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Abstract 
 
We define a class of risk-taking-neutral (RTN) background risks. These background risks 
have the property that they will not alter decisions made with respect to another risk, for 
individuals with HARA utility. If we wish to compare a decision made with and without some 
exogenous background risk, it is often easier to compare the decision made to one made with 
a RTN background risk. We use this methodology to prove and extend a well-known theorem 
about dynamic investment strategy, due to Mossin (1968a). We also use this methodology to 
analyze investment behavior in the presence of an income tax as well as to analyze investment 
behavior in the presence of particular types of background risks. 
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.

1 Introduction

Consider an individual who must make an economic decision in the face of
risk. For example, the individual might be an investor deciding on how
to allocate wealth between a risky and a risk-free asset. Alternatively, the
individual might be deciding on how to insure or how to otherwise hedge a
risky asset. Typically, such a decision is modeled in isolation, where there is
only the one source of risk. For the sake of clarity, we will refer to this risk
as the "primary risk." However, more realistically, there are other risks that
are also faced by the individual. One type of such risk is often referred to as
a "background risk," meaning that there is no market for trading directly on
this second risk. One question that has been given considerable attention
in the literature is "how does the presence of this background risk a�ect
behavior towards the primary risk?" Obviously, many types of dependence
between the risks might be indirectly treated via trading on the primary risk.
For example, contracts on the primary risk might partially mitigate e�ects
of the background risk via "cross hedging" techniques. However, even in
cases where such techniques are not possible, such as when the two risks
are independent, it is now well known that a background risk can still a�ect
decisions about the treatment of the primary risk.1

1This line of research began with Kihlstrom et al. (1981), Ross (1981) and Nachman
(1982). These papers all considered one individual who was more risk averse than an-
other with resepect to the primary risk and examined whether the individual remained
more risk averse (with respect to the primary risk) in the presence of such a background
risk. Doherty and Schlesinger (1983) showed how such a background risk might a�ect an
individual's decision towards the primary risk. Good summaries of how such background
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For example, one might hypothesize that an independent additive zero-mean
background risk will lead to less risk taking with respect to the primary risk.
However, as shown by Gollier and Pratt (1996), risk aversion alone is not
su�cient to guarantee such behavior. Preferences that do guarantee such
behavior are labeled as "risk vulnerable" by Gollier and Pratt (1996), who
also derive the tedious necessary and su�cient conditions that lead to such
behavior. Luckily, relevant su�cient conditions are much easier to satisfy. A
few papers have looked at cases where the two risks are not independent, but
these cases are usually quite restrictive.2 As another illustration, consider
investment decisions modelled in a world without taxes. How would the
inclusion of an income tax a�ect investment strategy?

In this paper, we de�ne a class of "risk-taking-neutral" (RTN) background
risks for an individual with preferences that satisfy "hyperbolic absolute risk
aversion" (HARA). For an individual with HARA utility, a RTN background
risk will not a�ect decisions made about the primary risk. Con�ning our
analysis to the HARA class is not too severe of a restriction, since the closure
of the HARA class of utility includes most all of the commonly used utility
functions, including constant absolute risk aversion (CARA), constant rel-
ative risk aversion (CRRA) and quadratic utility. The importance of the
HARA class within �nance includes it's equivalence to the set of utility func-
tions allowing for two-fund separation in portfolio choice, as shown by Cass
and Stiglitz (1970). Moreover, the HARA class of utility allows for dynamic
portfolio choices to be made somewhat myopically, "as if" future period re-
turns were all risk-free. See Mossin (1968a) and Gollier (2001). Indeed, we
will prove Mossin's (1968a) main result later in the paper, as an example of
a risk-taking-neutral background risk.

Although our class of RTN background risks is fairly simple to construct,
such background risks might not resemble many exogenous background risk
that occurs naturally within an economy. However, these RTN background
risks can often serve as a benchmark. In particular, in many situations, a
canonical type of background risk can be compared to a member of the RTN
class in such a way as to predict qualitative changes in risk-taking behavior

risks embed into economic and �nancial decisions can be found in Campbell and Viceira
(2002) and Gollier (2001).

2See, for example, Dana and Scarsini (2007).
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towards the primary risk. Indeed, it might be more di�cult to compare
this canonical background risk directly to a world no background risk. The
comparison with a suitably chosen RTN background risk might make the
economic analysis much simpler.

We begin the next section with a description of our class of RTN background
risks within the class of HARA utility. We next show how several examples
of background risks can be analyzed via comparison to our RTN class of
background risks. In particular, we examine portfolio choice in a few di�erent
settings.

Section 3 �rst shows how a famous result about dynamic portfolio choice, due
to Mossin (1968a), follows in straightforward manner using RTN background
risk. We also show how Mossin's result can be extended to certain cases
in which the future risk-free rate is unknown at the time current portfolio
decisions must be made. Section 4 examines the e�ect of an income tax on
optimal portfolio choice and shows how it can be easily modelled using our
RTN background risk. The result is also extended to a world in which the
tax rate is random in the sense of being unknown at the time investment
decisions must be made.

In section 5, we consider an independent, additive, zero-mean background
risk, as in Gollier and Pratt (1996). By choosing an appropriate RTN
background risk, which by construction does not a�ect investment decisions,
we can easily show the logic behind the Gollier and Pratt result. In section 6,
we provide a more general result showing how the RTN class of background
risks can be used as a benchmark to predict qualitative changes in investment
when wealth is subjected to an exogenous background risk that is linearly
dependent on one's portfolio wealth. We conclude by summarizing our
results as well as noting some of their limitations.

2 Risk-Taking-Neutral Background Risk

Consider a risk-averse individual with random wealth ex (the "primary risk")
who maximizes her expected utility of terminal wealth . We assume that util-
ity belongs to the so-called hyperbolic-absolute-risk-aversion (HARA) class
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of utility, where we can express utility as

u(x) =
1

B � 1(A+Bx)
1� 1

B ; (1)

where B 6= 0, B 6= 1 and A+Bx > 0. Risk tolerance for this class of utility
is linear:

�u0(x)
u00(x)

= A+Bx: (2)

Note that this class of utility includes constant relative risk aversion (A = 0)
and quadratic utility (B = �1). If A is positive [negative], preferences ex-
hibit increasing [decreasing] relative risk aversion. If B is positive [negative],
preferences exhibit decreasing [increasing] absolute risk aversion.3

We assume that the random wealth ex is endogenous in that the individual
can engage in market activity a�ecting the distribution of terminal wealth.
For the sake of concreteness, we will consider the so-called standard portfolio
problem: the individual allocates her wealth between a risky asset and a
risk-free asset. We assume that the expected risky return is higher than
the risk-free return. From standard portfolio-choice analysis, we know that
a risk-averse individual always invests a positive amount in the risky asset
when its expected payo� per dollar invested is higher than the payo� on the
risk-free asset. Moreover, a more risk-averse individual would always invest
less in the risky asset, ceteris paribus.

We now suppose that the investor faces a second risk ey, the so-called "back-
ground risk" for which there is no market available for trading and/or hedg-
ing. Final wealth is denoted as ex+ey. The question addressed in this paper is
whether or not we can predict that the individual take less [or more] risk with
respect to the primary risk ex in the market in the presence of background
risk ey.
To facilitate answering such a question, we de�ne the class of risk-taking-
neutral (RTN) background risks to be any background risk of the following
form ez(x) = (k + e")(A

B
+ x); (3)

3It also is straightforward to show, using L'Hospital's rule, that such utility approaches
constant-absolute-risk-aversion (CARA) utility as B ! 0, u(x) = �e��x, with � = 1

A .
Also, utility approaches log utility, u(x) = lnx, if A = 0 and B ! 1.
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where k 2 R and the random variable e" is statistically independent of the
random variable ex, with Ee" = 0, where E denotes the expectation operator.
Also, since HARA requires A+B(x+ z) > 0, we assume that 1 + k + " > 0
for all values of ". Note that we allow for the possibility that e" is degen-
erate, with variance zero. Although e" and ex are statistically independent
by assumption, e" and ez are statistically dependent by construction. Indeed,
there is a particular type of linear dependence between ez(x) and ex.
It is important to note that our construction of ez is parametric, based on
the parameters in the decision maker's utility function u. It is also impor-
tant to note that only the ratio A

B
matters in our construction. This is

important since our de�nition of HARA in (1) is unique only up to an a�ne
transformation of u.

To see the e�ect of ez on decisions made about the primary risk ex, we consider
the so-called derived utility function4 for an arbitrary background risk ez:

v(x) � Eu(x+ ez): (4)

For ez belonging to the RTN class of background risk, we obtain
v(x) = E

�
1

B � 1((A+Bx)(1 + k + e"))1� 1
B

�
= E(1+ k+ e"))1� 1

B �u(x): (5)

In other words, the derived utility v(x) is a positive constant, E(1+k+e")1� 1
B ,

multiplied by utility u(x). Since e" is statistically independent of ex, decisions
made about the primary risk ex in the presence of background risk are identical
to decisions on ex without background risk, but using the derived utility
function v in place of u. That is

Ev(ex) = Eu(ex+ ez) = E(1 + k + e")1� 1
B � Eu(ex): (6)

In any generic type of decision problem about ex, we can interpret the �rst-
order conditions as setting marginal bene�ts equal to marginal costs, for
changes in the decision variable, where bene�ts and costs are given in terms

4See Kihlstrom et al. (1981), who refer to this function as the indirect utility function,
and Nachman (1982). Note also that this background risk contains a mixture of an
additive and multiplicative background risk. See, for example, Franke et al. (2011).
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of marginal utility. Since both marginal bene�ts and marginal costs are
simply scaled by the common multiplicative factor E(1 + k + e")1� 1

B in the
presence of ez, the optimal decision remains unchanged. It is important
to note that we are not claiming that preferences are una�ected by ez. If
E(1+k+e")1� 1

B < 1, then the individual is worse o� when background risk ez
is present. If the inequality is reversed, the individual is better o�. However,
decisions made about ex are not a�ected whether ez is present or not, hence
our terminology "risk-taking-neutral background risk."

Note that the RTN class de�ned in (3) is not an exclusive list of all the back-
ground risks with no e�ect on decision making. As one example consider
our RTN background risk for quadratic utility (B = �1), which gives a mul-
tiplicative a�ne transformation. But with quadratic utility, an independent
zero-mean background risk yields an additive dead weight loss to expected
utility. Thus it also does not a�ect economic decisions made on ex. The
point is that our de�nition of the RTN class of background risks is not an
exclusive set of background risks that yield no e�ect on decisions. However,
as we demonstrate below, the RTN class de�ned here can prove quite useful
in analyzing decisions made under uncertainty.

The types of background risk ey that a decision might face will not typically
belong to the class of risks given by (3) above, although it certainly might.
In the case where ey belongs to the RTN class our conclusion is simple: the
individuals makes the same choice with or without the background risk ey:
But in the more typical case where the background risk ey does not belong to
the RTN class, we will show how an appropriately chosen RTN background
risk can provide a benchmark. By comparing this RTN background risk toey, one might be able to make a simple comparison how decisions will change.
In other words, it might be easier to compare a decision made in the presence
of an actual background risk against an RTN background risk than against
no background risk. And by construction of the RTN class, the latter two
yield the same optimal decisions. The rest of the paper provides a few
examples of how RTN background risks can be used in di�erent settings.
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3 Mossin's Partial Myopia

For the sake of clarity, we consider a particular choice problem; namely the
choice of allocating wealth between a risky and a risk-free asset. To this
end, let w denote the initial wealth of the individual who must decide on the
amount of wealth a to invest in the risky asset, with the remaining wealth
w � a invested in the risk-free asset. The gross return on the risk-free asset
is denoted as Rf � 1, whereas the risky asset's gross return is denoted by

the random variable eR, where we assume that eR � 0 and E eR > Rf . This
last assumption guarantees that the optimal investment in the risky asset a�
will be strictly positive.

The objective of the investor for a single period is to choose a to maximize
expected utility :

maxEu(ex(a)) � Eu(wRf + a( eR�Rf )) = Z 1

0

u(wRf + a(R�Rf ))dF (R);
(7)

where F denotes the distribution function for risky returns.

Mossin (1968a) considers a simple two-period dynamic portfolio problem
under HARA preferences. The investor decides at date t = 0 how to invest
her wealth in a portfolio consisting of a risky asset and a risk-free asset. At
the end of the �rst period, at date t = 1, the investor can then optimally
reinvest her realized wealth, i.e. she can "rebalance" her portfolio. At
the end of the second period, at date t = 2, the investor then realizes and
consumes her �nal wealth. We assume that returns on the risky asset are
statistically independent in each period and that the risk-free rate at date
t = 1, i.e. Rf , is known by the investor at date t = 0.

The standard approach to solving such a problem over two periods requires a
method such as dynamic programming and solving the program "backwards"
in time. However, Mossin shows that the �rst-period investment decision
can actually be solved assuming that one hundred percent of wealth will
be invested in the risk-free asset at date t = 1, which Mossin calls "partial
myopia." Of course, in the special case where Rf = 1 at date t = 1, such as
assumed in Gollier (2001), we then have complete myopia: the investment in
the �rst period is the same as if no second period investment was available.
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Note that the ability to invest in both a risk-free and a risky asset at date t =
1 is not without consequence. Investor welfare will increase when the risky
asset is also available. But Mossin's Theorem tells us that the availability
of the risky asset will not alter the investor's portfolio decisions made in the
�rst period.

To establish Mossin's result using RTN background risk, we require the fol-
lowing Lemma, which is a well-known result and is proven, for example, in
Gollier(2001, p. 58).

Lemma: Consider the solution to the standard portfolio problem (7) when
preferences exhibit HARA. Let ba denote the solution to

E[(1 +Bba( eR�Rf ))� 1
B ( eR�Rf )] = 0: (8)

Then the solution to (7) satis�es a� = ba(A+BwRf ).
We can now prove Mossin's result.

Theorem (Mossin): Consider the two-period investment problem under
HARA utility, where the returns on the risky asset are independent between
the two periods. At date t = 0 the investor chooses an investment in the
risky asset that is identical to the one she would choose if all wealth at date
t = 1 was invested in the risk-free asset.

Proof: Suppose the investor chooses her investment in the risky asset, a0,
at date t = 0 under the assumption that all wealth will be re-invested at the
risk-free rate. Let ew1 be a random variable denoting her wealth at date t = 1
under this investment strategy. Now, consider a change in her re-investment
strategy to account for the opportunity to invest in a risky asset at date
t = 1. We let eR2 denote the risky return for this risky asset and assume it
is independent from the distribution of �rst-period returns, i.e. we assume
that ew1 and eR2 are statistically independent random variables.

From the Lemma, it follows that the optimal re-investment in the risky asset
at date t = 1 is a1 = ba(A + Bw1Rf ) for any realized wealth w1. Viewed at
date t = 0, the investor's random wealth at date t = 2 is thus

ew2 = ew1Rf + a1( eR2 �Rf )
= ew1Rf + ba(A+B ew1Rf )( eR2 �Rf ): (9)
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Compared to investing all proceeds in the risk-free asset, the additional risk
for this re-investment strategy is thus [ba( eR2�Rf )](A+B ew1Rf ). Since ew1 andeR2 are independent, this additional risk is easily seen to be a RTN background
risk of the form ez(x) = (k + e")(A

B
+ x), with x � w1Rf , e" � baB( eR2 � E eR2)

and k � baB(E eR2 � Rf ). Hence, at date t = 0, maintaining the strategy of
investing a0 in the risky asset is still optimal. Q.E.D.

5

It is interesting to note that we have no apparent background risks in Mossin's
setting. Rather, we viewed ew1Rf as being optimal when future investment
was all risk-free; and then we simply observed that allowing for future risky
investment looked no di�erent than adding a RTN background risk.

Our methodology can also be used to extend Mossin's Theorem to account
for a risk-free rate at date t = 1 that is stochastic, when viewed from date
t = 0. At date t = 0, when the investor makes her initial portfolio decision,
she does not know what the risk-free rate will be when she rebalances her
portfolio at date t = 1. A date t = 0, the risk-free rate in the second period
is viewed as random eRf . To make our extension, we do require that eR2� eRf
is not only independent of eR1, but that the excess return eR2� bRf is identical
for each realized risk-free rate bRf .6
To show that Mossin's result also holds in this case, we �rst note that ba in this
case remains a constant. This follows by noting that ba in this case is de�ned
as in (8), but using eR2 � eRf . Thus ba is well de�ned and is independent of
the realized risk-free rate bRf . At date t = 1, the investor rebalances her
portfolio as in equation (9) based on her realized risk-free rate, i.e.

ew2 = ew1 bRf + ba(A+B ew1 bRf )( eR2 � bRf ): (10)

The proof then proceeds as above, but with k � baB(E eR2 � bRf ).
5Note that for the special case of constant relative risk aversion (CRRA), which requires

A = 0, we obtain complete myopia. This follows easily from the Lemma since a1 is then
simply a multiple of w1, so that a1=w1 is constant, as is well known from Merton (1971).

6So, for example, if the risk-free rate at date t = 1 is 100 basis points higher, the
distribution for eR2 concurrently shifts up by 100 basis points as well.
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4 Portfolio Choice and Taxes

In many circumstances, portfolio wealth is modi�ed by some exogenous e�ect.
One example is taxes. In this section, we show how our RTN background
risks can be used to re-examine and extend an age-old problem in public
�nance: the question of how taxes a�ect investment in risky assets. Although
there has been much research on the e�ects of taxes on portfolio choice over
the years, most of it has focussed on the e�ects of di�ering tax rates for
di�erent asset classes. But some early research has focused on the e�ects
of a simple at-rate income tax on portfolio choice. Here we consider a
theoretical model where there is a �xed tax rate on one's income. We
show how, under fairly broad circumstances, an income tax will increase the
investment in the risky asset. Unlike Mossin (1968b) and others, who assume
that the income tax is only on earnings above the risk-free rate, we assume
that the tax also applies to one's risk-free earnings. We extend the extant
results further by considering a model with a random tax rate: the case
where the tax rate is uncertain at the time portfolio choices are made.

Domar and Musgrave (1944) were the �rst to consider this problem. They
argued, against conventional wisdom at the time, that income taxes were
most likely to increase investment in risky assets, rather than decrease it.
The basic model was formalized in an expected-utility setting by Mossin
(1968b) and by Stiglitz (1969).7

Consider �rst the case of a wealth tax, with tax rate t. That is, the individual
must pay a �xed percent of her �nal wealth as a tax. We analyze this wealth
tax �rst, and then use our results to consider an income tax.

To analyze the e�ect of a wealth tax by using a RTN background risk, we
proceed using three basic steps:

(1) starting from a world with no taxes, we �rst make an "appropriate choice"
of RTN background risk z(x),8

7See Sandmo (2010) for an excellent summary, discussion and extension of these early
results.

8Although z(x) is deterministic for a given wealth x, we retain the terminology "back-
ground risk," since z(ex) is stochastic, once ex is random.
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(2) we apply the fact that portfolio choices made with wealth ex + ez are
no di�erent than those made with wealth ex, and
(3) we then compare choices made in a world with taxes to ex+ ez.
This third step is hopefully easier than comparing choices in a world with
taxes to ex alone.
To implement step 1 in our analysis, consider the following RTN background
"risk": z(x) = �t(A

B
+ x), where 0 < t < 1. In other words, we let e" be

identically zero and de�ne k � �t. Although t is simply a parameter in this
de�nition, we eventually will want t to denote the tax rate, when we move to
step 3. Indeed, we choose this particular z(x) because it di�ers in absolute
value from the wealth tax tx by a constant.

Since 0 < t < 1, our constraint that (1 + k + ") > 0 is trivially satis�ed.
Obviously, in this example z is not random for a �xed level of wealth x: But
since z(ex) varies with ex, we will still refer to z as a RTN "background risk,"
since z satis�es our de�nition (3).

In this case we obtain

Eu(ex+ ez) = (1� t)1� 1
B � Eu(ex): (11)

Note that we can write total random wealth in this case as

ex+ ez = ex(1� t)� tA
B
: (12)

Recall that, by construction, as is clear from (11), the optimal choice of
investment in the risky asset a� is the same both with and without the
background risk ez. This is step 2.
We can now make the step 3 comparison, which is quite simple. Using (12)
we can write after-tax wealth as follows:

ex(1� t) = (ex+ ez) + tA
B
: (13)

We assume for now that B > 0 and �rst consider the case where A = 0, so
that we have CRRA. In this case, we see that ex(1 � t) = (ex + ez), so that
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there is no e�ect of a wealth tax on the optimal portfolio choice. That is,
the optimal investment in the risky asset a� is unchanged by the wealth tax.
This e�ect is as expected under CRRA since wealth is reduced proportionally
at every �nal wealth level.

Now suppose that A > 0. Starting from wealth ex + ez, it follows from (13)
that we add the positive constant tA

B
to every wealth level. But this will

increase the optimal risky investment a�, since B > 0 implies that absolute
risk aversion is decreasing (DARA). Hence, the total e�ect of the wealth tax
is to increase investment in the risky asset. This three-step procedure does
not require us to directly compare a situation with the tax to one with no
tax; rather we compare after-tax wealth to the RTN alternative ex+ ez.
At �rst thought, it might seem like this result of increasing investment in the
risky asset is simply due to DARA. However, DARA is neither necessary
nor su�cient for this result to hold. The result does not hold in general
for any DARA utility, unless utility belongs to the HARA class. Moreover
consider the case where we allow B < 0, such as the case with quadratic
utility (B = �1). Since A+Bx > 0, we obviously must have A > 0. In this
case, we have increasing absolute risk aversion. Now the term tA

B
in (13)

above is negative; but due to the increasing risk aversion, it follows from the
above reasoning that we once again have an increase in the investment in the
risky asset, a�.

But what happens if A < 0?9 Since we must have B > 0 in this case, we
once again have DARA. However, in this case tA

B
< 0. Thus, it follows

from (13) and step (3) above that investment in the risky asset will actually
decrease with the wealth tax. Thus we see that for DARA, B > 0, the e�ect
of a wealth tax depends critically on whether A > 0, A = 0, or A < 0.

These results illustrate a Proposition by Stiglitz (1969, Proposition 1):
A proportional wealth tax will increase [decrease, not a�ect] investment in
the risky asset if relative risk aversion is increasing [decreasing, constant].

Suppose now that instead of a wealth tax, we have a at rate income tax,

9Recall that, for HARA preferences A < 0 corresponds to preferences exhibiting de-
creasing relative risk aversion, whereas A > 0 corresponds to increasing relative risk
aversion.
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with the same tax rate t. We do assume, as in Domar and Musgrave (1944)
and in Mossin (1968b), that there is a full loss o�set.10 In this case, since
the tax is only on earned income and not on the initial wealth w as well, it
follows from (12) that we can write after-tax wealth as simply refunding the
tax on initial wealth in equation (13)

ex(1� t) + tw = (ex+ ez) + t(A
B
+ w): (14)

We see from (14) that after-tax wealth di�ers from the case of a wealth tax
only by the positive constant tw.

Suppose that we once again restrict B > 0, so that we have DARA. If we
also have A > 0, it follows that a� will be higher than it would be with no
tax. Indeed, the investment in the risky asset is even higher than it would
be in the case where t was a tax on total wealth, not just on income. But
reconsider now the case where A < 0. Since A + Bw > 0 by assumption,
the term t(A

B
+w) must be positive. Hence investment in the risky asset will

increase. Even though a at-rate wealth tax of t would lessen the investor's
investment in the risky asset, a at-rate income tax of t would increase such
investment.

For the case where B < 0, with increasing absolute risk aversion, whether
a� is lower or higher than with no tax once again depends upon the sign of
t(A
B
+w). But since we restrict A+Bx > 0 for all x, the term t(A

B
+w) must

be negative when B < 0. Hence, a at-rate income tax will cause a� to rise
in this case as well, compared to the case with no tax. However, increasing
absolute risk aversion implies that the extra investment in the risky asset
will be less with the income tax than it would be with a proportional wealth
tax.

Note that, unlike Mossin (1968b), we did not assume that the risk-free rate
was zero. Our income tax thus applies not only to a tax on returns above a
risk-free return, but rather to a tax on the risk-free interest as well. Although
with an unspeci�ed utility representation, the tax on the risk-free interest can

10Stiglitz (1969) makes the need of this assumption very transparent. Suppose that the
income tax rate t is close to one with no loss o�set. Then an investor would keep only a
very small part of any investment gains, yet would be fully responsible for any investment
losses. This would obviously deter investment in the risky asset.
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cause problems, as described by Sandmo (2010). In particular, although a
substitution e�ect for the income tax always increases risky investment, a tax
on the risk-free interest will cause a type-of income e�ect, that will reduce
risky investment in the case of DARA (B > 0). Our speci�cation of HARA
utility resolves such issues in the current setting.

Under HARA utility, an income tax will always lead to an increase in risky
investment. We can now extend the tax model to a setting in which the
income tax rate is random. In other words, suppose that the investor must
make her investment choice before she knows exactly how high the tax rate
will be. She only knows the distribution of possible tax rates.

To this end, let e" be a zero-mean random variable that is statistically inde-
pendent from portfolio returns. For any realized value of ", t + " denotes
the tax rate. Obviously here t denotes the expected tax rate at the time
the portfolio decision is made. We further assume that 0 < t + e" < 1 with
probability one { the tax rate that is �nally announced must be between zero
and 1. The problem facing the investor is that she must allocate her wealth
between the risky and the risk-free asset prior to observing the realization
of e". In this case, we will show how it follows from the above analysis that
more wealth is invested in the risky asset than would be invested with no
taxes.

For any �xed tax rate t + " de�ne U(a; ") � Eu(ex(a)(1 � (t + ")) + tw) as
the investor's expected utility, net of her at-rate income tax, for a given a
and a given ". The �rst-order condition for the optimal investment at this
�xed tax rate is

@U(a; ")

@a
= 0, (15)

which we assume to be satis�ed at investment level a". It is easy to show
that U(a; ") is concave in a for all values of a { not just at the optimal a�
From our analysis above, we know that for any " such that 0 < t+ " < 1 we
must have a" > aN , where aN denotes the optimal investment in the risky
asset when there are no taxes. This in turn implies that @U(a;")

@a
> 0 when

evaluated at aN for every ", due to the concavity of U(a; ").

For a random tax rate t + e", the �rst-order condition for portfolio choice
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becomes Z 1�t

�t

@U(a; ")

@a
dG(") = 0, (16)

where G denotes the distribution function for e", which is known to the in-
vestor at the time of her portfolio decision. Let a� denote the solution to
(16). We cannot have a� � aN , since this would imply that @U(a;")

@a
< 0 for

every ", so that (16) cannot hold. Hence, more is invested in the risky asset
with the random income tax than would be invested with no income tax,
a� > aN .

Finally, we note that the methodology used above for a random income-tax
rate would also apply for a random wealth tax, so long as we maintain our
assumption that 0 < t+ " < 1. Indeed, one can easily see how other similar
scenarios are possible. For example, this methodology will also apply if we
have random ination that is independent of risky-asset returns. We just
need to use a price deator in place of a proportional wealth-tax rate (as
long as we allow only for ination, with no chance of deation, i.e. as long
as the price deator remains larger than unity). This allows us to conclude
under HARA that, compared to the case with no ination, a random rate of
ination will cause the investor to increase [not change; decrease] investment
in the risky asset if we have increasing [constant; decreasing] relative risk
aversion.11

5 Portfolio Choice and Risk Vulnerability

We now consider the risk vulnerability model in Gollier and Pratt (1996).
They consider a background risk ey with a non-positive mean that is in-
dependent of random wealth. They examine conditions under which this
background risk induces less risk taking behavior. In the context of our
portfolio problem, this would imply reducing investment in the risky asset.
Although the conditions on preference that are equivalent to inducing this
type of behavior are quite strong, Gollier and Pratt also present two suf-
�cient conditions for this behavior, both of which are satis�ed by HARA

11Of course, this is a very simpli�ed model of ination. See, for example, Brennan and
Xia (2002) for a more complex model, similar in spirit to the result shown here.
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utility whenever B > 0.12 However, even these su�cient conditions are not
particularly easy to interpret in terms of economic intuition. By choosing
an appropriate RTN background risk, we show below that the Gollier-Pratt
independent background risk is larger in the low-return states and smaller in
the high-return states of nature. The intuition as to why investment in the
risky asset decreases then becomes apparent.

To set up this argument, note that the �rst-order condition to (7) under
HARA can be written as follows:

0 = E[(A+Bex(a))� 1
B ( eR�Rf )]

�
R Rf
0
(A+Bx)�

1
B (R�Rf )dF (R)+

R1
Rf
(A+Bx)�

1
B (R�Rf )dF (R);

(17)
where x(a) � wRf + a(R � Rf ). We assume that (17) is satis�ed at some
positive �nite value a�. Note that the �rst integral on the left-hand side in
(17) is negative, representing the marginal utility cost of a higher a when re-
turns are low, whereas the second term is positive, representing the marginal
utility bene�t of a higher a when returns are high. The su�cient second-
order condition for a maximum is trivially satis�ed, since expected utility is
concave in a.

We simplify the Gollier and Pratt (1996) set up slightly by considering a
zero mean background risk ey. The case with a negative mean can be derived
in a quite straightforward manner by adding a negative constant to ey. To
examine the risk-vulnerability result of Gollier and Pratt (1996), de�ne e"
independent of eR with Ee" = 0 implicitly via

ey = e" �A
B
+ wRf

�
: (18)

Now we can apply the same three-step process used to analyze investment
under taxes. We �rst de�ne the RTN background risk ez = e" �A

B
+ x

�
. We

12One su�cient condition for risk vulnerability is that preferences satisfy "standard risk
aversion," as de�ned by Kimball (1993), which is characterized by decreasing absolute risk

aversion and decreasing absolute prudence. That is, both absolute risk aversion �u00(x)
u0(x)

and absolute prudence �u000(x)
u00(x) are decreasing in x. Another su�cient condition is that

absolute risk aversion is both decreasing and convex in wealth.
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see that ez simply replaces wRf with x when compared to ey. Thinking ofe" as white noise, we see that ey has more noise than ez when returns are low
(R < Rf , equivalently x < wRf ) and that ey has less noise than ez when
returns are high (R > Rf ; equivalently x > wRf ).

If we add any RTN background risk of the form (3) with k = 0, the �rst-order
condition becomes

0 = E(1 + e")1� 1
BE[(A+Bex)� 1

B ( eR�Rf )]
= E[(1 + e")(1 + e")� 1

B ]E[(A+Bex)� 1
B ( eR�Rf )]

= [1 + cov(e"; (1+e")� 1
B )

E(1+e")� 1
B

]E(1 + e")� 1
BE[(A+Bex)� 1

B ( eR�Rf )]
= [1 + cov(e"; (1+e")� 1

B )

E(1+e")� 1
B

]E[(A+B(ex+ ez))� 1
B ( eR�Rf )]:

(19)

Our assumption that 1 + k + " > 0 implies that the constant �rst term on
the left-hand side of the last line in (19) must be positive, so that the second
term must be zero. Hence, we can re-write the �rst-order condition asR Rf

0

R +1
�1 ((A+B(x+ z))

� 1
B (R�Rf )dG(")dF (R)

+
R1
Rf

R +1
�1 ((A+B(x+ z))

� 1
B (R�Rf )dG(")dF (R) = 0,

(20)

where G once again denotes the distribution function for e". From our pre-
vious argument about RTN background risk, this yields the same optimal
investment in the risky asset, a� as would hold with no background risk from
(17). Thus we only need to complete the third step in our process, namely
compare ex+ ey with ex+ ez.
Since we assume B > 0, it follows thatZ +1

�1
((A+B(x+ y))�

1
B dG(") > [<]

Z +1

�1
((A+B(x+ z))�

1
B dG(") (21)

for each R < [>]Rf . The fact that u0 is convex allows us to use Jensen's
inequality to compare ey and ez, i.e. to compare the terms containing e". To
see this more clearly, note that the multiplicative factor on the e" term is
either wRf or wealth x; and since a� is positive, the latter term is larger if
and only if R > Rf .

Calculating dEu
da

as in (20) but with y replacing z, it follows that the nega-
tive term (marginal costs) is more negative and the positive term (marginal



RTN Background Risk 18

bene�t) is less positive, when evaluated at a�. Hence, the optimal level of
investment in the risky asset will fall, as expected. In other words, com-
pared to its risk-taking-neutral counterpart, which changes marginal utility
by a proportional amount everywhere, the independent background risk ey
increases marginal utility (and hence increases marginal costs) when returns
are low and it decreases marginal utility (and hence decreases marginal ben-
e�ts) when returns are high.

This result is easy to interpret when we consider what is going on in step
3. Compared to the RTN background risk ez, the actual background riskey is larger in the low-wealth states and smaller in the high-wealth states.
This will increase the marginal utility cost and simultaneously decrease the
marginal utility bene�t of a higher level of risky investment, leading to a
reduction of a�.

Although we examined the simpli�ed case of Eey = 0, it is straightforward
to extend the analysis in the section to the case where Eey < 0. To this
end, simply replace (18) implicitly de�ning both k < 0 and e" via ey = (k +e") �A

B
+ wRf

�
. We can then proceed as above to verify that the Gollier and

Pratt (1996) result also holds in this case. Essentially, a negative k reduces
wealth everywhere, which under DARA (B > 0) implies that the individual
is more risk averse and thus reduces a� further still.

In the next section, we provide a somewhat broader context in which we can
apply the type of benchmarking result used here. In particular, we consider
a linear mix of both an additive and a multiplicative background risk, and
we show how such background risk can be easily compared to a particular
RTN background risk.

6 Linearly Dependent Background Risks

Although our RTN class of background risks might be useful directly, as was
the case with Mossin's Theorem, it is more likely to be useful as a benchmark,
as was the case for decision making with income taxes or decision making
with an independent background risk. In these cases, it may be easier to
compare optimal decisions made in the presence of some external inuences
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to the RTN case of ex+ez, rather than to ex directly. Below we provide a more
general proposition and we show how several of our previous results follow
from it.

We assume once again that the investor has decreasing absolute risk aversion
(B > 0). The investor now makes a portfolio decision in the face of a linearly
dependent background risk ey, where ey takes the form:

~y(x) = (�+ �x)(k + ~"); (22)

with the zero-mean random variable ~" being distributed independently of x
and with k � 0. We assume that � � 0, k � 0 and (� + �x) � 0 over the
relevant range of wealth. Note that our parameter assumptions imply that,
as wealth x increases, the mean of the background risk ~y(x) either remains
at zero or becomes more negative. At the same time, as wealth x increases,
the variability of ~y(x) either remains unchanged or increases. Thus, the
background risk "worsens" as the investor's wealth x increases. Note that
when � = 0, the background risk is a purely multiplicative background risk.

We are now set to prove the following result.

Proposition 1 Consider a background risk of the form (22). Utility is
HARA of the form (1) with B > 0 (DARA).
(i) If �=� = A=B, then optimal investment in the risky asset is unchanged
by ~y(x).
(ii) If � = 0, then ~y(x) decreases the optimal investment in the risky asset.
(iii) For � > 0 and �=� 6= A=B, if W=[(A� �

�
B)+BxW ] > 1 8W , then ~y(x)

decreases [increases] the optimal investment in the risky asset if and only if

�

�
> [<]

A

B
:

Proof

If �=� = A=B, it is easy to see that ey itself is risk taking neutral, which
proves (i).

Next consider the case where � = 0. This is the risk vulnerability model
of Gollier and Pratt(1996), which we have already examined in the previous
section. Thus, (ii) holds.
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Thus we need to only examine the case where �=� 6= A=B for � > 0. As
"step 1," our canonical choice of ez(x) is simply to replace (�; �) with (A

B
; 1)

in (22). We can easily rewrite ey(x) as a mixture of an additive and a
multiplicative background risk. From (22), it follows that

fW � x+ ey(x) = ��
�
+

�
�

�
+ x

�
(1 + �(k + ~")): (23)

Hence,

A+BfW = A+B

�
��
�
+

�
�

�
+ x

�
(1 + �(k + ~"))

�
= A0 +Bx0e� (24)

where

A0 � A� �
�
B

x0 � �

�
+ x

e� � 1 + �(k + e"):
Since we have HARA utility, we can replace u0(W ) = (A + BW )�1=B with
u0(w0) = (A0 + Bw0)�1=B, where w0 � x0�, and apply known results about
multiplicative background risks. In particular, our hypothesis assumes that

RRA0(x) =
W

A0 +BW
> 1; (25)

for the support of W . Hence, the relative risk aversion of the latter utility
function, with A replaced by A0 is greater than 1,

RRA0(w
0) � w0

A0 +Bw0
> 1; (26)

for the support of w0. The case with a mixture of an additive and multi-
plicative background risk x + ey can thus be transformed into a model with
a purely multiplicative background risk x0e�, via our transformed HARA,
utility,with A replaced by A0.

Note that the investor's optimization problem (7) can be rewritten as

maxE[
1

1�B (A+B(ex(a)))1�1=B] = E[ 1

1�B (A
0 +B(ex0(a)))1�1=B]. (27)
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From (27), it follows that adding ey(x) to the optimal portfolio wealth ex(a) is
equivalent to multiplying ex0(a) by the purely multiplicative background riske� and using the modi�ed HARA utility function, with A replaced by A0. If
A0 < 0, equivalently if �

�
> A

B
, then RRA0(W ) is decreasing in W . It then

follows from Corollary 3 in Franke et al. (2006) that the optimal investment
in the risky asset will decrease. On the other hand, if A0 > 0, i.e. if �

�
< A

B
,

then RRA0(W ) is increasing in W . In this case Corollary 3 in Franke et
al. (2006) implies that optimal investment in the risky asset increases. This
proves (iii). 2

Note that the condition for part (iii) in the Proposition, W=[A0 +BW ] > 1
8W limits the range of W in part (iii) based on a transformed HARA utility
function, where we replace A with A0. We also note that the Gollier and
Pratt (1996) result is part (iii) of our Proposition. Also, if � = 0 we have
the case where ey(x) is a pure multiplicative background risk, as examined in
more detail by Franke et al. (2006).

Although our proof of Proposition 1 is for the strict HARA class, the result
also holds for the case of CARA utility (B ! 0). In particular, if we also
allow � ! 0, we see that (i) holds in the limit, and a� is unchanged, as is
well known for CARA preferences with an independent additive background
risk. If � > 0, the we must have �=� < A=B as B ! 0, so that a� increases.
With � > 0, the background risk is larger for states with higher market
returns. This leads to a shifting of even more wealth to high return states
via an increase in a�.

Note that all of our tax results from section 4 follow from part (iii) of Propo-
sition 1, so long as B > 0 and so long as wealth is restricted to a range where
RRA0 > 1, as required in the Proposition. To see this, we set e" identical to
zero and set k = �t. If there is wealth tax, we can de�ne � = 0 and � = 1.
Thus x+ y = x(1� t). Moreover, 0 = �

�
< [>;=]A

B
if A > [<;=]0. Hence,

we obtain the Proposition from Stiglitz (1969) as described in section 4.

If there is an income tax instead of a wealth tax, we proceed as above, but
set � = �w. Thus x + y = x(1 � t) + tw. In this case �

�
= �w, which is

always smaller than A
B
since we assume A+Bw > 0. Hence, risky investment

always increases. Both of these tax results also follow for a random tax rate,
by simply allowing e" to be non-degenerate.
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A Numerical Illustration

Here we provide a simple example to illustrate Proposition 1. Consider a
market with three equally likely states for Rm. In the bottom state, Rm �
Rf = �0:15. In the middle state, Rm � Rf = 0 and in the top state,
Rm � Rf = 0:3. The background risk is linear in the market return and
given by y(x) = (� + �x)[(�0:1) + "] with " = +0:3� or " = 0:3, each with
an equal probability.

The Proposition says that risk taking increases (decreases) according to
whether the ratio of the background risk parameters, �=� is less than (greater
than) the ratio of the HARA parameters A=B. We set A = �5 and B = 0:5,
which implies that the critical benchmark ratio is A=B = �10. The indi-
vidual has an initial wealth of w = 100.

In the �rst column of Table 1, we show the base case with no background
risk, with � = � = 0. In this case the optimal investment is to invest
a� = $75:25 into the risky stock, with the rest of initial wealth invested in
the risk-free bond. Obviously, in the state where Rm �Rf = 0, the amount
invested in the risky stock has no e�ect on �nal wealth. If Rm � Rf < 0
[> 0], �nal wealth will be lower [higher] and marginal utility of wealth will
be higher [lower] than when Rm � Rf = 0: In particular, from column 1,
we see that marginal utility of wealth is 29.6% higher when Rm � Rf < 0
(the marginal cost state for increasing a�) than when Rm � Rf = 0. That
is, v0(W )=v0(wRf ) = 1:296: We also see that the marginal utility of wealth
is only 64.8% as high when Rm � Rf > 0 (the marginal bene�t state for
increasing a�) than when Rm � Rf = 0. At a� = $75:25, the marginal
bene�ts equal the marginal costs for changes in stock investment.

In all of our cases, except for the base case, we will have marginal utility in
the presence of background risk ey(x) higher than marginal utility with no
background risk. This will occur, for example in case 2, with � = �10 and
� = 1. In this case, the background risk ey(x) is itself a RTN background risk.
Even though the marginal utility of wealth will be higher at every wealth level
for the derived utility function v, it will change proportionately at all wealth
levels. In the second column of Table 1, v0(W )=v0(wRf ) simply compares
how marginal utility changes in the up-state and in the down state, relative
to Rm � Rf = 0. As expected, the relative changes for a RTN background
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risk are no di�erent than for the case with no background risk.

In cases 3-5, our Proposition says that a� should fall compared to the base
case, since �=� > �10. Case 3 (� = 0, � + 0:5) illustrates a purely mul-
tiplicative background risk, while cases 4 and 5 are a particular mix of an
additive and a multiplicative background risk.13 In all three case, for the
state where Rm � Rf < 0 we see that the marginal utility increases more
than the 29.6% for the base case, implying a higher weight on the (negative)
costs. Likewise, for the state where Rm � Rf > 0 we see that the marginal
utility is reduced more than the reduction to 64.8% for the base case. This
implies a lower weight on the marginal bene�ts. It thus follows in all three
cases that a� = $75:25 is too high, and expected utility can be increased by
reducing a�.

Case 6 in Table 1 is an example where �=� < �10 and hence our analysis
of relative changes to weighting of marginal bene�ts and marginal costs is
reversed, when compared to cases 3-5. Hence a� = %75:25 is too low, the
optimal investment in stock should increase, compared to the base case.

Table 1: Linearly Dependent Background Risk and Stock Investment

Parameters (1) (2) (3) (4) (5) (6)

A = �5 � = 0 � = �10 � = 0 � = 15 � = �5 � = �25
B = 0:5 � = 0 � = 1 � = 0:5 � = 0:5 � = 1 � = 0:5
v0

v0(wRf )
ja=75:25

Rm�Rf< 0 1.296 1.296 1.314 1.320 1.318 1.273

Rm�Rf= 0 1.000 1.000 1.000 1.000 1.000 1.000

Rm�Rf> 0 0.648 0.648 0.635 0.631 0.632 0.669

a� 75.25 75.25 72.17 63.36 74.09 80.54

notes

1. Background risk is y(x) = (� + �x)[(�0:1) + "], " = �0:3 with equal
probability.

13See Franke et al. (2011).
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2. Utility is HARA with u0(w) = (A+Bw)�1=B, A = �5, B = 0:5

3. W �x+ y(x), with initial wealth w = 100.

4. a� denotes the optimal investment in risky asset.

5. Rf = 1:03 and Rm �Rf = -15%, 30%, 0%, with equal probability.

7 Concluding Remarks

We de�ned a parametric class of background risks for HARA utility that
we call the class of risk-taking-neutral (RTN) background risks. These
background risks a�ect overall satisfaction, but do not alter economic choices.
In some cases, such as Mossin's (1968a) Theorem about dynamic investment
strategy, we were able to show the result by directly linking wealth to a
particular RTN background risk. In other cases, we were able to choose a
particular RTN, and then easily compare an extant background risk to our
chosen RTN counterpart.

The analysis generally proceeded by following three steps: (1) �nd an ap-
propriate RTN background risk ez(x), (2) note that decisions made in the
presence of ez(x) are identical to decisions made when no background risk is
present, (3) compare decisions made in the presence of some actual back-
ground risk ey(x) to those made in the presence of ez(x). In some cases, such
as Mossin's Theorem, step 3 was simply noting that ey(x) was itself RTN.
In other cases, such as when analyzing risk vulnerability, it was fairly easy
to see that ey(x) was riskier than [less risky than] ez(x) in states of the world
with low stock returns [high stock returns].

In addition to illustrating some known results, often with some additional in-
tuition, we were able to extend some extant results. For example, we showed
how Mossin's (1968a) partial myopia for dynamic investment strategies can
also hold in world where future risk-free rates are not yet known. We also
were able to allow for an income tax on all income, not just income above
the risk-free return, and still get an increase in risky investment. Moreover,
we extended these tax results to a model in which the tax rate is unknown
(i.e. random) at the time investment decisions must be made. Finally, we
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presented a more general result about risk taking behavior in the presence
of a linearly dependent background risk.

We wish to reiterate that our RTN class of background risks is not exhaustive
in the sense that other background risks might also exhibit the property of
not a�ecting decisions about the primary risk. Moreover, the RTN class of
background risks as de�ned here is parametric, based upon the individual's
HARA utility function. Still, we hope that the RTN class of background
risks as de�ned in this paper can prove useful in deriving many new results,
as well as better interpreting the intuition of many extant results.
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