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For each situation, it examines the short run in which curbside parking capacity is fixed and 
the long run in which it is a policy variable. 
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1 Introduction

When asked what policies should be applied to deal with downtown traffi c congestion, most

American economists at least would respond, “(auto) congestion pricing”. But there is much

more to the design of an effi cient downtown transportation system than getting the price

of downtown auto travel right. While no one, to our knowledge, has attempted an exact

estimate, the figure is bandied about that, on average, one-half of the full price (time and

money cost) of a downtown auto trip is the full price of parking, which includes the parking

fee and the time cost searching for parking and walking between the parking location and

the destination. This figure is likely too high, but without doubt downtown parking policy

has been neglected relative to its importance.

This paper considers a particular facet of downtown parking —downtown curbside park-

ing. In keeping with the method of transportation economics, this paper will conceptualize

curbside parking policy in terms of a two-by-two matrix, with the short run (pricing) and

long run (capacity) in one dimension, and first best (no distortions) and second best (dis-

tortions) in the other. The principles of first-best transportation pricing and capacity are

well understood, and apply straightforwardly to curbside parking. While the theory of the

second best too is well understood, its application is less straightforward since results depend

on the nature of the distortions. In the context of curbside parking, there are two principal

distortions. The first is the distortion that congestion pricing is designed to address, the un-

derpricing of auto travel. The second is the underpricing of curbside parking, which seems

to be ubiquitous in the US at least.1 In Boston for example, the curbside meter rate was

recently raised to $1.25/hr, whereas the price of garage parking downtown for an hour or

any fraction thereof averages over $10.2

Since the literature has given considerable attention to second-best policy responses to

underpriced urban auto travel, the focal question of the paper is “What is the second-best

level of curbside parking capacity when both urban auto travel and curbside parking are un-

derpriced?”To address this question, this paper investigates a stylized model of downtown

parking and traffi c congestion that builds on previous work by the authors (Arnott and Inci,

1The Netherlands is the only country we know of where curbside parking fees are on average about same
as garage parking fees (van Ommeren et al., 2012).

2There are four other distortions, which this paper abstracts from. The first is the underpricing of
employer-provided parking; the second is the preferential treatment accorded residents through resident
parking; the third is the market power conferred on private off-street parking operators (parking lots and
parking garages) through a combination of the friction of space and discrete spacing of parking garages
deriving from scale economies in their construction; and the fourth is minimum parking requirements, which
require new developments to provide a minimum number of parking spaces per unit area of floor space (which
vary according to the land use).
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2006, 2010; and Arnott and Rowse, 2009). To simplify, the model assumes that individ-

uals are identical, all travel is by car, the downtown street network is fixed and isotropic

(spatially homogeneous), and public curbside (on-street) parking is supplemented by private

garage (off-street) parking supplied elastically at unit cost, considers only the steady state,

and provides an aggregative (or, in the terminology of transportation science, macroscopic)

treatment of traffi c congestion. The paper develops the analysis diagrammatically through

an extended numerical example. Thus, its emphasis is on elucidating basic principles and

providing economic intuition rather than on obtaining general analytical results.

Underpricing curbside parking gives rise to excess demand for curbside parking. The

rationing mechanism is cruising for parking, which is costly in itself but also exacerbates

urban auto congestion. When only curbside parking is provided in equilibrium, equilibrium

occurs at the point of intersection of the demand curve for urban auto trips and the curbside

parking capacity constraint, with the density of cars cruising for parking adjusting so that

the equilibrium price is attained. When there is both curbside parking and garage parking in

equilibrium, the density of cars cruising for parking adjusts so that the full price (time and

money cost) of curbside parking equals the full price of garage parking. The complexity of

the second-best curbside parking capacity problem is hinted at by observing that there are

two different ways to eliminate cruising for parking. The first is to increase curbside parking

capacity to the point where excess demand for curbside parking is eliminated. The second

is to eliminate curbside parking. Consistent with this observation, the main results of the

paper are that, with underpriced parking: (i) when demand is low (relative to the density

of road space and curbside), only curbside parking should be provided and at the level that

just eliminates cruising for parking; (ii) when demand is high, curbside parking should be

eliminated, with all parking taking place in private parking garages; and (iii) when demand

is moderate, depending on parameter values, it may or may not be desirable to have a mix

of curbside and garage parking, and hence cruising for parking.

While this paper focuses sharply on downtown parking, some of the insights it generates

may apply to other economic situations where there are two alternative methods of acquiring

a good, one high priced with less congestion, the other low priced with more congestion. One

is the simultaneous provision of medical care by the public sector, at subsidized rates, and

by the private sector, at market-determined rates.

The paper is organized as follows. Section 2 provides a brief review of the literature on

the economics of parking. Section 3 sets the stage by adapting Walters’(1961) model of

highway traffi c congestion to downtown traffi c congestion without parking. Section 4 adds

curbside parking but not garage parking, considering both the first best and the second best,
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and both the short run and the long run. Section 5 extends the analysis to the simultaneous

provision of curbside parking and private garage parking. Section 6 concludes. An (online)

appendix investigates the stability of the various equilibria.

2 Literature Review

Donald Shoup deserves much of the credit for raising awareness of the many policy issues

related to parking. Since the 1980’s, he has been crusading for cashing out free and heavily

subsidized employer-provided and curbside parking, and for eliminating minimum parking

requirements. The best point of entry into the literature on parking is his magisterial book,

The High Cost of Free Parking (Shoup, 2005), which not only advocates policy changes, but

also provides a wealth of information and data related to parking. Lots of Parking: Land

Use in a Car Culture (Jakle and Sculle, 2004) provides an informative history of parking in

the US.

The economic study of parking has been hampered by a lack of systematic data. There

is plenty of fragmentary data from parking studies of downtown neighborhoods or small

downtown areas, but only very recently have data started to be collected systematically on

parking turnover and occupancy rates over the course of the day and over an entire down-

town area. Prompted by Shoup’s advocacy, the City of San Francisco has undertaken a large

experiment, SFpark (http://sfpark.org), to ascertain the effects of gradually raising down-

town curbside meter rates, differentiated by neighborhood and time of day, so as to achieve

a common target curbside occupancy rate of 85%. Detailed data are being collected and

are publicly available, but, to our knowledge, no academic studies analyzing them have yet

been published. Also, Jos van Ommeren has been entrepreneurial in his collection of parking

data in the Netherlands. Kobus et al. (forthcoming) used comprehensive parking data for

the city of Almere in the Netherlands, where the price of all parking in the central business

district is regulated, to study car drivers’choice between curbside and garage parking; van

Ommeren et al. (2012) used data from the Dutch National Travel Survey to estimate the

determinants of the time spent cruising for parking; and van Ommeren et al. (2011) and van

Ommeren and Wentink (2012) employ two other databases to study other empirical aspects

of parking in the Netherlands.

With few empirical regularities to guide the economic modeling of downtown parking,

there has tended to be a proliferation of models, each addressing a different subset of features

of downtown parking. These features include: (1) parking and rush-hour traffi c dynamics
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(Arnott, de Palma, and Lindsey, 1991; Qian, Xiao, and Zhang, 2012), (2) curbside parking

(Arnott and Inci, 2006, 2010; Arnott and Rowse, 2009), (3) off-street/garage parking, in-

cluding spatial competition between parking garages (Anderson and de Palma, 2004, 2007;

Calthrop and Proost, 2006; Arnott and Rowse, 2009), (4) parking and land use, including

minimum parking requirements (Shoup, 1999; Anderson and de Palma, 2007; Cutter and

Franco, 2012; Hasker and Inci, 2012), (5) cruising/searching for parking (Arnott and Rowse,

1999; Calthrop, 2001; Anderson and de Palma, 2004; Shoup, 2005, Part II; Arnott and

Inci, 2006, 2010), (6) parking and traffi c congestion (Arnott and Inci, 2006, 2010; Arnott

and Rowse, 2009), (7) the subsidization of parking, including employer-provided parking,

validated parking, and resident parking, (8) parking and modal choice, including the treat-

ment of mass transit (Arnott and Rowse, 2012), (9) parking as a source of local public

revenue (Shoup, 2005, Ch. 19), (10) parking and visit duration (Glazer and Niskanen, 1992;

Calthrop and Proost, 2006), (11) parking for freight delivery, (12) curbside parking time

limits (Calthrop and Proost, 2006; Arnott and Rowse, 2011), and (13) the political economy

of downtown parking.3

Following Vickrey (1954), the primary theme of the literature on parking economics has

been that effi ciency requires that parking be priced at its social opportunity cost, just like

any other commodity. A secondary and related theme has been that, with effi cient pricing,

standard investment rules should be applied to determine optimal parking capacity. Most

models have assumed identical individuals, though Arnott and Rowse (2012) considered some

complications arising from heterogeneity. Some models have considered an isotropic down-

town area (e.g., Calthrop and Proost, 2006; Arnott and Inci, 2006); others have considered

parking relative to a central location (e.g., Arnott, de Palma, and Lindsey, 1991; Anderson

and de Palma, 2004; Qian, Xiao, and Zhang, 2012); and none to date has considered park-

ing on an explicit street network. All models have ignored aggregate uncertainty, and only

papers by the authors have considered parking capacity. Among those papers that treat

traffi c congestion, some have assumed bottleneck congestion (e.g., Arnott, de Palma, and

Lindsey, 1991; Qian, Xiao, and Zhang, 2012), and others classic flow congestion (Arnott and

Inci, 2006, 2009; Arnott and Rowse, 2009, 2011, 2012). There is, of course, a substantial

literature in transportation on parking, most of which considers engineering aspects, such as

the design of curbside parking meters, parking garages, and parking information systems.

3Parking for freight delivery and the political economy of downtown parking have been discussed in
passing in the economics literature, but, to our knowledge, no paper has been published in the economics
literature that focuses on either. van Ommeren and Wentink (2012) provides an empirical estimation, based
on social surplus analysis, of the deadweight loss due to resident parking.

6



3 Downtown Traffi c Congestion with No Parking

To set the stage for further analysis, we start by adapting Walters’ (1961) familiar dia-

grammatic analysis of highway congestion to downtown traffi c. For the moment, we ignore

downtown parking, essentially assuming that parking is costless. We assume that downtown

is isotropic; one can imagine a boundless Manhattan network of one-way streets. We also

assume that drivers are identical and that the demand for trips initiated per unit area-time,

D, is stationary and is a function of the full price of a trip, F :

D = D (F ) . (1)

To simplify we ignore the money costs of travel. Thus, the user cost of a trip, UC, equals

the travel time cost of a trip, which equals the trip length, m, times travel time per mile, t,

times the value of time, ρ:

UC = ρmt . (2)

Travel time per mile, t, is an increasing function of V , the density of traffi c per unit area,

namely, t = t(V ), with t′ > 0, t′′ > 0, and with t(0) > 0 being free-flow travel time. In order

to distinguish the full price of a trip and the user cost, we assume that a toll of size τ is

applied, so that the full price of a trip equals the user cost plus the toll:

F = UC + τ . (3)

In steady state, the number of trips initiated per unit area-time equals the number of

trips terminated per unit area-time. We refer to this as the steady-state condition, and the

steady-state number of trips per unit area-time as throughput,4 and denote it by r. The

steady-state number of trips initiated per unit area-time is given by the demand function.

The steady-state number of trips terminated per unit area-time equals traffi c density divided

by the length of time each car spends in traffi c, mt. Thus, the steady-state condition is

r = D (ρmt(V ) + τ) =
V

mt (V )
. (4)

4Throughput has units of cars per unit area-time. In steady state, throughput is the same as the entry
flow and exit flow per unit area. We avoid the term flow to avoid confusion. The fundamental identity of
traffi c flow states that flow, f , equals density times velocity. Applying that identity in the current context
gives f = V/t(V ) = mr. Throughput is the exit rate (= entry rate) from the flow of traffi c per unit area-time,
which equals flow divided by trip length.
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Figure 1: The Fundamental Traffi c Diagram applied to downtown traffi c

The equilibrium can be derived geometrically using the four-quadrant diagram of Figure

1. Quadrant II plots the relationship between user cost and traffi c density (UC = ρmt(V )).

Quadrant III shows the 45-degree line. Quadrant IV depicts the steady-state relation-

ship between throughput and density, r = V/(mt(V )) or V = V (r). Quadrant I dis-

plays three curves, the user cost curve labeled UC, which relates user cost to throughput

(UC = ρmt(V (r))), the supply curve labeled S, which relates full price of a trip to through-

put (F = UC + τ = ρmt(V (r)) + τ) and is obtained by a vertical shift of the user cost

curve by τ , and the inverse demand function, which relates willingness to pay to throughput

(D−1(F )). Equilibrium is given by the point of intersection of the demand and supply curves.

Following Vickrey, travel on the upward-sloping portion of the user cost curve is termed

congested travel, and travel on the backward-bending portion is termed hypercongested

travel. With congested travel, travel time and user cost increase with throughput. With
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hypercongested travel, travel time and user cost decrease with throughput. Congested travel

corresponds to normal travel, and hypercongested travel to traffi c jam situations.

Throughout the paper, the following specific functional forms are maintained:

D (F ) = D0F
−a (5)

t (V ) =
t0

1− V
Vj

(6)

with parameter values

a = 0.2, t0 = 0.05, Vj = 1778.17, m = 2.0, ρ = 20.0 . (7)

The units of measurement are miles, hours, and dollars. The functional forms and pa-

rameters are the same as those assumed in Arnott and Inci (2006, 2010), and the rationale

for their choices is given in Arnott and Inci (2006). Trip demand is assumed to be iso-

elastic, with demand elasticity, a, equal to 0.2 and demand intensity D0. Travel congestion

is described by Greenshields’Relation, which specifies a negative linear relationship between

velocity and density.5 In (6), t0 is free-flow travel time, which is the inverse of free-flow veloc-

ity, and Vj is jam density, which is the maximum possible density of traffi c per unit area. The

demand intensity parameter is allowed to vary, in order to examine how equilibrium changes

with demand. Figure 1 is drawn with the base case demand intensity of D0 = 3190.94. Here

and throughput the paper, the space allocated to downtown streets, and hence jam density,

is taken as exogenous.

Figure 1 shows two equilibria. At E1 traffi c flow is congested and at E2 it is hyper-

congested. There is also an equilibrium, E3, corresponding to gridlock —zero flow and an

infinite trip price —which cannot be displayed in the figure. Appendix A examines the sta-

bility of equilibria in detail. Out of equilibrium, per unit area the change in effective density

equals the entry flow minus the exit flow. According to the intuitive adjustment dynamics

that we assume, which are the same as those in Arnott and Inci (2010), the equilibrium

corresponding to the lowest point of intersection of the demand and supply curves is stable,

that corresponding to the next lowest point of intersection is unstable, and higher points

of intersection alternate between stable and unstable. Applying, this rule, E1 is stable, E2

5Greenshields’Relation has the property that flow, f = V v(D) = V/t(V ), is maximized when density
equals one-half jam density. With no on-street parking, maximum flow (or capacity flow) equals f =
Vj/(2t(Vj/2)), so that maximum throughput equals Vj/(2mt(Vj/2)) = 8890.8. At maximum flow, velocity
is one-half of free-flow velocity. Travel is congested when velocity exceeds one-half free-flow velocity, and is
hypercongested otherwise.
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unstable, and E3 stable.

Figure 2: Equilibrium and social optimum with no parking

Figure 2 focuses on the upward-sloping portion of the user cost curve. On this portion

of the user cost curve, marginal social cost is defined as the derivative of aggregate user cost

with respect to throughput, and equals user cost plus the congestion externality cost (the

cost to inframarginal users due to the increase in throughput slowing them down). The figure

is simply the standard textbook diagram of traffi c congestion in the context of our model.

The optimal level of throughput is that for which marginal social benefit (which coincides

with the marginal willingness to pay or inverse demand) equals marginal social cost, and is

labeled O. Because congestion is unpriced in the equilibrium, the equilibrium flow exceeds

the optimum flow. The optimum can be decentralized by imposing a toll τ ∗ equal to the

congestion externality cost, evaluated at the social optimum, and the deadweight loss from

congestion being unpriced is drawn as the shaded area AE1O.

4 Downtown Traffi c Congestion with Only Curbside

Parking

We now modify the model to take into account that drivers must park. In this section, we

rule out garage parking and consider only curbside parking. Curbside parking affects the

analysis in four ways. First, increasing the amount of curbside allocated to parking reduces
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road space available for traffi c flow, which reduces jam density.6 Second, the amount of

curbside parking constrains the throughput of the downtown traffi c network to be no more

than the curbside parking turnover rate, which we term curbside parking capacity. With P

curbside parking spaces per unit area and a visit duration of l, curbside parking capacity is

P/l. Third, drivers pay a curbside parking fee per unit time7 (the ‘meter rate’) of f . Fourth,

if there is insuffi cient curbside parking to ration the demand with the curbside parking fee,

cruising for parking occurs, and the travel time cost, which includes cruising-for-parking time

cost, adjusts to clear the market.

To simplify, we provide a crude treatment of parking search. We assume that each driver

travels to his destination block, and if a parking space is available he takes it, and if one is

not he drives around the destination block until a space opens up. Thus, curbside parking

involves no walking. Furthermore, we ignore the random variation that occurs due to the

small number of parking spaces on each block, and assume that curbside parking is either

saturated (fully occupied) everywhere, or unsaturated everywhere.

We shall first consider optimal curbside parking pricing. We shall then examine optimal

curbside parking capacity, conditional on curbside parking being effi ciently priced (first-best

capacity) and ineffi ciently priced (second-best capacity). In all our analysis, we assume that

no congestion tolling is employed. Because the distance traveled and the visit duration

are fixed, optimal pricing can be achieved by effi ciently pricing curbside parking even when

congestion pricing is not employed, which is why we refer to the optimal capacity with

effi cient curbside parking pricing as first best.8

We have already distinguished between throughput and flow. Steady-state throughput is

the rate at which trips are initiated and terminated per unit area-time. Steady-state flow is

the number of car-mls traveled per unit area-time. When cruising for parking occurs, there

is a further distinction between throughput and flow —flow includes cars that are cruising

for parking but throughput does not.

Two adjustments need to be made to the specification of the congestion technology to

accommodate curbside parking. First, it is necessary to account for the reduction in roadside

capacity due to parking. We assume that effective jam density is related to the amount of

6We assume that curbside allocated to parking reduces jam density by the same amount whatever the
occupancy rate of curbside parking. The rationale is that, under at least moderately congested traffi c
conditions, even if only one curbside parking space is occupied on one side of the block, traffi c flow is
effectively excluded from that lane for the entire block.

7To keep the analysis simple, we consider only linear curbside parking payment schedules.
8See Verhoef, Nijkamp, and Rietveld (1995), which discusses the use of parking fees as a substitute for

road pricing.
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street space allocated to traffi c flow. In particular, where Ω is the jam density with no

curbside parking, effective jam density, Vj, equals jam density times the proportion of street

space allocated to traffi c flow, 1−P/Pmax, where P is the density of curbside parking spaces
per unit area and Pmax its maximum possible value. Thus:

Vj = Ω

(
1− P

Pmax

)
. (8)

Second, the specification of the congestion technology needs to account for cars cruising

for parking and for the congestion interaction between cars in transit and cars cruising for

parking. We make the simple assumption that a car cruising for parking generates θ times

as much congestion as a car in transit. Thus, where T is the density of cars per unit area

that are in transit and C is the density of cars per unit area that are cruising for parking,

the travel time function is

t (T,C, P ) =
t0

1− T+θC
Vj

. (9)

We maintain the following parameters for the rest of the paper, which are the same as

those used in Arnott and Inci (2006, 2010) and are justified there:

θ = 1.5, Ω = 2667.36, Pmax = 11136, l = 2 . (10)

For the base case, we also assume that the curbside parking fee is $1.00/hr, so that the

parking fee for the trip is $2.00, and that curbside parking is permitted on one side of the

street everywhere, so that P = 3712 and P/l = 1856.

4.1 The short run with only curbside parking

4.1.1 First-best optimum in the short run with only curbside parking

Consider a benevolent planner who has direct control over the transportation system and its

users. She would never choose to have cruising for parking because the same throughput (and

hence the same social benefit) can be achieved at lower cost without it. Since the amount of

curbside parking is fixed, her problem is to choose throughput and in-transit traffi c density

to maximize social surplus subject to the steady-state condition and the curbside parking

capacity constraint. Where X(r) is the social benefit from throughput r (the area under the
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inverse demand curve up to this level of throughput), her maximization problem is9

max
r,T

X (r)− ρT (11)

s.t.

r =
T

mt (T, 0, P )
(i)

r ≤ P

l
. (ii)

Figure 3: First-best optimum in the short run with only curbside parking

Figure 3 displays the solutions with the assumed congestion and demand functions, and

parameter values, for two demand curves, D1 and D2, corresponding to different levels of

demand intensity. The curbside parking capacity constraint is labeled CPC. We define

the (unconstrained) short-run social marginal cost of throughput as ρ[∂T/∂r], where ∂T/∂r

is the derivative of the smaller root of T in the steady-state condition, holding P fixed

and ignoring the curbside parking capacity constraint, and label the corresponding locus as

SRMSC(r;P ).

With demand curve D1, the curbside parking capacity constraint does not bind, and the

first-best optimum, O1, is at the point of intersection of the demand and SRMSC curves.

9In writing out the various maximization problems presented in the paper, we omit the obvious non-
negativity constraints on r, T , C, P , and the density of garage parking spaces, rl − P .
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Since we have assumed that the reduction in roadside capacity caused by curbside parking

depends on the amount of curbside allocated to parking, independent of its occupancy rate,

the marginal driver generates no parking externality. Short-run marginal social cost therefore

equals user cost plus the congestion externality cost, so that the social optimum can be

decentralized by setting the parking fee over the duration of the visit equal to the congestion

externality cost, which is calculated per Figure 2.

With demand curve D2, the curbside parking capacity constraint binds, and the first-

best optimum, O2, is at the point of intersection of the demand curve and the curbside

parking capacity constraint. The short-run marginal social cost now equals the user cost plus

the congestion externality cost plus a parking scarcity rent, which is given by the vertical

distance between O2 and M , the point of intersection of SRMSC(r;P ) and CPC. The

social optimum can be decentralized by setting the parking fee over the duration of the visit

equal to the congestion externality cost plus the parking scarcity rent.

We could have proceeded alternatively by defining the capacity-constrained short-run

marginal social cost curve as the short-run marginal social cost curve for levels of throughput

below the capacity constraint, combined with that portion of the capacity constraint above

its point of intersection with the (unconstrained) short-run marginal social cost curve. The

short-run, first-best optimum then lies at the point of intersection of the demand curve and

the capacity-constrained short-run marginal social cost curve.

4.1.2 Second-best optimum in the short run with only curbside parking

There are two distortions in the second-best problem. No congestion toll can be charged,

and the parking fee is not optimal.10 The second-best optimization problem in the short run

is degenerate in that the constraints determine the solution because both the parking fee and

capacity are given. The second-best optimum is therefore the equilibrium that generates the

highest social surplus.
10A caveat is in order. In the paper, the underpricing of curbside parking is taken as an exogenous

distortion, whereas in a broader model it would be treated as endogenous. The common explanation for
the underpricing of curbside parking is that downtown merchant associations lobby hard to keep curbside
parking meter rates low so that downtown shops be more competitive with suburban shopping centers, most
of which provide free parking. This in turn raises the question of why suburban shopping centers provide
free parking. One explanation is that minimum parking requirements at suburban shopping centers are
so excessive that there is an excess supply of parking there, even at a zero price. This in turn raises the
question of why minimum parking requirements at suburban shopping centers are so excessive. And so on.
The paper’s conclusions might be altered if such considerations were taken into account. One might say
that we are committing the functionalist fallacy in reverse. The functionalist fallacy in this context is to
assume that, since the underpricing of curbside parking is so widespread, it must be for good reason. The
functionalist fallacy in reverse is to overlook that curbside parking might be underpriced for good reason.
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An equilibrium may entail unsaturated or saturated parking. Consider first equilibria

with unsaturated parking. Since parking is unsaturated, there is no cruising for parking.

The user cost is UC = ρmt(T, 0, P ) and the full price is F = UC + fl, where T satisfies the

steady-state condition. From these results, the unsaturated user cost curve for the exogenous

level of P , UC(r;P ), can be derived, which differs from the user cost curve of the previous

section only in that curbside parking reduces road capacity. At levels of throughput where

the curbside parking capacity constraint does not bind, the supply curve is obtained as the

unsaturated user cost curve shifted up by fl, and any point of intersection of the demand

curve and this portion of the supply curve is an unsaturated equilibrium.

Now consider equilibrium with saturated parking. Parking is saturated because the

curbside parking capacity constraint binds, and except in the situation where it just binds

there is cruising for parking. Equilibrium therefore entails two density variables, the density

of cars in transit and the density of cars cruising for parking, C. They are determined by

two equilibrium conditions. The first is the familiar steady-state condition modified to take

into account cruising for parking:

D(F ) =
T

mt (T,C, P )
, (12)

where the full price equals the in-transit travel time cost, plus the expected cruising-for-

parking time cost, plus the parking fee:

F = ρmt (T,C, P ) +
ρCl

P
+ fl . (13)

Since C cars are cruising for parking per unit area and since the turnover rate of curbside

parking spaces is P/l per unit area, the probability that a car cruising for parking gets a

space per unit time is P/(Cl), so that expected cruising-for-parking time is Cl/P .

The second equilibrium condition, the cruising-for-parking equilibrium condition, is that

the rate at which cars enter cruising for parking, which equals the rate at which they exit

the in-transit pool, equals the rate at which cars exit cruising for parking, which equals the

parking turnover rate:
T

mt (T,C, P )
=
P

l
. (14)

The steady-state condition and the cruising-for-parking condition provide two non-linear

equations in two unknowns, T and C. Their analysis is complex. Arnott and Inci (2006)

derive the conditions under which the two curves intersect in T -C space, and for which
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therefore there exists a saturated equilibrium. Furthermore, they prove that (with θ ≥ 1),

if a saturated equilibrium exists, it is unique. Here, we derive the properties we need for

our diagrammatic analysis through heuristic argument. We ask: What are the minimum

and maximum full prices consistent with saturated parking, and therefore with (14) being

satisfied? For a given level of P and with C = 0, (14) has two roots for T . The smaller root,

for which travel is congested, corresponds to the minimum full price, and the larger root,

for which travel is hypercongested, corresponds to the maximum full price (higher prices

correspond to traffi c jams that yield a level of throughput less than P/l).

Figure 4: Equilibria in the short run with only curbside parking

Turn to Figure 4. First, plot the unsaturated user cost curve for the level of P corre-

sponding to the curbside parking capacity constraint. Second, shift this curve up by fl,

yielding the unsaturated full price curve. Third, draw in the curbside parking capacity con-

straint. The portion of the unsaturated full price curve to the right of the curbside parking

capacity constraint is not relevant to the analysis. The supply curve has three parts, the

upward-sloping and backward-bending portions of the unsaturated full price curve to the

left of the curbside parking capacity constraint, and the portion of the curbside parking con-

straint between these two portions of the unsaturated full price curve. One may alternatively

obtain the supply curve as the capacity-constrained user cost curve (defined analogously to

the capacity-constrained marginal social cost curve), shifted up by fl.

Figure 4 shows three demand curves, each corresponding to a different level of demand
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intensity. While not obvious from the diagram, for all three demand curves, gridlock is an

equilibrium. With gridlock, the steady-state condition is satisfied since the entry and exit

flows are both zero, and parking is unsaturated. With low demand intensity (demand curve

D1 with D0 = 2000), there are three equilibria: E1, which is unsaturated, congested, and

stable; E2, which is unsaturated, hypercongested, and unstable; and the gridlock equilibrium.

With medium demand intensity (demand curve D2 with D0 = 3000), there are again three

equilibria: E ′1, which is saturated and stable, and may be either congested or hypercongested;

E ′2, which is unsaturated, hypercongested, and unstable; and the gridlock equilibrium. With

high demand intensity (demand curve D3 with D0 = 4000), the equilibria corresponding to

E1 and E2 disappear, with only the gridlock equilibrium remaining. Social surplus equals

consumer surplus plus curbside meter revenue. For each of the three demand curves, both

consumer surplus and curbside meter revenue are highest at the equilibrium corresponding

to the lowest full price. Thus, for the three demand curves, the short-run second-best optima

are E1, E ′1, and the gridlock equilibrium, respectively.

Consider the equilibrium E ′1 in more detail. In this saturated equilibrium, the stocks of

cars in transit and cruising for parking adjust to clear the market, such that the full price is

at the point of intersection of the demand curve and the curbside parking capacity constraint.

The equilibrium values of T and C are 444 and 392, which imply a velocity of 8.36 mph and

hence hypercongested travel. The full price of a trip is $11.03, of which $4.78 is in-transit

travel time cost, $4.24 is expected cruising-for-parking time cost, and $2.00 is the curbside

parking fee. The deadweight loss associated with ineffi cient pricing in this equilibrium equals

social surplus at the first-best optimum minus social surplus in the equilibrium. The first-

best optimum is also at E ′1, and has T = 211 and C = 0, and in-transit travel time cost of

$2.27. Thus, the deadweight loss is $6.75 per driver and $12500 per ml2-hr. The first-best

optimum can be decentralized by charging each driver $8.75 for curbside parking for the two

hours, which is achieved with a curbside parking fee of $4.37/hr.

Raising the parking fee causes the supply curve to shift up by the increase in the parking

payment. When the parking fee is raised to a level between $1.00/hr and $4.37/hr, the

equilibrium remains at E ′1. Raising the parking fee over this range has no effect on the

equilibrium full price but results in increased parking fee revenue. Thus, the extra revenue

is raised with zero burden. An obvious question is then why local governments choose to

forgo such an effi cient source of revenue.
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4.2 The long run with only curbside parking

4.2.1 First-best optimal curbside parking capacity with only curbside parking

When curbside parking is saturated, increasing curbside parking capacity by a small amount

has two effects, one positive and one negative. The positive effect is to raise throughput

and hence the social benefit from travel, the area under the demand curve and to the left

of the curbside parking capacity constraint. The negative effect is to reduce the amount of

road space available to traffi c flow, which causes the unsaturated user cost curve to rise. At

first-best optimal capacity, the two effects balance at the margin.

We now develop a geometric construct to determine first-best curbside parking capacity.

Return to Figure 3. What is the cheapest way of achieving throughput of 1856? M indicates

the point of intersection of SRMSC(r;P ) and the curbside parking capacity constraint

r = P/l. It therefore corresponds to the point SRMSC(P/l;P ). It is also at the lower

kink point of the capacity-constrained short-run marginal social cost curve corresponding to

r = P/l. If parking capacity is reduced slightly, the throughput of 1856 cannot be achieved.

If parking capacity is increased slightly to P + dP , the throughput of 1856 can be achieved

but at a higher social cost, since SRMSC(r;P ) lies below SRMSC(r;P + dP ). Thus, M

gives the minimum marginal social cost associated with the throughput of 1856. At M ,

curbside parking is saturated and there is no parking scarcity rent.

Figure 5: Construction of the long-run marginal social cost curve with only curbside parking

There is a point corresponding toM for every level of throughput, up to some maximum

18



level of throughput, rmax. Joining these points gives the long-run marginal social cost curve,11

LRMSC. Here, rmax is the maximum level of throughput that can be accommodated on

downtown streets, and is that level of throughput for which the curbside parking capacity

constraint is tangent to the corresponding user cost curve. Figure 5 indicates how two points

on the LRMSC curve are obtained, the point M corresponding to r = P/l = 1856 and the

point M ′ corresponding to r = P ′/l = 2008, as well as how rmax is determined.

Figure 6: The first-best optimal curbside parking capacity with only curbside parking

Figure 6 displays the social optimum corresponding to a demand intensity of 2500. The

socially optimal level of throughput, r∗ = 2008, is given by the point of intersection of

the corresponding demand curve and LRMSC(r), O (= M ′ in Figure 5) in the diagram,

first-best optimal capacity is P ∗ = r∗l = 4015, and LRMSC(r∗) = $2.99. Decentralization

of the social optimum entails charging a parking fee that solves f ∗(r∗)l = LRMSC(r∗) −
UC(r∗; r∗l).

11Long-run social cost is ρT . Thus, long-run marginal social cost equals ρ(dT/dr), where dT/dr is
the change in T induced by a change in r such that: (i) the steady-state condition is satisfied; and (ii)
parking capacity is increased along with r such that the curbside parking capacity constraint just binds.
Let T (r, P ) denote the lower value of T satisfying r = T/(mt(T, 0, P ). Then, LRMSC(r) = ρdT/dr =
ρ(∂T/∂r) + ρ(∂T/∂P )(dP/dr) = ρ(∂T/∂r) + ρl(∂T/∂P ). Here, ρ(∂T/∂r) − UC(r, P ) is the congestion
externality cost, and ρl(∂T/∂P ) is the parking externality cost. When throughput is increased by one unit,
the number of curbside parking spaces increases by l units. This reduces the road space available for traffi c
flow and hence increases congestion. The parking externality cost is the increase in aggregate in-transit
travel time costs associated with this increased congestion.
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4.2.2 Second-best optimal curbside parking capacity with only curbside parking

The distortions in the second best are the absence of congestion tolling and the underpricing

of curbside parking. The way we shall proceed is to determine whether, at a short-run

second-best optimum, social surplus is increased or decreased with an increase in curbside

parking capacity. Recall that social surplus equals the sum of consumer surplus and curbside

parking fee revenue. Turn back to Figure 4. The short-run second-best optimum occurs at

the lowest point of intersection of the supply curve and the demand curve. For the moment,

assume that the price associated with this point of intersection is finite. If the short-run

second-best optimum is saturated and has cruising for parking, social surplus is increased by

increasing curbside parking capacity. The vertical portion of the supply curve shifts to the

right, resulting in an increase in throughput, and hence an increase in both consumer surplus

and parking fee revenue. If the short-run second-best optimum is unsaturated, social surplus

is increased by decreasing curbside parking capacity. There are two cases to consider, that

where the short-run second-best optimum lies on the upward-sloping portion of the supply

curve, and that where it lies on the backward-bending portion. Consider the former case

first. Decreasing curbside parking capacity shifts the upward-sloping portion of the supply

curve down, resulting in an increase in throughput, and hence an increase in both consumer

surplus and parking fee revenue. Now consider the latter case, where the short-run second-

best optimum lies on the backward-bending portion of the supply curve. Reducing curbside

parking capacity causes the unsaturated portion of the supply curve to shift to the right.

Since, at the short-run second-best optimum, the demand curve is flatter than the backward-

bending portion of the supply curve, the equilibrium moves down the demand curve, again

increasing social surplus. Thus, long-run second-best optima have the property that the

capacity constraint just binds.

This result points to a method for determining second-best throughput and capacity,

analogous to that employed in the previous subsection. Plot the UC(r; rl) curve, along

which the capacity constraint just binds. Shifting the curve up by fl generates the long-run

supply curve, LRS(r). The long-run second-best optimal throughput, r∗∗, corresponds to

the point of intersection of the demand curve and the long-run supply curve with the highest

level of throughput. And second-best optimal capacity equals P ∗∗ = r∗∗l. Figure 7 displays

this construction, and second-best optimal capacity when D0 = 2500. Here, r∗∗ = 1870,

P ∗∗ = r∗∗l = 3740, and LRS(r∗∗) = $4.27.

The relationship between the first- and second-best optimal capacities can be inferred

from Figure 8, which plots the LRMSC(r), LRS(r), and the demand curve. With both
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Figure 7: Second-best optimal curbside parking capacity in the long run with only curbside
parking

first- and second-best optimal capacities, the curbside parking capacity constraint just binds.

Thus, parking capacity equals throughput times visit length, so that the analysis can be con-

ducted in terms of throughput. The long-run first-best optimum is at the point of intersection

of LRMSC(r) and the demand curve, and the long-run second-best optimum is at the point

of intersection of LRS(r) and the supply curve.

Consider first the case where the demand curve intersects the long-run supply curve on

its upward-sloping portion. There are two sub-cases. In the first (“low”demand), which

corresponds toD1, E1, and O1 in the figure, at a price of $1/hr curbside parking is overpriced,

so that the LRS curve lies above the LRMSC curve, and P ∗ > P ∗∗. In the second sub-case

(“moderate”demand), which is not shown in the figure, at a price of $1/hr curbside parking

is underpriced, so that the LRS curve lies below the LRMSC curve, and P ∗ < P ∗∗.

Consider next the case (“high” demand) where the demand curve intersects the long-

run supply curve on its backward-bending portion. The second-best optimum lies at the

lower point of intersection of the two curves, E2 in the figure. In the numerical example, at

the second-best optimal level of throughput, LRMSC is greater than LRS, implying that

curbside parking is underpriced and P ∗ < P ∗∗. It is possible that at the second-best optimal

level of throughput LRMSC is less than LRS, implying that curbside parking is overpriced

and P ∗ > P ∗∗. Note that over the range of demand intensities for which this case applies,
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Figure 8: The relationship between first- and second-best optimal curbside parking capacity
in the long run with only curbside parking

as demand intensity increases, second-best parking capacity falls.

At “very high” levels of demand intensity, the demand curve intersects the long-run

supply only with gridlock. The second-best level of curbside parking capacity is zero and

P ∗ > P ∗∗.

This discussion leads to two central results. First, at any long-run second-best optimum,

parking is saturated but there is no cruising for parking. And second, second-best curbside

parking capacity exceeds first-best curbside parking capacity when curbside parking is un-

derpriced at the long-run second-best optimum, and falls short of first-best curbside parking

capacity when curbside parking is overpriced at the second-best optimum.

5 Downtown Traffi c Congestion with Both Curbside

and Garage Parking

In the downtowns of towns and small cities, there is typically enough parking space curbside

to accommodate demand without severely impeding traffi c flow. But in most locations

where traffi c congestion is significant, curbside parking needs to be supplemented by off-

street parking, whether in a parking lot or garage.
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We shall treat off-street parking —which we shall refer to generically as garage parking

—in the simplest possible way, by assuming that it is provided continuously over space by

the private sector at a cost of c = $2.5/hr per space. In fact, in the downtowns of major

metropolitan areas, there is typically an irregular grid of parking garages, some public, some

private, which engage in spatial competition with one another. Arnott and Rowse (2009)

model this spatial competition, taking into account the technology of garage construction.

But, here, we provide a simpler treatment,12 in order to simplify analysis.

5.1 First-best optimal curbside parking capacity with both curb-

side and garage parking

The full first-best problem is to maximize social surplus subject to the steady-state con-

dition, and with respect to r, T , and P . Social surplus equals social benefit minus social

cost. For a particular level of throughput, social benefit equals the area under the demand

curve up to that level of throughput, and social cost equals aggregate in-transit travel time

cost and aggregate garage parking cost. In the first best, effi cient supply can be analyzed

independently of the level of demand. In the first stage, for each level of throughput, the

planner decides on the combination of curbside and garage parking that minimizes aggregate

cost. In the second stage, she decides on the surplus-maximizing level of throughput.

We start by treating the first stage. Three marginal social cost curves can be obtained at

this stage: MSC1 is the marginal social cost curve for régime 1, where only curbside parking

is provided; MSC2 is the marginal social cost curve for régime 2, where both curbside and

garage parking are provided; andMSC3 is the marginal social cost curve for régime 3 in which

only garage parking is provided. Régime 1 is defined only for the interval of throughputs

that are achievable when only curbside parking is provided. Régime 2 is defined only for

that interval of throughputs for which a mix of curbside and garage parking is effi cient. And

régime 3 is defined only for that interval of throughputs that are achievable when only garage

parking is provided.

The maximum level of throughput consistent with only curbside parking, which was

labeled rmax in Section 4.2.1, is the largest value of r satisfying the steady-state condition, and

is therefore solved asmaxr,T r subject to the constraint r = T/(mt(T, 0, rl). In the numerical

12We could alternatively assume that there is an upward-sloping supply schedule for garage parking. If
the supply schedule starts at a price below a zero price, then some garage parking is always provided, and
the dichotomy between low-demand situations where garage parking is not provided and higher-demand
situations in which it is disappears.
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example, this maximum value is 3034. Any level of throughput up to this maximum value

is consistent with only curbside parking. The maximum level of throughput consistent with

only garage parking is the largest value of r satisfying the steady-state condition, and is

therefore solved as maxr,T r subject to the constraint r = T/(mt(T, 0, 0). In the numerical

example, this maximum value is 6668. Any level of throughput up to this maximum value

is consistent with only garage parking.

The analysis of régime 2 is more complex. Resource costs with throughput r areRC2(r) =

ρT+c(rl−P ). These resource costs are minimized subject to the steady-state condition, with

respect to T , r, and P . Régime 2 applies only in the interval of throughputs for which the

first best entails both curbside and garage parking (i.e. for which the maximizing P is strictly

greater than zero and strictly less than rl). The minimum throughput consistent with this

requirement is 2936, and the maximum throughput consistent with this condition is 6212.

For low levels of throughput, below 2936, providing only curbside parking is effi cient. For

intermediate levels of throughput, above 2936 and below 6212, providing a mix of curbside

and garage parking is effi cient. And for high levels of throughput, above 6212, providing

only garage parking is effi cient.

Figure 9, Panel A displays the average and marginal cost curves for each of the three

régimes. The average cost curve, ASC, is the lower envelope of the régime-specific average

cost curves. Each régime-specific average and marginal cost curve is drawn as a solid line for

the interval of throughputs over which the régime is average-cost minimizing. The régime 1

and 3 marginal cost curves over the interval of throughput where they are defined but not

average-cost minimizing are drawn as dashed lines; régime 2, meanwhile, is defined only over

the interval of throughput where it is average-cost minimizing. ASC1(r) is ρT/r, where T

is the smaller root satisfying r = T/(mt(T, 0, rl)). MSC1(r) is the same as LRMSC(r) in

Figure 6. Both the régime 1 average and marginal social cost curves are upward sloping

since an increase in r is associated with both higher traffi c density and reduced road space

for travel. ASC2(r) is ρT/r + c(rl − P (r))/r, where T is the smaller root satisfying r =

T/(mt(T, 0, P (r)) and P (r) is the average-cost minimizing curbside parking capacity as a

function of throughput. The régime 2 marginal social cost curve is horizontal.13 ASC3(r)

13This result is due to a property of the travel time (congestion) function, that travel time is increasing
in the ratio of traffi c density to effective jam density, T/(Vj(1 − P/Pmax)) or TPmax/Vj(Pmax − P ) ≡ ξ.
With this property, t(T, 0, P ) = t̂(ξ(T, P )), and tT = t̂′ξ/T and tP = t̂′ξ/(Pmax − P ). In this régime, the
cost minimization problem is minT,P ρT + c(rl − P ) subject to r = T/(mt(T, 0, P ). Letting λ denote the
Lagrange multiplier on the constraint, the first-order conditions for T is ρ−λr(1/T − tT /t) = 0 and for P is
−c+λrtP /t = 0. It turns out that in this régime, it is cost-minimizing to increase r by increasing T in direct
proportion to r, which implies that t and hence ξ remains unchanged, which in turn implies that Pmax − P
increases in direct proportion to r. Rewriting the first-order condition for T as ρ − λ(r/T )(1 − tTT/t) =
ρ − λ(r/T )(1 − t̂′ξ/t) = 0 and that for P as −c + λrtP /t = −c + λ(r/(Pmax − P )(t̂′ξ/t) = 0, it can be
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Figure 9: Marginal cost, average cost, and marginal benefit curves in the first-best optimum
with both curbside and garage parking

is ρT/r + cl, where T is the smaller root satisfying r = T/(mt(T, 0, 0)), and MSC3(r) is

upward sloping since an increase in r is associated with higher traffi c density.

seen that the first-order conditions continue to be satisfied when r is increased in the manner indicated, and
furthermore that λ, marginal social cost, remains constant.
In the example, a unit increase in throughput is accompanied by a reduction in the number of curbside

parking spaces of 1.79, and hence results in an increase in the number of garage parking spaces of 3.79, and
an increase in the cost of garage spaces of $9.48. Furthermore, since T increases in direct proportion to r,
the increase in total in-transit travel cost equals the increase in in-transit cost of the added driver, which
has a cost of $3.17. Thus, the marginal social cost equals $12.65.
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Figure 9, Panel B displays the social optimum at three levels of demand intensity, a low

demand intensity (D0 = 3000) social optimum where only curbside parking is optimal, Ofb
1 ,

a medium demand intensity (D0 = 6000) social optimum where a mix of curbside and garage

parking is optimal, Ofb
2 , and a high demand intensity (D0 = 11000) social optimum where

only garage parking is optimal, Ofb
3 . Figure 10 shows the relationship between P and D0

(quadrant I), P and r (quadrant II), and r and D0 (quadrant IV), as D0 changes, for each

of the three régimes and for the full optimum (shown as highlighted curves). Note that all

the functions are continuous.

Note: Highlighted paths denote optimal régimes.

Figure 10: Régimes in the first-best optimum with both curbside and garage parking

We now discuss decentralization of the first best. One scheme that works is for the planner

to set a congestion toll equal to the congestion externality cost and the curbside parking fee

equal to the parking externality cost, both evaluated at the social optimum, and to choose

the optimal curbside parking capacity, leaving it to individuals to decide how frequently

to travel and to the private sector to decide on the garage parking fee and the number of

garage spaces. Since garage parking is continuously produced over space at constant unit

cost, competition between garage operators results in the equilibrium garage price equaling
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this unit cost. When the optimum entails only curbside parking, the full price of an auto trip

equals its social cost, so that individuals choose the optimal number of trips. Furthermore,

since only curbside parking is provided, the full price of curbside parking falls short of the

full price of garage parking, so that there is no demand for garage parking and hence no

garage parking supplied by the private sector. When the optimum entails both curbside and

garage parking, their shadow prices are the same, as are the corresponding full prices that

individuals face when the government sets the congestion toll and curbside parking fee at

the appropriate level in the absence of cruising for parking. If explicit congestion tolling is

infeasible, the social optimum can still be achieved by raising the curbside fee and imposing

a tax on garage parking, both by the amount of the optimal congestion toll. Thus, the full

price of curbside parking equals the full price of garage parking, and drivers face the marginal

social of a trip, evaluated at the social optimum, and so choose the optimal number of trips.

Furthermore, garage parking operators choose to provide the socially optimal amount of

garage parking; if they provide less, there is excess demand for parking, which induces an

increase in the quantity supplied, and if they provide more, there is excess supply, which

induces a decrease in the quantity supplied. Finally, since the full prices of curbside and

garage parking are equal, and since the quantity of parking supplied equals the quantity of

parking demanded, curbside parking is saturated and there is no cruising for parking.

5.2 Second-best optimal curbside parking capacity with both curb-

side and garage parking

In the second best, the government decides on curbside parking capacity, with the curbside

parking fee set exogenously, with no congestion toll applied, and with the private sector

deciding the garage parking fee and garage parking capacity. The analysis is considerably

more diffi cult than for the first best. First, when curbside and garage parking are simultane-

ously provided in equilibrium, if the curbside parking fee is less than the garage parking fee,

then the stock of cars cruising for parking adjusts to equilibrate the full prices of curbside

and garage parking. Second, the second-best analysis does not permit the neat separation

of supply and demand that occurred in the first-best analysis. The first-best analysis pro-

ceeded in two stages: first, for every level of throughput, the mix of curbside and garage

parking that minimizes social cost was calculated (Figure 9, Panel A); and second, adding a

demand function, the full optimum was determined by the intersection of the demand curve

and the relevant marginal social cost curve (Figure 9, Panel B). In the second-best analysis,

in contrast, the private sector provides garage parking when and only when it is profitable
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for it to do so, which depends on the level of demand.

We shall proceed by first examining equilibrium in the short run, in which curbside

parking, though not garage parking, is fixed. This will provide insight into how to formulate

the government’s second-best choice of curbside parking capacity, as a function of the level

of demand intensity.

5.2.1 The short run with both curbside and garage parking

We define a short-run equilibrium to be an equilibrium in which curbside parking is fixed but

in which the amount of garage parking is variable, being decided by the private sector. We

assume that curbside parking is priced below the unit cost of garage parking (which is the

normal case in the US though not in all of Western Europe), and that the government does

not tax or subsidize garage parking. As in the short-run equilibrium analysis of the previous

section, the government has no policy instruments at its disposal, so that the second-best

optimization problem is degenerate, with the short-run second-best optimum coinciding with

one of the short-run equilibria.

When there are both curbside and garage parking, drivers choose whichever is cheaper.

Thus, when the curbside parking fee is less than the garage parking fee, and when the private

sector chooses to provide garage parking, the stock of cars cruising for parking adjusts so

that the full prices of curbside and garage parking are equalized. Since the full price of

curbside parking is fl+ ρCl/P and that of garage parking is cl, the full prices are equalized

when

fl + ρ
Cl

P
= cl . (15)

We term this the full price equalization condition. Rearranging gives

C = (c− f)
P

ρ
≡ Ĉ . (16)

Thus, when both curbside and garage parking are provided in equilibrium, the stock of

cars cruising for parking increases in proportion to the differential between the garage and

curbside parking fee and to the density of curbside parking spaces. This yields the obvious

but important point that cruising for parking does not occur when no curbside parking is

provided.

We start by defining three different short-run full price curves, as functions of the level of

throughput. The first corresponds to the situation where there is no garage parking and no
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cruising for parking. We have defined régime 1 to be the régime in which there is no garage

parking, whether or not there is cruising for parking. We define régime 1A to correspond

to situations in which there is no garage parking and there is no cruising for parking, and

régime 1B to correspond to situations in which there is no garage parking and there is

cruising for parking. The full price in régime 1A is F1A = ρmt(T, 0, P ) + fl. Applying the

steady-state condition per the construction of Figure 4 generates a locus relating r to F1A,

which we refer to as the régime 1A short-run full price curve. The full price in régime 2

is F2 = ρmt(T, Ĉ, P ) + cl = ρmt(T, Ĉ, P ) + ρĈl/P + fl, where Ĉ is given by (15), from

which the régime 2 short-run full price curve is constructed. The full price in régime 3 is

F3 = ρmt(T, 0, 0) + cl, from which the régime 3 short-run full price curve is constructed.

Figure 11: Equilibria with both curbside and garage parking

Figure 11 is like Figure 4, but adds garage parking. Since curbside parking is provided,

the figure does not treat the situation where only garage parking is provided. The figure

displays three loci, the régime 1A full price curve, the régime 2 full price curve, and the

curbside parking capacity constraint, P/l = 1856. Because there are Ĉ cars cruising for

parking in régime 2, but none in régime 1A, the régime 2 full price curve has a higher F -

intercept than the régime 1A full price curve and a lower maximum throughput. The two

full price curves may or may not intersect; if they do, at an intersection point, travel in

régime 1A is hypercongested while that in régime 2 may be congested or hypercongested.

For levels of throughput below the curbside parking capacity constraint, curbside parking is

unsaturated, so that it is unprofitable for the private sector to provide garage parking, and

the régime 2 full price curve is drawn as a dashed curve since it is inapplicable. For levels
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of throughput above the curbside parking capacity constraint, both curbside and garage

parking are provided, and the régime 1A full price line is drawn as a dashed curve since it is

inapplicable.

The supply curve, shown as the bold curve in the figure, contains five portions: the

portion of the régime 2 full price curve to the right of CPC; the two portions of the régime

1A full price curve to the left of the CPC, one upward-sloping, the other backward-bending;

and the two segments of the CPC, each joining the régime 1A and régime 2 full price curves.

The last two segments corresponds to situations in which the curbside parking rent is positive,

but not suffi ciently high to make private sector provision of garage parking possible, and in

which therefore there is only curbside parking and there is cruising for parking (these two

segments therefore correspond to the régime 1B full price curve).

The demand curve in the figure is drawn forD0 = 3300. Equilibria correspond to points of

intersection of the demand and supply curves. With this level of demand intensity, there are

five equilibria, one of which, the gridlock equilibrium, is not displayed on the diagram. These

equilibria alternate between stable and unstable. There are three stable equilibria. One is the

gridlock equilibrium; the second, E7, is a hypercongested equilibrium with saturated curbside

parking, a stock of cars cruising for parking below Ĉ, and no garage parking; and the third,

E5, is a congested equilibrium with saturated parking, a stock of cars cruising for parking

equal to Ĉ, and garage parking.14 Among the equilibria, E5 has the highest social surplus,

and is therefore the short-run second-best optimum. It has the highest level of throughput,

hence the lowest full price, and hence the highest consumer surplus. Furthermore, curbside

parking is saturated, so that curbside parking fee revenue is maximized.

Figure 11 illustrates an important point. Starting at E5, raising the curbside meter rate

does not change the full price of garage parking, cl, but via (16) causes the stock of cars

cruising for parking to fall. Cruising-for-parking time costs fall dollar for dollar with the

increase in the curbside meter revenue. The decrease in the stock of cars has the added

benefit that in-transit travel costs fall. Thus, raising the curbside meter rate generates an

increase in social surplus exceeding the curbside meter revenue collected. The increased

revenue is therefore raised with negative burden! Raising the meter rate from $1.00/hr to

14It can be shown that with D0 = 3300, the short-run, first-best social optimum conditional on P/l =
1856 entails only curbside parking. Per capita resource cost at this social optimum is $2.36, calculated as
ρmt(T, 0, P ) where T is the smaller root solving r = T/(mt(T, 0, P )). With this information, Figure 11 can
be applied to calculate the deadweight losses associated with the various short-run equilibria. Since the level
of throughput is the same in E7 as in the first-best, short-run social optimum, the deadweight loss associated
with it equals the amount per driver resource cost minus $2.36, times 1856 drivers per ml2-hr, which can be
shown to equal $26474 per ml2-hr. The deadweight loss associated with E5 can be shown to equal $8488 per
ml2-hr.
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$2.50/hr generates $5568 per ml2-hr in extra curbside meter revenue and an increase in social

surplus of $8488 per ml2-hr.

Figure 12: Bifurcation diagram

Figure 12 displays a bifurcation diagram, relating the level of throughput to demand

intensity for each of the various equilibrium types, with P/l = 1856. The subscripts on

the Es denote the type of equilibrium. Equilibria of type 4 are unsaturated and lie on the

upward-sloping portion of the supply curve; an example is shown as E1 in Figure 4 (not to

be confused with equilibria of type 1, denoted by E1 in Figure 12). Equilibria of type 1 are

saturated, and lie on CPC; an example is shown as E ′1 in Figure 4. Equilibria of type 3

are gridlock equilibria. All the other equilibrium types are illustrated in Figure 11. Observe

that at all levels of demand intensity, the short-run second-best optimum is the equilibrium

with the highest level of throughput. This equilibrium has the highest consumer surplus,

and its curbside meter revenue is always at least as high as that of the other equilibria.

When the government provides no curbside parking, the supply function is the régime 3

full price curve, and the short-run second-best optimum is the equilibrium (corresponding to

points of intersection of the demand and supply curves) with the highest level of throughput

(since it has higher consumer surplus than the other equilibria, and since curbside parking

revenue is zero in all the equilibria). The above constructive procedure generates the short-

run second-best social surplus function for all levels of P .
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5.2.2 The long run with both curbside and garage parking

The previous subsection solved for the short-run (conditional on P ), second-best social sur-

plus as a function of demand intensity: SRSSSB(D0;P ). In this section, we solve for long-run

second-best social surplus and curbside parking capacity as functions of demand intensity.

One procedure is to solve for the long-run social surplus function as the upper envelope of

the corresponding short-run functions: LRSSSB(D0) = maxP SRSSSB(D0;P ), from which

second-best optimal curbside parking capacity as a function of D0 can be solved for. This

procedure is sound but ineffi cient. Another procedure is to solve a grand social surplus max-

imization problem. There are two diffi culties. The first is how to impose the constraint that

the full price equilibrium condition, C = (c − f)P/l, applies in régimes 2 and 3 but not in

régime 1. One can do so by writing (rl−P )(C − (c− f)P/l) = 0, but existing optimization

packages are not designed to deal with constraints in this form. The second diffi culty is how

to impose the constraint that the private sector rather than the planner chooses how much

garage parking to provide.

We proceed by adapting the second procedure. To deal with the second diffi culty, we

shall ignore the constraint that the private sector rather than the planner chooses how much

garage parking to provide, and then argue that the constraint is not binding at the social

optimum. To deal with the first diffi culty, we shall solve separately for long-run social surplus

functions specific to each of the three régimes, imposing the full price equilibrium condition

only on the régime 2 social surplus maximization problem, and then obtain the long-run

social surplus function as the upper envelope of the régime-specific social surplus functions.

Régime 1 obtains when there is only curbside parking. Second-best social surplus for

régime 1, as a function of demand intensity, is obtained from the following constrained

optimization problem:

max
r,T,C,P

X (r)− ρ (C + T ) (17)

s.t.

r =
T

mt (T,C, P )
(i)

r = D

(
ρmt (T,C, P ) + ρ

Cl

P
+ fl

)
(ii)

r ≤ P

l
. (iii)

X(r) is the social benefit function and ρ(C + T ) the social cost function, so that the max-
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imand is social surplus. Constraints (i) and (ii) together are the steady-state condition,

and constraint (iii) is the curbside parking capacity constraint. Since unoccupied curbside

parking spaces generate a social cost but no social benefit, and since therefore curbside

parking is always saturated at an optimum, constraint (iii) may be written as an equality

constraint. From earlier reasoning, we know that an interior maximum exists when the long-

run supply function intersects the demand function at a finite price. If the demand function

lies everywhere below the long-run supply function, the maximization problem is solved by

r = T = C = P = 0. If the demand function lies above the long-run supply function at all

finite prices, the maximization problem is solved by r = C = P = 0 and T = Vj. With our

specific functional forms and parameters, an interior maximum exists for demand intensities

from 0 to 4395.

Régime 2 obtains when there is both curbside and garage parking. Second-best social

surplus for régime 2, as a function of demand intensity, is obtained as the solution to the

following maximization problem:

max
r,T,C,P

X (r)− ρ (C + T )− c (rl − P ) (18)

s.t.

r =
T

mt (T,C, P )
(i)

r = D

(
ρmt (T,C, P ) + ρ

Cl

P
+ fl

)
(ii)

0 < P < rl (iii)

C − (c− f)
P

ρ
= 0 . (iv)

Constraint (iii) guarantees that there is both curbside and garage parking. From the eco-

nomics of the problem, we know that there is a connected interval of demand intensities over

which it does not bind and over which there is an interior maximum. With our functional

forms and parameters, an interior maximum exists for demand intensities from 2969 to 8311.

Régime 3 obtains when there is only garage parking. Second-best social surplus for

régime 3, as a function of demand intensity, is obtained as the solution to the following
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maximization problem:

max
r,T,C

X (r)− ρT − crl (19)

s.t.

r =
T

mt (T, 0, 0)
(i)

r = D (ρmt (T, 0, 0) + cl) . (ii)

From the economics of the problem, we know that there is a connected interval of demand

intensities over which this régime has an interior optimum. With our specific functional

forms and parameters, an interior maximum exists for demand intensities from 0 to 10346.

Define the long-run second-best best optimum, conditional on demand intensity, to be

whichever of the solutions to (17), (18), and (19) yields the highest social surplus.

Finally, we need to establish that the constraint that the market rather than the planner

chooses garage capacity does not bind at the social optimum. Suppose that the long-run

second-best optimum entails no garage parking. It must then be the case in the corresponding

decentralized social optimum that the curbside parking fee is less than or equal to the garage

parking unit cost. Since the garage parking market is competitive, the garage parking fee

equals the garage parking unit cost, so that the curbside parking fee is less than or equal

to the garage parking fee, in which case garage operators cannot make positive profits by

providing parking spaces. Suppose that the social optimum entails both curbside and garage

parking. It must then be the case in the corresponding decentralized social optimum that the

curbside parking fee equals the garage parking fee. Individuals have no incentive to change

where the planner assigned them to park, and garage operators, since they are making zero

profit on each parking space, have no incentive to change the number of garage parking spaces

they provide. Suppose that the social optimum entails only garage parking. It must then

be the case in the corresponding decentralized social optimum that the curbside parking fee

is greater than or equal to the garage parking unit cost. Since the garage parking market is

competitive, the garage parking fee equals the garage parking unit cost, so that the curbside

parking fee is greater than or equal to the garage parking fee. Individuals have no choice

since there are no curbside parking spaces available, and garage operators have no incentive

to increase or decrease the number of garage spaces, since they are making zero profit on

each space.

Figure 13 displays the results, highlighting the optimal régime for each level of demand

intensity. The most striking result is that, with the functional forms and parameter values
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Note: Highlighted paths denote optimal régimes.

Figure 13: Régimes in the second-best optimum with both curbside and garage parking

assumed in the example, the long-run second-best optimum never entails having both curb-

side and garage parking; that is, for no level of demand intensity is social surplus maximized

in régime 2. Only curbside parking is provided up to D0 = 4395, and only garage parking

above this demand intensity level. The broad intuition is that cruising for parking occurs

only in régime 2, and that the cruising for parking generated by the fee differential between

garage and curbside parking would be so costly that the régime should be avoided.

A more precise intuition is as follows. Start with a situation where operating in régime 1

is second-best optimal. Recall that, with only curbside parking, second-best capacity is that

for which curbside parking is just saturated and therefore has no scarcity rent. Since the

curbside parking scarcity rent is zero, the private sector provides no garage parking. Now

gradually raise demand intensity. At each level of demand intensity, the planner has the

option of either increasing curbside parking capacity such that it remains just saturated,

or of discontinuously reducing the level of curbside parking, thereby forcing the parking

scarcity rent up so it becomes profitable for the private sector to provide garage parking, or of

eliminating curbside parking completely. With the specific functional forms and parameters

of the numerical example, the planner chooses to remain in régime 1 up to the demand

intensity at which the demand function is tangent to the long-run supply function with only
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curbside parking (recall Figure 8). At an incrementally higher level of demand intensity,

demand cannot be accommodated with only curbside parking except with gridlock, and the

planner has the choice between reducing the amount of curbside parking discontinuously or

eliminating it completely, and in the example chooses to eliminate it completely.

Now look at the result from a different perspective, starting from a situation where op-

erating in régime 3 is second-best optimal, and gradually reduce demand intensity. Traffi c

congestion diminishes to the point where providing some curbside parking is second-best

optimal. The planner then has the choice between introducing curbside parking at an in-

cremental level, which induces a small amount of cruising for parking, or of discontinuously

increasing the stock of curbside parking by so much that the provision of garage parking

becomes unprofitable, thereby forcing the equilibrium into régime 1. In the example, the

planner will choose the latter option.

Normally, an increase in demand intensity leads to an increase in throughput and hence

an increase in parking capacity. There is, however, one interesting exception. For D0 slightly

below 4395, where the second best entails only curbside parking, increased demand intensity

leads to decreased curbside parking capacity. This curiosum can be explained with reference

to Figure 11. The demand curve intersects only the backward-being portion of the supply

curve, and when this occurs second-best throughput (which corresponds to the equilibrium

E2 in that figure) and hence second-best capacity fall as demand intensity rises.

5.3 Comparison of first- and second-best optimal capacities

In the previous section, we showed that, when there is only curbside parking and except for

very high demand intensities for which gridlock occurs, second-best capacity exceeds first-

best capacity when curbside parking is underpriced, and falls short of it when parking is

overpriced. Furthermore, the second best always entails curbside parking being just saturated

—saturated with no cruising for parking. When both curbside and garage parking may be

provided, the results are considerably more complex. Since obtaining general results appears

diffi cult, we focus on the numerical example.15

15Wheaton (1978) and Wilson (1983) were the first papers to compare first-best with second-best optimal
road capacity, where the distortion in the second best is the underpricing of road travel. There are two effects,
which operate in different directions. Start at the decentralized social optimum (with the optimal congestion
toll) and reduce the toll. The reduced full price of travel stimulates demand, which causes traffi c to become
more congested, which by itself increases the marginal benefit of capacity, but increasing capacity would lower
the full price of travel even further, which would generate latent demand, increasing the deadweight loss due
to underpriced congestion and reducing the marginal benefit. The former effect is first order, the latter
is second order. Since Wheaton considered only a small reduction in the toll below its optimal value, the
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Figure 14: Comparison of the first-best and the second-best optima

Figure 14 plots first- and second-best curbside parking capacity, as functions of demand

intensity. All three régimes are present in the first best. For low levels of demand intensity,

up to D0 = 4878, it is effi cient to provide only curbside parking; for intermediate levels,

between D0 = 4878 and D0 = 10321, it is effi cient to have both curbside and garage parking,

with the amount of curbside parking declining monotonically with demand intensity; and

for high levels of demand intensity, above D0 = 10321, it is effi cient to have only garage

parking. In the second best in contrast, régime 2, with both curbside and garage parking, is

second-best effi cient for no interval of demand intensity. Only curbside parking is provided

for demand intensities up to D0 = 4395, and beyond that level of demand intensity only

garage parking is provided.

Several other points bear note. First, over that range of demand intensities where only

curbside parking is provided in both the first best and the second best (up to D0 = 4395) a

result from the previous section, where only curbside parking is considered, carries through:

for levels of demand intensity where curbside parking is underpriced (below D0 = 3454),

second-best curbside parking capacity falls short of first-best capacity; and when curbside

parking is overpriced (for D0 between 3454 and 4395), second-best curbside parking capacity

first-order effect dominated the second-order effect, so that he found second-best capacity to exceed first-best
capacity. Wilson undertook a global analysis, and found that, with a zero toll, second-best capacity exceeds
first-best capacity for demand elasticity below 1.0 but falls short of it for suffi ciently elastic demand. The
economics of the optimal curbside parking capacity problem differs substantially from that of the optimal
road capacity problem. Unlike the optimal road capacity problem, in the optimal curbside parking capacity
problem, an expansion of curbside capacity increases road congestion while relaxing the curbside parking
capacity constraint. Furthermore, there are two alternative technologies for parking, curbside parking and
garage parking, and two non-price rationing mechanisms, traffi c congestion and cruising for parking.
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exceeds first-best capacity. Second, in the interval of demand intensities between 4395 and

4878, only curbside parking is provided in the first best and only garage parking in the second

best. This result can be understood with reference to Figure 8. Over this range of demand

intensities, with only curbside parking, traffi c is only congested at the first-best optimum but

would be gridlocked at the second-best optimum. Third, it is effi cient to eliminate curbside

parking for a larger interval of demand intensities in the second best than in the first best.

Note: A log 10 scale is employed on the DWL-axis, such that each tick
increase corresponds to a ten-fold increase in deadweight loss.

Figure 15: Deadweight loss from ineffi cient pricing of curbside parking as a function of
demand intensity

At each level of demand intensity, the deadweight loss deriving from the combination of

the underpricing of urban auto travel and the mispricing (overpricing or underpricing) of

curbside parking equals social surplus at the first-best optimum minus social surplus in the

second-best optimum. Figure 15 displays the dollar deadweight loss per ml2-hr as a function

of demand intensity, using a log scale on the y-axis. There are three distinct intervals of

demand intensity. For low levels of demand intensity (up to 3454), there is only curbside

parking in both the first and second best, and in the second best the curbside parking fee

of $1.00/hr results in curbside parking being overpriced. As demand intensity increases,

deadweight loss rises to a maximum of about $100/ml2-hr and then falls to zero (so that log

DWL equals negative infinity) at that level of demand intensity for which $1.00/hr is the

effi cient curbside parking fee. For moderate levels of demand intensity (between 3454 and

4395), there is only curbside parking in both the first and second best, and in the second

best curbside parking becomes increasingly underpriced as demand intensity increases. Over
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this interval, deadweight loss increases rapidly with demand intensity as the road space in

the second-best equilibrium becomes increasingly congested, until at D0 = 4395 the effi cient

equilibrium with only curbside parking disappears. There is then a discontinuous increase in

deadweight loss as the planner switches from providing only curbside parking to only garage

parking in the second best. Deadweight loss attains a local maximum at this point, with a

value of about $12300/ml2-hr, since the mix of parking technologies employed in the first and

second best is as different as possible, with all curbside parking in the first best and all garage

parking in the second best. As demand intensity increases, there are two offsetting effects

on deadweight loss. On one hand, the deadweight loss associated with the ineffi cient mix of

parking technologies falls, since it becomes optimal to provide an increasing proportion of

parking in garages in the first best. On the other hand, the deadweight loss due to traffi c

congestion being unpriced in the second best increases. The former effect dominates up to

a demand intensity of around 9500, and the latter for the range of demand intensities from

9500 to 10321. At D0 = 10321, in the second best the effi cient equilibrium with only garage

parking disappears and is replaced by the gridlock equilibrium, which entails an infinite

deadweight loss compared to the first best.

It would be imprudent to generalize from a specific numerical example. Nevertheless, the

numerical example does illustrate some general policy insights. First, for high levels of de-

mand intensity, it is ineffi cient to provide curbside parking, whether or not it is underpriced.

The simple reason is that the social value of road space is higher for traffi c flow than for

curbside parking, which explains why curbside parking is rarely provided along major arte-

rials during peak periods. Second, underpricing curbside parking can introduce considerable

distortion, even when the amount of curbside parking is optimized, lowering not only social

surplus but consumer surplus as well. From an alternative perspective, raising the curbside

meter rate may generate effi ciency gains that are several times the increased meter revenue

generated. Third, when cashing out curbside parking is not politically attractive, and when

providing garage parking is not cost effective, it is second-best effi cient to expand curbside

parking to the point where cruising for parking is eliminated.

Even in our simple model, determining optimal curbside parking capacity when curbside

parking is underpriced is diffi cult. Determining optimal curbside parking capacity in realistic

situations in which demand varies over time and space, users are heterogeneous in terms

of trip distance, value of time, and parking duration, curbside parking limits and local

government operation of some parking garages are additional policy tools, parking garages

are provided discretely rather than continuously over space, with private parking garages

having market power, and both demand and supply contains stochastic elements, will be
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even more diffi cult. The appropriate way to address this complexity in policy practice

will be to simulate policies using downtown traffi c network microsimulation models,16 with

enriched parking modules.

6 Concluding Remarks

Parking is an intrinsic element of the downtown transportation problem, and enlightened

downtown parking policy can do much to relieve downtown traffi c congestion. This paper

focused on a particular downtown parking issue: How much curbside should be allocated

to parking when the private sector can provide garage parking at constant unit cost? It

addressed this question in the context of a steady-state, macroscopic model of downtown

parking and traffi c congestion, with both curbside (on-street) and garage (off-street) park-

ing, and for both first- and second-best environments. In the first-best environment, optimal

congestion pricing is in force and curbside parking is effi ciently priced. In the second-best

environment, there are two distortions, the underpricing of urban auto travel and of curbside

parking, both of which are ubiquitous in North American cities during peak periods. The

underpricing of curbside parking leads to excess demand, manifest as cruising for parking,

which is not only wasteful in itself but also exacerbates traffi c congestion. The paper devel-

oped the analysis through the diagrammatic exposition of an extended numerical example,

with the aims of elucidating general principles and of developing economic intuition.

The choice of first-best curbside parking capacity is a fairly routine application of first-

best investment rules. The price of curbside parking is set to clear the market, so that

parking is “just saturated” (fully occupied but with no cruising for parking). Curbside

capacity should be expanded to the point where the marginal cost of additional capacity

equals the marginal benefit. The marginal cost derives from the increase in congestion

due to allocating less street space to traffi c. The nature of the marginal benefit depends

on whether demand relative to road capacity is suffi ciently high to make the provision of

garage parking profitable. If demand is lower than this level, so that all parking is curbside,

increasing curbside parking permits more trips downtown. If demand is higher than this

level, so that the private sector provides garage parking, increasing curbside parking reduces

the resource cost of parking garages. At low levels of demand intensity, it is effi cient to have

only curbside parking, with the amount of curbside parking increasing in demand intensity.

16Traffi c network microsimulation models, such as VISSIM, Paramics, and TransModeler, are now rou-
tinely used to simulate the effects of proposed improvements to the network of streets and to the system of
traffi c lights, but in most the treatment of parking is primitive.
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At intermediate levels, it is effi cient to have both curbside and garage parking, with the

amount of curbside parking decreasing as demand intensity increases. And at high levels of

demand intensity, it is effi cient to have only garage parking.

Cruising for parking complicates the choice of second-best curbside parking capacity.

When demand intensity is low, it is second-best effi cient to have only curbside parking, with

the curbside parking capacity set such that parking is “just saturated”, and with curbside

parking capacity increasing in demand intensity. As demand intensity rises, a critical level

of demand intensity is reached at which it is second-best effi cient for the policy maker to

discontinuously reduce the amount of curbside parking, which generates the parking scarcity

rent needed to make private provision of garage parking profitable. It may be second-best

effi cient for the policy maker to continue to provide some curbside parking. In this case,

there is cruising for parking, with the stock of cars cruising for parking adjusting such that

the full price (including cruising-for-parking time cost) of curbside parking equals the unit

cost of garage parking. But it may instead be second-best effi cient for the policy maker to

eliminate all curbside parking. The latter option is more effi cient when curbside parking is

severely underpriced, since the simultaneous provision of curbside and garage parking then

gives rise to more cruising for parking.

The relationship between the first- and second-best curbside parking capacities is com-

plex. We note only two results. First, when demand intensity is suffi ciently low that only

curbside parking is provided in both the first and second best, second-best curbside parking

capacity exceeds first-best parking capacity. Second, there may be a range of demand inten-

sities in which only curbside parking is provided in the first best and only garage parking in

the second best.

We modeled curbside parking as being either unsaturated with no cruising for parking,

just saturated with no cruising for parking, or saturated with cruising for parking. Realis-

tically, at the level of the downtown area, there is a gradual transition from unsaturated to

saturated parking (Levy, Martens, and Berenson, 2012). As the demand for curbside parking

increases, curbside parking becomes saturated on an increasingly high proportion of blocks,

so that there is cruising for parking even when curbside parking is not everywhere saturated,

and the mean curbside parking occupancy rate increases. Extending the model of this paper

to treat this and other realistic complications should not undermine its economic logic.
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A Online Appendix: Stability Analysis (not intended

for publication)

Arnott and Inci (2010) provided a thorough stability analysis of equilibria in a variant of

the model presented above with only curbside parking. In this appendix, we extend their

analysis to investigate the stability of equilibria when both curbside and garage parking are

present, and when only garage parking is present. Stability analysis of traffi c congestion

has proved diffi cult since it requires solving for the out-of-equilibrium dynamics of traffi c

flow over time and space. The treatment of downtown as isotropic simplifies the analysis

considerably since at any point in time traffi c flow is the same throughout the downtown area;

the analysis then entails solving ordinary rather than partial differential equations. Arnott

and Inci further simplified the problem by making some special assumptions17 that render

the differential equation system autonomous (time does not enter the analysis explicitly),

which permits phase-plane/state-space analysis. The arrows give the direction of motion,

under the assumption that drivers decide whether to travel based on myopic expectations

(more precisely, the entry rate at time t is assumed to depend on the perceived full price of

a trip, which depends only on traffi c conditions at time t).

We first introduce a new piece of notation to facilitate geometric presentation of the

stability analysis in 2D space. We define

R =

{
C for R ≥ 0

Q− P for R ≤ 0 ,
(A.1)

where Q is the stock of occupied curbside parking spaces. In words, when R is positive, which

corresponds to saturated curbside parking, it equals the stock of cars cruising for parking,

and when R is negative, which corresponds to unsaturated curbside parking, it equals minus

the stock of unoccupied curbside parking spaces. This allows us to depict the transition

between saturated and unsaturated parking in a single phase plane. As R increases from

being negative to being positive, the stock of unoccupied curbside parking spaces shrinks,

until at R = 0 parking is saturated with no cruising for parking, and then remains saturated

with the stock of cars cruising for parking increasing.

17They assume that trip lengths are negative exponentially distributed, which implies that the exit rate
from the in-transit pool at time t depends only on the stock of cars in transit and cruising for parking at
that point in time, and not on the history of congestion. They also assume that visit durations are negative
exponentially distributed, which implies that the exit rate from curbside parking depends only on the amount
of curbside parking.
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Figure 16: Transient dynamics of downtown traffi c when there is only curbside parking

Figure 16 displays the stability analysis with only curbside parking for the base case

level of curbside parking, P = 3712, and for the demand intensity indicated by D2 = 3000

in Figure 4. The state of the system is characterized by T and R, with T on the horizontal

axis and R on the vertical axis. Above R = 0, parking is saturated and there is cruising for

parking, and below R = 0 parking is unsaturated and there are unoccupied curbside parking

spaces. The arrows indicate the direction of motion of the two state variables. Three loci

are displayed in T -R space. The first, the dashed line, is the jam density line; combinations

of T and R to the right of the line are infeasible.

The second locus is the Ṙ = 0 locus. For R ≥ 0, the locus corresponds to the cruising-

for-parking equilibrium condition Ċ = 0 = T/(mt(T,C, P ))− P/l, along which the stock of
cars cruising for parking remains unchanged; below this locus, the stock of cars cruising for

parking is increasing, and above it the stock is decreasing. For R ≤ 0, the locus corresponds

to Q̇ = 0 = T/(mt(T,C, P ))−Q/l; below this locus, the stock of occupied curbside parking
spaces is increasing, and above it the stock is decreasing.

The third locus is the steady-state condition that Ṫ = 0 = D(F ) − T/(mt(T,C, P )) =

D (ρmt(T,C, P )) + ρCl/P + fl) − T/(mt(T,C, P )). When curbside parking is saturated,

the Ṫ = 0 locus is a curve in T -C space, above which the stock of cars in-transit is increasing

and below which it is decreasing. When curbside parking is unsaturated, C = 0, and the

Ṫ = 0 locus corresponds to those levels of T for which the stock of cars in transit remains
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unchanged. There are three such levels of T , all corresponding to points of intersection of

the unsaturated user cost curve, shifted up by the curbside parking fee, and the demand

curve. The one furthest to the left corresponds to the upward-sloping portion of the user

cost curve, the middle one to the backward-bending portion of the curve, and the one on the

right to gridlock. The stock of cars in transit is increasing for T lower than the T furthest

to the left and between the middle T and the gridlock T , and is decreasing between the T

furthest to the left and the middle T .

Consistent with Figure 4, there are three equilibria. The equilibrium E1 in Figure 16

corresponds to the equilibrium E ′1 in Figure 4, and is saturated, stable, and congested. The

equilibriumE2 in Figure 16 corresponds to the equilibriumE ′2 in Figure 4, and is unsaturated,

stable, and hypercongested. The equilibrium E3 in Figure 16 corresponds to the gridlock

equilibrium, which cannot be displayed in Figure 4.

In the remainder of the appendix, we show how the stability analysis can be adapted to

the situation with both curbside and garage parking, and then apply the adapted stability

analysis to determine the stability of the equilibria analyzed in section 5.

In the analysis of Section 5, since the curbside parking fee is lower than the garage parking

fee, garage parking occurs only when curbside parking is saturated. Thus, allowing for garage

parking does not affect the stability analysis when curbside parking is unsaturated, and hence

the portion of the phase plane with negative R. The addition of garage parking adds the

full price equalization condition that R ≤ Ĉ = (c− f)P/ρ. When R < Ĉ, curbside parking

is cheaper than garage parking so that no one parks in a garage, and the stability analysis

of Figure 16 continues to apply. When R > Ĉ, however, the stability analysis of Figure 16

needs to be modified. If R > Ĉ, garage parking is cheaper than curbside parking. We assume

that when this occurs the number of cars cruising for parking falls instantaneously such that

R = Ĉ is satisfied. Thus, above C = Ĉ, the direction of motion is vertically downward.

Otherwise, the direction of motion in the phase plane is unchanged.

Figure 17 portrays the phase plane for six different levels of demand intensity. Recall

that an increase in demand intensity has no effect on the Ṙ = 0 locus but causes the

Ṫ = 0 locus to shift downward. Start with Panel A, which has the lowest level of demand

intensity. Qualitatively, this corresponds to the situation shown in Figure 4 with demand

level D1. All three curbside parking equilibria are unsaturated, so that there is no demand

for garage parking. Turn next to Panel B, with the next lowest level of demand intensity.

Qualitatively, this panel corresponds to the situation shown in Figure 4 with demand level

D2. The equilibrium corresponding to E ′1 in that figure is saturated. Cruising for parking
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Figure 17: Transient dynamics of downtown traffi c when there are both curbside and garage
parking

occurs, but the stock of cars cruising for parking is not suffi cient to make the provision of

garage parking profitable. In Panel B, this corresponds to the equilibrium E1 lying below

the R = Ĉ locus.

Now turn to Panel C. The demand intensity is the same as that used in the construction

of Figure 16. Thus, comparison of Panel C, Figure 17, and Figure 16 shows how admitting

garage parking alters the equilibria of Figure 16. Now, the stock of cars cruising for parking
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in equilibrium E ′1 in Figure 4 is suffi ciently high to make garage parking profitable. Garage

parking is provided, and the equilibrium E ′1 in Figure 4 is replaced by the equilibrium with

the same qualitative properties as E5 in Figure 11, which is saturated, stable, and congested.

The other two equilibria remain unsaturated.

In Panel D, demand intensity is close to that for the demand curve drawn in Figure 11

so that the equilibria are qualitatively the same. There are now five equilibria. In the stable,

congested equilibrium E5, garage parking is provided and curbside parking is saturated.

In the unstable, hypercongested equilibrium E6, garage parking is provided and curbside

parking is saturated. In the stable, hypercongested equilibrium E7, curbside parking is

saturated but the stock of cars cruising for parking is insuffi cient for garage parking to be

profitable. In the unstable, hypercongested equilibrium E2, curbside parking is unsaturated.

Finally, there is the gridlock equilibrium. Panel E corresponds to Figure 11 but with a

higher level of demand intensity such that the equilibria E7 and E2 disappear. Panel F

corresponds to Figure 11 with an even higher level of demand intensity such that only the

gridlock equilibrium remains. Thus, the stability analysis of Figure 17 confirms the stability

properties of the various equilibria asserted in the bifurcation diagram of Figure 12.

The above discussion has been mechanical. It will be useful to provide some intuition,

which can be done by describing the process of adjustment along three sample trajectories

in Panel D. Start with a situation in which downtown is empty. Then, the demand is turned

on at the demand intensity D0 = 3330, and remains at that level forever. Cars start entering

the city streets, traffi c density builds, and an increasing number of curbside parking spaces

become occupied.18 With unsaturated parking, the trajectory lies between the Ṙ = 0 and

Ṫ = 0 loci. In due course, parking becomes saturated and cruising for parking commences.

The stock of cars in-transit and cruising for parking continue to increase, which corresponds

to the trajectory continuing to lie between the Ṙ = 0 and Ṫ = 0 loci, but now with saturated

parking and cruising for parking. In due course, the stock of cars cruising for parking becomes

suffi ciently large that it becomes profitable for garage parking to be provided. The stock of

cars in transit continues to increase and the stock of garage parking spaces to be expanded

until the equilibrium E5 is reached.19

Consider the unstable equilibrium E6. Since the equilibrium is saddle-path stable, its

18Recall that the adjustment process assumes, first, that trip lengths are negative exponentially distributed
with mean m, so that parking spaces start becoming occupied as soon as there is traffi c on the road, and,
second, that the entry rate at time t depends upon the stock of cars in transit and cruising for parking at
that point in time.

19In due course, the stock of cars cruising for parking becomes suffi ciently large that drivers start to use
garage parking. The stock of cars in transit continues to increase and more garage spaces continue to be
occupied until the equilibrium E5 is reached, where all garage parking spaces become occupied.
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stable arms are the boundary between E5 and E7’s zones of attraction. Start slightly to the

left of E6 on R = Ĉ. There is both curbside and garage parking, and cruising for parking

satisfies the full price equalization condition, which continues to be satisfied throughout the

adjustment process. The stock of cars in transit is slightly lower than at E6. Turn to Figure

11, which describes the same situation as Panel D, but in another space. On the demand side,

a stock of cars in transit slightly below that at E6 results in the trip price being somewhat

lower than at E6 and the entry rate therefore being somewhat higher. On the supply side,

because traffi c is hypercongested, the lower stock of cars in transit implies a higher exit

rate (throughput). Because the demand curve is steeper than the supply curve at E6, the

quantity of trips supplied is higher than at E6 by more than the quantity of trips demanded,

which results in a fall in the stock of cars in transit. In due course, the reduction in the stock

of cars in transit becomes suffi ciently large that travel becomes congested, and continued

reductions in the stock of cars in transit causes throughput to fall, while the quantity of trips

demanded continues to rise. This eventually results in achievement of the stable equilibrium

at E5.

The story is similar if the starting point is slightly to the right of E6 in Figure 17, Panel

D. The initial stock of cars in transit is slightly higher than at E6. On the demand side, a

stock of cars in transit slightly above that at E6 results in the trip price being somewhat

higher than at E6, and the entry rate therefore being somewhat lower. On the supply side,

because traffi c is hypercongested, the higher stock of cars in transit implies a lower exit rate.

Because the demand curve is steeper than the supply curve, the quantity of trips supplied is

lower than at E6 by more than the quantity of trips demanded, which results in an increase

in the stock of cars in transit, and traffi c become increasingly hypercongested. The reduced

throughput causes a reduced demand for garage parking and eventually zero demand.

Increasing curbside parking capacity would alter the stability analysis in three ways.

First, it would shift the whole Ṙ = 0 locus down. Second, it shifts only the upper part of

the Ṫ = 0 locus down without changing its T -intercepts. And third, it shifts the full price

equalization condition down. Otherwise the analysis remains qualitatively the same.
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