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Abstract 
 
We analyze Nash equilibria of share and probabilistic contests when players have 
distributional preferences. If players are sufficiently similar, distributional preferences create 
multiple equilibria. For the case of only mildly heterogeneous players, equilibrium effort can 
be lower as well as higher than effort with standard, selfish preferences. These findings can 
explain three anomalies in empirical tests of the probabilistic prize-seeking game, namely the 
large variance of effort levels (overspreading), individual spending that exceeds the Nash-
equilibrium prediction (overspending), and aggregate spending that exceeds the value of the 
prize (overdissipation), and they are also in line with the findings for share contests. If players 
are sufficiently heterogeneous, the game has a unique equilibrium that is more egalitarian than 
the standard, selfish Nash equilibrium. It turns out that the less talented competitor may win 
the larger share of the prize if his inequality aversion is sufficiently strong. We analyze how 
the equilibria evolve if the number of players gets larger and how sequential moves influence 
behavior. Two new insights follow from the analysis of the sequential-move game. First, 
sequential moves act as a coordination device if there are multiple simultaneous equilibria, 
and second the inequality aversion of the more egalitarian player can be used as a 
commitment device for low effort. This effect can reverse the conventional wisdom that the 
underdog should lead. 
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1. Introduction

The assumption of selfish payoff-maximizing behavior has long been the basic paradigm in the

theory of contests and tournaments, starting with the seminal contributions by Tullock (1980)

and Lazear and Rosen (1981).1 Evidence from empirical tests of contest theory and behavioral

economics in general, however, suggests that people consistently behave as if they were motivated

by more general, other-regarding preferences, and the conjecture that social comparisons may

influence behavior in contest-like situations has intuitive appeal and shows up in experiments.2

Internal promotion tournaments or more generally some form of relative-performance incentive

scheme to motivate employees within a firm (Lazear and Rosen (1981)) are a good example: In

a number of cases, the employees competing with each other work closely together and have a

plethora of opportunities to establish social ties and to evaluate their outcome relative to their

peers (see for example Loewenstein, Thompson, and Bazerman (1989); Kräkel (2008); Chen, Ham,

and Lim (2011); Altmann, Falk, and Wibral (2012)). Similarly, contests can also be used to analyze

litigation and more generally fights (see Baye, Kovenock, and de Vries (2005) and Corchón (2007)).

In some legal fields like divorce law, it might also be the case that subjects evaluate outcomes

relative to their (former) spouses and that different gender-specific motives play an important role

(Wilkinson-Ryan and Small (2008)). And even in territorial conflicts and warfare, the people in

charge are often motivated by feelings of national pride and relative national status (see Wallace

(1971), and Watson (2008) for an analysis of World War 1).3

Consequently, a strand of the contest and tournament literature has emerged that takes distri-

butional preferences (DP) into consideration.4 Demougin and Fluet (2003), Grund and Sliwka

(2005), Herrmann and Orzen (2008), Fonseca (2009), and Lim (2010) assume probabilistic winner-

takes-all contests where players are inequality averse (in the sense of Fehr and Schmidt (1999))

with respect to the final, ex-post distribution of gross or net prizes, and Gill and Stone (2010)

develop a model of desert where individuals infer their perception of legitimate claims from their

relative investment in effort. Hoffmann and Kolmar (2013) analyze contest behavior if individuals

have intention-based fairness preferences in the sense of Rabin (1993).

The present paper contributes to the literature on Fehr and Schmidt (1999) preferences in contests.

The novelty of our approach comes in two parts. (i) Not all conflicts have a winner-takes all

structure but are rather fights for larger or smaller shares of the prize. Our analysis covers the

case of share contests, and the results of our paper are consistent with the empirical findings on

1See Konrad (2009) for a comprehensive survey of this literature.

2See Sheremeta and Wu (2012) who argue in favor of preferences that are non-separable between consumption and
effort and entail pro- and anti-social components.

3It is worth noting that along these lines a strand of literature has developed that analyzes the optimal structure
of contests, given that players care about their relative position (see Moldovanu, Sela, and Shi (2007), Besley and
Ghatak (2008), Dubey and Geanakoplos (2010)).

4We use the term distributional preferences as the generic term for the class of preferences that are sensitive to the
distribution of prizes or the winning probability.
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this type of contest (to be discussed below). A distinction between share and probabilistic contests

may appear superfluous because in the standard case of selfish and risk-neutral preferences the

difference is exclusively one of interpretation but not of mathematical structure. However, this is

no longer the case with distributional preferences. (ii) The formal similarity can be re-established

if it is assumed that the distributional concerns of the players in a winner-takes-all contest are not

focused on the ex-post but rather on the ex-ante expected distribution of the prize, i.e. winning

probability times prize. This is the assumption that we will adopt throughout this paper. We

do this for two reasons. First, the explanatory power of a model where individuals are concerned

about expected prizes exceeds the explanatory power of alternative models where individuals care

for the ex-post prize or have preferences of the Gill and Stone (2010) type. Second, the assumption

of ex-ante distributional preferences is consistent with numerous other findings in the literature on

DP. We will elaborate on these points throughout this introduction.

There are many empirical tests of the two-player probabilistic Tullock contest. Most of them

use a simple two-player contest with identical players. These studies have consistently revealed

that individuals deviate from the predictions of the selfish Nash equilibrium (NE) in contests and

tournaments. See Dechenaux, Kovenock, and Sheremeta (2012) for an excellent survey of contest

behavior in experiments. Four patterns emerge. First, subjects often invest more on average than

predicted by the selfish Nash equilibrium, which is called overspending. But underspending, i.e.

investments in the contest that fall short of the theoretical prediction from the selfish NE, can

be observed as well.5 Second, if the degree of overspending becomes sufficiently large, aggregate

effort exceeds the monetary value of the prize. This effect has been coined overdissipation. Third,

individual efforts are distributed over the whole strategy space, with individual behavior being

heterogeneous even between stages (overspreading).

Chowdhury, Sheremeta, and Turocy (2012) test contest behavior also for the case of share con-

tests. Their results are qualitatively consistent with the results for probability contests. However,

quantitatively, the problems of overspending and overspreading are less pronounced.

The main part of our analysis is devoted to a simultaneous-move two-player contest where individ-

uals may differ with respect to their technological abilities and their distributional preferences. In

Section 3 we derive our findings for the case of a Tullock contest-success function. In Appendix B

we generalize these findings for the case of a logit-type contest-success function which is frequently

used in the literature (see for instance Dixit (1987), Szidarovszky (1997) and Cornes and Hartley

(2005, 2012b)). We find the following: (i) If the players are sufficiently similar in abilities and

sufficiently inequality averse, there exists a continuum of pure-strategy Nash equilibria (NE) which

can be Pareto ranked. In this case the equilibrium strategies are symmetric, although players are

allowed to be asymmetric with respect to their abilities as well as preferences. (ii) If inequality aver-

sion is insufficient to overcompensate differences in abilities, the NE is unique. This equilibrium is

more egalitarian than the one that emerges with selfish preferences if players are inequality averse.

5Incidents of underspending are reported by Millner and Pratt (1989, 1991), Davis and Reilly (1998), Potters, Vries,
and van Winden (1998), Matros and Armanios (2009), Croson and Önçüler (2005).
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If players are inequality prone it may even be less egalitarian than the selfish NE. Interestingly, the

less talented player can overcompensate her disadvantage if she cares very strongly for inequality.

(iii) Aversion towards disadvantageous inequality (DI ) can explain overspending, whereas aversion

towards advantageous inequality (AI ) can explain underspending. Even though underspending

has been observed in experiments, overspending has been observed more frequently. Our results

together with the study by Bellemare, Kröger, and van Soest (2008) are able to shed light on this

pattern as well. They found that especially well-educated young subjects care almost exclusively

about DI. Then, our results imply that the set of underspending equilibria should be very small

for this group of subjects. Given that most of the experimental studies have been carried out

with students who are well educated and young, our model is able to explain the predominance of

overspending. By the same token, disadvantageous inequality aversion can explain overdissipation.

(iv) The multiplicity of equilibria with sufficiently homogenous individuals creates an equilibrium-

selection problem that is difficult to solve even in repeated interactions. Multiple equilibria can

therefore explain why individual behavior is so heterogeneous in experiments (overspreading).

In a first extension of the basic model we show that the effect of Fehr and Schmidt (1999) preferences

on equilibrium behavior diminishes if the number of players increases. In the limit, as the number

of competitors becomes infinitely large, it completely vanishes. In the second extension we analyze

sequential investments. Sequential moves lead to the uniqueness of the subgame-perfect NE, and

contrary to the findings for selfish players (see Dixit (1987)), a leading favorite may undercommit

effort. This effect occurs if the follower has relatively strong advantageous inequality aversion

because these preferences can be used as a commitment device for the leading player.

The consistency of the theoretical predictions of our model with the empirical evidence is, however,

not sufficient to make it convincing. The burden of proof is twofold. We will first compare the

predictive power of our model with the predictive power of the alternative models and second we

will argue that our assumption of ex-ante distributional preferences is a plausible and meaningful

way to interpret the Fehr and Schmidt (1999) model.

Predictive power of competing theories. There is a large body of literature that tries to

clarify the reasons for the above mentioned anomalies. It has evolved broadly along two lines,

bounded rationality and DPs; see Baharad and Nitzan (2008) for a survey.6

Bounded rationality. Davis and Reilly (1998) conclude that the empirical patterns cannot be ex-

plained by risk aversion. See also Cornes and Hartley (2012b) who show theoretically that even as

the number of risk-averse participants in a contest increases, the rent will be at most fully dissi-

pated. Potters, Vries, and van Winden (1998) explain the anomalies as a result of randomization

of the players over the set of possibly reasonable bids. With respect to overdissipation, Baharad

6Sheremeta and Wu (2012) show that non-separable utility between prize and effort together with selfish preferences
can explain other behavioral anomalies. They found that in a two prize-spread setting where the contest designer
plays an active role, increasing the loser’s prize has no impact on effort. Furthermore, the behavior of the contest
designer can better be explained with the assumption of non-separable utility. It is not the purpose of our paper
to explain these anomalies. We rather join Sheremeta and Wu’s conclusion that social preferences should be seen
as a complementary explaining variable and explore the former direction.
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and Nitzan (2008) focus on distorted perceptions of probabilities. Anderson, Goeree, and Holt

(1998) develop a model of bounded rationality that is able to explain the empirical patterns for

an all-pay auction. Lim, Matros, and Turocy (2012), and Sheremeta (2011) point to noise and

error. Lugovskyy, Puzzello, and Tucker (2010) conclude that the experimental evidence can only

be explained by non-monetary incentives of the players, but they do not provide a theoretical

model. In the same spirit, Sheremeta (2011) suggests a non-monetary utility of the act of winning.

By and large, these different theories are able to explain all types of anomalies, but none of them

in a single, unified contest model.

Distributional preferences. Among the literature that focusses on DP in contests and tournaments,

the following papers offer a theoretical framework which explicitly models DP.7 Grund and Sliwka

(2005) analyze the outcome of a two-player symmetric promotion tournament where players are

inequality averse, and derive the optimal design of this tournament. Herrmann and Orzen (2008)

build a model of a symmetric, two-player contest, where competitors are assumed to be spiteful:

Players are averse to DI but appreciate AI. They show under which conditions overdissipation is

expected to emerge. Fonseca (2009) analyzes the behavior in simultaneous and sequential move

two-player contests where players are allowed to be asymmetric with respect to their abilities but

symmetric with respect to their inequality aversion. Lim (2010) looks at the optimal share of looser

and winner prizes in a motivational tournament framework that allows for social comparison. All

these aforementioned papers focus on probabilistic contests in which agents care about the fairness

of the ex-post allocation of the prize or the net payoffs. The main insight of these models is that

these types of contests can be analyzed like a standard contest where players have selfish preferences

and individualized prizes that are recalibrated according to their DPs. The reason is that DPs

lead to biased perceptions of the prize, and that the net bias depends on the relative strength

of AI and DI aversion or appreciation. If individuals are relatively more concerned about DI

(AI ), the prize perception is distorted upwards (downwards). Consequently, if players experience

for example DI as well as AI aversion of the same magnitude, equilibrium strategies do not

deviate from the selfish NE behavior, although final utilities differ substantially (see, for instance,

Herrmann and Orzen (2008)). Gill and Stone (2010) develop a model of desert in tournaments

where individuals perceive that higher expected payoffs are legitimized by higher effort. If desert

concerns are sufficiently strong, asymmetric equilibria exist in which one player works harder and

the other slacks off. This is an interesting observation, but does not closely relate to the empirical

patterns discussed above.

Ex-ante inequality aversion. In a probabilistic contest it is a priori not clear whether individuals

care for the distribution of the ex-post allocation of the payoff or for the ex ante (expected) payoff,

7There is a large body of literature which empirically analyzes the effect of DP, in particular inequity-aversion on
players behavior (see Balafoutas, Kerschbamer, and Sutter (2012), Bartling, Fehr, Maréchal, and Schunk (2009),
Eisenkopf and Teyssier (2009, 2010).)

4



and the Fehr and Schmidt (1999) model is open for both interpretations.8

Applying distributional preferences to the ex post distribution of income is a form of egalitarianism

that focusses exclusively on outcomes. In a Meta study, Konow (2003) argues that the majority of

studies that test whether individuals care for the equality of outcomes in this sense are unfavorable

to the descriptive value of this form of egalitarianism. Equality of outcomes is only seen as fair in the

absence of any other variable individuals consider relevant for justice. This hypothesis is consistent

with Brock, Lange, and Ozbay (2010) who show that with risky outcomes in dictator games, the

assumption that individuals compare outcomes exclusively on an ex post or ex ante basis cannot

explain behavior. Moreover, there is strong support for the hypothesis that individuals take actions

into consideration when evaluating the distribution of an allocation (Konow (2003)); people seem

to ask if individuals deserve the outcome of some transaction based on individual characteristics

(like ability), actions (like effort), as well as on characteristics of the environment (like the causal

relationship between actions and outcomes).

Konow (2003) argues that individuals distinguish between different variables that are potentially

relevant to justice on the basis of attribution theory, which implies that people evaluate the extent

to which an agent has contributed to the outcome of the interaction (see also Sebald (2010)).

Individuals are held accountable for only those variables that they can influence and that contribute

to the outcome. This concept of accountability discharges into a responsibility-based equity rule

(Farwell and Weiner (1996)) and is consistent with a broad range of empirical findings (see Konow

(2003)).

Empirical evidence that both, distributional factors and responsibility matter for players’ behavior

has first been given by Blount (1995). She shows for an ultimatum game that rejection rates are

low if the proposal is randomly proposed but that they go up if the randomization is biased in

favor of the proposer. Hence, individuals do not care for ex post inequality but rather for ex ante

responsibility. This view is also consistent with the findings of Charness and Levine (2003), who

show that the perceived intentions of an opponent, as well as the final outcome matter from the

point of view of each player, especially if the outcome is sensitive to chance.9 Thus, the current

consensus suggests that the simple consequentialist model of social preferences is too simplistic to

consistently explain behavior. Furthermore, the strong evidence in favor of responsibility-based

preferences support the view that individual preferences rather depend on expected instead of

actual outcomes in a contest environment because probabilities are a signal for the actions of

8Note that the ex-ante interpretation put forward in this paper is very much in the spirit of the original article
where the authors claim that the “[...] preference parameters are compatible with the interpretation of intentions-
driven reciprocity” (Fehr and Schmidt, 1999, p. 852). The relationship between ex-ante inequality aversion and
intentions-driven reciprocity will become clear throughout the paper.

9See also Charness and Rabin (2002), Falk and Fischbacher (2006), Kagel, Kim, and Moser (1996) and Offerman
(2002). In the same spirit, Krawczyk (2011) shows that a behavioral model where individuals are interested in
the expected (that can be influenced by their actions) and not in the actual outcome (that is also determined by
chance moves) is a good predictor for behavior in bargaining games. van’t Wout, Kahn, Sanfey, and Aleman (2006)
have shown that identical offers are much more frequently rejected in an ultimatum game if the offer was made
by a human than was generated by a computer. This finding shows that individuals do not necessarily care about
inequality as such, but about inequality willfully induced by other individuals.
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the players.10 We conclude that individuals may be willing to accept ex-post inequality that is

unavoidable given the setup (like, for example, in promotion tournaments), but are very sensitive

regarding the chances of winning (being promoted).

The model by Gill and Stone (2010) also exemplifies preferences that follow a responsibility-based

equity rule, but with a different focus. Our favorite reading of the different approaches is that the

specific type of preferences that becomes the driver of individual behavior ultimately depends on

the social context in which the contest is embedded.11 Under the controlled conditions in the lab,

context is usually eradicated to the largest extend possible, and we can therefore only guess how

subjects fill in the blanks. However, given that the predictions of our model are consistent with the

evidence from the lab, it is a non-falsified candidate for the explanation of behavior in contests.

The paper proceeds as follows. We introduce the model in Section 2. Section 3 focusses on the

two-player case with simultaneous moves. Section 4 extends the analysis to the n-player case and

analyzes equilibria in a sequential move game. Section 5 concludes. Appendix A collects the more

involved proofs, and Appendix B offers a generalization of our findings.

2. The model

Consider a contest in which each of two players exerts effort xi ∈ R+ in order to win a prize of

common value V > 0, with i = {1, 2}.12 The share of the prize (or the probability of winning) for

player i is determined by a contest success function (CSF), pi : xi × xj → [0, 1]. In particular, we

assume that the CSF is given by a logit form CSF in which each player’s impact of effort in the

contest is represented by an impact function f : R+ → R+ that is continuous, twice differentiable,

increasing and concave.

Assumption 1 (Contest success function)
The CSF is given by

pi(x) =





fi(xi)

fi(xi) + fj(xj)
for x 6= 0,

1

2
for x = 0,

(1)

with x = (xi, xj), fi(0) = 0 and f ′
i(xi) > 0 ≥ fi

′′(xi), for i, j = {1, 2} and i 6= j.13

10In this respect, the utility structure in our model is equivalent to the one used in the rank-order tournament model
of Baye, Kovenock, and de Vries (2012), who analyze equilibrium behavior in a two-player complete-information
all-pay auctions. In one of the applications players are assumed to be inequality averse with respect to the effort
invested.

11See Kahneman and Miller (1986) for the seminal contribution on the context-dependency of justice.

12The asymmetry between contestants that will be introduced below implies that the assumption of equal valu-
ations is not restrictive for the structure of the equilibria, see Siegel (2009). The results on overspending and
overdissipation depend quantitatively but not qualitatively on this convention.

13This general CSF has been frequently used (see, for instance, Dixit (1987), Szidarovszky (1997), Cornes and
Hartley (2005, 2012b)). Assumption (1) is for example fulfilled by the following CSF:

pi(x) =











ηix
r
i

ηixr
i + ηjxr

j

, for x 6= 0,

1
2
, for x = 0.

(2)
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Thus, player i’s prize share or expected prize zi ≡ piV is monotonically increasing (decreasing) in

i’s (j’s) effort.

We assume that players do not only care about their (expected) material payoff (zi) and effort

investment (xi), but also about the distribution of the (expected) material payoffs. To capture

this concern we use (slightly modified) Fehr and Schmidt (1999) fairness preferences.

Assumption 2 (Preferences)
Given ai ∈ R+, bi ∈ R, and ai ≥ |bi|, individual preferences can be described by the following utility
function:

πi(z, xi) = zi − ai max{−∆zi, 0} − bimax{∆zi, 0} − xi, (3)

with z = (z1, z2), and ∆zi ≡ zi − zj, for i, j = {1, 2} and i 6= j.

The second term represents the disutility from disadvantageous inequality (DI ) which depends on

the non-negative parameter ai. ai ≥ 0 rules out that i enjoys DI. The third term represents the

(dis)utility from advantageous inequality (AI ). Player i is averse to AI if bi > 0 and prone to AI

if bi < 0. |bi| ≤ ai implies that players are more concerned about DI than about AI.14

Two remarks are in order. First, like Herrmann and Orzen (2008) and Fonseca (2009) (but different

to Grund and Sliwka (2005) and Lim (2010)) we use the convention that distributional considera-

tions are restricted to the gross (expected) prize, so that effort costs are excluded. The qualitative

results of our model do not depend on this convention. Second, distributional concerns refer to

{zi, zj} = {piV, pjV }, which is the only consistent formulation for the case of a share, but not

for the case of a probabilistic contest. In a probabilistic contest, {piV, pjV } refers to the ex-ante

expected prize. The previous literature on probabilistic contests (Herrmann and Orzen (2008),

Fonseca (2009), Grund and Sliwka (2005), and Lim (2010)) used the different convention that

players care for the ex-post allocation of the prize {V, 0} or {0, V } ({V −x1,−x2} or {−x1, V −x2}

for the case of net prizes).15

In what follows we will distinguish between the following types of players:

Definition 1 (Type of player)
Given assumption (2) we will distinguish between the following types of players contingent on the
value of coefficients ai and bi. Player i is

• selfish if ai = bi = 0,

with ηi, ηj ∈ R++ and r ∈ (0, 1]. See for instance Tullock (1980), Nitzan (1994), Baharad and Nitzan (2008)
for the CSF in (2) with ηi = ηj = 1 (which has been axiomatized by Skaperdas (1996)) and Gradstein (1995),
Corchón (2007) and Corchón and Dahm (2010) for the general case with ηi ≥ ηj (axiomatized by Clark and Riis
(1998)).

14Given the upper bound on |bi|, players are loss averse in social comparison, so that players value gains less
than losses given the competitor’s material payoff as a reference point (see for instance Kong (2008) and Cornes
and Hartley (2012a) for the literature on loss aversion in contests, where the reference level of material payoff
is exogenously given). From a technical standpoint the upper bound on |bi| assures the continuity of the best-
response function.

15Please refer to the discussion in the introduction.
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• inequality averse if ai > 0, bi ≥ 0,

• inequality prone if ai > 0, bi < 0.

In what follows, it proves to be more convenient to denote by yi = fi(xi) player i’s impact in

the contest and work with an isomorphic problem that uses the inverse function hi(yi) = f−1
i (yi)

(fi(xi) is strictly monotonic, therefore the inverse exists), with h′
i(yi) ≥ 0, h′

i(yi) > 0 for yi > 0

and hi
′′(yi) ≥ 0 as costs-of-impact function.16

Denote ∆yi = yi− yj and y = (yi, yj). The impact-formulation together with assumptions (1) and

(2) imply that we can rewrite the utility function as follows:

πi(y) =
V

yi + yj

(
yi − aimax{−∆yi, 0} − bimax{∆yi, 0}

)
− hi(yi), (4)

for y 6= 0 and πi(0) = V/2 for y = 0. This formulation reveals why ex-ante inequality concerns do

not only allow interpreting distributional preferences as an example for a consequentialist fairness

norm. It can be given a procedural interpretation by recognizing that impacts {yi, yj} are measures

for efforts {xi, xj} that themselves can be seen as measures for the intentions of the two players.

Our conventions therefore gives the idea of intentions-driven fairness (Fehr and Schmidt (1999)) a

meaningful interpretation in a probabilistic contest framework.17

The partial derivative of (4) with respect to yi yields player i’s marginal utility:

∂πi(y)

∂yi
=





βi V
V
αi V



 ×

yj
(yi + yj)2

− h′
i(yi) for ∆yi





>
=
<



 0, (5)

with αi = 1 + 2 ai and βi = 1 − 2 bi. (5) shows that within both inequality regimes the marginal

return of yi depends on “perturbed” valuations of the prize {βiV, αiV }. In a situation of DI

(αi > 1) the marginal return of yi exceeds the one for a selfish player, whereas it can exceed or

fall short of the one for a selfish player in case of AI, depending on whether player i is inequality

prone (βi < 1) or averse (βi ≥ 1).

3. A two-player simultaneous move game - the linear case

In this section we present the case of a two-player simultaneous move game in which the assumed

CSFs are a proper subset of those introduced in Assumption 1. In particular, we make the as-

sumption of a linear impact function for both players because it allows us to develop the intuitions

for the results in a very intuitive manner. Appendix B provides an analysis for the general CSF

introduced in assumption (1).

16Any fixed-prize contest with a logit-form CSF, concave impact function and unit effort costs can be transformed
into an equivalent lottery contest with convex costs. Asymmetries between both players with respect to their
impacts in the contest can be transformed into asymmetries with respect to their costs-of-impact function (see
Cornes and Hartley (2003, 2005) and Corchón (2007)).

17Note that this interpretation of intentions differs from the one in Rabin (1993). See Hoffmann and Kolmar (2013)
for an analysis of Rabin-type preferences in contests.
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Assumption 3
Suppose that the CSF is given by (1), with fi(xi) = xi/ci, ci > 0, so that hi(yi) = ci yi.

Partial differentiating (5) with respect to yi shows that player i’s utility function is strictly concave

in yi. Thus, setting ∂πi(y)/∂yi = 0 leads to the unique best response for every yj > 0.

Lemma 1
Under assumptions (2) and (3), player i’s best response function is given by

BRi(yj) =






√
βi V yj

ci
− yj , for yj < yβj ,

yj , for yj ∈
[
yβj , y

α
j

]
,

√
αiV yj
ci

− yj, for yj ∈
(
yαj , ŷj

)
,

0, for yj ≥ ŷj,

(6)

with yβj ≡ βi V
(4 ci)

, yαj ≡ αi V
(4 ci)

and ŷ ≡ αiV
ci

.

Proof.

Assume that yj < ŷj, so that an interior solution to (5) exists. Given that βi matters for player

i if ∆yi > 0, and that αi matters if ∆yi < 0, we will henceforth call ∆yi > 0 player i’s β-regime

and ∆yi < 0 player i’s α-regime. The regimes can be interpreted as if player i had two virtual

types αi, βi with selfish preferences who differ in their valuation of the prize, {βiV, αiV }. The

best responses for these two types would be BRα
i (yj) = max{

√
αi V yj/ci− yj , 0} and BRβ

i (yj) =

max{
√
βi V yj/ci − yj , 0} (cf. eq. (6)). Both best responses reach their maximum at yi = yj.

Hence,

BRα
i (yj)

{
T
}
yj ⇔ yj

{
S
}
yαj and BRβ

i (yj)
{
T
}
yj ⇔ yj

{
S
}
yβj . (7)

Both types’ best-response functions are presented in Figure 1. The best responses given in (6) can

be constructed as follows: From (5) is follows that yi = yj < yβj can never be a best response for

player i since there is always a profitable upward deviation which is consistent with the β-regime.

At point A in Figure 1 player i’s utility is equal to π̂i. The indifference curve representing all the

strategy-profiles which yield this utility (π(y) = π̂i) is given by the solid curve going through A. It

consists of two parts: (1) Given that yi > yj any y yielding π̂i is identical to any y which lies on the

β-type’s indifference curve and yields the same utility. However, this type’s indifference curve is no

longer relevant for yi < yj (which is represented by the grey dashed curve beneath the 45−degree

line), since the α-types indifference curve becomes relevant. (2) This type’s indifference curve is

thus represented by the thick black (the grey dashed) curve if yi < yj (yi > yj). Consequently,

any upward deviation from yi = yj and towards the β-type’s best response function must lie to

the east of that type’s (and therefore player i’s) indifference curve, yielding a higher utility.

By the same token, for yj > yαj , BRα
i (yj) < yj such that for any yi = yj > yαj there is always a

profitable downward deviation which is consistent with the α-regime (see point C in Figure 1).

For the intermediate cases yj ∈ [yβj , y
α
j ] we pick some arbitrary pair yi = yj (point B) and check

for profitable deviations for player i. Note that any upward deviation yi > yj brings player i into

9



the β-regime, whereas any downward deviation yi < yj brings player i into the α-regime. However,

for any yj ∈ [yβj , y
α
j ] we find that BRα

i > yj > BRβ
i . Consequently, there is no profitable upward

or downward deviation and BRi(yj) = yj for any yj ∈ [yβj , y
α
j ]. Hence, the best response function

of player i is given by (6).

A

B

C

yj

yi

π̃iπ̄iπ̂i

BRβ
i

BRi

BRα
i

yβj yαj

yi = yj

Figure 1

Best response function in the presence of distributional preferences

Apparently, the different prize perceptions create an incentive for player i to deviate from any

yi = yj if yj is sufficiently small (yj < yβj ). In case of an inequality averse player, the disutility

stemming from the resulting AI aversion is then overcompensated by an increase in pi(y). If yj

is sufficiently large (yj > yαj ) player i has, again, an incentive to deviate from the egalitarian

allocation. He then chooses some yi < yj, which is optimal if the resulting disutility stemming

from the DI aversion and the decrease in pi(y) is overcompensated by lower effort costs.

We turn to the analysis of the simultaneous-move Nash equilibrium (NE ) now. It is a well-

established result in the literature on contests that, under assumption (3), the NE in case of selfish

players (y∗ = (y∗i , y
∗
j )) is given by18

y∗i =
cj V

(ci + cj)2
, y∗j =

ci V

(ci + cj)2
. (8)

18See Konrad (2009).
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In Dixit’s (1987) terminology, a selfish player in a two-player contest is a favorite (underdog) if his

winning probability at the NE is larger (smaller) than one-half. Given the equilibrium strategies

in the case of selfish preferences (cf. eq. (8)) we conclude that player i is the favorite of the game

(y*i > y∗j ) if and only if cj > ci.
19

Next we determine the NE for the case of players with DP. It turns out that the cross-player

inequality aversion ratio ξij ≡ βi/αj plays a dominant role. It takes into consideration player j’s

DI aversion and player i’s AI aversion or proneness, because these two factors drive behavior in

any situation of inequality. The following proposition summarizes the structure of the NE.

Proposition 1 (Simultaneous-move Nash equilibrium)
Under assumptions (2) and (3) we find the following:

1. There exists a unique and interior Nash equilibrium if and only if one of the cross-player
inequality aversion ratios is at least as high as the corresponding marginal costs ratio. More
precisely,

(
ξji

)−1

≥ ξij ≥
ci
cj

⇔ yNi =
αj β

2
i cj V

(αj ci + βi cj)2
, yNj =

α2
j βi ci V

(αj ci + βi cj)2
. (9)

2. Suppose both players are non-selfish (either inequality averse or prone). Then there exists a
continuum of equilibria if and only if both cross-player inequality aversion ratios are smaller
than the corresponding marginal costs ratio. More precisely,

ξij <
ci
cj

<
(
ξji

)−1

⇔ yNi = yNj ∈
[
yN , yN

]
, (10)

with yN ≡ max
{
yβi , y

β
j , 0
}

and yN ≡ min
{
yαi , y

α
j

}
.

Proof. Appendix A.1

We start the discussion of Proposition 1 with the symmetric case αi = α, βi = β, ci = c. In case

of selfish preferences (α = β = 1) the condition in (9) is satisfied with equality, implying that (10)

fails to hold. Thus, we have a unique and egalitarian NE with the following equilibrium strategies:

yN = ( V
4 c

, V
4 c

) that coincide with the selfish NE (y∗). Denote N (y) =
{
yi = yj | y

N ≤ y ≤ yN
}

the set of egalitarian Nash equilibria. Introducing DI aversion (α > 1) leads to a continuum of

equilibria (with yN = αV
4 c

) since (9) fails to hold. Then y∗ ∈ N (y) if β ≤ 1 and y∗ /∈ N (y) if

β > 1. The reason is that yN ≤ y∗i if β ≤ 1 whereas yN > y∗i if β > 1. This implies that (i)

distributional preferences create a coordination problem between players, (ii) N (y) = {y∗} as α

and β converge towards one, and (iii) for β ≤ 1 we get y T y∗ for all y ∈ N (y), whereas for β > 1

we get y > y∗ for all y ∈ N (y).

The economic intuition for (ii) is obvious but has an interesting implication with respect to the

expected under- or overdissipation of prizes compared to the selfish NE: The range of equilibrium

deviations from the selfish NE depends on the strength of the DP. Suppose β < 1. Then, the

19Henceforth we will keep the above definition of favorite/underdog for the case of players with DP.
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smaller β, the larger the set of underspending equilibria, and the larger α, the larger the set of

overspending equilibria. Hence, if equilibrium coordination happens somewhat probabilistically,

overspending becomes the more likely the more agents are concerned about DI and the less they

are concerned about AI. Moreover, if players are AI prone, underspending equilibria never emerge

since y∗ /∈ N (y) and y > y∗ for all y ∈ N (y).

The intuitions for (i) and (iii) are closely related. Suppose α > 1 and β < 1 so that players are

inequality averse. Then inequality aversion penalizes player i if he becomes the favorite (yNi > yNj )

or if he becomes the underdog (yNi < yNj ). If player i invests, for example, y∗i , player j would not be

willing to deviate from yj = y∗i with selfish preferences. With inequality aversion, the utility loss in

case of deviation is accentuated because investing more brings the player in the favorite position,

and the inequality-aversion factor β becomes relevant. Investing less brings him in the underdog

position, and the inequality-aversion factor α becomes relevant. Now suppose that player i chooses

some yi = y∗i + ε, with ε → 0+. In case of selfish preferences we find that BRj(yi) < yi, so that

a selfish player’s utility decreases if he chooses yj = yi > y∗i . However, this effect is only second

order whereas the additional penalty due to player j’s DI aversion is first order. This prevents

player j from deviating downwards. By the same token, player i would also not react by investing

more because this deviation would be penalized via i’s AI aversion. And a similar reasoning holds

for yi = y∗i − ε, with ε → 0+.

Now suppose β > 1 so that players are inequality prone. Again, we start with yj = y∗i . Deviating

to some yj = y∗i + ε would decrease a selfish player’s utility. However, this effect is dominated by

the additional utility that stems from the AI resulting from that deviation if players are inequality

prone. Thus, yj = y∗i cannot be a NE. Now suppose yi ∈ (yβi , y
α
i ). Then we can replicate the

above reasoning for the case of inequality-averse players.

Next we will analyze the case of two heterogeneous and non-selfish players with equal marginal

costs. Define amin = min{ai, aj}, bmin = min{bi, bj}, so that β̄ = 1 − 2 bmin and α = 1 + 2 amin.

Then the following corollary follows directly from Proposition (1):

Corollary 1
Under assumptions (2) and (3), the set of NE-strategies is given by

yNi = yNj ∈

[
max

{
0,

β̄V

4 c

}
,
αV

4 c

]
(11)

for ci = cj = c and ξij <
ci
cj

<
(
ξji

)−1

.

Proof. Immediate.

The difference to the symmetric case discussed before is that the smaller of the two coefficients bi

and bj determines the lower bound of the continuum (cf. eq. (10)) as long as bmin ≤ 1/2. More-

over, the smaller of the two coefficients ai and aj determines the upper bound of the continuum.

Corollary (1) thus reveals that compared to the homogenous case, heterogeneous distributional

preferences never expand the equilibrium set. Interestingly, yN (yN ) is determined by player i
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if α = αi (β = βi). Thus, the upper bound (lower bound) of N (y) is determined by the player

with the weakest DI aversion (weakest AI aversion or strongest AI proneness). These findings

reveal that one-sided distributional preferences will (will not) influence equilibrium behavior if a

selfish player encounters an inequality prone (inequality averse) player since it is determined ex-

clusively by the inequality prone (selfish player). This result is in stark contrast to the one for the

sequential-move game that we will discuss below.

See Figure 2 for an example of a set of egalitarian solutions. The dashed graphs are the best-

response functions for the case of selfish preferences, and their intersection (y∗) represents the

selfish NE. Since yNi > yNj , player j is the underdog and player i is the favorite at y∗. The

yi

yj

yj > yi

yN

BRi

BRj

yj < yi

y∗

Figure 2

A continuum of NE

in case of two inequality averse players

yi

yj

yj > yi

yN
BRi

BRj

yj < yi

ỹN

Figure 3

A unique NE

in case of two inequality averse players

solid lines are the best-response functions for the case of non-selfish preferences. Apparently, both

players are inequality averse since their β-type’s best-response functions (the part of each player’s

best response function that is larger than the corresponding competitor’s strategy) lie below the

best-response functions for selfish preferences. Given inequality aversion, player i becomes less

aggressive and player j more aggressive in the relevant range (yi > yj) as we move from y∗

towards yN . Evidently, DP are sufficiently strong to push the NE on to the 45-degree line. Even

more, the NE is no longer unique and the equilibrium set is the whole highlighted segment of the

45-degree line.

Next, we turn to the case of a unique NE. We find the following.

Corollary 2

If
(
ξji

)−1

≥ ξij ≥
ci
cj

then player i’s equilibrium share is never smaller than that of his competitor:

(
ξji

)−1

≥ ξij

{
>
=

}
ci
cj

⇔ yNi

{
>
=

}
yNj . (12)
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If player i’s AI proneness is stronger than his competitor’s DI aversion (βi > αj ≥ 1), player i
will even end up with a larger share compared to the selfish NE (yNi > y∗i ).

Proof. Immediate.

Corollary (2) shows that whatever the value of ci/cj, player i receives a larger (the same) share than

(as) his competitor in case ξij > ci/cj (ξij = ci/cj). Hence, if ξij > ci/cj, AI aversion or proneness

matters for player i, whereas DI aversion matters for player j. Furthermore, if βi > αj the NE

share of player i will be larger than in the selfish case. For example, if player i is more efficient

(cj > ci) the equilibrium share at yN is less balanced than at y∗, so that pi(y
N ) > pi(y

∗) > 1
2 .

However, if player i is less efficient (cj < ci) we find that he receives a larger share at yN compared

yi

yj

yj > yi

yN

BRi

BRj

yj < yi

y∗

Figure 4

A unique NE

in case player j is inequality prone

to y∗, so that pi(y
N ) > 1

2 > pi(y
∗). This shows that introducing DP can lead to (i) an allocation

that is even more unequal than the selfish NE, or (ii) to an allocation that reverses the relative

equilibrium share of players’ compared to the selfish NE.

See Figure 3 for an example of a unique NE where both players are inequality averse. It has the

same structure as Figure 2 with the only exception that players’ inequality aversion is not strong

enough to completely equalize the outcome. However, the equilibrium strategy profile moves closer

to the 45-degree line, showing that DP have a tendency to equalize the outcome in this example.

Figure 4 shows the case in which player i (j) is inequality averse (prone), since players i’s (j’s)

β-type best response functions lies below (above) above his selfish best responses. Here, yNj > yNi

so that the less efficient player receives a larger share of the prize. Again, the reason is player j’s

distinctive AI proneness. A lack of talent can be overcompensated by strong inequality proneness.
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Note that the properties of a NE depend crucially on the relationship between the inequality-

aversion ratio (ξij) and the corresponding marginal-costs ratio (ci/cj). The farer away ci/cj is

from unity, the farer away from the egalitarian allocation (yi = yj) is the selfish NE. In order to

compensate for a large technological advantage of player i (cj ≫ ci), ξ
i
j must be sufficiently small.

This requirement is sufficient to reach an egalitarian allocation if j is inequality averse (βj ≥ 1).

Otherwise, player j’s AI proneness must not be too large compared to i’s DI aversion. If this is

the case, distributional considerations perfectly correct the unequal distribution of the prize (in the

sense of inducing an egalitarian distribution) that would result from the technological comparative

advantage of player i.

It is interesting to understand, how the equilibrium changes if the explanatory variables change.

The comparative-static analysis can be carried out for the case of a unique equilibrium. In order to

do so, it is useful to analyze the players’ strategic incentives at yN if ξij ≥ ci/cj so that pi(y
N ) ≥

1/2.20 It is a well-known fact that in the case of two-player contests with selfish preferences the

favorite regards strategies as strategic complements (SC ) while the underdog regards strategies

as strategic substitutes (SS ) at the NE. If the share of the prize at the NE is 1/2, both players

regard strategies as strategically independent (SI ).21 This fact remains true even if players have

DP, since

∂2πi(y)

∂yi∂yj
=






βiV

V

αiV





×

∆yi
(yi + yj)3

for ∆yi






>

=

<





0. (13)

Turning to the comparative statics, we find the following:

∂yNi
∂bi

< 0,
∂yNj
∂bi

≥ 0 and
∂Y N

∂bi
< 0, (14)

∂yNi
∂aj

≥ 0,
∂yNj
∂aj

> 0 and
∂Y N

∂aj
> 0, (15)

with Y N = yNi + yNj . A marginal increase in the AI aversion (synonymously: a marginal decrease

in the AI proneness) of player i (bi) decreases the marginal return of yi (cf. eq. (5)) and thus

decreases the best response of i for any yj > 0. For ξij > ci/cj (ξij = ci/cj), player j regards

strategies as SS (SI ) and therefore yNj increases (remains the same). The net effect of an increase

in bi on Y N is negative.

An increase in DI aversion of player j (aj) increases the marginal return of yj (cf. eq. (5)) and

increases j’s best response for any yi > 0. For ξij > ci/cj (ξij = ci/cj) player i regards strategies

as SC (SI ) and therefore yNi increases (remains the same). The net effect of an increase in aj on

Y N is positive.

20The complementary case can be analyzed analogously.

21These facts have first been established by Dixit (1987) and have been extensively used, particularly in the literature
on endogenous timing in contest. See for instance Baik and Shogren (1992), Leininger (1993), and Hoffmann and
Grégoire Rota-Graziosi (2012).
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Next, we turn to the issue of overspending and overdissipation in the case of a unique NE. We define

overspending as a situation where aggregate effort at yN is larger than at y∗, and overdissipation

as a situation where aggregate effort at yN exceeds the value of the prize V .22 In order to do

so we need to determine the aggregate effort (X ∈ R+) at yN and y∗, which can be derived by

recognizing that

X =

2∑

i=1

hi(yi). (16)

The following results show that distributional preferences can explain rational overdissipation.23

Proposition 2.A (Overspending and overdissipation in case of a unique NE)

Under Assumptions (2) and (3) we find that for
(
ξji

)−1

≥ ξij ≥
ci
cj

the following holds

XN > X∗ ⇔
αj βi(αj + βi)

(αj ci + βicj)2
>

2

(ci + cj)2
(17)

and

XN > V ⇔ (βi + αj − 2) > ξij
cj
ci

+

(
ξij
cj
ci

)−1

. (18)

Proof. Appendix A.2.

Thus, overspending (XN > X∗) as well as overdissipation (XN > V ) can be explained by means of

DP in case of a unique NE. Apparently, a sufficient condition for overspending to emerge is that the

favorite player i is less efficient (ci > cj) so that βi > 1 (cf. Corollary 2). Furthermore, the finding

of Cornes and Hartley (2005) that overdissipation is the more likely the more equal the winning

probabilities are at the NE, can be pushed beyond selfish preferences. First notice that in the selfish

case equal winning probabilities at y∗ are an artifact of the players’ equal technological abilities.

In our model, equal winning probabilities at yN may even emerge if players are considerable

asymmetric with respect to the technological abilities so that pi(y
∗) ≫ 1

2 ≫ pj(y
∗). The reason

for this is that a huge technological advantage of a player may be overcompensated via the players’

DP. Even if a more efficient player i enjoys AI (βi > 1) we may find a unique egalitarian NE. Of

course, this case only arises if i encounters a sufficiently DI averse player j so that aj > |bi| and

therefore 1 > ξij = ci
cj
. Second, notice that yNi = yNj at a uniqueNE if and only if ξij = ci

cj
(cf.

corollary (2)) which is exactly the ratio that minimizes the RHS of (18).

Next, we turn to the case of overspending as well as overdissipation in case of a continuum of

equilibria. But before, we will introduce a specific concept of the two above mentioned anomalies

that will proof useful in the following proposition.

22An alternative definition of overdissipation would be that utilities in equilibrium sum to less than zero. Both
definitions coincide if the Nash equilibrium is symmetric. They can differ, however, in the asymmetric case because
the cognitive costs or gains from inequality would then have to be taken into consideration. Our qualitative findings
do not depend on the particular definition of overdissipation used in our model.

23The debate about the rationality of overdissipation (Baharad and Nitzan (2008)) makes the point that some
form of irrationality is needed to get overdissipation. The reason why overdissipation is not in conflict with full
rationality in this model is that deviating players will be plagued by negative emotions because of disadvantageous
inequality.
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Definition 2 (Probabilistic overspending and overdissipation)

• Probabilistic overspending emerges if there is a positive probability that the aggregate
spending at yN exceeds the aggregate spending at y∗.

• Probabilistic overdissipation emerges if there is a positive probability that aggregate effort
at yN exceeds the value of the prize (see also Baye, Kovenock, and de Vries (1999)).

Proposition 2.B (Overspending and overdissipation in case of a continuum of NE)

Suppose (without loss of generality) that yαi > yαj and yβi < yβj . Under Assumptions (2) and (3)

and for ξij <
ci
cj

<
(
ξji

)−1

we find

{
probabilistic overspending
overspending

}
:=

{
yN (ci + cj)
yN (ci + cj)

}
> X∗ ⇔

{
αi

βi

}
>

8 c2i cj
(ci + cj)3

, (19)

and
{

probabilistic overdissipation
overdissipation

}
:=

{
yN (ci + cj)
yN (ci + cj)

}
> V ⇔

{
αi

βi

}
>

4 ci
ci + cj

. (20)

Proof. Appendix A.3

As before, overspending (XN > X∗) as well as overdissipation (XN > V ) can be explained by

means of DP (now for the case of a continuum of NE). Proposition (2.B) implies that a sufficient

condition for either of both anomalies to emerge is that the lower bound of the equilibrium set

(yN ) is large enough. Given {ci, cj}, the lower bound uniquely depends on the levels of βi. Prob-

abilistic overspending and overdissipation however, emerges if the upper bound of the equilibrium

set (yN ) is sufficiently large. Thus, for given marginal costs {ci, cj}, probabilistic overspending

and overdissipation emerges if αi is large enough. Note that a larger αi does not influence the

equilibrium share of the prize for any player, since it is equal to pi(y
N ) = pj(y

N ) = V
2 . However,

the larger the α of the more selfish player (here player i since yαi > yαj by assumption), the larger

the incentive to invest. Since the threshold value in the case of overdissipation exceeds the one in

the case of overspending, we find that βi > 4 ci/(ci + cj) is a sufficient condition for overspending

as well as overdissipation to emerge for all y ∈ N (y).

4. Extensions

In this section we discuss two possible extensions of the above model for the case of linear impact

functions. In the first subsection we focus attention on contests with more than two players. In

the second subsection we analyze a two-player sequential-move game.

4.1. Extension to n players

How does competition between players influence the outcome of the game? In order to answer this

question we turn to the case of identical DPs. The main result of the analysis is that an increase in

17



the number of players reduces the set of equilibria. If the number of players converges to infinity,

the set of equilibria converges to the Nash equilibrium with selfish preferences. We postpone a

discussion of this finding until after the formal statement of this result.

Let N be the set of players, ci = 1, ai = a ∈ R+, bi = b ∈ R and |b| < a, with i = 1, . . . , n. In

order to have a lean notation denote by y = {y1, ..., yn} a vector of impacts, by y−i a vector of

impacts of all players except i, by Y =
∑

i yi the sum of impacts, and by Y−i =
∑

j 6=i yj the sum

of impacts of all players except for player i. With these conventions, (4) generalizes to

πi(yi,y−i) =
yi
Y
V −

a

n− 1

∑

j 6=i

max

{
yj − yi

Y
V, 0

}
−

b

n− 1

∑

j 6=i

max

{
yi − yj

Y
V, 0

}
− yi. (21)

For a given vector of impacts y denote by N+(y) and N−(y) the subsets of players exerting strictly

more or less impact than player i. Then, (21) can further be simplified to

πi(yi,y−i) =
yi
Y
V −

a

n− 1

∑

j∈N+(y)

yj − yi
Y

V +
b

n− 1

∑

j∈N−(y)

yj − yi
Y

V − yi, (22)

and the first-order condition (5) becomes

∂πi

∂yi
=

Y−i

Y 2
V −

a

n− 1

∑

j∈N+(y)

−Y−i − yj
Y 2

V +
b

n− 1

∑

j∈N−(y)

−Y−i − yj
Y 2

V − 1. (23)

Note that optimal individual impact in the contest depends only on the aggregate of all other

players’ impacts, which implies that the above conditions can be used to determine player i’s best

response function BRi(y1, ..., yi−1, yi+1, ..., yn) as a function of the aggregate of all other players

impacts, BRi(y1, ..., yi−1, yi+1, ..., yn) = Bi(
∑

j 6=i yj). Let us assume that all players except i exert

identical impacts yj . In this case we can distinguish between two cases, one where all players exert

more and one where all players exert less impact than player i. In these cases, (23) simplifies to

∂πi

∂yi
=

(1 + a)Y−i + ayj
Y 2

V − 1 =
(1 + a)(n− 1)yj + ayj

Y 2
V − 1 (24)

in the former and to

∂πi

∂yi
=

(1− b)Y−i − byj
Y 2

V − 1 =
(1 − b)(n− 1)yj − byj

Y 2
V − 1 (25)

in the latter case (we use the convention that yj = Y−i/(n − 1) is the generic impact of a player

other than i). The determination of the best response of player i, Bi((n− 1)yj), follows the same

lines as in the two-player case:

Bi((n−1)yj) =






√
((n− 1)− bn)V yj − (n− 1)yj, yj <

((n− 1)− bn)V

n2

yj , yj ∈

[
((n− 1)− bn)V

n2
,
((n− 1) + an)V

n2

]

√
((n− 1) + an)V yj − (n− 1)yj , yj ∈

(
((n− 1) + an)V

n2
,
((n− 1) + an)V

(n− 1)2

]

0, yj >
((n− 1) + an)V

(n− 1)2

.

It is straightforward to calculate the set of Nash equilibria. The result is summarized in the

following proposition.
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Lemma 2 (n-player NE)
Assume a symmetric n-player contest with ci = 1, ai = a, bi = b and a 6= 0 ∨ b 6= 0. For all finite
n the game has a continuum of Nash equilibria

yNi ∈
[
y, ȳ
]
=

[
(n− 1)− bn

n2
V,

(n− 1) + an

n2
V

]
. (26)

Next, we compare this set of Nash equilibria with the symmetric Nash equilibrium in case of selfish

preferences. The latter is given by

y∗i =
(n− 1)V

n2
. (27)

As for the two-player case, the equilibrium set in case of DPs contains the selfish Nash equilibrium

if b ≥ 0 for all finite n, i.e.

((n− 1)− bn)V

n2
<

(n− 1)V

n2
<

((n− 1) + an)V

n2
. (28)

More importantly, we can say something about the influence of the number of players on the set

of equilibria. This can be done by either comparing y with ȳ or by comparing y and ȳ with y∗i .

Both approaches lead to the same conclusion.

Proposition 3 (n-player NE and the number of players)
Assume a symmetric n-player contest with ci = 1, ai = a, bi = b and a 6= 0∨b 6= 0. The equilibrium
set is shrinking in n and converges to the Nash equilibrium with selfish preferences if n converges
to infinity.

Proof. It is straightforward to calculate y∗i − y = b/n, ȳ − y∗i = a/n, and ȳ − y = (a+ b)/n. All

differences are decreasing in n, and the set converges to the unique equilibrium y∗i for n → ∞.

This result formally expresses the economic intuition that distributional considerations become

less influential in larger groups. In the limit case of atomistic players, even the strongest (but

finite) distributional concern is without relevance from a behavioral point of view. The individuals

are forced to play the selfish Nash equilibrium because each of them is too small to influence the

distribution of the resulting allocation.

4.2. Sequential-move game

We now turn to the formal analysis of a sequential-move game, i.e. we allow one of the players

to commit to a particular level of effort. The subgame-perfect equilibrium (SPE) of the contest

is determined by applying backward induction. Suppose that player j leads. Then, the follower’s

maximization problem is to determine yFi ≡ argmax
yi

πi(y), which yields yi ≡ BRi(yj). Next,

define π̃j(yj) ≡ πj(yj , BRi(yj)) as the leader’s utility function and yLj ≡ argmax
yj

π̃j(yj). Under

assumptions (2) and (3), π̃j(yj) takes the following form:

π̃j(yj) =
V

yj +BRi(yj)

(
yj − aj max{−∆ỹj, 0} − bimax{∆ỹj , 0}

)
− cjyj , (29)
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with ∆ỹj ≡ yj −BRi(yj). The leader’s FOC is then given by

dπ̃j(yj)

dyj
= 0 ⇔ 0 =





βi

1

αi





×
BRi(yj)−BR′

i(yj) yj
(yj +BRi(yj))2

V − cj for ∆ỹi





>

=

<





0. (30)

Existence and uniqueness of a solution is ensured by the continuity and strict concavity of the

objective function. Note that since the impact elasticity of the best response function (εij ≡
BR′

i(yj) yj

BRi(yj)
) is smaller than (equal to) unity for ∆ỹj 6= 0 (∆ỹj = 0), we find that the numerator of

the fraction in (30) is strictly positive (zero). This reflects the fact that as long as ∆ỹj = 0 the

equilibrium share of the leader does not change if yj increases marginally, which no longer holds if

∆ỹj 6= 0.

Solving eq. (30) leads to the following proposition.

Proposition 4 (Subgame perfect equilibrium, SPE)
Suppose player j leads in a sequential move game. Under assumptions (2) and (3) the SPE (ySj =
(yLj , y

F
i )) has the following properties:

1. If the Stackelberg-leader is an underdog at yN we find that he undercommits effort compared
to the NE: (

ξji

)−1

≥ ξij >
ci
cj

⇒ yLj < yNj ∧ yFi > yNi .

2. If the Stackelberg-leader is a favorite at yN we find that

(a) he overcommits effort compared to the NE if the inequality at yN is sufficiently large:

(
ξij
)−1

≥ ξji >
cj
ci

(
1 +

√
αi − βi

αi

)
⇒ yLj > yNj ∧ yFi < yNi .

(b) he undercommits effort compared to the NE if the inequality at yN is not sufficiently
large:

(
ξij
)−1

≥ ξji ∈

(
cj
ci
,
cj
ci

(
1 +

√
αi − βi

αi

)]
⇒ yLj < yNj .

3. If both players have equal winning probability at yN , we find that the Stackelberg-leader will
never overcommit effort compared to the NE:

ξji ≤
cj
ci

≤
(
ξij
)−1

⇒ yLj = yFi ≤ yNi = yNj .

Proof. See Appendix A.4.

In case of a leading underdog, the follower regards efforts as SC (cf. eq. (13)). Thus, since an

increase in yi always has a negative impact upon j’s payoff (∂πj(y)/∂yi < 0), the leading underdog

will reduce yj compared to the NE (yLj < yNj ), which is retaliated by the follower with a reduction

in yi (y
F
i < yNi ). Note that yLj < yNj < yβj , where the last inequality stems from eq. (6). Thus,

commitment by the weaker player does not induce a regime change with respect to the winning

probability (or share): pj(y
N ) < pi(y

N ) ⇒ pj(y
Sj ) < pi(y

Sj ). In particular, since εij < 1, ySj is

even less balanced as yN , so that yLj /y
F
i < yNj /yNi and therefore pj(y

Sj ) < pj(y
N ). This case is
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represented in Figure 5 where player 1 is the favorite and 2 the underdog. In the case of a leading

underdog the SPE (yS2 ) lies to the south-west of yN . Note that the effort reduction by both

players makes the SPE Pareto dominate the simultaneous move NE. Also note that this finding is

qualitatively similar with the finding by Dixit (1987) who showed that a leading underdog always

undercommits effort.

Dixit (1987) also finds that a leading favorite always overcommits effort and that in case of an

evenly matched contest (ci = cj) there is no local incentive to precommit effort away from the

simultaneous-move NE. We find that these results do not carry over to the case of DP. First, a

y1

y2

y2 > y1

yS2

yS1

BR2

y2 < y1

BR1
yN

Figure 5

An overcommitting favorite and an

undercommitting underdog

y1

y2

y2 > y1

yS2

yS1

BR2

y2 < y1

BR1
yN

ỹ

Figure 6

An undercommitting favorite and underdog

leading favorite overcommits effort in our model if and only if ξji is above a certain threshold value

(cf. proposition (4), case 2(a)). This case is also represented in Figure 5. If the favorite leads, the

corresponding SPE (yS1) shows overcommitment by the leader (yL1 > yN1 ) and, since efforts are

SS for the underdog, a reduction of y2 (yF2 < yN2 ).

In case ξji is below the above mentioned threshold, a leading favorite will undercommit effort in

our model (see Proposition 4, case 2(b)). More precisely, the leader will choose yLj = yβj , which

coincides with the minimum yj that is consistent with yj = BRi(yj). The intuition behind this

result is the following: In case the favorite leads, he faces two counterbalancing effects: On the

one hand an increase in yj beyond yNj increases the equilibrium share compared to the NE, since

efforts are SS for the follower and thus pj(y
S) > pj(y

N ) ∀yj ≥ yj. On the other hand it increases

the costs of effort. If the leader is inequality averse there is also an additional disutility from

the resulting AI. A decrease in effort such that yLj = yβj leads to a reduced equilibrium share

compared to the NE, since pj(y
S) = 1

2 < pj(y
N ). However, it also minimizes the disutility from

the leader’s AI aversion and reduces the costs of effort. Thus, if the leading favorite’s AI aversion

is sufficiently strong or the marginal costs are large enough, the leader prefers the best possible
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egalitarian solution to any possible non-egalitarian one, π̃j(y
N , yN ) > π̃j(yj , BRi(yj)) ∀yj 6= yN .

This case is represented in figure (6). Interestingly, this result does not depend on the fact that

the follower is inequality averse, i.e. yLj = yN may emerge even if βi > 1. This again shows that

all results, whether in a simultaneous-move or sequential-move contest, crucially depend on both:

The DI as well as AI parameter.

Furthermore, if pi(y
N ) = pj(y

N ) = 1
2 we find that yLj = yNj = yβj if ξji = cj/ci, i.e. if a unique

egalitarian NE exists. If ξij ≤ ci/cj ≤
(
ξji

)−1

(with at least one inequality being strict) we find

that yLj = yβj ≤ yNj . Two possible cases have to be distinguished: If yβj ≥ yβi , then the minimum-

effort egalitarian NE is given by yN = (yβj , y
β
j ). Then, sequential moves serve as a coordination

device and ySj = yN . In the opposite case (yβj < yβi ) the leader will even reduce effort beyond the

minimum-effort egalitarian NE, since now yN = (yβi , y
β
i ), so that ySj < yN .

5. Summary and conclusions

Our results show that distributional preferences of the Fehr and Schmidt (1999) type come a

long way in explaining behavior in contests. This is true for share contests and even more so for

probabilistic contests if it is assumed that individuals care for the ex-ante fairness of the contest

mechanism. This finding is in contrast to the predictions of models with fairness preferences where

individuals care for the ex post distribution of rents. In this latter case, the contest is isomorphic

to a standard contest with asymmetric rents and therefore shares the behavioral predictions of an

adequately designed model with selfish preferences. On the contrary, share contests or ex ante

fairness concerns can lead to multiple equilibria in all situations where individuals are sufficiently

similar with respect to their marginal effort costs, which helps to explain why overspreading is a

common feature in experiments. Furthermore, if individuals care more for disadvantageous than

for advantageous inequality, the set of overspending equilibria is relatively large compared to the

set of underspending equilibria. Together with the finding by Bellemare, Kröger, and van Soest

(2008) that especially well-educated young subjects care almost exclusively about disadvantageous

inequality, this property can explain why overspending is a common phenomenon in experiments.

Fairness concerns can also explain overdissipation in a rational-choice model because individuals

get stuck in a situation where aggregate effort costs exceed the value of the prize because they want

to avoid the emotional costs of disadvantageous inequality that would result if they invested less

effort. This finding sheds a new light on the discussion about dissipation rates because it highlights

the importance of the psychological costs of inequality. However, our model predicts that fairness

preferences become behaviorally irrelevant in a simultaneous contest if either the number of players

becomes large or if there exist selfish players.

Experimental tests of the contest model are rare to non existent if individuals differ in their abilities

to compete. Given that our results for the case of homogenous players (with respect to their

abilities) match the experimental evidence relatively closely, our results for the asymmetric case

are of special relevance for future empirical tests. Two patterns became visible. First, distributional
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preferences often have an equalizing effect on the equilibrium. Second, this effect can be so large as

to enforce a completely egalitarian outcome. In the extreme, it may even be the case that the less

talented contestant wins a larger share (with higher probability) than his more talented opponent:

lack of talent can be overcompensated by strong inequality aversion.

Strong inequality aversion, however, does not only play an interesting role in the simultaneous-

move game. Sequential moves play a relatively obvious and a more subtle role for the behavior of

players: coordination and commitment. In all cases where fairness concerns are sufficiently strong

to induce a symmetric equilibrium in the simultaneous game, it is a Pareto improvement to let the

less AI averse player move first, irrespective of whether he is a favorite or underdog. In these cases,

the leader’s strategy coordinates expectations on a situation that would have been unattainable

with simultaneous moves. But even if the more AI adverse player moves first, sequential moves

enable the players to solve the equilibrium-selection problem prevalent with simultaneous moves.

Given that the set of symmetric equilibria can be Pareto ranked, it is clear that this coordination

will be on the equilibrium that minimizes effort. But also in the case of asymmetric equilibria it

may make sense to let the less AI adverse player move first, because also in this case he can use

the strong inequality aversion of the follower as a commitment device.

23



References

Altmann, S., A. Falk, and M. Wibral (2012): “Promotions and Incentives: The Case of Multistage Elimination
Tournaments,” Journal of labor economics, 30(1), 149–174.

Anderson, S. P., J. K. Goeree, and C. A. Holt (1998): “Rent Seeking with Bounded Rationality: An Analysis
of the All-Pay Auction,” Journal of Political Economy, 106(4), 828–853.

Baharad, E., and S. Nitzan (2008): “Contest Efforts in Light of Behavioural Considerations,” The Economic
Journal, 118, 2047–2059.

Baik, K. H., and J. F. Shogren (1992): “Strategic Behavior in Contests: Comment,” The American Economic
Review, 82(1), 359–362.

Balafoutas, L., R. Kerschbamer, and M. Sutter (2012): “Distributional Preferences and Competitive Behav-
ior,” Journal of Economic Behavior & Organization, 83(1), 125–135.
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Appendix A. Appendix - Proofs

Appendix A.1. Proof of proposition 1

At a NE we either have yNi > yNj or yNi = yNj .

• If yNi > yNj a β-type player i encounters an α-type player j. Utilizing (6) then leads to

yNi =
αj β2

i cj V

(αj ci + βi cj)2
and yNj =

α2
j βi ci V

(αj ci + βi cj)2
, (A.1)

with

yNi > yNj ⇔ ξij >
ci

cj
. (A.2)

Together with αi ≥ βi and αj ≥ βj we find the following condition for a unique NE with yNi > yNj :

(

ξji

)−1
> ξji >

ci

cj
. (A.3)

• In case yNi = yNj we must have that BRi(yj) = yj and BRj (yi) = yi which, given eq. (6), only holds for

[

yβj , y
α
j

]

∩
[

yβi , y
α
i

]

=
[

yN , yN
]

, (A.4)

with yN ≡ max
{

yβi , y
β
j , 0
}

and yN ≡ min
{

yαi , y
α
j

}

, and which is non-empty if and only if

ξij ≤ ci

cj
≤
(

ξji

)−1
. (A.5)

Finally, notice that N (y) =
{

yi = yj | yN ≤ yi ≤ yN
}

has mass one if and only if ξij = ci
cj

.

�

Appendix A.2. Proof of proposition 2.A

Because f−1
i (yi) = ci yi, we find that xN

i = ci y
N
i . The sum of efforts at a unique NE (XN =

∑

i x
N
i ) is then given

by

XN =
cicjαjβi(αi + βj)

(ciαj + cjβi)2
V, (A.6)

whereas the sum of efforts in the selfish case is given by

X∗ = XN |βi=1,αj=1 =
2 cicjV

(ci + cj)2
. (A.7)

Hence, XN > X∗ if condition (17) holds and XN > V if condition (18) holds. In case XN > V we find that
πi(yN ) > 0 and πj(yN ) < 0 if βi ≤ 1. If βi > 1 we may find that the opposite holds. Thus, despite the fact that
the test for equilibrium is implicit in the proof of Proposition (1), the debate about the rationality of overdissipation
(Baharad and Nitzan (2008)) justifies it to check explicitly that neither player can be better off by abstaining if the
equilibrium implies overdissipation. Thus, we need to show that given yNi (yNj ) player j (i) cannot gain by choosing

yj = 0 (yi = 0). Indeed, supposing the opposite, we find that

πi(0, y
N
j ) > πi(y

N ) ⇔ βi − αi >
2 c2j β

3
i

(ciαj + cjβi)2
, (A.8)

and

πj(0, y
N
i ) > πj(y

N ) ⇔ 0 >
c2iα

3
j

(ciαj + cjβi)2
, (A.9)

which obviously never holds. �
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Appendix A.3. Proof of proposition 2.B

Suppose yαi > yαj so that αi

ci
<

αj

cj
and yβi < yβj so that βi

ci
>

βj

cj
. Then yNi = yNj ∈

[

yN , yN
]

, with yN = yβj ≡ βiV

4 ci

and yN = yαj ≡ αiV

4 ci
. The aggregate effort at yN = (yN , yN ) is given by by X

N
= ciy

N + cjy
N . Then we find that

X
N

> X∗ ⇔ αiV (ci + cj)

4 ci
>

2 ci cj V

(ci + cj)2
⇔ αi >

8 c2i cj

(ci + cj)3
. (A.10)

and

X
N

> V ⇔ αiV (ci + cj)

4 ci
> V ⇔ αi >

4 ci

ci + cj
. (A.11)

The equilibrium utilities at yN are

πi(y
N ) =

(2− αi)V

4
and πj(y

N ) =
(2 ci − αi cj)V

4 ci
. (A.12)

The utilities in case that one of the players is abstaining from the contest are

πi(0, y
N ) =

(1 − αi)V

2
and πj(y

N , 0) =
(1− αj)V

2
, (A.13)

so that
πi(y

N ) > πi(0, y
N ) ⇔ 2αiV > 0 (A.14)

and
πj(y

N ) > πj(y
N , 0) ⇔ 2V (2αjci − αicj) > 0, (A.15)

where the last inequality in (A.13) holds since αi ≥ 1 (cf. assumption (2)), and in (A.15) since yαi > yαj by
assumption.

Aggregate effort at yN = (yN , yN ) is given by XN = ci yN + cjyN . Consequently, substituting αi by βj in eq.

(A.10) as well as (A.11) leads to the corresponding conditions for overspending and overdissipation at yN and thus
for all y ∈ N (y).

The equilibrium utilities at yN are

πi(y
N ) =

(2− βi)V

4
and πj(y

N ) =
(2 ci − βi cj)V

4 ci
. (A.16)

Since
πi(0, y

N ) = πi(0, y
N ) and πj(y

N , 0) = πj(y
N , 0), (A.17)

(cf. eq. (A.13)) we find that
πi(y

N ) > πi(0, y
N ) ⇔ V (4αi − 2βi) > 0 (A.18)

and
πj(y

N ) > πj(y
N , 0) ⇔ 2V (2αj ci − βi cj) > 0, (A.19)

where the last inequality in (A.18) holds since αi ≥ βi and in (A.19) since βi

αj
< ci

cj
(cf. eq. (10), page 11). �

Appendix A.4. Proof of proposition 4

The leader’s utility is given by

π̃j(yj) =



















αjV yj
yj+BRi(yj)

− (αj−1)V

2
− cjyj for ∆ ỹj < 0,

yj V

yj+BRi(yj)
− cjyj for ∆ ỹj = 0,

βjV yj
yj+BRi(yj)

+
(1−βj)V

2
− cjyj for ∆ ỹj > 0.

(A.20)

It is easy to establish the strict concavity of π̃j(yj):

d2π̃j(yj)

dy2j
= − 1

4 yj

√

ci V

yj
×



















αj√
βi

for ∆ ỹj < 0,

1 for ∆ ỹj = 0,
βj√
αi

for ∆ ỹj > 0.

(A.21)

Thus, the first-order condition is necessary and sufficient for a maximum. The leader’s marginal utility is given by
equation (30). Given eq. (6) we get

BRi(yj)− BR′
i(yj) yj

(yj +BRi(yj))2
=



































√

ci

4βiV yj
, for yj < yβj ,

0, for yj ∈
[

yβj , y
α
j

]

,
√

ci

4αiV yj
, for yj ∈

(

yαj , ŷj

)

,

0, for yj ≥ ŷj .

(A.22)
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In the first interval (yj < yβj ), BRi(yj) > yj , so that BRi(yj) ≡ BRβ
i (yj), in the third interval (yj > yαj ),

BRi(yj) < yj , so that BRi(yj) ≡ BRα
i (yj). In the second interval (yβj ≤ yj ≤ yαj ) BRi(yj) = yj , so that an

increase in yj has no influence on the leader’s equilibrium share. The same holds for the last interval (yj ≥ ŷj),
where BRi(yj) = 0. Defining yLj ≡ argmax

yj

π̃j(yj) and yFi ≡ BRi(y
L
j ), we find the following.

(I) yj < yβj

In this case yLj = yIj ≡ ci V α2
j

4 c2
j
βi

and yFi = yIi ≡ αjV (2 cj βi−αj ci)

4 c2
j
βi

. Note that yIj < yIi ⇔ ξij > ci
cj

so that

yNi > yNj (cf. corollary (2), page 13)). Moreover, yIj < yNj , yIi > yNi .

(II) yj ∈ [yβj , y
α
j ]

Since
dπ̃j(yj)

dyj
= −cj < 0 in this interval, yLj = yIIj ≡ max{0, yβj } ≤ yNj and yFi = yIIj ≤ yNi .

(III) yj ∈ (yαj , ŷj)

In this case yLj = yIIIj ≡ ci β2
j V

4 c2
j
αi

and yFi = yIIIi ≡ βj V (2αi cj−βj ci)

4αi c2
j

. Note that ŷj > yIIIj > yIIIi ⇔ 1
2
ξji <

cj
ci

< ξji so that yNj > yNi . Moreover, yIIIj > yNj , yIIIi < yNi .

(IV) yj ≥ ŷj

Again, since
dπ̃j(yj)

dyj
= −cj < 0, yLj = yIVj ≡ ŷj and yFi = yIVi ≡ 0. This only holds if ∆ ≡ yNj − yNi is

sufficiently large, i.e. if 1
2
ξji ≥ cj

ci
. Apparantley, yIVj > yNj , 0 = yIVi < yNi .

Next, we check whether a leader in case I, III, or IV can be better off by choosing yIIj .

1.

πj(y
II
j ) > πj(y

I
j ) (A.23)

⇔ V

4

(

2− βi cj

ci

)

>
V

4

(

2 + αj

(

αj ci

βi cj
− 2

))

⇔ 0 > (αjci − βicj)
2.

Thus, if yNj < yNi ⇒ yLj = yIj ∧ yFi = yIi .

2. First, suppose that βi > 0:

πj(yIIj ) > πj(yIIIj ) (A.24)

⇔ V

4

(

2− βi cj

ci

)

>
V

4

(

2 + βj

(

βj ci

αi cj
− 2

))

⇔ αic
2
j (αi − βi) > (βjci − αicj)

2.

Thus, if ξj
i
∈
(

cj
ci

,
cj
ci

(

1 +
√

αi−βi

αi

))

⇒ yLj = yIIj ∧yFi = yIIi . For
βj

αi
∈
(

cj
ci

(

1 +
√

αi−βi

αi

)

,
2 cj
ci

)

⇒ yLj =

yIIIj ∧ yFi = yIIIi . In case βi = 0, πj(yIIj ) = V
2

so that the inequality in (A.24) holds for all
βj

αi
∈
(

cj
ci
,
2 cj
ci

)

.

3.

πj(y
II
j ) > πj(y

IV
j ) (A.25)

⇔ 2βjcj − βici

βj cj
> 2

⇔ −βi ci > 0,

which never holds. Thus, if ξji ≥ 2cj
ci

⇒ yLj = yIVj ∧ yFi = 0. �
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Appendix B. A contest with a general impact function

We now turn to the general case, i.e. we make use of the general logit-type CSF introduced in assumption (1). In
what follows, we will (for the sake of brevity) assume that βi > 0 and βj > 0, so that only non-trivial solutions are
considered.

Because πi(y) (given by eq. (4), page (8)) is strictly concave and differentiable in yi the first order condition is
necessary as well as sufficient for a best response:

∂πi(y)

∂yi
≤ 0. (B.1)

In order to solve the general case it is now convenient to make use of the share-function approach, invented by Cornes
and Hartley (2003, 2005).24 The following lemma describes the first-order conditions in case of advantageous and
disadvantageous inequality.

Lemma B.1
Let σi = yi/Y be the share of total impact by individual i, and Y = yi+yj be total impact. Then, under assumptions
(1)-(2), the FOCs in case of disadvantageous (∆yi < 0) and advantageous (∆yi > 0) inequality can be rewritten
as:

αi (1− σi)V − h′
i(σiY )Y ≤ 0, for αi σ̄V < h′

i (σ̄Y )Y, (B.2a)

βi (1− σi)V − h′
i(σiY )Y = 0, for βi σ̄V > h′

i (σ̄Y )Y, (B.2b)

with σ̄ = 1
2
and equality at (B.2a) if σi > 0.

Proof.
The FOC in case of DI is given by

αi (1 − σi)V

Y
− h′

i(σiY ) ≤ 0. (B.3)

Both terms in (B.3) are monotonic, with the first term strictly decreasing, and the second term non-decreasing in
σi and strictly positive for σi > 0. If and only if

αiσ̄V

Y
< h′

i(σ̄Y ), (B.4)

there is some σi ∈ [0, σ̄) which satisfies equation (B.3). Furthermore, if and only if αiV

Y
< h′

i(0), the inequality in
(B.3) holds.

In case of AI the first-order condition is given by

βi (1 − σi)V

Y
− h′

i(σiY ) = 0, (B.5)

where, again, the first term is strictly decreasing, and the second term is non-decreasing in σi. Hence, if

βiσ̄iV

Y
> h′

i(σ̄Y ), (B.6)

then there is some σi > σ̄ which satisfies equation (B.5).
Next, we turn to the above-mentioned share function and its properties.

Lemma B.2 (Share function I)
Given assumptions (1)-(2) a share function si(Y ) exists for player i. We find that si(Y ) = σi, with σi being either

(i) the unique solution to

αi (1 − σi)V − h′
i(σiY )Y = 0 (B.7)

if σ ∈ (0, σ̄),

(ii) the unique solution to

βi (1 − σi)V − h′
i(σiY )Y = 0 (B.8)

if σ ∈ (σ̄, 1],

24Originally, this approach was taken in order to solve the dimensionality problem associated with games charac-
terized by a large number of players (see Cornes and Hartley, 2003, p. 2). Besides this virtue, the share-function
approach has proven to be exceptionally usefull for our purpose, i.e. in an asymmetric two-player contest where
players are endowed with distributional preferences.
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(iii) equal to σ̄, if none of the above holds.

Proof. Omitted.

Next, we take a closer look at the properties of the share function.

Lemma B.3 (Share function II)
The share function si(Y ) has the following properties:

1. limY →0 si(Y ) = 1,

2. s′i(Y ) ≤ 0 for Y ≥ 0, with equality for h′
i(σ̄Y )Y ∈ (βiσ̄V, αi σ̄V ),

3. si(Y )











∈ (0, σ̄) for h′
i(σ̄Y )Y > αiσ̄V,

= σ̄ for h′
i(σ̄Y )Y ∈ [βiσ̄V, αiσ̄V ],

∈ (σ̄, 1] for h′
i(σ̄Y )Y < βiσ̄V,

4. if limyi→0 h′
i(yi) = 0, then si(Y ) > 0 for Y > 0, with limY →∞ si(Y ) = 0. If not, si(Y ) = 0 for Y ≥ Ȳ , with

Ȳ = αiV

h′

i
(0)

.

Proof.
(1) As Y → 0, the left-hand side (LHS) of (B.6) goes to infinity while the right-hand side (RHS) goes to h′

i(0). Thus,
for Y small enough, si(Y ) > σ̄. Next, as Y → 0, the first term of (B.5) goes to infinity while the second term goes to
zero. Consequently limY →0 si(Y ) = 1. (2) Since the first terms in (B.3) and (B.5) decrease in Y , while the marginal
costs of impact are non-increasing in Y , si(Y ) is decreasing in Y for h′

i(σ̄Y )Y > αiσ̄Y and h′
i(σ̄Y )Y < βiσ̄Y , i.e.

for si(Y ) 6= σ̄. For h′
i(σ̄Y )Y ∈ (βiσ̄V, αiσ̄V ) any marginal increase of Y leaves si(Y ) = σ̄ unaffected. (3) Follows

directly from (1) and (2). (4) If h′
i(0) 6= 0, then there is always some Y > 0 so that αiσ̄V

Y
≤ hi(0) and si(Y ) = 0.

If hi(0) = 0 then si(Y ) > 0 for all Y > 0.

Lemma B.3 shows that the share function is a strictly decreasing function of Y if and only if si(Y ) 6= σ̄. Moreover, it
shows that si(Y ) > 0 for all Y ≥ 0 if hi(0) = 0 and thus fi(0) → ∞. This holds for example for the CSF introduced
in Assumption (3) for r < 1 (see Cornes and Hartley (2005) for an in depth discussion of this topic). For hi(0) > 0
there is always a Y > 0 for which si(Y ) = 0.

Now we turn to the simoultaneous-move NE. A NE exists if there is at least one Y ≥ 0 for which the sum of agent’s
share functions (the aggregate share function S(Y ) =

∑

i si(Y )) equals unity (see Cornes and Hartley (2003, 2005)).
Lemma (B.3) together with the continuity of si(Y ) (and therefore of S(Y )) suffices to prove the existence of a NE.

Proposition B.1 (Cournot-Nash equilibrium)
Given assumptions (1)-(2) a simoultaneous-move NE (Y N ) exists. An egaliterian NE (si(Y

N ) = sj(Y
N ) = σ̄)

exists if and only if

h′
i(σ̄Y

N )Y N ∧ h′
j(σ̄Y

N )Y N ∈ [βiσ̄V, αiσ̄V ] ∩ [βjσ̄V, αj σ̄V ] = [max{βi, βj}σ̄V,min{αi, αj}σ̄V ] . (B.9)

The NE is unique if either

h′
i(σ̄Y

N )Y N = h′
j(σ̄Y

N )Y N = max{βi, βj}σ̄V = min{αi, αj}σ̄V, (B.10)

or if the condition in (B.9) does not hold. In the opposite cases there is a continuum of equilbria.

Proof.
Existence of the NE : A Nash equilibrium exists if S(Y ) = 1 for some Y ≥ 0. Lemma (B.3.1), (B.3.2), (B.3.4)
together with the continuity of si(Y ) (and therefore also of the aggregate share function S(Y )) suffices to prove the
existence of a simoultaneous-move NE.

Egaliterian NE : If si(Y N ) = sj(Y N ) = σ̄ then, given lemma (B.3.3), both conditions for si(Y N ) = σ̄ and sj(Y N ) =
σ̄ must hold.

Uniqueness of the NE : Since
∑

i s
′
i(Y ) ≤ 0 we can preclude the existence of isolated multiple equilibria. There-

fore we either have a unique equilibrium or a continuum of equilibria. The former emerges if (i) s′i(Y
N ) < 0 and

s′j(Y
N ) < 0, which only holds if si(Y N ) 6= σ̄ and therefore sj(Y N ) 6= σ̄ as well, or (ii) if the intervall displayed in

(B.9) becomes degenerate. Thus, a continuum emerges if and only if S(Y ) stays constant (and equal to 1) for some
non-degenerate interval I ⊂ R+.

In general it is not possible to derive explicit functional forms of the share functions (see Cornes and Hartley (2003)).
In order to derive explicitly the upper and lower bound of the continuum interval, we will, for the remainder of this
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appendix, assume that fi(xi) =
xr
i

ci
with r ≤ 1 and ci > 0, so that hi(yi) = (ci yi)

1
r . Then equating h′

i(σ̄Y )Y to

αi σ̄ V (βi σ̄i V ) delivers the upper (lower) bound of the continuum interval (cf. eq. (B.4) and (B.6)):

si(Y ) = σ̄ for Y ∈
[

(βi r V )r σ̄(2 r−1)

ci
,
(αi r V )r σ̄(2 r−1)

ci

]

. (B.11)

Next, we take a closer look at two subcases: when players are asymmetric and when players are symmetric.

Appendix B.1. Asymmetric case

si(Y )

Y

s1(Y )

s2(Y )

S(Y )
2

1

1
2

Y N

Figure B.1

Unique NE

si(Y )

Y

s1(Y )

s2(Y )

S(Y )

2

1

1
2

Y N

Figure B.2

Equilibrium correspondence

Suppose that r = 1
2
. Then the share function can be explicitly written as (cf. lemma (B.3.3))

si(Y ) =











































βiV

2c2i Y
2 + βiV

for Y <

√

βi V

2 c2i
,

σ̄ for Y ∈
[√

βi V

2 c2i
,

√

αi V

2 c2i

]

,

αi V

2c2i Y
2 + αiV

for Y >

√

αi V

2 c2i
.

(B.12)

Selfish preferences: In case of selfish preferences (αi = βi = αj = βj = 1) theNEbecomes

Y ∗ =

√

V

2 ci cj
, with si(Y

∗) =
cj

cj + ci
, si(Y

∗) =
ci

cj + ci
, (B.13)

so that

y∗i =
1

ci + cj

√

cj V

2 ci
, y∗j =

1

ci + cj

√

ci V

2 cj
. (B.14)

Apparently, player i is the favorite (underdog) in the contest if and only if ci < cj (ci > cj).

Distributional preferences: In case of DP, the NE can be described as follows:

1. If
(

ξji

)−1
≥ ξij ≥

(

ci

cj

)2

the game has a unique NE

Y N =

√

V
√

αi βj

2 ci cj
, with si(Y

N ) =

√
αicj√

αicj +
√

βjci
, sj(Y

N ) =

√

βjci√
αicj +

√

βjci
(B.15)

so that

yNi =

√

cjV α
3
4

i β
1
4

j√
2 ci(cj

√
αi + ci

√

βj)
, yNj =

√
ciV α

1
4

i β
3
4

j
√

2 cj(cj
√
αi + ci

√

βj)
. (B.16)
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2. If ξij <

(

ci

cj

)2

<
(

ξji

)−1
there is a continuum of equilibria, with

Y N ∈
[

max

{√

βi V

2 c2i
,

√

βj V

2 c2j

}

,min

{√

αi V

2 c2i
,

√

αj V

2 c2j

}]

, yNi = yNj = σ̄ Y N . (B.17)

Both cases are represented in figures (B.1) and (B.2), where c2 > c1. In figure (B.1) we have ξ12 ≥
(

c1
c2

)2
so that

the NE is unique. Obviously, player 1 is the favorite because s1(Y N ) > s2(Y N ). This is no longer the case in the

second example, represented in figure (B.2). Here, we have a continuum of equilibria. Apparently, β2

c2
2

> β1

c2
1

and
α2

c2
2

> α1

c2
1

so that the lower and upper bound of the equilibrium correspondence is determined by player 2 (cf. eq.

(B.12)).

Next, we turn to the issues of overspending and overdissipation. For this, we need to determine aggregate effort in
case of selfish preferences and DP. Utilizing the fact that xi = hi(yi) we find that aggregate effort at the selfish NE
(X∗ = x∗

i + x∗
j ) equals:

X∗ = (ciy
∗
i )

2 + (cjy
∗
j )

2 =
ci cj V

(ci + cj)2
, (B.18)

whereas total effort in case of a unique NE with DP is given by

XN = (ciy
N
i )2 + (cjy

N
j )2 =

cicj
√

αjβi(αj + βi)V

2
(

ci
√
αj + cj

√
βi

)2
. (B.19)

Proposition B.2 (Overspending and overdissipation in case of a unique NE)

Suppose fi(xi) =
√

xi

ci
so that hi(yi) = (ciyi)

2. Then we find that for
(

ξj
i

)−1
≥ ξij ≥ ci

cj
the following holds

XN > X∗ ⇔
√

αj βi(αj + βi)

(αj ci + βicj)2
>

2

(ci + cj)2
(B.20)

and

XN > V ⇔ βi + αj − 4 > 2

(

cj

ci

√

ξij +

(

cj

ci

√

ξij

)−1
)

. (B.21)

Proof.
The proof is similar to the proof of proposition (2.A), page (26) and is ommited here.

Since the RHS of (B.21) is minimized for ξij =
(

ci
cj

)2
we, as in the linear case, find that overdissiaption is the more

likely to emerge the more equitable the contest is. However, since there are now diminishing returns to scale (r < 1)

DPs now have to play a greater role in order to evoke overdissipation. In particular, note that even if ξij =
(

ci
cj

)2
,

βi + αj > 8 in order to create overdissipation.

Proposition B.3 (Overspending and overdissipation in case of a continuum of NE)

Suppose (without loss of generality) that βi

c2
i

>
βj

c2
j

and αi

c2
i

<
αj

c2
j

. Under Assumptions (1) and (2) and for ξij <
(

ci

cj

)2

<
(

ξji

)−1
we find

{

probabilistic overspending
overspending

}

:=

{

(ci y
N )2 + (cj y

N )2

(ci y
N )2 + (cj y

N )2

}

> X∗ ⇔
{

αi

βi

}

>
8 c3i cj

(c2i + c2j )(ci + cj)2
, (B.22)

and
{

probabilistic overdissipation
overdissipation

}

:=

{

(ci yN )2 + (cj yN )2

(ci yN )2 + (cj yN )2

}

> V ⇔
{

αi

βi

}

>
8 c2i

c2i + c2j
. (B.23)

Proof. In case of a continuum of equilibria the upper bound and lower bound of the correspondence is determined

according to (B.17). Thus, if βi

c2
i

>
βj

c2
j

and αi

c2
i

<
αj

c2
j

, we find that

yN =

√

βi V

8 c2i
and yN =

√

αi V

8 c2i
. (B.24)
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Then, aggregate effort at the lower bound of the equilibrium correspondence equals

XN = (ci y
N )2 + (cj y

N )2 =

(

ci

√

βi V

8 c2i

)2

+

(

cj

√

βi V

8 c2i

)2

=
βi V

8

c2i + c2j

c2i
, (B.25)

and aggregate effort at the upper bound equals

X
N

= (ci y
N )2 + (cj y

N )2 =

(

ci

√

αi V

8 c2i

)2

+

(

cj

√

αi V

8 c2i

)2

=
αi V

8

c2i + c2j

c2i
. (B.26)

Hence, if the upper bound of the equilbrium correspondecne is larger than X∗ (V ) there is a positive probability of
overspending (overdissipation), whereas if the lower bound of the equilbrium correspondecne is larger than X∗ (V ),
overspending (overdissipation) will emerge with proability 1.

Appendix B.2. Symmetric case

Suppose that αi = αj = α, βi = βj = β, ci = cj = c and r ∈ (0, 1].

Selfish preferences: In case of selfish preferences the unique and symmetric NE becomes

y∗i = y∗j =

(

r V

4

)r 1

c
, (B.27)

so that aggregate effort at the selfish NE equals

X∗ = 2 (c y∗)
1
r =

r V

2
. (B.28)

Distributional preferences: In case of DP (α > 0 and β ∈ R+) the symmetric NE is never unique. The lower
and upper bound of the equilibrium correspondence is given by (cf. eq. (B.11))

yN =
1

c

(

βi r V

4

)r

and yN =
1

c

(

αi r V

4

)r

(B.29)

Then, aggregate effort at the lower bound of the equilibrium correspondence equals

XN = 2 (c yN )
1
r =

r β V

2
. (B.30)

and aggregate effort at the upper bound equals

X
N

= 2 (c yN )
1
r =

r αV

2
. (B.31)

Proposition B.4 (Overspending and overdissipation in case of a continuum of NE)
Under Assumptions (1) and (2) and for α > 1, β ∈ R+ we find

{

probabilistic overspending
overspending

}

:=

{

2(c yN )
1
r

2(c yN )
1
r

}

> X∗ ⇔
{

α
β

}

> 1, (B.32)

and
{

probabilistic overdissipation
overdissipation

}

:=

{

2(c yN )
1
r

2(c yN )
1
r

}

> V ⇔
{

α
β

}

>
2

r
. (B.33)

As in the case of a linear impact function, probabilistic overspending emerges in case of symmetric players if both
are non-selfish (α > 0), whereas overspending emerges with probability 1 is players are inequality prone (β > 1).
Whether (probabilistic) overdissipation emerges at yN now depends on the concavity of the impact function: The
smaller r the larger α (β) must be in order to find overdissipation (probabilistic overdissipation).
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