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1 Introduction

There is a huge literature on the provision of public goods. Morgan (2000), however, was the
first to link the old institution of lotteries directly to the theory of the provision of public goods.
He views a lottery, part of whose proceeds go to the provision of a public good, as a voluntary
contribution scheme (and not merely a substitute for confiscatory tax schemes by the state). And,
indeed, many private charities or institutions that lack any taxing power use lotteries to generate
revenues for their respective aims.

Lotteries are a worldwide phenomenon (for an extensive study of US state lotteries see e.g.
Clotfelter and Coak, 1991) and the traditional view of them as inefficient and regressive instru-
ments for raising surrogate tax money is being challenged by Morgan’s question, whether they
rather may constitute an effective contribution scheme towards the supply of public goods.

Morgan (2000) showed that the provision of a public good can be enhanced by the use of
lotteries or - in Morgan’s terms - fixed prize raffles. In such a raffle a pre-announced fixed price
of size/value R is offered by the prospective provider of the public good; e.g. a charity, and
awarded to the lucky buyer of the winning lottery ticket. The prize R itself is financed out of the
proceeds from ticket sales; i.e. if total ticket sales amount to S only the amount of S − R can be
used for financing the public good. In this way the standard voluntary provision problem for a
public good is amended by a lottery that is tied to the financing of the public good; i.e. the utility
derived from buying a lottery ticket is not only determined by the probability of winning of the
prize but also - and additionally - by the amount of public good provided through the lottery.
Morgan (2000) shows that if the public good is socially desirable, then a raffle with fixed prize
R can always generate revenue from ticket sales in excess of R. Moreover, this excess amount
always exceeds the amount that would be collected in a voluntary contribution scheme for the
public good. Hence the amount of public good provided by means of a raffle exceeds the amount
provided through voluntary contribution schemes; raffles are welfare enhancing. The reason for
this interesting result is that the positive externality of a contribution on others in the pure volun-
tary provision scheme is now counteracted to some extent by the negative externality on others
of buying additional lottery tickets (which lowers their probability of winning the contest for
R). As a result contributions towards financing the public good increase in comparison to vol-
untary contribution. This type of result is also robust with respect to different modifications and
extensions of the model, for instance, risk-averse consumers considered in Duncan (2000), in-
creasing group size analyzed in Pecorino and Temimi (2007), endogenized prize value introduced
in Lange (2006), and incomplete information (under simplified linear public good preferences)
with one prize in Goeree et al. (2005) and multiple prizes in Faravelli (2011). However, most
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of these extensions share one limitation with the framework of Morgan (2000): any prize sum of
finite value is never sufficient to finance and provide the efficient amount of the public good.

In this regard Morgan’s model, as well as most of the mentioned extensions, can be viewed
as a fund-raising model as he is not primarily interested in efficient provision of the public good.
For the comparison of two lottery types in a model where consumers also obtain entertainment
through lottery participation see Maeda (2008), and for the fund-raising capacities of contests
Franke et al. (2012).

The present paper is directly concerned with the efficient provision of a public good by means
of lotteries or raffles in the presence of heterogeneous consumers who - in particular - value the
public good differently. As the simple lottery from Morgan (2000) results in underprovision of
the public good, one remedy would be to modify the lottery such that incentives to contribute to
the lottery are further increased. One alternative to achieve this is to design a lottery function that
overweights large contributions (in this case the lottery is transformed into a so called Tullock
contest with exponent r > 1). In a context where the prize sum is financed by lump-sum taxes
this has been analyzed in Kolmar and Wagener (2012), while Giebe and Schweinzer (2012) con-
sider a similar idea in a model with consumption taxes (i.e., individual consumption of the private
good is taxed with a sales tax). The prize sum is then either entirely financed by the lump-sum
tax in Kolmar and Wagener (2012), or partially by the consumption tax in Giebe and Schweinzer
(2012), where the remaining sum is transformed into the public good. A further difference be-
tween those two papers is that the contest in Giebe and Schweinzer (2012) is nominally ‘fought’
with the expenditures of consumers for the private good; i.e. the individual winning probabilities
for the prize share of tax revenue are automatically determined by the individual expenditures
for private good consumption; the consumer who consumes more of the private good (and hence
pays more tax) has a higher chance of winning the contest prize. There is no lottery or raffle held
but the authors attribute ‘a lottery feel’ (ibid., p. 2) to their mechanism of direct taxation. How-
ever, in both models a combined tax and lottery/contest mechanism can be derived that achieves
an efficient allocation of the private and the public good.

In contrast we retain Morgan’s (2000) original setup, which has the merit of being completely
free of coercion (through taxation or otherwise). This feature of the model makes it especially at-
tractive for applications in the context of charities and other non-public organizations that usually
lack coercive taxing or transfer power (neither in Giebe and Schweinzer (2012) nor in Kolmar
and Wagener (2012) consumers can avoid paying taxes and contributing to the public good pro-
vision.)

2



To this end we introduce biased raffles into Morgan’s model and ask whether this can even
further increase revenue from the raffle and hence provision of the public good, ideally up to the
optimal level. We give a first answer in the affirmative; i.e. we achieve a solution of the free-
rider problem on a completely voluntary basis in non-cooperative Nash equilibrium. We also
show that a biased raffle of our type is equivalent to a fair raffle of Morgan’s type whose tickets
are sold at individual prices to consumers. Hence biased raffles imply a Lindahl-like pricing idea
for the public good provision. Indeed, one can view such a raffle (see Morgan (2000), section 5)
as an impure public good with private characteristics (in the raffle prize dimension) and public
characteristics (in the provided public good dimension). Note then that price discrimination is
applied to the private good component of the impure public good by charging different ticket
prices.

The paper is organized as follows: Section 2 introduces the model of a biased indirect con-
tribution game and derives equilibrium existence and uniqueness results for the general case of
n heterogeneous consumers. It is further shown that these equilibria correspond one-to-one to
Morgan’s unbiased indirect contribution game with price discrimination. Section 3 demonstrates
existence of efficient biased raffles for the case of two consumers, while section 4 gives a char-
acterization of efficient raffles. Section 5 gives an example and section 6 concludes.

2 The Model

Our economy exists of n, i = 1, . . . , n, consumers, who each has a quasi-linear utility function of
the type

ui(wi,G) = wi + hi(G)

with wi summarizing the wealth of i and G denoting the amount of the public good provided
economy wide. It is standard to assume that h

′

i > 0 and h
′′

i < 0, i = 1, . . . , n. Wealth can be
transformed into public good by using the production function f (w) = w; i.e. one unit of (private)
wealth can be transformed into one unit of the public good. All consumers are (expected) utility
maximizers.

A social planner would like to implement the socially optimal amount of the public good
(which coincides in this quasi-linear framework with the efficient allocation); i.e. he would
choose to provide G∗ units of the public good, where G∗ maximizes

(SO) W =
∑n

i=1 ui(wi,G) −G

=
∑n

i=1(wi + hi(G)) −G
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With non-binding wealth constraints the optimal amount G∗ has to satisfy the well-known Samuelson
condition:

n∑
i=1

h
′

i(G
∗) = 1.

If, for simplicity, we also assume that h
′

i(0) > 1, then the public good is always desirable and
G∗ > 0 should be provided.
The following facts are well-know:

i) Voluntary contribution schemes provide less than G∗ of the public good: In such a scheme
consumers directly contribute an amount xi, i = 1, . . . , n to the provision of the public
good. Consumer i determines his contribution by maximizing

ui

wi − xi,

n∑
j=1

x j

 = wi − xi + hi

 n∑
j=1

x j


As Bergstrom et al. (1986) show, this results in

∑n
j=1 x∗j < G∗ in any Nash equilibrium

x∗ = (x∗1, . . . , x
∗
n) of the contribution game.

ii) Fixed-prize raffles provide less than G∗ of the public good: Morgan (2000) showed that
the provision of the public good can be enhanced by the use of special lotteries, which he
termed fixed-prize raffles. In such a raffle a pre-announced fixed prize of value R is offered
by the prospective provider of the public good; e.g. the government or a charity institution,
and awarded to the lucky buyer of the winning lottery ticket. The prize R itself has to be
financed out of the proceeds from ticket sales S . So, if ticket sales amount to S , only the
amount S − R can be used towards financing the public good. A consumer is hence not
asked directly to contribute to the provision of the public good, but indirectly through the
purchase of lottery tickets for R (with the remaining proceeds being transformed into G,
the public good). Consumer i consequently maximizes

Eui(xi, x−i) = wi − xi +
xi∑n

j=1 x j
R + hi

 n∑
j=1

x j − R

 .
This indirect voluntary provision game always has a unique Nash equilibrium (Morgan
(2000), Proposition 2). Moreover, the amount of the public good provided in this equilib-
rium always exceeds the amount provided by the voluntary contribution scheme of case i).
Note, that this means that ticket sales not only exceed R, and hence the prize R can be pro-
vided, but also that they exceed R plus the amount provided by the voluntary contribution
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scheme. The positive externality in providing amounts of the public good (by privately
buying lottery tickets) onto others is now automatically combined with a negative exter-
nality onto others as this reduces their chances to win the prize R. Overall the individual
incentives to free-ride are sufficiently reduced to provide more of the public good and - at
the same time - retrieve the cost of the prize R (Morgan (2000), Theorem 1). However,
even in this situation the efficient amount of the public good cannot be implemented with
a finite prize sum; that is, efficient public good provision can only be achieved in the limit
for a prize of infinite value which requires consequently unlimited wealth of consumers
(Morgan (2000), Theorem 2). This holds also true for more general utility functions than
the ones used by Morgan (see Duncan, 2002).

Recent advances in contest theory allow to exploit the underlying heterogeneity of contestants in
order to extract higher total efforts of contestants by introducing biased contest success functions,
see Franke, Kanzow, Leininger and Schwartz (2011, 2012). This is achieved by favoring specific
(weak) contests through the bias (which amounts to biased lotteries or raffles) to induce a more
balanced playing field among contestants. This leads to the question whether in the indirect
provision game with a fixed-prize raffle of Morgan biased raffles could be used to further increase
ticket sales and hence increase potential provision of the public good such that the efficient
amount G∗ can even be implemented with a finite prize sum R.

Franke et al. (2011) consider general biased contest success functions of the Tullock type,
which determine individual winning probability in a contest of n contestants as a function of
individual efforts by

pi(x1, . . . , xn) =
αixi∑n

j=1 α jx j
i = 1, . . . , n;α = (α1, . . . , αn) > 0.

This form of bias was already introduced by Tullock himself in his seminal paper (Tullock,
1980). Franke et al. (2011) solve the contest design problem of finding the optimal individual
bias weights αi, i = 1, . . . , n, if the aim of the contest organizer is to maximize total effort

∑n
i=1 xi

in Nash equilibrium. Heterogeneity of contestants is expressed by different valuations of the
prize at stake in the contest; hence each individual contestant with wealth wi and valuation Ri

wants to maximize his expected payoff of

ui(x1, . . . , xn) = wi − xi +
αixi∑n

j=1 α jx j
Ri, i = 1, . . . , n.
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Franke et al. (2011) give a complete solution in closed form and compare it to the unbiased
contest solution with αi = α = 1, i = 1, . . . , n. They show that the bias weights can be used
in two ways to increase competition between contestants, which leads to higher efforts. Firstly,
competition between active contestants (with different valuations) in the unbiased case can be
increased by effectively narrowing down the difference of their valuations and, secondly, inactive
contestants in the unbiased contest can be incentivized to become active by a sufficiently high
bias weight. Both of these channels can, however, not be exploited if contestants are homoge-
neous: in this case all contestants will already be active in the unbiased contest and narrowing
down their effective differences in valuation is unfeasible per se. I.e. the optimal weights in the
homogeneous case are given by αi = 1, i = 1, . . . , n, and the unbiased contest is the optimal one.

In the present context heterogeneity among consumers stems from their different valuations
for the public good as expressed by their valuation functions hi(G), i = 1, . . . , n. Hence a biased

raffle of the above Tullock type with fixed prize R, a value common to all consumers, can still be
used with the hope of increasing ticket sales by exploiting this heterogeneity. This leads to the
following biased indirect contribution game. Each consumer i determines the amount of ticket
purchases xi by maximizing the expected payoff

(BR) ui(x1, . . . , xn) = wi − xi +
αixi∑n

j=1 α jx j
R + hi

 n∑
j=1

x j − R

 i = 1, . . . , n.

A Nash equilibrium x∗ = (x∗1, ..., x
∗
n) is given by a vector of ticket purchases such that

wi − x∗i +
αix∗i∑n

j=1 α jx∗j
R + hi(

n∑
j=1

x∗j − R)

≥ wi − xi +
αixi

αixi +
∑

j,i α jx∗j
R + hi(xi +

∑
j,i

x∗j − R) for all xi ∈ [0,wi] , i = 1, . . . , n

Our first result states that our biased indirect contribution game has an equilibrium:

Proposition 2.1 A Nash equilibrium of the biased indirect contribution game always exists.

Proof. We can use the classic existence results by Debreu, Glicksberg and Fan (see Osborne
and Rubinstein (1994), Theorem 20.3, p.20), which states that a game with compact and convex
strategy sets for all players and continuous payoff functions for all players, which in addition are
quasi-concave in a player’s own strategy, admits a Nash equilibrium: strategy spaces are compact
and convex; and although payoff functions are not continuous at x = (0, . . . , 0), this is inessential
as the equilibrium must be interior; i.e., xi > 0 at least for some i = 1, . . . , n. Equally, it holds
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that for any x = (x1, . . . , xn) the second derivative of the payoff function ui is negative as hi(·) and
αi xi∑n

j=1 α j x j
R are strictly concave functions of xi, i = 1, . . . , n. Hence ui(x1, . . . , xn) itself is concave

in xi, which implies quasi-concavity in xi. �

Some more work is required to prove that equilibrium in a biased indirect contribution game,
in fact, is unique. Morgan (2000) proves this for the unbiased case, while Cornes and Hartley
(2005) prove uniqueness of equilibrium for the biased Tullock contest. Combining the methods
of these two papers should yield the result. Alternatively, one can take up Morgan’s (2000) brief
observation that a raffle in his sense can be regarded as an impure public good with a private and
a public good component. Our model (as does Morgan’s) then fits the setup of Kotchen (2007),
who provides a uniqueness proof for equilibrium in impure public good models. Hence we state

Proposition 2.2 The equilibrium in a biased indirect contribution game is unique.

Note that - although all raffle tickets are sold at the same prize 1 (in terms of wealth units) -
raffle tickets are converted into different winning probabilities for the prize R due to the different
bias weights applied to the buyers. Hence the private good component of the impure public
good is effectively sold at different individualized prizes. This is in the spirit of Lindahl-prices
in a decentralized voluntary contribution scheme, but applied to the private good component
of an artificially created impure public good. Can a biased raffle likewise be used to achieve
the same effect; namely, the provision of the efficient amount G∗ of the public good, albeit in
non-cooperative Nash equilibrium?

Indeed, Franke et al. (2011) observe that the biased raffle, resulting in winning proba-
bilities of the type pi(x1, . . . , xn) = αi xi∑n

j=1 α j x j
, i = 1, . . . , n, is equivalent to an unbiased raffle

pi(y1, . . . , yn) =
yi∑n

j=1 y j
with individual ticket prices pi = 1

αi
, i = 1, . . . , n, which implies that the

raffle organizer can price-discriminate between consumers when selling the raffle tickets. To be
more precise: the problem (BR) of a consumer in a biased indirect contribution game can be
transformed into the following problem where the equilibrium remains invariant to this transfor-

mation.
Define yi := αixi, i = 1, . . . , n. Then (BR) can be written as

(PD) max
yi

wi −
1
αi

yi +
yi∑n

j=1 y j
R + hi

 n∑
j=1

1
α j

y j − R

 ,
and we see that the prize R is now awarded in a fair raffle with ticket price pi = 1

αi
for consumer

i, i = 1, . . . , n. Also note, that revenue from ticket sales now amounts to
∑n

i=1 piyi =
∑n

i=1
1
αi

yi; i.e.
accounting for the cost of the raffle prize leads to a supply of the public good of

∑n
i=1

1
αi

yi − R.
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The identity of the solutions of the biased indirect contribution game defined by (BR) and the
unbiased indirect contribution game with price discrimination defined by (PD) is now immediate:
(BR) leads to the first-order conditions

−1 +
αi

∑
j,i α jx j

(
∑n

j=1 α jx j)2 R + h
′

i

 n∑
j=1

x j − R

 = 0, i = 1, . . . , n;

while (PD) results in

−
1
αi

+

∑
j,i y j

(
∑n

j=1 y j)2 R +
1
αi

h
′

i

 n∑
j=1

1
α j

y j − R

 = 0, i = 1, . . . , n.

If we multiply the latter by αi, i = 1, . . . , n, they read

−1 +
αi

∑
j,i y j

(
∑n

j=1 y j)2 R + h
′

i

 n∑
j=1

1
α j

y j − R

 = 0, i = 1, . . . , n.

So, if y = (y1, . . . , yn) solves the latter equations, then x = (x1, . . . , xn) =
(

1
α1

y1, . . . ,
1
αn

yn

)
must

solve the first system (and vice versa). Hence a corollary to Proposition 2.1 says:

Corollary 2.3 An unbiased indirect contribution game with price discrimination has a (unique)

equilibrium for any price vector p = (p1, . . . , pn) > 0 which is equivalent to the (unique) equi-

librium of the biased indirect contribution game where αi = 1
pi

for all i = 1, . . . , n.

Moreover, we see that adding up the first-order conditions of either problem leads to

−n +

∑n
i=1 αi(

∑
j,i α jx j)

(
∑n

j=1 α jx j)2 R +

n∑
i=1

h
′

i

 n∑
j=1

x j − R

 = 0

resp.

−n +

∑n
i=1 αi(

∑
j,i y j)

(
∑n

j=1 y j)2 R +

n∑
i=1

h
′

i

 n∑
j=1

1
α j

y j − R

 = 0

From this we immediately see that an unbiased raffle cannot supply the efficient amount of G∗ of
the public good, because if

∑n
j=1 x j = G∗ + R resp.

∑n
j=1

1
α j

y j = G∗ + R and αi = 1, i = 1, . . . , n,
both equations would require (as

∑
h
′

i = 1) that
∑n

j=1 x j =
∑n

j=1 y j = R, which contradicts that the
efficient amount is supplied. We summarize as follows:

Lemma 2.4 (Morgan, 2000) In the indirect contribution game a fair raffle with uniform ticket

prices cannot provide the efficient amount G∗ of the public good in equilibrium.
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3 Efficient provision of the public good for n = 2

We now consider the simple case of two consumers, 1 and 2, with u1(w1,G) = w1 + h1(G) and
u2(w2,G) = w2 + h2(G). Samuelson’s optimality condition for G∗ hence simplifies to

h
′

1(G∗) + h
′

2(G∗) = 1.

The biased indirect contribution game for the public good implies that the two consumers solve
the following maximization problems:

max
x1

w1 − x1 +
x1

x1 + αx2
R + h1(x1 + x2 − R)

max
x2

w2 − x2 +
αx2

x1 + αx2
R + h2(x1 + x2 − R).

Without loss of generality we have normalized the bias such that α1 = 1 and α2 = α. (We could
also choose without loss of generality the normalization α1 + α2 = 1 to reduce the problem to
a single parameter α, see Franke et al. (2011)). The two first-order conditions for the interior
equilibrium hence read:

i) −1 + αx2
(x1+αx2)2 R + h

′

1(x1 + x2 − R) = 0, and

ii) −1 + αx1
(x1+αx2)2 R + h

′

2(x1 + x2 − R) = 0.

The second order conditions for a maximum always hold. As before i) + ii) then yields

iii) −2 +
α(x1+x2)
(x1+αx2)2 R + h

′

1(x1 + x2 − R) + h
′

2(x1 + x2 − R) = 0

We directly ask whether the provision of the socially optimal amount G∗ of the public good
is compatible with equilibrium of the biased indirect contribution game. So suppose that the
Samuelson’s optimality condition applies; i.e. h

′

1(G) + h
′

2(G) = 1. Equation iii) then reduces to

(EE)
α(x1 + x2)
(x1 + αx2)2 R = 1, and x1 + x2 = G∗ + R.

The efficient amount G∗ > 0 of the public good is solely determined by the valuation functions
h1(·) and h2(·). The question then is whether we can find values for the bias α and the prize R

such that (EE) holds rendering the equilibrium efficient.
Recall from Lemma 1 that a fair raffle (with identical weights) cannot do so for any two

consumers. Conversely, we now show that identical consumers with h1(·) = h2(·) will not provide

9



the efficient public good in any indirect contribution game independently of the bias α and prize
sum R: for this observe that the first-order conditions i) and ii) imply that x1 = x2 = x for two
identical consumers. But we have

Lemma 3.1 (EE) does not have a symmetric solution x1 = x2 = x.

Proof. Let x1 = x2 = x. Then (EE) reduces to:

2α
(1 + α)2x

R = 1, and 2x = G∗ + R,

⇒ G∗ + R =
4α

(1 + α)2 R

⇒ G∗ =

(
4α

(1 + α)2 − 1
)

R =
−(1 − α)2

(1 + α)2 R < 0.

The last inequality is a contradiction. �

An important corollary to the above Lemma hence is:

Lemma 3.2 Identical consumers will not provide the efficient amount G∗ of the public good in

any indirect contribution game, i.e., independently of the bias α and prize sum R.

The reason for this result can already be found in Franke et al. (2011): in the case of homogenous
contestants the highest total effort is obtained by an unbiased Tullock contest success function.
Likewise here, consumers with identical valuations of the public good purchase the highest num-
ber of tickets in an unbiased raffle, which however cannot provide G∗. However, the slightest
degree of heterogeneity (at the margin of G∗) can be exploited and amplified by a suitable prize
R to implement G∗. To be more precise we define:

Definition 3.3 Two consumers are heterogenous (at the margin of G∗), if h
′

1(G∗) , h
′

2(G∗) and

homogenous otherwise.

An efficient equilibrium (that has been shown to be interior) must solve the following two equa-
tions resulting from the respective first order conditions:

iv) αx2
(x1+αx2)2 R = 1 − h

′

1(G∗)

v) αx1
(x1+αx2)2 R = 1 − h

′

2(G∗).

Moreover, by definition the following equation has to be satisfied: x1 + x2 = G∗ + R. Combining
eq. iv) and v) leads to:

αx2

1 − h′1(G∗)
R = (x1 + αx2)2 =

αx1

1 − h′2(G∗)
R,
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and hence, from the equality of the first and last terms:

(1 − h
′

2(G∗))x2 = (1 − h
′

1(G∗))x1

⇒ x1 =
1−h

′

2(G∗)

1−h′1(G∗)
x2

It is convenient to define h∗ =
1−h

′

2(G∗)

1−h′1(G∗)
> 0 and thus x1 = h∗x2. Note that h∗ , 1 if and only if

consumers are heterogenous. Now substitute into (EE) to get

(h∗ + 1)x2 = G∗ + R

⇒ x∗2 =
G∗ + R
h∗ + 1

and x∗1 =
h∗

h∗ + 1
(G∗ + R)

This determines the relative contributions in efficient equilibrium, if also the first equation of
(EE) holds:

α(h∗ + 1)x2

(h∗ + α)2x2
2

R = 1⇔ x2 =
α(h∗ + 1)
(h∗ + α)2 R

which implies that the following equation must hold:

G∗ + R
h∗ + 1

=
α(h∗ + 1)
(h∗ + α)2 R

Further manipulations yield

G∗ =
α(h∗ + 1)2

(h∗ + α)2 R − R

=

[
α(h∗ + 1)2

(h∗ + α)2 − 1
]

R

=

[
α(h∗ + 1)2 − (h∗ + α)2

(h∗ + α)2

]
R

=
αh∗2 + 2αh∗ + α − h∗2 − 2αh∗ − α2

(h∗ + α)2 R

=
(α − 1)(h∗2 − α)

(h∗ + α)2 R

Hence, the raffle (α,R) has to satisfy the following equation to induce efficient public good
provision in equilibrium:

(EE) G∗ =
(α − 1)(h∗2 − α)

(h∗ + α)2 R
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Obviously, (EE) can always be satisfied with a sufficiently large R provided that the factor in
front of R is positive; i.e. if

(I) (α − 1)(h∗2 − α) > 0.

Observe that both factors in eq. (I) are positive if 1 < α < h∗, and both factors are negative if h∗ <

α < 1. Moreover, h∗ , 1 because consumers are assumed to be heterogeneous. Consequently,
for any h∗ , 1 an α > 0 exists such that (I) holds; and for this α, in turn, there exists R > 0 such
that (EE) holds. We have therefore proven the following theorem.

Theorem 3.4 If consumers are heterogenous there always exists a biased raffle (α,R), which in

equilibrium of the biased indirect contribution game provides the efficient level G∗ of the public

good.

In the next section we look at efficient raffles in some more detail.

4 Efficient raffles

In this section we ask what restrictions on a raffle (α,R) are imposed by Theorem 1; in particular,
for which R does there exist a suitable bias α such that the raffle (α,R) implements the efficient
amount G? of public good provision.

For this we recall (EE) and define the function

f (α) =
(α − 1)(h∗2 − α)

(h∗ + α)2 such that G∗ = f (α) · R.

We first note that f ′(α) =
(h∗2+1−2α)(h∗+α)−2(α−1)(h∗2−α)

(h∗+α)3 =
(h∗−α)(h∗+1)2

(h∗+α)3 which implies that f ′(α) > 0 for
α < h∗ and f ′(α) < 0 for α > h∗. Hence, f (α) is pseudo-concave (single-peaked) and the unique
maximum of f occurs at αmax = h∗ > 0. Moreover, f (α) attains its maximum in the interval
[1, h∗2] if h∗ > 1, and in the interval [h∗2, 1] if h∗ < 1.
The maximand αmax = h∗ gives the maximum of f (α) as

f (αmax) = f (h∗) =
(h∗ − 1)2

4h∗
> 0.

According to (EE) we have to satisfy f (α) · R = G∗. Hence, R must exceed Rmin = G∗
f (αmax) :

(M) R ≥ Rmin =
G∗

(h∗−1)2

4h∗

=
4h∗

(h∗ − 1)2 ·G
∗ > 0.

12



We have shown the following proposition:

Proposition 4.1 Consider the equilibrium of the indirect contribution game.

i) Let (α,R) be a biased raffle that provides the efficient amount G∗ of the public good. Then

R ≥ Rmin must hold.

ii) For any R ≥ Rmin there exists α > 0 such that (α,R) yields the efficient amount G∗ of the

public good.

The second statement in Proposition 4.1 follows from the fact, that - given G∗ and R - f (α) can
be continuously varied between f (αmax) and 0.

The derivation of Proposition 4.1 suggests that for the efficient raffle there exists a trade-off

between balancing the heterogeneity of the consumers and the necessary prize sum. To get fur-
ther insights into the nature of this trade-off the relation between Rmin and h∗ has to be analyzed.

Note that for homogeneous consumers h∗ = 1 holds, while for heterogeneous consumers
h∗ , 1. We define h =| h∗ − 1 | as an index of heterogeneity among consumers as it measures
”distance” from the homogeneous case h∗ = 1. From (M) we know that Rmin = g(h∗) · G∗ with
g(h∗) = 4h∗

(h∗−1)2 . We hence have to study g(h∗), which is positive for all 0 < h∗ , 1 and not defined
at h∗ = 1. Moreover, limh∗→0 g(h∗) = limh∗→∞ g(h∗) = 0 and

g′(h∗) =
4(h∗ − 1)2 − 4h∗ · 2(h∗ − 1)

(h∗ − 1)4 = −
4(h∗ + 1)
(h∗ − 1)3 .

The last expression implies that g(h∗) is monotonically increasing in h∗ for h∗ < 1, and monoton-
ically decreasing for h∗ > 1 with a pole at h∗ = 1. Consequently, g is monotonically decreasing
in h =| h∗ − 1 |, our index of heterogeneity. Hence, if the heterogeneity between consumers
increases then the relation between the minimal prize sum Rmin and the efficient provision level
G∗ decreases:

Lemma 4.2 The relation Rmin
G∗ is monotonically decreasing in the heterogeneity of the consumers.

The last result does not mean that the absolute value of Rmin must behave monotonically in the
index of heterogeneity. Consider a change in h =| h∗ − 1 |. Then a change in h∗ as defined above
may also change G∗. So Rmin = g(h∗) · G∗ could still behave non-monotonically. The following
example shows that this indeed, can occur.

13



5 An example

Suppose h1(G) = b · G
1
2 and h2(G) = G

1
2 with b > 0. Then the utility functions of the two

consumers in the indirect biased provision game are

u1(x1, x2) = w1 − x1 + x1
x1+αx2

R + b · (x1 + x2 − R)
1
2

u2(x1, x2) = w2 − x2 + αx2
x1+αx2

R + (x1 + x2 − R)
1
2

The optimal amount G∗ of the public good is characterized by the Samuelson condition b · 12G−
1
2 +

1
2 · G

− 1
2 = 1, which is solved by G∗ =

(1+b)2

4 . Consequently, h′1(G∗) = b
1+b and h′2(G∗) = 1

1+b . We

calculate h∗ =
1− 1

1+b

1− b
1+b

= b which gives αmax = b. With f (αmax) =
(b−1)2

4b it follows from (M) that

Rmin(b) = g(b) ·G∗ =
4b

(b − 1)2 ·
(1 + b)2

4
=

b(1 + b)2

(b − 1)2 .

Note that Rmin(b) is not monotonic in b:

R′min =
(1 + 4b + 3b2)(b − 1)2 − b(1 + b)22(b − 1)

(b − 1)4 =
(b + 1)(b2 − 4b − 1)

(b − 1)3

The last expression is negative for b ∈ (1, 2 +
√

5), and positive for b ∈ (0, 1)∪ (2 +
√

5,∞). This
leads to the following result:

Lemma 5.1 The minimal prize sum Rmin need not be monotonic in the heterogeneity of the con-

sumers.

For our specific setup considered here the dependence between the minimal prize sum Rmin and
the heterogeneity factor b can be analyzed further. Inspection of R′min(b) over the interval (1,∞)
reveals that there is exactly one root as

b2 − 4b − 1 = 0.

This follows from b1,2 = 2 ±
√

5 with b1 > 1 and b2 < 0. At b1 = 2 +
√

5 there is a local
minimum of Rmin(b) as Figure 1 shows. The increase of Rmin(b) for b > b1 is explained by the
increase of G∗ =

(1+b)2

4 in b, which overcompensates the decrease in g(b) according to Lemma 4;
in fact, while g(b) is decreasing, G∗(b) is increasing.
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Figure 1: Minimal prize sum Rmin(b) for different heterogeneity levels b

We are now going to show how the efficient raffle with the minimal prize sum can be deter-
mined explicitly for the specific case b = 2. A first consequence of this specification is that G∗

must satisfy

G−1/2 +
1
2

G−1/2 = 1, and thus G∗ =
9
4
, and, as a consequence, h∗ = 2.

Based on this expression we can first derive the minimal prize sum Rmin and then determine the
corresponding weights (α1, α2) = (1, αmax) such that in equilibrium x∗1 + x∗2 = Rmin + 9

4 holds.
From (M) the minimal prize sum is R = 18 and the corresponding αmax = h∗ = 2. The first order
conditions then read:

−1 +
2x2

(x1 + 2x2)2 · 18 + (x1 + x2 − 18)−1/2 = 0

−1 +
2x1

(x1 + 2x2)2 · 18 +
1
2

(x1 + x2 − 18)−1/2 = 0,

and the solution is x∗1 = 27
2 and x∗2 = 27

4 . Hence, we have that

x∗1 + x∗2 =
81
4

= 18 +
9
4

= R + G∗.
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Alternatively, a fair lottery with prize discrimination (p = (1, p2)) leads to the following utility
functions:

(Ū) ū1(x1, x2) = w1 − x1 +
x1

x1 + x2
R + 2 (x1 + p2x2 − R)1/2

ū2(x1, x2) = w2 − p2x2 +
x2

x1 + x2
R + (x1 + p2x2 − R)1/2

Choose, again, R = 18 and let p = (1, p2) = (1, 1
2 ) in line with Corollary 2.3, then the first-order

conditions of Ū become:

−1 +
x2

(x1 + x2)2 18 +

(
x1 +

1
2

x2 − 18
)−1/2

= 0

−
1
2

+
x1

(x1 + x2)2 18 +
1
4

(
x1 +

1
2

x2 − 18
)−1/2

= 0,

with the solution x∗1 = x∗2 = 27
2 and hence we have:

x∗1 +
1
2

x∗2 =
81
4

= 18 +
9
4

= R + G∗.

6 Concluding Remarks

We have considered an indirect biased contribution game for public good provision and examined
its (Nash) equilibrium properties. In this game contributions to the provision of a public good are
elicited from consumers by offering a biased raffle with a fixed prize R. The prize R is financed
out of the proceeds from raffle ticket sales and only the surplus revenue over R goes towards
provision of the public good. Equilibrium exists for any number of consumers (Proposition 2.1)
and is unique (Proposition 2.2). Moreover, the equilibrium outcome can always be implemented
with a fair raffle whose tickets are sold at different prices to different consumers; holding a biased
raffle can be understood as holding a fair raffle with a price-discriminating ticket seller.

We then concentrate on the case of two consumers and show that biased raffles can provide
the optimal amount of the public good in equilibrium (Theorem 3.4) with a finite prize sum.
This is in contrast to fair raffles, which always provide less than the optimal amount of the public
good. This solution of the free-rider problem is achieved on a purely voluntary basis of consumer
behavior: participation in the biased raffle is voluntary; no confiscatory taxes are needed on the
part of the provider. All he has to do is organize a biased raffle with a fixed prize R. We determine
the minimally necessary prize R to finance the optimal amount of the public good and how this

16



depends on the bias α and heterogeneity of consumers (Proposition 4.1).
The treatment of the general case with more than two consumers should preserve the effi-

ciency result of Theorem 3.4. However, the difficulty is the following: while in the case of two
consumers both always want to buy tickets for the biased raffle, not all n consumers necessarily
want to do so, if n > 2. The real difficulty is to determine the participation constraints of con-
sumers in equilibrium. Franke et al. (2011) have given a complete solution of this problem in
the pure contest case of a biased raffle; i.e. when raffle expenditures constitute foregone efforts
of contestants, which do not generate any further utility to them. In future research we will adapt
the methods developed in Franke et al. (2011) to the present case when efforts are not foregone,
but also feed supply of a public good.
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