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Abstract 
 
In the basic model of the literature on international environmental agreements (IEAs) (Barrett 
1994; Rubio and Ulph 2006) the number of signatories of self-enforcing IEAs does not 
exceed three, if non-positive emissions are ruled out. We extend that model by introducing a 
composite consumer good and fossil fuel that are produced and consumed in each country and 
traded on world markets. When signatory countries act as Stackelberg leader and emissions 
are positive, the size of stable IEAs may be significantly larger in our model with 
international trade. This would be good news if larger self-enforcing IEAs would lead to 
stronger reductions of total emissions. Unfortunately, in the presence of self-enforcing IEAs 
total emissions turn out to be only slightly less than in the business as usual scenario, 
independent of the number of signatories. We also investigate the role of international trade 
by comparing our free-trade results with the outcome in the regime of autarky. Our autarky 
model turns out to coincide with the basic model of the literature alluded to above. We 
contribute to that literature by showing that in autarky the outcome of self-enforcing IEAs is 
also almost the same as in business as usual. 
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1 The problem

International environmental agreements (IEAs) are essential for the stabilization of the world

climate at safe levels through the effective reduction of global carbon emissions. The first

legally binding international agreement on climate protection, the Kyoto Protocol, has been

criticized because it includes commitments for a small number of countries only and is

therefore likely to accomplish very little in terms of global emission reduction (Buchner et

al. 2002). The prospects are bleak for reaching an IEA in the near future which accom-

plishes both attracting many signatories and reducing global emissions significantly. The

tedious practical negotiations and the serious global change challenge call for continued

investigations of the theoretical foundations of successful and effective IEAs.

Since the early 1990s an economic literature has developed on self-enforcing IEAs. An

IEA is said to be self-enforcing or stable if no signatory country has an incentive to leave

the IEA and no non-signatory country has an incentive to join. The seminal papers on self-

enforcing IEAs include Barrett (1992, 1994), Hoel (1992) and Carraro and Siniscalco (1993).

Most papers are quite pessimistic about the stability of large IEAs. Carraro and Siniscalco

(1991), Hoel (1992) and Finus (2001) find that a stable IEA consists of three countries when

the climate damage is linear and of two countries when the climate damage is quadratic.

These papers assume that both signatories and non-signatories behave in a Cournot-Nash

fashion.

Another strand of the IEA literature which we will follow in the present paper makes

use of the Stackelberg assumption portraying the climate coalition1 as Stackelberg leader

and all non-cooperative countries as Stackelberg followers. In that framework Barrett’s

(1994) simulation results suggest the existence of stable coalition sizes between two and

the grand coalition. However, Diamantoudi and Sartzetakis (2006) and Rubio and Ulph

(2006) proved that large stable IEAs imply zero emissions (corner solutions) or negative

emissions. The latter must clearly be ruled out in models without stock pollution, because

it is infeasible to abate more emissions than are generated. As Rubio and Ulph point

out, the reason for negative emissions is the assumption of non-essential emissions which

is standard in the literature on IEAs. Although that assumption is unrealistic in the case

of carbon emissions and climate change, we will stick to it for reasons of tractability and

comparability with pertaining literature and we will follow Diamantoudi and Sartzetakis

(2006) in restricting parameter values such that the resultant emissions are always strictly

positive. Under that constraint (along with the assumption of non-essential emissions)

1In the present paper we use the terms IEA and (climate) coalition as synonyms. Our exclusive focus is

on a single coalition.
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Diamantoudi and Sartzetakis (2006) as well as Rubio and Ulph (2006) find that the number

of signatories of self-enforcing IEAs is not larger than four.

The basic model of an IEA employed by Barrett (1994), Diamantoudi and Sartzetakis

(2006) and Rubio and Ulph (2006) and others is a static model of symmetric countries

where each country’s domestic emissions generate domestic welfare that is decreasing at

the margin and where all countries’ emissions create a welfare loss (climate damage) which

is uniform across countries and increasing at the margin.2 That model does not account

for production, consumption, markets and international trade and thus captures the world

economy in a rudimentary way only. It has been extended in various directions (Finus 2003).3

For example, Hoel and Schneider (1997) introduce transfer schemes in the coalition formation

process, Kolstad (2007) studies systematic uncertainty and Carbone et al. (2009) use the

basic model for an empirical investigation of how international emission trading impacts on

IEAs. However, we are not aware of studies on the formation of IEAs4 that model in more

detail the economies of individual countries and their economic interdependencies.

The present paper aims to extend the basic model along these lines and then investi-

gates the impact of that extension on the stability of IEAs in the Stackelberg leader-follower

framework. We will add structure to the national economies by introducing a consumer

good and fossil fuel that are produced in each country, consumed by its representative con-

sumer and traded on world markets.5 In this general equilibrium framework we first briefly

characterize the business-as-usual (BAU) scenario with non-cooperative governments as a

benchmarkt and then turn to our central theme, the characterization of self-enforcing IEAs

in the Stackelberg model.

For the case of positive equilibrium emissions we find that - depending on parameter

constellations - international trade may significantly increase the size of stable IEAs. That

is, the conditions for successful sub-global cooperative action appear to be more favorable

than suggested by the basic model of the IEA literature. Unfortunately, the hope for a more

2Barrett (1994) models abatement, and therefore his approach seems to differ from the basic model, at

first glance. However, as pointed out by Diamantoudi and Sartzetakis (2006, Section 4), Barrett’s model is

equivalent to the basic model as long as abatement does not exceed the flow of emissions.
3Modifying and extending, respectively, the basic model, Barrett (1999) and Hannesson (2010) show that

stable coalitions may consist of a large number of countries, if the coalition behaves as a Nash player.
4There are also studies relaxing the assumption of the basic model that countries are identical (e.g.

Barrett 2001). In the present paper we will stick to that assumption to keep our model tractable.
5Despite the importance of international trade for the formation of IEAs, to our knowledge there is only

one paper dealing with that issue, and that is Barrett (1997) who illustrates in a partial equilibrium model

with abatement how trade policy may help support stable IEAs. Copeland and Taylor (2005) study the role

of international trade in a model of non-cooperative heterogenous countries coping with a global (climate)

externality. They do not address the formation of coalitions, however.
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optimistic view on effective cooperative emission reductions turns out to be unwarranted

because our second main finding is that if an IEA of any size is self-enforcing, the corre-

sponding level of world emissions is only slightly lower than in business as usual (BAU).

These results are obtained in a very simple model making use of parametric functions and

numerical examples and they may not be, therefore, reliable indicators for the outcome of

the highly complex ongoing international climate negotiations. Nonetheless, they provide

some support for the disturbing view that attempts to form a sub-global climate coalition

(of whatever size) are futile.

As the introduction of international trade represents a major extension of the IEA

literature, it is natural to highlight its impact on results by investigating the outcome of

our model in the absence of international trade (autarky). When all countries are autarkic,

our model turns out to coincide with the basic model of the literature on IEAs which has

established, as reported above, that the number of signatories in self-enforcing IEAs is very

small. We find that turning from free trade to autarky reduces the size of stable coalitions

for any given set of parameters. Moreover, we extend the literature by showing that in the

autarky scenario - as under free trade - the level of world emissions is only slightly lower

than in BAU.

The paper is organized as follows. Section 2 introduces the model and briefly analyzes

the business-as-usual scenario which serves as a benchmark throughout the paper. Section

3.1 prepares for the analysis of self-enforcing IEAs in Section 3.2 by characterizing the

outcome of the Stackelberg game and its dependence on the size of coalitions. Section 4

deals with the role of international trade for the results by comparing the regimes of free

trade and autarky and by linking the case of autarky to the basic model of the coalition

formation literature. Section 5 concludes.

2 The model

The world economy consists of n identical countries. Each country produces two consumer

goods. The first is a standard composite good, called good X (quantity xi) and the second

is a fossil energy carrier (quantity ei), e.g. oil, gas or coal extracted from domestic fossil

reserves. We refer to that good simply as fuel.6 Each country’s production technology is

6Households do not consume fuel directly but use fuel as input in a linear household production function

to produce e.g. the commodities heat or transportation services. To keep the exposition simple, we refrain

from modeling the household production technology, however, and interpret fuel as consumer good.
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represented by the production possibility frontier7

xs
i = T (esi ) i = 1, . . . , n, (1)

where the function T is decreasing and strictly concave in esi . The transformation function

(1) implies that both commodities are produced by means of domestic productive factors

(e.g. labor and capital) whose endowments are given. The utility8

V (edi ) + xd
i −D

(
∑

j

edj

)

(2)

of the representative consumer of country i is additive separable in all arguments and linear

in the consumption xd
i of good X. V is increasing and concave, and D is increasing and

convex in its argument. The consumption of fuel generates the greenhouse gas carbon dioxide

whose emission is proportional to fuel consumption. Emission units are chosen such that edi

denotes both fuel demanded by consumer i and carbon emissions from burning fuel. There

is no abatement technology for emission reduction.9 The function D captures the climate

damage caused by worldwide carbon emissions from burning fuel.

For the sake of more specific results, throughout the paper we will specify the functions

T , V and D from (1) and (2) by the following quadratic functional forms:10

T (esi ) = x̄−
α

2
(esi )

2 , V (edi ) = aedi −
b

2
(edi )

2, D

(
∑

j

edj

)

=
1

2

(
∑

j

edj

)2

, (3)

where x̄, a, b and α are positive parameters.

In our stylized model (1) and (2) of the individual country’s economy all fuel goes

from production directly to consumers where ’fuel production’ can be interpreted to include

extraction of fossil energy carriers as well as production of electricity, gasoline, gas or coal

for non-business usage.11 Although in practice climate regulation does not only apply to

the consumers’ energy demand but also to energy-consuming industries, as e.g. in the

7The superscript s indicates quantities supplied. Upper-case letters denote functions. Subscripts attached

to them indicate partial derivatives.
8The superscript d indicates quantities demanded.
9Carbon capture and sequestration is a potential abatement technology which is unlikely to be applied

on a large scale in the near or medium term future.
10In (3) the parametric form of T (esi ) can be ’microfounded’ as follows. Let r̄ be country i’s endowment

of a (composite) production factor and consider the production functions x = αxrx and e = (re/αe)
1/2 with

re + rx = r̄. αe, αx are positive constants. The quadratic transformation function in (3) is straightforward

from these three equations when setting x̄ := αxr̄ and α := αxαe.
11Such simplifications are driven by limits of tractability. We also wish to recall, however, that the model

of the present paper is far more complex than the basic model of IEA (e.g. Finus 2003, Section 2.3) which

does without specifying production, consumption and markets, as we have pointed out in the introduction.

5



EU emission trading scheme, we maintain that our simplification still captures the central

issue of emission regulation. Whether fuel consumption of industries or of consumers is

regulated, in both cases more stringent emission caps require raising the domestic price

for fuel consumption which, in turn, induces allocative displacement effects via changes in

relative prices.

There are perfectly competitive world markets for good X (price px ≡ 1) and for fuel

(producer price p), and the markets are in equilibrium if

∑

j

xs
j =

∑

j

xd
j and

∑

j

esj =
∑

j

edj . (4)

The firms’ supply of fuel is straightforward. Taking prices as given, the (aggregate) producer

i maximizes profits xs
i + pesi subject to (1) which yields the first-order condition

p = −T ′(esi ) for i = 1, . . . , n. (5)

Combined with (1), equation (5) implies a fuel supply function

esi = Es(p) with Es
p > 0 for i = 1, . . . , n. (6)

Each government i regulates domestic carbon emissions by enforcing an emission cap ei. For

the time being we suppose these caps are arbitrarily fixed and tight enough to be binding.

To implement its emission cap, government i issues the amount ei of emission permits and

auctions them at the permit price πi. Consumers in country i need to acquire emission

permits to match their purchase of fuel. The representative consumer i ignores the impact

of her emissions on climate damage and maximizes her (consumption) utility V (edi ) + xd
i

subject to her budget constraint

xd
i + (p+ πi)e

d
i = yi, where yi := xs

i + pesi + πie
d
i (7)

is consumer i’s income (= profit income plus recycled revenues from the permit auction).

From the first-order condition p+ πi = V ′(edi ) follows a fuel demand function

edi = Ed(p+ πi) for i = 1, . . . , n. (8)

The result of auctioning the permits obviously is

edi = ei for i = 1, . . . , n. (9)

Combining the equilibrium condition
∑

j e
s
j =

∑

j e
d
j from (4) with (6) and (9) yields

esi = Es(p) =

∑

j ej

n
for i = 1, . . . , n. (10)
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Equation (10) determines the unique equilibrium price of fuel and also establishes that in

equilibrium all firms produce the same amount of fuel,
∑

j ej/n. From (5), (8) and (9) follows

ei = Ed
[

−T ′
(∑

j ej

n

)

+ πi

]

. This equation determines the unique equilibrium permit price.

The equilibrium supplies and demands on the market for good X are

xs
i = T

(∑

j ej

n

)

and xd
i = T

(∑

j ej

n

)

− T ′

(∑

j ej

n

)(∑

j ej

n
− ei

)

, (11)

where the first equation in (11) is implied by (1) and (10) and the second by (1), (7), (9)

and (10). It readily follows from (11) that the market for good X is in equilibrium, if the

fuel market is in equilibrium.

To sum up, in the world economy with non-cooperative emission cap regulation there is

a unique competitive equilibrium for every profile (e1, . . . , en) of binding emission caps. That

is, in equilibrium all demands and supplies, and all prices are determined by (e1, . . . , en).

Combining welfare (2) with (9), (10) and (11) results in the equilibrium welfare of country

i = 1, . . . , n,

W i(e1, . . . , en) := V (ei) + T

(∑

j ej

n

)

−

(∑

j ej

n
− ei

)

T ′

(∑

j ej

n

)

−D

(
∑

j

ej

)

. (12)

So far we have considered governments that fix national emission caps in an arbitrary

way. From now on their objective function is supposed to be national welfare, (12). Before

addressing cooperation in emission regulation, we briefly investigate the benchmark case

of global non-cooperation. In game-theoretic language, the n governments are the players

of a non-cooperative game. Their strategies are national emission caps and their payoff

functions are national welfares, (12). The natural solution concept is the Nash equilibrium, a

state, where each government’s emission cap is the best response to each other government’s

emission cap. We refer to that equilibrium as business as usual (BAU). In terms of the

formal model, government i chooses that cap ei which maximizes W i(e1, . . . , en) for given

caps (e1, . . . , ei−1, ei+1, . . . , en). Differentiation of (12) with respect to ei yields the first-order

condition12 W i
ei
= 0.

Eichner and Pethig (2012) show that W i
ei

= 0 can be converted into a best reply

function R̃ satisfying

ei = R̃

(
∑

j 6=i

ej

)

(13)

whose first derivative is in the interval ] − 1, 0[ under mild restrictions. Hence there exists

a unique symmetric Nash equilibrium satisfying ei = ej for all j 6= i. If the functions

12Throughout the paper we restrict our attention to interior solutions.
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V , T and D are specified as in (3) the uniform Nash equilibrium cap is eo := a
α+b+n

.

Another immediate consequence of symmetry is that international trade does not take place

in equilibrium. Each country sets its BAU emission cap eo such that its marginal benefit of

consumption, V ′(eo) + T ′(eo), equals its marginal climate damage, D′(neo). If the countries

would disregard their own impact on climate damage, national equilibrium emissions would

exceed eo. Hence in BAU some emission reduction is in the countries’ self-interest. It is also

clear that total emissions neo in BAU exceed total emissions in the optimal fully cooperative

solution, since all countries disregard in BAU the positive external effects of their emission

reduction on the other countries.

3 Climate coalition as Stackelberg leader

Suppose now that some countries are members in a climate coalition, whereas all other

countries continue to act non-cooperatively. For the sake of formal analysis, we lump together

the first m countries, 2 ≤ m < n, in one group, denoted group C := {1, 2, . . . , m} with C

for coalition, and collect all remaining countries in another group, denoted group F :=

{m + 1, . . . , n} with F for fringe. Our focus will be on a game of sequential choice of

emission caps in which the coalition is the Stackelberg leader and moves first and the fringe

countries are Stackelberg followers. The coalition formation literature has made ample use

of the Stackelberg assumption (Finus 2001) and we refer the reader to that literature for

information on the discussion about the plausibility and relative merits of the Nash concept

on the one hand and the Stackelberg concept on the other.13 Our aim is to investigate how

the Stackelberg assumption drives the outcome of the game when we extend the basic model

as outlined in Section 2.

3.1 Climate coalitions and coalition sizes

Stackelberg equilibrium In the present section we aim to characterize the allocation in

the Stackelberg equilibrium (to be specified below) for alternatively given coalition sizes and

thus prepare for the analysis of coalition stability in the next Section 3.2. The objective of

the climate coalition C is to maximize the joint welfare
∑

j∈C W j(e1, . . . , en) of its members

taking the behavior of the fringe countries into account. Since all coalition countries are alike,

ei = ej for all i, j ∈ C is a necessary maximum condition which allows us to set ei = ec for

all i ∈ C. Thus the coalition can be treated as a single player whose strategy will be denoted

13Eichner and Pethig (2012) is a companion paper in which the climate coalition is modeled as a Nash

player.
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as sc := mec. We continue portraying fringe countries as non-cooperative Nash players, and

therefore W i
ei
= 0 still applies for each fringe country. As W i

ei
= 0 cannot be satisfied for

i, j ∈ F, i 6= j, unless ei = ej , we proceed by setting ei = ef for all i ∈ F . With this notation,

each fringe country’s best-reply function (13) reads ef = R̃[sc+(n−m−1)ef ]. Eichner and

Pethig (2012) show that this equation implies a function R satisfying (n−m)ef = R(mec, m)

or

sf = R(sc, m) with Rsc ∈]− 1, 0[, (14)

where sc := mec and sf := (n−m)ef .

According to (14) fringe countries can be treated as if they act as a single player whose

strategy is sf . In that sense R is the ’aggregate’ best reply function of ’the fringe’. However,

it is important to emphasize that R is a purely formal transformation of R̃ from (13), and

therefore (14) does not imply any cooperation among fringe countries. R turns out to be an

important analytical tool.

With the newly introduced notation sf := (n−m)ef , we next express total emissions

as
∑

ej = sc + sf and rewrite the welfare of individual countries, (12), as

W c (sc, sf , m) := V
(sc
m

)

+ T

(
sc + sf

n

)

−

(
sc + sf

n
−

sc
m

)

T ′

(
sc + sf

n

)

−D(sc + sf)(15)

for all countries in group C and as

W f (sc, sf , m) := V

(
sf

n−m

)

+ T

(
sc + sf

n

)

−

(
sc + sf

n
−

sf
n−m

)

T ′

(
sc + sf

n

)

−D(sc + sf) (16)

for all countries in group F . For convenience of notation and later reference we refer to

(−D(sc + sf)) as the climate welfare and to W j(sc, sf , m) +D(sc + sf) as the consumption

welfare of an individual country.

Being the Stackelberg leader the coalition of size m ∈ {1, . . . , n} accounts for (14)

such that its objective function is the aggregate welfare mW c [sc, R(sc, m), m]. The fringe

countries observe the leader’s action sc. Their ’aggregate’ response is sf = R(sc, m), and

therefore the resultant welfare is W f [sc, R(sc, m), m] for each individual fringe country. Since

the function W c is inverse u-shaped and strictly concave in sc (see Appendix B), there exists

a unique solution to the coalition’s optimization problem

max
sc∈[0,mT−1(0)]

mW c [sc, R(sc, m), m] . (17)

The Stackelberg equilibrium [s∗c , s
∗
f = R(s∗c , m)] is a point in the strategy space at which the

best-reply function R of the fringe and an iso-welfare curve of the coalition are tangent.
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In the sequel we will characterize the solution of (17), its relation to the BAU equi-

librium and its dependence on the (exogenous) size of the coalition. We proceed in several

steps beginning with the implications of an arbitrary action sc ∈ [0, mT−1(0)] of the leader.

The coalition’s anticipation of the fringe’s reactions as driving force of outcomes

The best-reply function of the fringe, (14), is of special interest, because all feasible outcomes

necessarily satisfy that function. Accounting for R the coalition knows that its own emissions

and those of the fringe are strategic substitutes. So it takes into consideration that if

it reduces its emissions by the amount ∆sc < 0 [increases its emissions by the amount

∆sc > 0] total emissions will shrink [expand], but by less than
∣
∣∆sc

∣
∣.14 In the climate

change literature this phenomenon is referred to as carbon leakage for the case ∆sc < 0.

The leakage rate is usually expressed by
∣
∣Rsc

∣
∣ ∈ ]0, 1[. Since Rscm > 0 (Appendix A), the

leakage rate is declining in the coalition size - which conforms to intuition and will turn out

to drive the results. One can also show that15

ec R eo ⇐⇒ coalition







imports

doesn’t trade

exports







fuel. (18)

If ec is kept constant, total emissions are rising in m, because the fringe’s responding emission

reduction falls short of the coalition’s emission increase. Moreover, if m is kept constant,

total emissions are rising in ec because the leakage rate is positive but less than one.16 Finally

we note that the increase in total emissions resulting from a given increase in the coalition

countries’ emissions is the larger, the larger is the coalition size.17 That is, large coalitions

are more effective in curbing total emissions, because the leakage rate is declining in the

coalition size.

Coalition size, equilibrium emissions and welfares, and their relation to BAU

According to our previous analysis the entire Stackelberg equilibrium allocation is uniquely

determined by - and varies with - the coalition size. To formalize that observation it is

14That follows from sc + sf = sc(1 + Rsc) +R(0,m), with (1 +Rsc) ∈]0, 1[ because of Rsc ∈]− 1, 0[.

15(18) follows from xs
i = T

(
sc+sf

n

)

, Rsc ∈]− 1, 0[ and sign (ec − eo) = sign (sc + sf − neo).

16The total differential of sc + sf = sc(1 + Rsc) + R(0,m) reads d(sc + sf ) =




(1 +Rsc)ec + scRscm
︸ ︷︷ ︸

(+)




 ·

dm+m(1 + Rsc)
︸ ︷︷ ︸

(+)

·dec. Here we treat m as a real number in [1, n] for analytical convenience although we will

keep in mind that in real-world coalitions m is an integer in the set {1, . . . , n}.
17Formally this follows from

∂2(sc+sf )
∂ec∂m

= (1 +Rsc) +mRscm =
{[1−(n−m−1)Rsc ]

2−mRsc}(1+Rsc )
[1−(n−m−1)Rsc ]

2 > 0.
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analytically convenient to introduce the notation

e∗c = E c(m), e∗f = Ef(m),

Wc(m) := W c[mE c(m), (n−m)Ef(m), m] and

Wf (m) := W f [mE c(m), (n−m)Ef(m), m],

and to consider the interval [0, n] to be the domain of all these functions. A first but

important result is the following proposition proved in Appendix C.

Proposition 1 . The Stackelberg equilibrium with the coalition of size m̃ ∈ [1, n]

coincides with the non-cooperative BAU equilibrium, if and only if

m̃ :=
(α + b+ n)n2

α(2n− 1) + n2(b+ 1)
> 1. (19)

Proposition 1 specifies the link between Stackelberg equilibria and the BAU equilibrium.

For the coalition it is optimal to choose the BAU emissions e∗c = eo (leading to e∗f = eo),

if and only if it has m̃ members. E c(m) 6= eo and Wc(m) ≥ Wc(m̃) for all m 6= m̃ follows

immediately from the observations that the benchmark coalition size m̃ is unique and that

for any given m the coalition can always choose the emission cap ec = eo which then leads

to the BAU equilibrium. According to (19) m̃ varies with the model parameters and that

feature will turn out to be of special interest below.

With the coalition size m̃ as a benchmark we are able to shed more light on the

links between coalition size and deviations from BAU of emissions and welfare levels in

Stackelberg equilibria. Suppose, the coalition of size m chooses the strategy sc = meo and

thus implements the BAU equilibrium. For all coalitions of size m 6= m̃ the strategy sc = meo

is clearly feasible but sub-optimal. Hence MWCo(m) 6= 0 for all m 6= m̃, where MWCo(m)

is a shorthand for the "Marginal (aggregate) Welfare of a Coalition of size m 6= m̃ evaluated

at the ’BAU equilibrium strategy’ sc = meo ". We prove in the Appendix C that18

MWCo(m) R 0 ⇐⇒ m ⋚ m̃. (20)

For the interpretation of (20) we invoke our result from the Appendix C that the coalition’s

marginal consumption welfare in BAU is independent of the coalition size, so that variations

in total marginal welfare result from variations in the coalition’s marginal climate welfare

exclusively. Hence, total BAU emissions neo are considered suboptimally large by large

coalitions (m > m̃) and suboptimally small by small coalitions (m < m̃).19 We combine

18Throughout the paper the subscript "o" refers to the BAU equilibrium.
19The reason for that differential effect is our finding that the effectiveness of curbing total emissions is

increasing in the coalition size because the leakage rate declines with the coalition size. See footnote 17.
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the information of (14) and (20) with the properties of W c[mec, R(mec, m), m] specified in

Appendix B to conclude:

E c(m) R eo and Ef(m) ⋚ eo ⇐⇒ m ⋚ m̃. (21)

The rationale of (21) is straightforward in view of footnote 17. In case of m < m̃ the leakage

rate is high so that the coalition achieves a small reduction in total emissions only, if it

reduces ec. That makes total emission reductions very expensive. If, instead, the coalition

relaxes rather than tightens the emission cap ec, the resulting increase in total emissions is

small owing to the high leakage rate, but the gain in consumption welfare is relatively large.

Mirror symmetric arguments apply to the case m > m̃. Since leakage rates are always less

than unity,

[mE c(m) + (n−m)Ef(m)] R neo ⇐⇒ m ⋚ m̃ (22)

follows from (21). According to (22), small coalitions (m < m̃) do not mitigate but rather

aggravate climate damage compared to BAU. It would therefore be more appropriate to call

such coalitions ’anti-climate coalitions’ rather than a ’climate coalitions’.

Turning to the coalition countries’ welfare, note first that (20) implies that Wc(m) is

strictly greater than Wc(m̃) for all m 6= m̃. Hence the function W c attains its absolute

minimum20 at m = m̃. Moreover, we verify in the Appendix D that






Wc(m) > Wo > Wf (m)

Wc(m) = Wo = Wf (m)

Wf (m) > Wc(m) > Wo







⇐⇒ m







<

=

>







m̃ (23)

with Wo := Wc(m̃) = Wf (m̃). In case of m < m̃ the coalition finds it beneficial to expand

own emissions above BAU level which induces the fringe countries to tighten their emission

caps. The opportunity costs of that policy on the part of fringe countries is consumption

foregone. The consumption welfare loss combined with the reduction in climate welfare

pushes the fringe countries’ total welfare below BAU level. Thus, the coalition free rides

on the fringe countries’ mitigation efforts. In case of m > m̃ the roles of both groups are

reversed. Now the fringe countries free ride on the coalition’s mitigation policy, which is

their expected role, and the fringe countries benefit on two margins: Their consumption

welfare rises compared to BAU as well as their climate welfare. A general principle appears

to be that countries with laxer emission regulation have higher welfare levels. So far, we

summarize our results in

Proposition 2 . Consider the transition from BAU to the Stackelberg equilibrium.

The shift of

20In our numerical calculations Wc will turn out to be u-shaped as shown in Figure 2 below.
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(i) the coalition country’s emissions is characterized in (21);

(ii) total emissions is characterized in (22);

(iii) the coalition country’s and fringe country’s welfare is characterized in (23).

The results of Proposition 2 provide interesting information about the relations between

the coalition size, the BAU equilibrium and the Stackelberg equilibrium. However, as the

functions E j and Wj for j = c, f depend on m in a very complex way, their curvature cannot

be specified analytically.

Numerical example To make progress we resort to a numerical example, referred to as

Example 1,21 with the parameter values a = 100, b = 20, x̄ = 12, α = 1000 and n = 10. The

Figures 1 and 2 display the pertaining graphs of the functions Eh and Wh for h = c, f and

the curves of aggregate emissions and welfares, respectively. Observe that (21), (22) and

(23) are satisfied in these figures. The new information conveyed by Example 1 is that the

function E c [Ef ] is strictly decreasing [increasing] and that total emissions mE c + (n−m)Ef

are strictly decreasing in m.22

4 6 8 10

0.10

0.11

0.12

0.13

m

Ef (m)

Ec(m)
eo

m̃
4 6 8 10

0.955

0.960

0.965

0.970

m

mEc(m) + (n−m)Ef (m)

neo

m̃

Figure 1: Emissions caps and total emissions in Example 1

According to the left panel of Figure 2, the (total) welfare of coalition countries is

u-shaped with its unique minimum at m = m̃, whereas Wf is strictly increasing in m. The

surprising feature of the right panel of Figure 2 is not that the world welfare rises in m but

that for all m < m̃ the world welfare falls short of its BAU level. The coalition of size m < m̃

21We cannot generalize our findings from Example 1 by induction, of course. Yet we have run several other

examples, e.g. the Example 2 specified by the parameter values a = 1000, b = 2000, x̄ = 12, α = 500000, and

n = 100 (to be considered in the next section). The graphs corresponding to all examples under scrutiny

turned out to be qualitatively the same as those in the Figures 1, 2 and 3 which is why we restrict the

graphical presentation to Example 1.
22We consider as negligible that the functions Ef ,Wf ,mWc + (n − m)Wf and mEc + (n − m)Ef are

slightly non-monotone for m < 2.
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Figure 2: Welfare and aggregate welfare in Example 1

clearly succeeds in raising its welfare above BAU level by increasing the climate damage at

the expense of the fringe countries. As the latter engage in costly mitigation to keep the

increase in total emissions small, they suffer a welfare loss compared to BAU (left panel of

Figure 2) which is even larger than the coalition’s welfare gain.

4 6 8 10
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16.900
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m̃
m

2 4 6 8 10

-0.475

-0.470

-0.465

-0.460

−Do

−D(m)

m̃
m

Figure 3: Consumption welfare [K(m)] and climate welfare [−D(m)] of the coalition in

Example 1

Figure 3 decomposes the (total) welfare of a coalition country into its consumption

welfare (curve K(m)) and climate welfare (curve −D(m)). Figure 3 illustrates that owing

to the high leakage rate in case of m < m̃, the coalition finds it advantageous to sacrifice,

compared to BAU, some climate welfare for additional consumption welfare. Conversely,

if m > m̃, the coalition is more effective in reducing total emissions and therefore benefits

from shifting away from consumption welfare toward higher climate welfare.

3.2 Self-enforcing IEAs

In the preceding Section 3.1 we have presupposed the presence of a climate coalition, and

our focus has been on characterizing the Stackelberg equilibrium and its dependence on

the exogenous coalition size m. Now we turn to the issue of coalition stability. Since
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supranational authorities for the effective enforcement of agreements are not available, IEAs

will not prevail unless they are self-enforcing in the sense that no signatory has an incentive

to defect (internal stability) and no non-signatory has an incentive to sign the agreement

(external stability).23 In formal language, an IEA with m ∈ {1, . . . , n} signatories is said to

be self-enforcing or stable if it satisfies the internal stability condition

Wc(m) ≥ Wf (m− 1) (24)

and the external stability condition

Wf (m) ≥ Wc(m+ 1). (25)

With the distinction between the membership m ∈ {1, . . . , n} of real-world IEAs and the

real-number approximation m ∈ [1, n] in mind we find that if a self-enforcing IEA with

m∗ ∈ {1, . . . , n} signatories exists, then m∗ > m̃. To verify that claim, note that Wc(m) >

Wo > Wf (m) for all m < m̃ from (23) implies Wf (m) < Wc(m + 1). So the external

stability condition is violated for all m ∈ {1, . . . , n} with m < m̃. If m̃ happens to be

an integer, the coalition of size m̃ is not stable either, because fringe countries have still

an incentive to join the coalition (W f(m̃) < W c(m̃ + 1)). Hence all those coalitions fail

to be stable that push up total emissions above BAU level. The downside of our finding

"m∗ > m̃, if m∗ exists" is that it leaves open whether m∗ exists, and if so, how large the

positive difference (m∗−m̃) is. Unfortunately, we have not been able to answer the existence

question analytically. We therefore resort to examining the stability conditions (24) and (25)

for the numerical Examples 1 and 2 introduced in the previous Section 3.1.
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Wf (m) −Wc(m + 1)

Figure 4: Stability in Example 1 (m̃ = 4.881, m∗ = 5)

23This notion of self-enforcement or stability was originally introduced by D’Asprement et al. (1983) in

the context of cartel formation.
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Figure 5: Stability in Example 2 (m̃ = 42.013, m∗ = 43)

The Figures 4 and 5 present the graphs of the functions Wc(m) − Wf (m − 1) and

Wf (m) −Wc(m+ 1) for the Examples 1 and 2, and their right panels exhibit an enlarged

detail of the relevant domain. In both cases there is one and only one interval of coalition

sizes in which both functions take on non-negative values (thus satisfying (24) as well as

(25)), and this interval contains one and only one integer, m∗ = 5 in Example 1 and m∗ = 43

in Example 2. Moreover, in both cases the stable coalition size m∗ is the smallest integer

greater than m̃ such that between 40% and 50% of all countries are members of the stable

coalition. That contrasts sharply with the result of Rubio and Ulph (2006) and Diamantoudi

and Sartzetakis (2006) according to whom the number of signatories in self-enforcing IEAs

(in a world without trade) is small in the parameter sub-space securing positive equilibrium

emissions.24

We carried out a number of examples in addition to the Examples 1 and 2 and their

modifications in the Tables 1 and 2 below and reached the unequivocal result that for every

parameter constellation securing positive equilibrium emissions there exists a unique self-

enforcing IEA whose coalition size m∗ is the smallest or second smallest integer larger than

m̃ from (19). Thus it is clear from our comments on Proposition 1 that the allocation

of Stackelberg equilibria with self-enforcing IEAs is approximately the same as in BAU;

the climate damage is only slightly lower and the coalition countries’ welfare is only slightly

higher than in BAU, while the welfare gain of fringe countries is greater than that of coalition

countries.

As we found that m∗ is very close to m̃ in all of our examples we assess the determinants

of the size of m∗ by investigating the determinants of m̃. Recall that according to (19), m̃

depends on the size of the parameters α, b and n. To examine how m̃ varies with α, we

differentiate (19) with respect to α and obtain

dm̃

dα
=

n2(n− 1)[b(n− 1)− n]

[α(2n− 1) + n2(b+ 1)]2
R 0 ⇐⇒ b R

n

n− 1
. (26)

24It is straightforward from the left panels of the Figures 4 and 5 that the equilibrium emissions Ef (m∗)

and Ec(m∗) are strictly positive.
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For α converging to infinity we find limα→∞ m̃ = n2

2n−1
.

α 1 10 50 100 500 1000 1450 ∞

m̃ 1.46 1.75 2.62 3.25 4.57 4.88 4.99 5.26

m∗ 3 3 3 4 5 5 6 6

Table 1: Variations of α in Example 1 (n = 10)

α 103 104 105 5 · 105 106 107 ∞

m̃ 1.53 5.50 25.58 42.01 45.75 49.76 50.25

m∗ 3 6 26 43 46 50 51

Table 2: Variations of α in Example 2 (n = 100)

According to (26) the comparative static effect of α depends on the size of b. The

values of b and n chosen in the Examples 1 and 2 satisfy b > n/(n − 1) such that m̃ is

increasing in α and converges toward n2/(2n − 1) from below. This is confirmed by the

numerical examples listed in the Tables 1 and 2. If b < n/(n− 1), m̃ is decreasing in α and

converges toward n2/(2n − 1) from above. That is, for b < n/(2n − 1) and α sufficiently

small, equation (19) allows for high levels of m̃, even for m̃ = n (grand coalition). However,

the non-negativity constraint for emissions turns out to be violated for low values of α

(and b < n/(n − 1)). We did not find any numerical example of Stackelberg equilibria

exhibiting both non-negative emissions and stable coalition sizes larger than n2

2n−1
. Hence

under the condition of positive equilibrium emissions the maximum share of countries in a

stable coalition, 100m∗/n, appears to be slightly higher than 50%. We need to emphasize,

however, that there are various examples in the Tables 1 and 2 in which the share 100m∗/n

is much smaller than 50%. It is also worth noting that in all cases but one calculated in the

Tables 1 and 2 m∗ is the smallest or second smallest integer larger than m̃.

The role the parameter α plays in the formation of self-enforcing IEAs calls for an

economic interpretation. To keep focussed we restrict our attention to the set of parameters

satisfying b > n/(n− 1) and define the fuel extraction costs, expressed in units of good X,

as

C(esi ;α) := T (0)− T (esi ) =
α

2
(esi )

2 (27)

Those extraction costs are obviously progressively increasing such that increasing α corre-

sponds to increasing marginal extraction costs which increases the size of stable coalitions

in turn. The lower and the less progressive the extraction costs, the smaller is the size of

the stable coalition. We summarize our results in
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Proposition 3 . Under the conditon of positive equilibrium emissions there exist self-

enforcing IEAs that are characterized as follows:

(i) If b > n/(n − 1), then the stable coalition size m∗ increases in the parameter α such

that as many as (slightly more than) 50% of all countries may be members of a stable

coalition.

(ii) The number of countries in the self-enforcing IEAs is the smallest or the second smallest

integer m∗ larger than m̃ from (19). Therefore the corresponding Stackelberg equilib-

rium allocation differs only slightly from the allocation in the scenario of global non-

cooperation (BAU).

We are aware of the limited scope of Proposition 3 because it is based on numerical ex-

amples. Nonetheless, the unequivocal result of the calculations we conducted suggests that

the messages of Proposition 3 are more general. Proposition 3(i) gives support to the ex-

pectation that international trade may lead to rather large stable coalitions. That appears

to be good news for supporters of strong climate damage mitigation action, if large stable

coalitions promise to bring about reductions of global emissions that are larger by an order

of magnitude than in BAU and hopefully not too far away from the socially optimal alloca-

tion. Unfortunately, Proposition 3(ii) shatters that expectation. Our numerical calculations

rather suggest that stable coalitions reduce world emissions only insignificantly compared

to BAU emissions. To the extent that this result is general - which we are not able to prove

analytically - the highly inconvenient implication is that efforts to reach a self-enforcing IEA

do not pay.

Proposition 3(ii) calls for explanation and economic intuition. It is clear from the

conditions (24) and (25) that the stability of coalitions depends on the properties of the

functions Wc and Wf . In the left panel of Figure 2 we see that Wf (m)−Wc(m), the vertical

difference between the welfare curves Wf and Wc, is zero for m = m̃ and positive for all

m > m̃. That difference can be interpreted as the free-rider advantage of fringe countries

over coalition countries. In our Example 1 that free-rider advantage grows with the coalition

size suggesting that the incentive to leave the coalition increases and the incentive to join

declines with the coalition size. However, the defining criterion for coalition stability is the

horizontal rather than the vertical distance between the welfare curves Wf and Wc. To be

more specific, we introduce the function

H : [m̃, n] −→ R+, where h = H(m), if and only if Wf (m− h) = Wc(m).

H(m) measures the horizontal distance between the welfare curves Wf and Wc at the level

Wc(m) above the horizontal m-axis. Unfortunately, analytical complexity prevents us from
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determining the curvature of H in our parametric model. Figure 6 shows for Example 1

that the function H is strictly increasing in m on the relevant part of its domain.25 As we

found that kind of curvature of H in all of our examples, it appears to be robust.
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m

H(m)

m̃ m̄

Figure 6: Function H in case of Example 1

From Figure 6 and the definition of coalition stability follows that there is a unique

value m̄ > m̃ + 1 satisfying H(m̄) = 1 and a stable coalition26 of size m∗ ≥ m̃ satisfying

m∗ ∈ [m̄ − 1, m̄]. Obviously, the (positive) difference m∗ − m̃ is the smaller, the smaller is

m̄, and m̄ is the smaller, the larger is the slope of function H . In other words, the faster

H(m) grows in m, the smaller is the coalition size at which coalitions become internally

instable and the closer to m̃ moves the size m∗ of the stable coalition. Hence the slope

Hm measures how fast the coalition countries’ incentives to defect increase with increasing

coalition size. Since m̄ > m̃+ 1,27 m̄ ∈]m̃ + 1, m̃+ 2[ is as close as m̄ can move toward m̃,

and, in fact, m̄ ∈]m̃ + 1, m̃+ 2[ holds in all of our numerical examples. As an implication,

coalition countries defect soon after the coalition size exceeds the BAU coalition size m̃. It

is straightforward to show that the stable coalition size m∗ is the smallest or second smallest

integer larger than m̃, if and only if m̄ ∈]m̃+ 1, m̃+ 2[.

Our preceding arguments aimed at identifying the driving forces of coalition stability.

For further interpretation we define the functions Ωj : [m̃, n] −→ R+, j = c, f by

Ωc(m) = ωo +
ω1

2
(m− m̃)2 and Ωf (m) = ωo + ω2(m− m̃) +

(ω1 + ω3)

2
(m− m̃)2, (28)

where the parameters ωo, ω1, ω2 and ω3 are assumed to satisfy ωo = Wf (m̃) = Wc(m̃),

ω1 > 0, ω2 = Wf
m(m̃) > 0 and ω3 ≥ 0. By construction, the functions Ωc and Ωf approximate

the functions Wc and Wf (see Appendix E). Taking advantage of that approximation we

prove in the Appendix E

25The relevant part of the domain is [m̃, m̆], where m̆ = m̄+H(m̆) and where m̄ is defined by H(m̄) = 1.
26The coalition of size m∗ > m̃ is stable, if and only if H(m∗) ≤ 1 and H(m̆) = m̆−m∗ ≥ 1.
27m̄ > m̃+ 1 because H(m) ∈ [0, 1[ for all m ∈ [m̃, m̃+ 1[.
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Proposition 4 . Approximate the functions Wc and Wf on the sub-domain [m̃, n] by

the functions Ωc and Ωf defined in (28).

(i) There exists a stable coalition of size m∗ > m̃ and m∗ is unique, in general.28

(ii) Ceteris paribus, the difference m∗ − m̃ is the smaller,

- the slower the coalition countries’ welfare increases with the coalition size (ω1 ↓)

due to tight domestic emission caps and leakage-retarded climate damage reduction;

- the faster the fringe countries’ welfare increases with the coalition size (ω2 ↑ and

ω3 ↑) due to lax domestic emission caps (reflecting carbon leakage) and free rides

on climate damage reduction.

(iii) The size of the stable coalition is either the smallest or the second smallest integer

weakly larger than m̃, if and only if 3ω1 < 2ω2 + ω3.

Proposition 4(i) confirms for the ’auxiliary’ functions Ωc and Ωf our findings reported in the

context of Figure 6. Proposition 4(ii) identifies the parameters ω1, ω2 and ω3 as determinants

of the size of the difference m∗− m̃ and links these parameters to their economic impacts in

a straightforward way. Proposition 4(iii) clarifies that the stable coalition size m∗ will be the

smallest or second smallest integer larger than m̃, if and only if the relative difference between

the welfare increases in the coalition size of fringe and coalition countries is sufficiently large.

Here the change in the vertical distance between the functions Ωf and Ωc determines the size

of the difference m∗ − m̃ because in case of positive parameters ω1, ω2 and ω3 the vertical

as well as the horizontal difference is increasing in m.

4 On the role of international trade

Up to now we have dealt with a world economy characterized by the four parameters

(a, α, b, n) ∈ R
4
++ in the regime of free trade. The straightforward way of improving our

understanding of the role of international trade for the formation of self-enforcing IEAs is

to compare the results derived in the free-trade model with those of the autarky scenario in

the otherwise unchanged model. The only substantive modification of the model (1) - (9) is

to replace (4) by

xs
i = xd

i and esi = edi i = 1, . . . , n, (29)

which simply turns the world markets for good X and fossil fuel into domestic markets.

Good X can still be taken as numéraire (pxi = 1 for i = 1, . . . , n) but (5) is now replaced

28We show in the proof (Appendix E) that in exceptional cases there are two stable coalitions.
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by pei = −T ′(ei) for i = 1, . . . , n. With these changes the welfare of country i is

W i (e1, . . . , en) = V (ei) + T (ei)−D

(
∑

j

ej

)

(30)

for the general functions (1) and (2) and

W i (e1, . . . , en) = aei −
b̌

2
e2i + x̄−

1

2

(
∑

j

ej

)2

(31)

with b̌ := b+ α for the parametric functions (3).

The comparison of (12) and (30) subject to (3) shows that the switch from free trade

to autarky turns the economy (a, α, b, n) into the economy (a, α̌ = 0, b̌ = b + α, n). The

latter obviously has the structure of the basic model of the coalition formation literature

in which production and international trade is not modeled.29 Thus our free-trade versus

autarky comparison is also a comparison between the basic model and our trade model. In

the following we carry out that comparison in several steps.

To begin with, the BAU equilibria of the economy (a, α, b, n) with and without trade

coincide, because comparative advantage is absent if identical countries are treated equally.

Moreover, along the lines of the proof of m̃ in (19) one can show that the coalition size30

m̃a :=
b̌+ n

b̌+ 1
(32)

for which the Stackelberg equilibrium (in case of real-number coalitions) is equal to the

BAU equilibrium in the economy (a, α, b, n). The comparison of (32) with (26) readily

yields m̃a < m̃.

Since in the regime of autarky the model of the present paper coincides with the basic

model of the coalition formation literature, we can invoke the results of Diamantoudi and

Sartzetakis (2006) and Rubio and Ulph (2006). They show that ". . . restricting parameter

values to guarantees interior solutions is a sufficient condition to get stable IEAs with a small

number of signatories . . ." (Rubio and Ulph, 2006, p. 236). Diamantoudi and Sartzetakis

focus exclusively, as we do, on subsets of parameters leading to positive equilibrium emissions

and find that stable IEAs have at most four signatories even if the total number of countries

is large. Rubio and Ulph (2006) consider a larger parameter space and introduce non-

negativity constraints on emissions. For a subset of parameter values which guarantees

29See e.g. Finus (2001, equation (3.1)). Diamantoudi and Sartzetakis (2006, equation (1)) as well as

Rubio and Ulph (2006, equation (1)) restrict their analysis to the parametric version (31) of the basic model.
30In the sequel the autarky regime is indicated by the super- or subscript a.
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interior solutions they find that the maximum stable coalition size is three.31

To sum up, as long as solutions with non-positive emissions are ruled out, we get stable

IEAs with a small number of signatories in the autarky scenario (= basic model) irrespective

of the total number of countries. That result clearly is in stark contrast to our finding in the

free-trade model of Section 3 where we have identified stable coalitions much larger than in

the autarky model.

Regarding the comparison of free trade and autarky, we also want to know how effec-

tive the stable coalition is in reducing world emissions below BAU emissions. Rubio and

Ulph (2006) focus on a parameter space that secures positive equilibrium emissions (ibidem,

footnote 16) and point out that m∗
a ≤ 3 (ibidem Corollary 2). However, they do not address

the size of the difference m∗
a−m̃a. Diamontoudi and Sartzetakis (2006) find that the welfare

of the signatories is very close to its lowest value when the IEA is stable but they do not

link that observation to the BAU scenario. Analogous to the result m∗ > m̃ in Section 3.2,

it is straightforward to establish that in autarky the size of a self-enforcing IEA satisfies

m∗
a > m̃a. Moreover, the Appendix G proves that m∗

a − m̃a ≤ 2 for all economies in the

parameter space considered in Rubio and Ulph (2006). We summarize these findings in

Proposition 5 . Consider the world economy without international trade for a param-

eter space introduced by Rubio and Ulph (2006) that secures positive equilibrium emissions.

(i) Then our model coincides with the ’basic model’ studied e.g. by Diamantoudi and

Sartzetakis (2006) and Rubio and Ulph (2006).

(ii) Then the size m∗
a of self-enforcing IEAs is the smallest or second smallest integer larger

than m̃a from (32), and at most equal to 3.

(iii) The emission caps of the signatories of the self-enforcing IEA are only slightly tighter

than the emission cap in the BAU equilibrium.

The remainder of Section 4 serves to explain the differences in outcome between the

scenarios of autarky and free trade. Since in both cases the stable Stackelberg equilibrium

is close to BAU, the reasons for "m∗
a − m̃a > 0 but small" are the same in qualitative terms

as those for "m∗ − m̃ > 0 but small" discussed in Section 3.2. Hence we can restrict our

focus on explanations for m̃ > m̃a.

31Barrett (1994) shows that there are parameter constellations for which the self-enforcing IEA may

attain any size from very small to the grand coalition. That finding is not at variance with our results

because Diamantoudi and Sartzetakis (2006) convert Barrett’s approach into the basic model of type (31)

and show that in Barrett’s framework self-enforcing IEAs consist of no more than four countries on the set

of parameters leading to positive equilibrium emissions.
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One way to highlight the reason for m̃ > m̃a is to invoke the fuel extraction costs

C(esi ;α) from (27). For α → 0 extraction costs C(eis;α) tend to zero and fuel becomes a free

good. In that case there is no need and no role for international trade anymore because the

outcomes are the same under open and closed borders. Thus we can interpret the economy

(a, α, b, n) in the regime of autarky - as well as the basic model of the literature - as the

’polar case’ of a free-trade economy with zero fuel extraction costs. In that perspective the

absence of extraction costs is the reason for m̃a < m̃.

In the autarkic economy (a, α, b, n) the fringe countries’ best-reply function is charac-

terized by the first-order condition V ′(ef )+T ′(ef)−D′[mec+(n−m)ef ] = 0 which implicitly

determines the aggregate best-reply function of the fringe, denoted sf = Ra(sc, m). It is

straightforward to show that the function Ra exhibits the same qualitative properties as the

function R from (14) such that (20) as well as the results in the Appendixes A and B carry

over to the autarky regime. Likewise, Proposition 1 still holds, when we replace m̃ by m̃a,

and it is true that, if it exists, the size of the stable coalition in autarky, m∗
a, is larger than

m̃a. We prove in the Appendix F that
∣
∣Rsc

∣
∣ >

∣
∣Ra

sc

∣
∣. That important quantitative differ-

ence between both regimes means that the leakage rate is larger in the free-trade regime

than in autarky.32 As an immediate consequence of (31) the marginal (aggregate) welfare

of coalition countries evaluated at BAU (defined in Appendix C) is lower under free trade

than under autarky, formally MWCo(m) < MWCa
o (m). Since m̃ and m̃a are determined

by MWCo(m̃) = 0 and MWCa
o (m̃a) = 0, respectively, we infer from (20) and its analogue

for autarky that m̃ > m̃a. Thus we have identified
∣
∣Rsc

∣
∣ >

∣
∣Ra

sc

∣
∣ as a driver for m̃ > m̃a.

To further characterize the differences between autarky and free trade we consider

Example 1 for autarky. The ’autarky functions’ E ca, Efa,Wca and Wfa turn out to exhibit

the same qualitative properties (sign of slope, curvature) as the functions E c, Ef ,Wc and

Wf in Example 1 with free trade. More specifically, the equivalences (21) - (23) (and hence

Proposition 2) carry over to the autarky scenario, when the superscript a is attached to

E c, Ef ,Wc and Wf and m̃ is replaced by m̃a. In Example 1 the benchmark coalition size

in autarky, m̃a = 1.009, is much smaller than its free-trade counterpart m̃ = 4.881. In the

Figures 7 and 8 we illustrate the differences in outcome for the coalition countries under free

trade and autarky and the dependence of these differences on the coalition size.

Recall that welfare consists of consumption welfare and climate welfare and that large

coalitions are more effective in reducing total emissions. The right panel of Figure 7 il-

32Emissions of fringe and coalition are strategic substitutes under both free trade and autarky. But they

are stronger strategic substitutes with trade than without. Copeland and Taylor (2005) reach the opposite

conclusion in a model that differs substantially from ours - and even find conditions under which emissions

of different countries turn into strategic complements when the borders are opened.
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Figure 7: Autarky vs. free trade. Emissions and consumption welfare of coalition countries

in Example 1.
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Figure 8: Autarky vs. free trade. Climate damage and total welfare of coalition countries

in Example 1.

lustrates that with international trade the coalition countries enjoy much higher levels of

consumption welfare than in autarky. For coalition sizes m < m̃ the coalition finds it ben-

eficial to increase climate damage compared to BAU in order to raise consumption welfare

through importing fossil fuel and exporting consumer goods. With closed borders these

increases in consumption welfare are not attainable which makes climate damage reduction

more attractive in autarky than under free trade. In autarky all countries necessarily con-

sume what they produce whereas under free trade the coalition countries take advantage of

decoupling consumption from production and thus raise their consumption welfare. Recall

also that leakage rates under autarky are smaller than under free trade. Both effects imply

that coalitions of given size set tighter emission caps (implying higher climate welfare as

illustrated in the left panel of Figure 8) under autarky than under free trade, as can be

seen in the left panel of Figure 7. Consequently, the size of the coalition choosing the BAU

emission cap is larger under free trade than under autarky (m̃a < m̃).

The left panel of Figure 7 shows that in both regimes the emissions of coalition countries

are falling, that they are lower in autarky than in the trade regime, and that this difference

tends to zero with m approaching n. The positive difference E c(m) − E ca(m) is clearly
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due to
∣
∣Rsc

∣
∣ >

∣
∣Ra

sc

∣
∣ and the absence or presence of international trade. Taking the BAU

consumption [T (eo), eo] and the corresponding consumption welfare, Ko, as a benchmark,

the right panel of Figure 7 illustrates the relationship between the levels of consumption

welfare of coalition countries in BAU, Ko, in autarky, Ka(m), and under free trade, K(m).

K(m) is larger than Ka(m), because the fuel consumption E c(m) is larger than E ca(m) and

because the coalition countries benefit from decoupling consumption and production. Due

to the more stringent emission reduction in autarky, the climate welfare of all countries is

higher in autarky than in free trade - as illustrated in the left panel of Figure 8.

As the coalition countries’ consumption welfare is lower and their climate welfare is

higher in autarky than in free trade, their net welfare change is ambiguous. More specific

information on the comparison of total welfare Wca(m) and Wc(m) provides the right panel

of Figure 8. It shows that when moving from autarky to free trade, the coalition countries’

climate welfare gain is overcompensated by their consumption welfare loss and the opposite

holds for relatively large coalition sizes m > m̊.

5 Concluding remarks

The present paper reexamines the issue of self-enforcing international environmental agree-

ments (IEAs) extending the basic model of the IEA literature introduced by Barrett (1994)

and others to a general equilibrium framework with production, consumption and interna-

tional trade. In model specifications yielding positive equilibrium emissions and with an

IEA acting as Stackelberg leader we show

(a) that in stark contrast to the outcome of the basic model large stable IEAs may form,

(b) and that in all Stackelberg equilibria with a stable IEA the ’gains of cooperation’ are

negligible: Compared to the case of global non-cooperation the coalition countries’

welfare gains as well as the climate damage reduction are very small.

While result (a) raises hopes for successful and effective cooperation in fighting climate

change, result (b) thwarts these hopes because efforts of achieving effective mitigation

through self-enforcing IEAs are futile irrespective of how large these IEAs are.

An interesting side result is that in the absence of international trade our model coin-

cides with the basic model of the extant IEA literature, which means, in turn, that the basic

model can be interpreted as a model of autarkic countries. We know from the literature

that in the basic model the number of signatories of self-enforcing IEAs is very small, and

we add the result that the allocation in the corresponding Stackelberg equilibrium does not
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differ much from the business-as-usual allocation. As in the case of international trade, the

coalition countries’ welfare rises and the climate damage declines by a very small amount

only.

Although our model has more ’economic’ structure than the basic model we have

kept it simple enough for the benefit of comparing it with the basic model and for the

benefit of deriving informative results. As pointed out in the introduction the assumption

of emissions being non-essential is not fully satisfactory for carbon emissions in the context

of climate change mitigation. It is necessary and desirable to examine the outcome for the

case of essential emissions, even if analytical results cannot be obtained anymore. More

generally, one would want to check the robustness of results when economies are modeled in

a more complex way, e.g. when fossil fuel is not only a final consumption good but also an

intermediary industrial input. It is needless to say that while the assumption of symmetric

countries is crucial for deriving meaningful (analytical) results, it abstracts from many real-

world complexities which are severe barriers to reaching self-enforcing IEAs, and it therefore

likely underestimates the difficulties of forming such agreements.
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Appendix

Appendix A: Properties of function R from (14)

Lemma 1. The function R satisfies ŝc := R−1[(sf = 0, m] > 0 for all m ∈]0, n[,

Rm(sc, m) < 0 for all sc < ŝc, all m ∈]0, n[, Rscsc = 0 and Rscm > 0.

Proof:

(i) Inserting the parametric functions (3) in

W i
ei
= V ′(ei) + T ′

(∑

j ej

n

)

−
1

n

(∑

j ej

n
− ei

)

T ′′

(∑

j ej

n

)

−D′

(
∑

j

ej

)

= 0 (A1)

yields, after rearrangement of terms

ei =
an2

α(2n− 1) + (1 + b)n2

︸ ︷︷ ︸

=:G

−
α(n− 1) + n2

α(2n− 1) + (1 + b)n2

︸ ︷︷ ︸

:=H

∑

j 6=i

ej for i = 1, . . . , n. (A2)

From (A2) we get

ei = G−H

(
∑

j∈C

ej +
∑

j∈F,j 6=i

ej

)

= G−HmeC −H
∑

j∈F,j 6=i

ej for all i ∈ F. (A3)

Summing over i ∈ F yields

∑

i∈F

ei = (n−m)ef = (n−m)G− (n−m)Hmec − (n−m− 1)H(n−m)ef (A4)

which can be rearranged to

(n−m)ef =
(n−m)G

1 + (n−m− 1)H
−

(n−m)H

1 + (n−m− 1)H
mec. (A5)

or equivalently to

sf = R(sc, m) =
(n−m)G

1 + (n−m− 1)H
−

(n−m)H

1 + (n−m− 1)H
sc. (A6)

Next, verify that ŝc := R−1 (sf = 0, m) = G
H

is independent of m. Finally, differentiation of

(A6) yields

Rm = −
(1−H)G

[1 + (n−m− 1)H ]2
+

(1−H)H

[1 + (n−m− 1)H ]2
sc = −

(1−H)R(sc, m)

(n−m) [1 + (n−m− 1)H ]
,

Rsc = −
(n−m)H

1 + (n−m− 1)H
< 0, Rscsc = 0, Rscm =

H(1−H)

[1 + (n−m− 1)H ]2
> 0 (A7)

due to G > 0 and H ∈ [0, 1]. �
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Appendix B: Properties of the functions W c and W f from (15) and (16) respec-

tively

Lemma 2. W c [·] is inverse u-shaped and strictly concave in sc,
(

d2W c

ds2c
< 0
)

, and

W f [·] is strictly decreasing in sc,
(

dW f

dsc
< 0
)

.

Proof:

Since the coalition size m is constant throughout this proof we omit for convenience m

as argument of the welfare functions. We first show the strict concavity of the coalition

country’s welfare function. Total differentiation of W c(sc, R(sc)
︸ ︷︷ ︸

=sf

) from (15) yields

dW c

dsc
= W c

sc
+W c

sf
Rsc , (B1)

d2W c

ds2c
= W c

scsc
+W c

scsf
Rsc

︸ ︷︷ ︸

≡
dWc

sc
dsc

+
[

W c
sf sc

+W c
sfsf

Rsc

]

︸ ︷︷ ︸

≡
dWc

sf

dsc

Rsc +W s
sf
Rscsc
︸ ︷︷ ︸

=0

. (B2)

Partial differentiation of

W c
sc
(sc, sf) =

V ′
(
sc
m

)

m
+

T ′
(

sc+sf
n

)

m
−

[msf − (n−m)sc]T
′′
(

sc+sf
n

)

n2m
−D′ (sc + sf) (B3)

yields

W c
scsc

=
V ′′

m2
+

(2n−m)T ′′

n2m
−

[msf − (n−m)sc]T
′′′

n3m
−D′′

= −
b

m2
−

α(2n−m)

n2m
− δ, (B4)

W c
scsf

=
(n−m)T ′′

n2m
−

[msf − (n−m)sc]T
′′′

n3m
−D′′ = −

α(n−m)

n2m
− δ. (B5)

Making use (B4), (B5) and Rsc = − (n−m)H

(1 −H) + (n−m)H
︸ ︷︷ ︸

=:H̃

(which follows from differentiation

of (A6)) we get

dW c
sc

dsc
= −

b

m2
−

α(2n−m)

n2m
− δ +

[
α(n−m)

n2m
+ δ

]

H̃. (B6)

Partial differentiation of

W c
sf
(sc, sf) = −

[msf − (n−m)sc]T
′′
(

sc+sf
n

)

n2m
−D′(sc + sf). (B7)

yields

W c
sfsc

=
(n−m)T ′′

n2m
−

[msf − (n−m)sc]T
′′′

n3m
−D′′ = −

(n−m)α

n2m
− δ, (B8)

W c
sf sf

= −
T ′′

n2
−

[msf − (n−m)sc]T
′′′

n3m
−D′′ =

α

n2
− δ. (B9)
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Making use of (B8), (B9) and Rsc = −H̃ we obtain

dW c
sf

dsc
= −

(n−m)α

n2m
− δ −

( α

n2
− δ
)

H̃. (B10)

Finally, inserting (B6) and (B10) in (B2) establishes

d2W c

ds2c
= −

b

m2
−

α(2n−m)

n2m
− δ +

[
α(n−m)

n2m
+ δ

]

2H̃ +
( α

n2
− δ
)

H̃2

= −
b

m2
−

α(1− H̃)[2n− (1− H̃)m]

n2m
− δ(1− H̃)2 (B11)

which is negative due to H̃ ∈]0, 1[.

Next, we prove the monotonicity property of the fringe country’s welfare function.

Differentiation of W f(sc, R(sc)
︸ ︷︷ ︸

=sf

) from (16) yields

dW f

dsc
= W f

sc
+W f

sf
Rsc , (B12)

where

W f
sc

=
[msf − (n−m)sc]T

′′

n2(n−m)
−D′ (B13)

W f
sf

=
V ′

n−m
+

T ′

n−m
+

[msf − (n−m)sc]T
′′

n2(n−m)
−D′. (B14)

Taking advantage of the fringe countries first-order condition (A1) which is equivalent to

V ′ + T ′ +
[msf − (n−m)sc]T

′′

n2(n−m)
−D′ = 0 (B15)

in (B13) and (B14) we obtain

W f
sc

= −(V ′ + T ′), (B16)

W f
sf

= −
n−m− 1

n−m
(V ′ + T ′). (B17)

Inserting (B16) and (B17) in (B12) we get

dW f

dsc
= −(V ′ + T ′)

[

1 +
n−m− 1

n−m
Rsc

]

. (B18)

Since the terms in square brackets are positive dW f

dsc
< 0 holds, if and only if V ′ + T ′ > 0.

From (5) and V ′(ef ) = p + πf (which follows from the fringe countries’ consumers utility

maximization) we have V ′ + T ′ = πf . From (A1) we infer that V ′ + T ′ > 0 if ef > ec.

Finally, it can be shown that πf remains positive when the coalition relaxes its emission cap

and the fringe countries tighten their emission caps. �
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Appendix C: Proof of Proposition 1

Account for
d(sc+sf )

dsc
= 1+Rsc , and determine the first-order condition for an interior solution

to (17),

d(mW c)

dsc
= W c

sc
+W c

sf
Rsc

= V ′ + T ′ −

(
sc + sf

n
−

sc
m

)
m(1 +Rsc)T

′′

n
−m(1 +Rsc)D

′ = 0. (C1)

If the coalition of any size m ∈ [1, n[ chooses the strategy sc = meo, the fringe’s best reply

is sf = R(meo, m) = (n −m)eo and the BAU equilibrium results. At that equilibrium, i.e.

evaluated at sc = meo, the coalition’s marginal welfare is

MWCo(m) :=
d(mW c)

dsc

∣
∣
∣
sc=meo

=

= V ′(eo) + T ′(eo)
︸ ︷︷ ︸

marginal consumption welfare, same for all coaltion sizes

+ {−D′(neo) + [1−m(1 +Rsc ]D
′(neo)}

︸ ︷︷ ︸

marginal climate welfare for m ∈]1, n[

. (C2)

According to (C2) the coalition’s marginal consumption welfare is independent of m, while its

marginal climate welfare is not. Since by definition of m̃ the condition m̃[1+Rsc(m̃eo, m̃)] = 1

is satisfied, the equations (C1) and (C2) yield for a coalition of size

MWCo(m̃) = V ′(eo) + T ′(eo)
︸ ︷︷ ︸

marginal consumption welfare

+ [−D′(neo)]
︸ ︷︷ ︸

marginal climate welfare for m = m̃

= 0. (C3)

(C3) is identical to the first-order condition of all n countries in the non-cooperative BAU

scenario of Section 2. We invoke (C3) to rewrite (C2) as

MWCo(m) = V ′(eo) + T ′(eo)−D′(neo)
︸ ︷︷ ︸

=0

+[1−m(1 +Rsc)]D
′(neo)

= [1−m(1 +Rsc)]D
′(neo). (C4)

(C4) holds for any given m ∈ [1, n[. Since d[m(1+Rsc )]
dm

= (1 + Rsc) + mRscm > 0, the

equivalence
{
[1−m(1 +Rsc)] R 0 ⇐⇒ m ⋚ m̃

}
holds. Finally, differentiation of (A6)

with respect to sc yields Rsc = − (n−m)H
1+(n−m−1)H

. Inserting this term in [1− m̃(1+Rsc)] = 0 we

get m̃ = 1 + (n − 1)H . Making use of the definition of H from (A2) establishes (19) after

some rearrangement of terms. �

Appendix D: Proof of (23)

If m < m̃, (21) implies mE c(m) > meo and therefore Wf (m) < Wo because dW f

dsc
< 0 due

to Appendix B. If m > m̃, (21) implies mE c(m) < meo and therefore Wf (m) > Wo because
dW f

dsc
< 0 due to Appendix B. Analogously, Wf (m) > Wc(m) for m > m̃ follows from

mE(m) < meo and Appendix B.
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Appendix E: Proof of Proposition 4

By construction, the functions Ωc and Ωf approximate the functions Wc and Wf on the

sub-domain [m̃, n], because the properties

Wf (m̃) = Wc(m̃) = Wo and Wf (m) > Wc(m) > Wo, m > m̃ (equivalence (23)),

Wf
m(m̃) > 0,Wc

m(m̃) = 0 and Wh
m(m) > 0, h = c, f,m > m̃ (Figure 2), and

Wf
m(m)−Wc

m(m) > 0 for m > m̃ and increasing in m (Figure 2),

of the functions Wc and Wf are satisfied by the functions Ωc and Ωf .

Ad (i): For analytical convenience we consider here the function Ĥ : [m̃, n] −→ R+ defined by
[

h = Ĥ(m) ⇐⇒ Wf (m) = Wc(m+ h)
]

(rather than applying the function H defined

in the text). We replace Wc and Wf by Ωc and Ωf from (28) and solve the equation

Ωf (m) = Ωc(m+ h) and obtain

h = Ĥ(m,ω1, ω2, ω3) = −(m− m̃) +

√

2ω2(m− m̃) + (ω1 + ω3)(m− m̃)2

ω1
. (E1)

From (E1) we get Ĥ(m) = 0 for m = m̃ and Ĥ(m) > 0 for m > m̃. For all m ≥ m̃ the first

derivative is

Ĥm = −1 + ρ > 0, where ρ :=

√

1 +
ω2
2 + [2ω2 + (ω1 + ω3)(m− m̃)]ω3(m− m̃)

[2ω2 + (ω1 + ω3)(m− m̃)]ω1(m− m̃)
. (E2)

Ĥ(0) = 0 and (E2) imply that there is one and only one m̄ ∈]m̃, n[ satisfying Ĥ(m̄) = 1.

Hence if m̄ is an integer and m̄ > m̃, the coalitions of size m̄ and size m̄ + 1 are stable

coalitions. Otherwise, there exists one and only one stable coalition. Its size is the (unique)

integer in the interval ]m̄, m̂+ 1[.

Ad (ii): Verify Ĥω1 = −2ω2(m−m̃)+ω3(m−m̃)2

2ρω2
1

< 0, Ĥω2 = m−m̃
ρω1

> 0, Ĥω3 = (m−m̃)2

2ρω1
> 0

and observe that the differential of Ĥ(m̄, ω1, ω2, ω2) = 1 yields ∂m̄
∂ωi

= −
Ĥωi

Ĥm
for i = 1, 2, 3.

Therefore sign ∂m̄
∂ωi

= −sign Ĥωi
.

Ad (iii): Since Ĥm > 0, m̄ ∈]m̃+1, m̃+2[ implies Ĥ(m̃+2) > 1. Solving (E1) for m = m̃+2

yields Ĥ(m̃ + 1) = −1 +
√

ω1+2ω2+ω3

ω1
and hence Ĥ(m̃+ 1) > 1 ⇐⇒ 3ω1 < 2ω2 + ω3.

From Ĥm > 0 and Ĥ(m̃) = 0 follows that Ĥ(m̃+ 1) > 1 implies m̄ ∈]m̃, m̃+ 1[. �

Appendix F: Proof of
∣
∣Rsc

∣
∣ >

∣
∣Ra

sc

∣
∣

Making use of the parametric functions in the fringe country’s first-order condition V ′(ei) +

T ′(ei)−D′
(
∑

j ej

)

= 0 yields

ei =
α

α + b+ 1
−

1

α + b+ 1

∑

j 6=i

ej . (F1)

32



Multiplying (F1) by (n−m) and setting ei = ef =
sf

n−m
and

∑

j 6=i ej = mec+(n−m−1)ef =

sc+
n−m−1
n−m

sf we obtain after rearrangement of terms the aggregate fringe best reply function

sf = Ra(sc, m) :=
(n−m)α

α + b+ n−m
−

n−m

α + b+ n−m
sc. (F2)

Next, differentiating (A6) and (F2) we get

∣
∣Ra

sc

∣
∣ <

∣
∣Ra

sc

∣
∣ ⇐⇒

1

α + b+ n−m
<

H

1 + (n−m− 1)H
⇐⇒

1

H
< 1 + α+ b. (F3)

Inserting H from (A2) in (F3) and rearranging terms establishes

∣
∣Ra

sc

∣
∣ <

∣
∣Ra

sc

∣
∣ ⇐⇒ αn < α(α+ b)(n− 1) + αn2. (F4)

�

Appendix G: Proof of Proposition 5(ii)

We show that m∗
a − m̃a ≤ 2 for all (b̌, n) ∈ Λ := {(b̌, n)

∣
∣b̌ > n(n−4)

4
, n > 4} by inserting

b̌ = n(n− 4)/4 in (32) and making use of dm̃a

db
< 0 to obtain33

m̃a ∈]1, M̄
a(n)[ where M̄a(n) :=

n2

n2 − 4(n− 1)
. (F5)

Closer inspection of (F5) reveals that M̄a(5) = 2.77 and that dM̄a(n)
dn

< 0 for n > 4. Hence

we get

m̃a ∈]1, 2.77[ for all (b̌, n) ∈ Λ. (F6)

In view of (32) and (F6) and m∗
a ≤ 3 we conclude that m∗

a − m̃a ≤ 2 for all n > 4.

33The observation that 1 is a lower bound for m̃a follows directly from (32).
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