 2, 225-235. 

Ljung, G.M. and G.E.P. Box, 1978, On a measure of lack of fit in time series models, 

Biometrika 65, 297-303. 

Magnus, W., Oberhettinger, F. and R.P. Soni, 1966, Formulas and theorems for the special 

functions of mathematical physics. Springer, Berlin. 

Makridakis, S. and M. Hibon, 2000, The M-3 competition: results, conclusions and 

implications, International Journal of Forecasting, 16, 451-476. 

Makridakis, S., S. Wheelwright and R. Hyndman, 1998, Forecasting methods and 

applications, 3rd Edition, John Wiley & Sons. 

Meade, N. and M.R. Maier, 2003, Evidence of long memory in short term interest rates, 

Journal of Forecasting 22, 553-568. 

Rainville, E.D., 1960, Special functions, MacMillan, New York. 

Robinson, P.M., 1994, Efficient tests of nonstationary hypotheses, Journal of the American 

Statistical Association 89, 1420-1437. 



20 
 

Sarno, L. and D.L. Thornton (2003), “The dynamic relationship between the Federal Funds 

rate and the Treasury bill rate: an empirical investigation”, Journal of Banking and 

Finance, 27, 1079-1110. 

Sarno, L., Thornton, D.L. and G. Valente (2005), “Federal Funds rate prediction”, Journal 

of Money, Credit and Banking, 37, 3, 449-471. 

Soares, L.J. and L.R. Souza, 2006, Forecasting electricity demand using generalized long 

memory, International Journal of Forecasting 22, 17-28. 

Sowell, F., 1992, Modelling long run behaviour with the fractional ARIMA model, Journal 

of Monetary Economics 29, 2, 277-302. 

Taylor, J.B. (1993), “Discretion versus policy rules in practice”, Carnegie Rochester 

Conference Series on Public Policy, 39, 195-214. 

Taylor, J.B. (2001), “Expectations, open market operations, and changes in the Federal 

Funds rate”, Federal Reserve Bank of St. Louis Review, 83, 33-47. 

Tsay, W.J., 2000, The long memory story of the real interest rate, Economics Letters 67, 

325-330. 



21 
 

 

Figure 1: Original time series data 
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Figure 2: Correlogram of the time series 
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Note:  The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. 
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Figure 3: Periodogram of the time series 
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Note:  The horizontal axis refers to the discrete Fourier frequencies λj = 2πj/T, j = 1, …, T/2. 
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Table 1: Estimates of d and 95% confidence interval in an I(d) model with an intercept 
 
 

White noise AR(1) disturbances AR(2) disturbances 

Annual 0.937 
(0.704,  1.450) 

0.544 
(0.429,  0.700) 

0.722 
(0.334,  1.495) 

Monthly 1.277 
(1.189,  1.383) 

0.821 
(0.742,  0.913) 

0.852 
(0.679,  1.016) 

Bi-Weekly 1.168 
(1.122,  1.213) 

1.025 
(0.891,  1.146) 

0.824 
(0.633,  1.008) 

Weekly 0.973 
(0.954,  0.994) 

1.086 
(1.044,  1.127) 

1.045 
(0.984,  1.101) 

The values are Whittle estimates of d in the frequency domain (Dahlhaus, 1989). Those in parentheses are 
the 95% confidence interval of the non-rejection values of d using Robinson (1994). 

 
 
 
 
 

Table 2: Estimates of d1 and d2 in the model with two fractional structures 
Frequency r  ( j ) d1 d2 

Annual j = 7   (r = 8) 0.932  (0.561,  0.983)  0.094  (-0.008,  0.233) 

Monthly j = 683  (r = 97) 0.966  (0.895,  1.128) 0.145  (0.109,  0.217) 

Bi-Weekly j = 1486  (r = 212) 0.802  (0.661,  0.977) 0.234  (0.158,  0.299) 

Weekly j = 2973  (r = 424) 0.817  (0.722,  0.903) 0.156  (0.114,  0.198) 
The values in parentheses in the third and fourth columns are the 95% confidence interval of the non-rejection 
values of d using Robinson (1994). 

 
 

Table 3: Modified DM statistic: 5, 10, 15, 20 and 25-step ahead forecasts  

(M1) vs (M2) 5 10 15 20 25 

Annual 1.435 1.764 1.114 -1.698 -4.311 (M2) 

Monthly 1.872 1.554 -1.050 -3.564 (M2) -12.344 (M2) 

Bi-weekly 1.115 1.355 -3.211 (M2) -5.667 (M2) -10.093 (M2) 

Weekly 0.998 -0.065 -1.445 -4.443 (M2) -8.005 (M2) 
In bold the cases where model (M2) outperforms model (M2) in statistical terms. 
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