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Abstract 
 
Uzawa’s steady-state growth theorem (Uzawa (1961)) is generalized to a neoclassical 
economy that uses current output, e. g., to create technical progress or to manufacture 
intermediates. The difference between aggregate final-good production and these resources is 
referred to as net output. The new generalized steady-state growth theorem holds since net 
output exhibits constant returns to scale in capital and labor. This insight provides an 
understanding for why technical change is labor-augmenting in steady state even if capital-
augmenting technical change is feasible. By example, this point is made for three recent 
growth models that allow for endogenous capital- and labor-augmenting technical change, 
namely, Irmen (2013), Acemoglu (2003), and Acemoglu (2009), Chapter 15. The reduced 
form of these models is shown to be consistent with the generalized steady-state growth 
theorem. 
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1 Introduction

Why is technical change almost always labor-augmenting in Dynamic Macroeco-
nomics? For the broad class of neoclassical growth models, Uzawa’s steady-state
growth theorem suggests the answer (Uzawa (1961)).1 Roughly speaking, this
theorem says that only labor-augmenting technical change is consistent with the
steady-state growth path of a neoclassical economy. The theorem exploits two
fundamental components of neoclassical growth theory, namely, the aggregate
production function with constant returns to scale in capital and labor and the
role of capital accumulation. Hence, the desire for a dynamic macro-economy to
exhibit a steady state and the analytical structure of neoclassical growth models
suggest right from the start the assumption of an aggregate production function
with labor-augmenting technical change.

Uzawa derived his insight with a view to a neoclassical economy where technical
progress is exogenous and costless. The generalized steady-state growth theorem
established in the present paper extends this insight to an economy where current
output is used to generate technical progress or to manufacture intermediates. I
refer to the latter resources as aggregate investment. Typically, this additional ele-
ment matters in an economy where technical progress is endogenous and costly.
Moreover, it gives rise to the notion of net output defined as the difference between
aggregate final-good production and aggregate investment.

Hence, the neoclassical economy under scrutiny here comprises an aggregate
production function, an aggregate investment function, a resource constraint,
and an equation of motion describing the accumulation of capital. For such an
economy, the generalized steady-state growth theorem characterizes steady-state
paths starting in finite time. The first part of the theorem establishes that net out-
put, aggregate output, aggregate investment, capital, and aggregate consump-
tion grow at the same rate. Its second part shows that technical change is purely
labor-augmenting in the net output function. Moreover, the growth rate of labor-
augmenting technical change is shown to coincide with the growth rate of all

1A steady state is defined as a path along which all variables grow at constant exponential
rates. These rates may be positive, zero, or negative. Schlicht (2006) provides an elegant and intu-
itive proof of Uzawa’s theorem which was successively adopted by Jones and Scrimgeour (2008)
and Acemoglu (2009). The proof of the new generalized steady-state growth theorem developed
below builds on and extends Schlicht’s proof strategy.
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per-worker variables. While the proof of the first part follows directly from the
analytical structure of the model, its second part is shown to rely on the assump-
tion that both the aggregate production function and the aggregate investment
function exhibit constant returns to scale in capital and labor.

From the perspective of these results I take a new look at the question about why
steady-state technical change is labor-augmenting in endogenous growth models
that allow for capital- and labor-augmenting technical change and involve capital
accumulation. By way of three examples, I argue that in steady state the reduced
form of these models either involves a net output function that has constant re-
turns in capital and labor as required by the generalized steady-state growth the-
orem or is consistent with Uzawa’s original formulation. Therefore, in steady
state capital-augmenting technical change vanishes and labor-augmenting tech-
nical change determines the growth rate of the economy.2

This point is made for the one-sector model of Irmen (2013) as well as for the
multi-sector model of Acemoglu (2003) and its extension (Acemoglu (2009), Chap-
ter 15).3 To the best of my knowledge, these studies are the only growth models
in the literature allowing for endogenous capital- and labor-augmenting technical
change and capital accumulation.4

For the question at hand, it matters that these models differ in the way technical
change is generated. In Irmen (2013) this requires the input of current final-good
production. Therefore, the generalized steady-state growth theorem can be ap-
plied. In Acemoglu’s two variants technical change is the result of research con-
ducted by labor. For Acemoglu (2003), this is shown to lead to an application of
Uzawa’s original theorem. As current final output is used up as an input in the
production of intermediates in Acemoglu (2009), aggregate investment is strictly
positive. Therefore, the generalized steady-state growth theorem is shown to ap-
ply.

The remainder of this paper is organized as follows. Section 2 has the statement
and the proof of the generalized steady-state growth theorem. Section 2.1 gives

2Klump, McAdam, and Willman (2007) study the US economy and confirm this pattern of
technical change empirically for the period 1953 to 1998.

3The reduced form of the three-sector model of endogenous capital- and labor-augmenting
technical change devised in Irmen (2011) shares the relevant properties with the one-sector model
of Irmen (2013). Hence, all findings derived in Section 3.1 also apply to this three-sector model.

4Jones (2005) develops an alternative argument for why technical change is labor-augmenting.
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the precise setup of the neoclassical economy under scrutiny. The generalized
steady-state growth theorem appears as Theorem 1 in Section 2.2. Section 2.3 dis-
cusses important assumptions and features of it. They include the role of differing
technologies affecting aggregate production and aggregate investment, the link to
Uzawa’s original result, the importance of capital accumulation and of constant
returns. Finally, I turn to the special, yet important case of factor-augmenting
technologies. Section 3 establishes the link between the generalized steady-state
growth theorem and the steady-state properties of the above mentioned endoge-
nous growth models. Their order of appearance reflects an increasing degree of
complexity. Section 4 concludes this paper. If not indicated otherwise proofs are
relegated to the Appendix.

2 Statement and Proof of the Theorem

2.1 The Model

Consider a closed economy, and, without loss of generality, let time be continu-
ous, i. e., t ∈ (−∞,+∞). The production sector consists of two elements. First,
there is an aggregate production function of the final good

Y(t) = F̃ [K(t), L(t), AF(t)] , (2.1)

where F̃ : R2
+ ×AF → R+, Y(t) is aggregate output of the final good, K(t) > 0 is

the capital stock, L(t) > 0 is the labor endowment, and AF(t) ∈ AF represents the
components of technological knowledge available at t that affect the production
of the final good. Here, AF is an arbitrary set.5

Second, there is an aggregate investment function. It states the amount of period-
t final-good output that is used up in the same period as an input somewhere
in the economy. For instance, the economy may invest contemporaneous final
output to generate technical progress in its research sector or, alternatively, use
it as an input in an intermediate-good industry of the production sector. In any
case, the defining property of these resources is that they are neither available for

5In general, the specification of AF (and AI introduced below) will depend on how technolog-
ical knowledge and its components are represented.

3



consumption nor for the accumulation of capital. I refer to them as “aggregate
investment” denoted by I(t). Let

I(t) = Ĩ [K(t), L(t), AI(t)] , (2.2)

where Ĩ : R2
+ × AI → R+ is the aggregate investment function, and AI(t) ∈ AI

represents components of technological knowledge available at t that affect the
amount of invested final output given capital and labor. Again, AI is an arbitrary
set.

In most applications the functions F̃ and Ĩ will correspond to reduced-form pro-
duction and investment functions of the economy under scrutiny. As such, they
will reflect the optimal behavior of economic actors and the market-clearing con-
ditions. This justifies the assumption that these functions depend both on the
capital and the labor endowment of the economy.6 However, there is little reason
why the technology applied in the production of the final good should coincide
with the technology used in the economy’s research or intermediate-good sector.
This is why AF(t) is allowed to differ from AI(t).

Suppose that both F̃ and Ĩ are increasing in K(t) and L(t) and exhibit constant
returns to scale in these arguments. Then, V(t) = Y(t)− I(t) is net output, i. e.,

V(t) = F̃ [K(t), L(t), AF(t)]− Ĩ [K(t), L(t), AI(t)]

(2.3)

≡ Ṽ [K(t), L(t), AF(t), AI(t)] ,

where Ṽ : R2
+ × AF × AI → R+ exhibits constant returns to scale in K(t) and

L(t), too. Hence, net output is defined as the amount of the final good that is
available for consumption and capital accumulation. Henceforth, I refer to Ṽ as
the net output function. Capital and aggregate consumption, C(t), are measured
in units of the final good. Then, at all t capital accumulates according to

K̇(t) = V(t)− C(t)− δKK(t), δK ∈ R+, (2.4)

where δK is the instantaneous depreciation rate of capital. Finally, the evolution
of the labor endowment is given by

L(t) = L(0)egLt, L(0) > 0, gL ∈ R, (2.5)

6This assumption will be relaxed in Section 2.3.4 below.

4



i. e., the instantaneous growth rate of the labor force is time-invariant and may be
positive, zero, or negative.

In what follows, I denote by gx(t) ∈ R the instantaneous growth rate of a variable
x(t) at t. By definition, a steady state has gx(t) = gx for all variables featured in
the model.

2.2 The Generalized Steady-State Growth Theorem

Theorem 1 Consider an economy described by equations (2.3), (2.4), and (2.5). Suppose
there exists a steady-state path starting at some date τ < ∞ such that Y(t) > V(t) >

C(t) > 0 for all t ≥ τ. Then, the following holds:

I. gV = gY = gI = gK = gC.

II. For any t ≥ τ, net output has a representation as

V(t) = V [K(t), A(t)L(t)] ,

where A(t) = e(gV−gL)(t−τ) ∈ R++, and

g = gV − gL

is the growth rate of per-worker variables.

The main message of the generalized steady-state growth theorem is that steady-
state technical change is labor-augmenting in the net output function. Moreover,
the growth rate at which the technology evolves determines the growth rate of
all per-worker variables. This insight comes in two steps.

Part I shows that the steady-state growth rates of net output, aggregate final-
good output, aggregate investment, capital, and aggregate consumption are the
same. This follows since in steady state a strictly positive difference between two
strictly positive variables satisfies that the growth rates of the minuend and the
subtrahend coincide. Both, the definition of net output and of steady-state capital
accumulation give rise to such differences (see equations (5.1) and (5.2) in the
Proof of Theorem 1). In the present context, this property has two implications.
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First, net output requires gV = gY = gI since Y(t) > I(t) > 0. Second, steady-
state capital accumulation requires gV = gK = gC since V(t) > C(t) > 0.

Part II exploits constant returns to capital and labor in the net output function in
conjunction with gV = gK, the requirement of steady-state capital accumulation.
Together, these properties imply steady-state labor-augmenting technical change
with a growth rate equal to gV − gL. Labor-augmenting technical change at this
rate assures that the first two arguments in Ṽ of (2.3) - with respect to which Ṽ
has constant returns to scale - grow at the same rate. Accordingly, the steady state
has gV = gK = g + gL and, in light of Part I, g is the growth rate of all per-worker
variables.

Whether per-worker variables grow or shrink hinges on how gV = gK relates to
the exogenous growth rate of the labor force, gL. If gV = gK = gL then g = 0,
i. e., there is no technical change and per-worker variables remain constant over
time. If gV = gK > gL then capital grows faster than labor and strictly positive
labor-augmenting technical change makes up for the difference. Moreover, per-
worker variables grow at the rate of technical change. Finally, if gV = gK < gL

then capital grows slower than labor and labor-augmenting technical change is
negative to close the gap. In this case, per-worker variables shrink at the rate of
technical decline.

2.3 Discussion

2.3.1 Technical Change in Y(t) and I(t)

In the economy under scrutiny here the technology may affect aggregate produc-
tion and aggregate investment in different ways, i. e., AF(t) 6= AI(t). However,
in light of (2.3) the generalized steady-state growth theorem implies the existence
of two linear homogeneous functions, F : R2

+ → R+ and I : R2
+ → R+, such that

Y(t) = F [K(t), A(t)L(t)] and I(t) = I [K(t), A(t)L(t)]

for all t ≥ τ where A(t) = e(gV−gL)t ∈ R++. Hence, even though AF(τ) 6= AI(τ)

may hold, steady-state technical change must be labor-augmenting and evolve
at the same pace in both the aggregate production and the aggregate investment
function.
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2.3.2 What if I(t) = 0 ?

The generalized steady-state growth theorem postulates an aggregate investment
function that takes on strictly positive values for all t ≥ τ. As shown in Section 3
below, this extension is important to understand the key structural properties of
models with endogenous capital- and labor-augmenting technical change. Ab-
sent an aggregate investment function, i. e., if I(t) = 0 for all t ≥ τ, the distinc-
tion between gross and net output vanishes. In this case, Theorem 1 and Uzawa’s
original theorem coincide.

2.3.3 What if V(t) = C(t) > 0 ?

Capital accumulation is a central ingredient to the generalized steady-state growth
theorem. Indeed, the assumption that V(t) > C(t) > 0 for all t ≥ τ assures that
some final output is always used to accumulate capital. If instead V(t) = C(t) >
0 holds, then no final output is allocated to the accumulation of capital. The fol-
lowing corollary highlights the necessary changes to Theorem 1.

Corollary 1 Reconsider the economy described by equations (2.3), (2.4), and (2.5). Sup-
pose there exists a steady-state path starting at some date τ < ∞ such that Y(t) >

V(t) = C(t) > 0 for all t ≥ τ. Then, the following holds:

I. gV = gY = gI = gC and gK = −δK.

II. For any t ≥ τ, net output has a representation as

V(t) = V [B(t)K(t), A(t)L(t)] ,

where B(t) = e(gV+δK)(t−τ) ∈ R++ and A(t) = e(gV−gL)(t−τ) ∈ R++.

Capital per worker grows at rate − (δK + gL). All remaining per-worker variables
grow at rate g = gV − gL.

7



Corollary 1 states that steady-state capital-augmenting technical change does not
necessarily disappear in a world without capital accumulation. The intuition for
this comes in two steps. As to Part I, the new feature is that (2.4) and V(t) =

C(t) now imply gK = −δK and gV = gC. Hence, the evolution of net output
is decoupled from the evolution of capital whereas steady-state growth of net
output still requires gV = gY = gI since Y(t) > I(t) > 0.

Part II shows that this decoupling requires capital-augmenting technical change
at rate gV + δK to have “efficient capital” and “efficient labor” grow at the same
rate in the net output function Ṽ of (2.3). Capital-augmenting technical change
disappears only if gV = −δK, the case in which net output and capital grow at
the same rate.

Clearly, the growth rate of capital per worker is − (δK + gL). As gV = g + gL,
the growth rate of all other per-worker variables is given by g, the growth rate of
labor-augmenting technical change.

2.3.4 Constant Returns to Capital and Labor in F̃ and Ĩ

Constant returns to capital and labor in the net output function (2.3) is key to the
generalized steady-state growth theorem. However, for this to hold it is not nec-
essary that both F̃ and Ĩ share this property. In fact, Theorem 1 does not change if
we allow for the aggregate production and/or the aggregate investment function
to be linear in either capital or labor.7 Doing so gives rise to the following six

7Observe that unlike Theorem 1, the character of Uzawa’s original theorem drastically changes
if the aggregate production function becomes either linear in labor or in capital. In the former case,
Y(t) = L(t) ˜̃F (AF(t)) and, void of capital and its accumulation, steady-state technical change has
to be labor-augmenting. In the latter case, Y(t) = K(t) ˜̃F (AF(t)), i. e., aggregate production is of
the AK-type. Here, labor is not explicitly accounted for and the mere notion of labor-augmenting
technical change becomes pointless.
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variants:

V(t) =



L(t) ˜̃F (AF(t))− Ĩ [K(t), L(t), AI(t)] , or

F̃ [K(t), L(t), AF(t)]− L(t) ˜̃I (AI(t)) , or

K(t) ˜̃F (AF(t))− Ĩ [K(t), L(t), AI(t)] , or

F̃ [K(t), L(t), AF(t)]− K(t) ˜̃I (AI(t)) , or

L(t) ˜̃F (AF(t))− K(t) ˜̃I (AI(t)) , or

K(t) ˜̃F (AF(t))− L(t) ˜̃I (AI(t)) ,

(2.6)

where ˜̃F : AF → R++ and ˜̃I : AI → R++. Intuitively, for all these specifica-
tions Part I of Theorem 1 goes through since its proof relies only on the analytical
structure of the underlying model and not on functional forms. Moreover, Part
II of Theorem 1 remains valid since it relies on constant returns of the net output
function, a property that all specifications of (2.6) preserve.

2.3.5 Factor-Augmenting Technical Change

Technical change is factor-augmenting in the aggregate production function and
the aggregate investment function if and only if these aggregates can be put into
the form

Y(t) = F [BF(t)K(t), AF(t)L(t)] and I(t) = I [BI(t)K(t), AI(t)L(t)] ;

here Bj(t) ∈ R++ and Aj(t) ∈ R++, j = F, I, represent the capital- and the labor-
augmenting technology in the respective aggregate. Compared to the general
specification of technical change that appears in F̃ and Ĩ of (2.1) and (2.2), the
stipulation that technical change has to be factor-augmenting is restrictive. In a
sense, it assumes the “form of technical change” that results as an implication in
Theorem 1. However, imposing factor-augmenting technical change also leads
to additional insights as it allows for the identification of circumstances where
technical change involving growth rates gBF 6= 0 and gBI 6= 0 is consistent with
an overall representation of technical change as labor-augmenting. The following
corollary sharpens this statement further.
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Corollary 2 Consider an economy comprising net output

V(t) = F [BF(t)K(t), AF(t)L(t)]− I [BI(t)K(t), AI(t)L(t)] (2.7)

and equations (2.4) and (2.5). Suppose there exists a steady-state path starting at some
date τ < ∞ such that Y(t) > V(t) > C(t) > 0 for all t ≥ τ. Then, the following holds:

1. If gBF = gBI = 0 then g = gAF = gAI .

2. If gBF = 0 and gBI 6= 0 then net output has the form

V(t) = F [BF(τ)K(t), AF(t)L(t)]− β IK(t)αI
(

eg(t−τ)L(t)
)1−αI

,

where 0 < αI < 1, β I = cI BI(τ)
αI AI(τ)

1−αI > 0, and

g =
αI gBI

1− αI
+ gAI = gAF . (2.8)

3. If gBF 6= 0 and gBI = 0 then net output has the form

V(t) = βFK(t)αF
(

eg(t−τ)L(t)
)1−αF

− I [BI(τ)K(t), AI(t)L(t)] ,

where 0 < αF < 1, βF = cFBF(τ)
αF AF(τ)

1−αF > 0, and

g =
αFgBF

1− αF
+ gAF = gAI . (2.9)

4. If gBF 6= 0 and gBI 6= 0 then net output has the form

V(t) = βFK(t)αF
(

eg(t−τ)L(t)
)1−αF

− β IK(t)αI
(

eg(t−τ)L(t)
)1−αI

,

and

g =
αI gBI

1− αI
+ gAI =

αFgBF

1− αF
+ gAF . (2.10)

The upshot of Corollary 2 is that steady-state technical change may involve gBF 6=
0 and/or gBI 6= 0. However, this is only permissible if the respective aggregate is
Cobb-Douglas and the growth rates gBF , gAF , gBI , and gAI are aligned such that
aggregate production and aggregate investment grow at the same rate.

Claim 1 is a benchmark and immediate from Theorem 1. If gBF = gBI = 0 then
technical change is labor-augmenting in F and I and evolves at the same pace, g,
which is also equal to the growth rate of per-worker variables.
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Claim 2 and 3 deal with the related cases where either gBF = 0 and gBI 6= 0 or
gBF 6= 0 and gBI = 0. They show that whenever gBj 6= 0, j = F, I, the respective
aggregate must be Cobb-Douglas. Under this functional form technical change
can be expressed as purely labor-augmenting at rate g.8 It is in this sense that the
distinction between capital- and labor-augmenting technical change is blurred
under a Cobb-Douglas.

In steady state the growth rates of Y(t) and I(t) must coincide. This requires an
alignment in accordance with conditions (2.8) and (2.9), respectively. Intuitively,
the growth rate of “labor-augmenting technical change” in the Cobb-Douglas ag-
gregate must coincide with the growth rate of labor-augmenting technical change
in the other aggregate. A remarkable feature of both conditions is then that
gBj 6= 0 requires gAF 6= gAI . Hence, one may think of capital-augmenting tech-
nical change in the Cobb-Douglas aggregate as a necessary means to fill the gap
between gAF and gAI . Void of such a gap, there is no room for Bj(t) to grow at a
rate different from zero.

Claim 4 allows for gBI 6= 0 and gBF 6= 0. Accordingly, both aggregates must be
Cobb-Douglas. Again, g, the growth rate of “labor-augmenting technical change”
must be the same in both aggregates. Condition (2.10) states the required align-
ment.

Unlike Claim 2 and 3, a constellation involving gAF = gAI is now consistent with
a steady state if gBF and gBI adjust accordingly. Hence, the converse to Claim 1 is
not true. Moreover, observe that gAF = gAI and gBI = gBF imply αF = αI .

Remark 1 Finally, it is worth mentioning that Corollary 2 also has some bearing on
the cases where either I(t) = 0, or I(t) > 0, BF(t) = BI(t), AF(t) = AI(t), and
I(t) = βF [BF(t)K(t), AF(t)L(t)], with 0 < β < 1. The first of these cases concerns
the scenario to which Uzawa’s theorem directly applies.9 In the second case, aggregate
investment has a functional form that coincides with the one of the aggregate production
function up to a multiplicative constant. In both cases net output will be of the form

V(t) = cV F [BF(t)K(t), AF(t)L(t)] , cV > 0.

8In Theorem 1, I introduce g as the growth rate of per-worker variables. In a slight abuse of
notation, here I also use g to denote the growth rate of “labor-augmenting” technical change in a
Cobb-Douglas function. Observe that both growth rates coincide in steady state.

9See, e. g., Barro and Sala-ı́-Martin (2004), 78-80, for a discussion of this case.
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Hence, if gBF = 0 then g = gAF . Moreover, if gBF 6= 0 then

V(t) = βFK(t)αF
(

eg(t−τ)L(t)
)1−αF

and g = αFgBF / (1− αF) + gAF .

3 Endogenous Capital- and Labor-Augmenting Tech-
nical Change - Three Examples

Why is steady-state technical change purely labor-augmenting even in environ-
ments where capital-augmenting technical change is feasible? This section revis-
its three growth models with endogenous capital- and labor-augmenting techni-
cal change to shed light on this question. I show that the reduced form of these
models satisfies either the assumptions of Theorem 1 or those of Uzawa’s original
theorem. As a consequence, steady-state technical change must have a represen-
tation as labor-augmenting. Moreover, unless Cobb-Douglas functions are in-
volved capital-augmenting technical change vanishes in the steady state, and the
economy’s growth rate will be determined by labor-augmenting technical change
alone.

Section 3.1 takes a new look at the competitive one-sector growth model devel-
oped in Irmen (2013). Here, I(t) reflects aggregate productivity enhancing inno-
vation investments and constitutes foregone output of the final good. This rightly
suggests an application of Theorem 1. Section 3.2 revisits the R&D-based vari-
ety expansion model of Acemoglu (2003). Here, scientists invent new varieties
of differentiated intermediates. This model has no aggregate investments, i. e.,
I(t) = 0, and Uzawa’s original theorem characterizes the steady state. Section 3.3
studies an extension of Acemoglu (2003) that allows for price and market size
effects to determine the direction of technical change (Acemoglu (2009), Chapter
15.6). In this model, some current final-good output is used to produce contem-
poraneous intermediate goods. Therefore, I(t) > 0 and Theorem 1 is shown to
inform us about the key features of the steady state.10

10All three models provide sophisticated micro-foundations that my discussion here must cur-
tail for reasons of space. The interested reader is referred to the original contributions for details.
The analysis in Irmen (2013) is set up in discrete time. Without loss of generality for my qualitative
results, the following section presents the continuous-time version of this model.
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3.1 Example 1: The One-Sector Model of Irmen (2013)

At all t, the aggregate production function is Y(t) = F [M(t), N(t)], where Y(t) is
output of the final good, M(t) > 0 and N(t) > 0 denote the total amount of tasks
performed by either capital or labor. The function F : R2

+ → R+ has constant
returns to scale and is increasing in both arguments.

Let k(t) = 1/B(t) denote the amount of capital required to perform each of the
M(t) tasks. Similarly, let l(t) = 1/A(t) denote the amount of labor necessary to
perform each of the N(t) tasks. Accordingly, B(t) > 0 and A(t) > 0 indicate the
productivity of capital and labor in the performance of their respective tasks. As
before, K(t) > 0 and L(t) > 0 denote the capital and labor endowments. Then,
full employment of capital and labor implies

M(t)k(t) = K(t) ⇔ M(t) = B(t)K(t),

(3.1)

N(t)l(t) = L(t) ⇔ N(t) = A(t)L(t).

Accordingly, aggregate production of the final good is equal to

Y(t) = F [B(t)K(t), A(t)L(t)] , (3.2)

and technical change represented by the evolution of B(t) and A(t) is capital- and
labor-augmenting, respectively.

The economy can invest M(t)i (qB(t)) and N(t)i (qA(t)) units of contemporane-
ous output to increase B(t) and A(t) according to

Ḃ(t) = B(t) (qB(t)− δB) and Ȧ(t) = A(t) (qA(t)− δA) . (3.3)

Here, qB(t) > 0 and qA(t) > 0 denote the growth rates of the respective pro-
ductivity indicator gross of depreciation at rate δB > 0 and δA > 0, respectively.
Moreover, i : R+ → R+ specifies strictly positive investment requirements per
task.

Using (3.1), the aggregate investments necessary to achieve strictly positive growth
rates qA(t) and qB(t) are equal to A(t)L(t)i(qA(t)) and B(t)K(t)i(qB(t)), respec-
tively. It follows that aggregate investment amounts to

I(t) = A(t)L(t)i(qA(t)) + B(t)K(t)i(qB(t)). (3.4)

Subtracting the latter from (3.2) delivers net output as

V(t) = F [B(t)K(t), A(t)L(t)]− A(t)L(t)i(qA(t))− B(t)K(t)i(qB(t)). (3.5)
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Proposition 1 Consider the economy described by (3.5), (2.4), (2.5), and (3.3). Suppose
there exists a steady-state path starting at date τ < ∞ such that Y(t) > V(t) > C(t) >
0 for all t ≥ τ. Then, qB = δB,

V(t) = F [B(τ)K(t), A(t)L(t)]− A(t)L(t)i(qA)− B(τ)K(t)i(δB),

and g = gA = qA − δA.

The proof of Proposition 1 also reveals the underlying intuition. Therefore, I de-
velop it here. Start with the observation that V(t) of (3.5) has constant returns to
scale in K(t) and L(t). Hence, the economy described by (3.5), (2.4), and (2.5) has
all features assumed in Theorem 1. Accordingly, steady-state technical change
has a representation as labor-augmenting.

The definition of a steady state includes the requirement of exponential growth
for B(t) and A(t), i. e., the accumulation equations (3.3) deliver qB(t) = qB and
qA(t) = qA. Now, define

BF(t) ≡ B(t), AF(t) ≡ A(t), BI(t) ≡ B(t)i
(

qB
)

, AI(t) ≡ A(t)i
(

qA
)

.

Then, in steady state (3.5) can be written as

V(t) = F [BF(t)K(t), AF(t)L(t)]− (AI(t)L(t) + BI(t)K(t)) ,

where the term in parenthesis is I [BI(t)K(t), AI(t)L(t)]. Hence, technical change
is factor-augmenting in the net output function so that Corollary 2 applies. More
precisely, since aggregate investment cannot be Cobb-Douglas I have to refer to
either Claim 1 or to Claim 3. The definitions of AF(t) and AI(t) imply gAF =

gAI = gA. Accordingly, (2.9) excludes gBF 6= 0. Finally, the definitions of BF(t)
and BI(t) imply gBF = gBI = gB. Since gBF = 0 it follows that gBF = gBI = 0 and
qB = δB.

Hence, even though capital- and labor-augmenting technical change are endoge-
nous, the properties of technical change in steady state are fully determined by
Theorem 1 in conjunction with Corollary 2.

3.2 Example 2: The Multi-Sector Model of Acemoglu (2003)

Acemoglu’s economy comprises four sectors on the production side and a repre-
sentative consumer. It is therefore appropriate to split the discussion into three
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parts. Section 3.2.1 starts with a description of the economy’s production side.
Moreover, I derive some important relations that arise for symmetric (equilib-
rium) configurations. Section 3.2.2 presents the relevant aspects of the household
side that lead to the conclusion that gross and net output coincide. Section 3.2.3
looks at the steady-state path and establishes the link to Uzawa’s original theo-
rem. Time is continuous. All prices are expressed in units of the contemporane-
ous final-good.

3.2.1 Production and Research

First, there is a competitive sector producing the final good, Y(t), out of a capital-
intensive intermediate good, YK(t), and a labor-intensive intermediate good, YL(t).
The production function of the final good sector is11

Y(t) = F [YK(t), YL(t)] . (3.6)

It exhibits constant returns to scale and positive but diminishing marginal prod-
ucts. Profit maximization delivers

F1 [YK(t), YL(t)] = pK(t) and F2 [YK(t), YL(t)] = pL(t), (3.7)

where pK(t) and pL(t) denote the prices of the respective intermediate at t.

Second, there is a competitive intermediate-good sector that produces YK(t) and
YL(t) out of differentiated intermediates. The respective production functions are
of the CES-type,

YK(t) =
[∫ m(t)

0

√
yk(i, t)di

]2

and YL(t) =
[∫ n(t)

0

√
yl(i, t)di

]2

. (3.8)

Here, [0, m(t)] and [0, n(t)] denote disjoint sets of intermediates available at t. All
intermediates in use at t fully depreciate afterwards. Therefore, profit maximiza-
tion in this intermediate-good sector is static and delivers the demand for each

11Acemoglu assumes F to be a CES production function. This specification is not necessary for
my purpose here (though, the elasticity of substitution plays an important role in Acemoglu’s
analysis). When referring to other functional forms that appear in Acemoglu (2003), I use par-
ticular values for the following parameters: β = 1/2, bk = bl = 1. Moreover, I set the function
φ(s) = 1, for s = Sk, Sl . These choices simplify the exposition but are without loss of generality
for the qualitative results I derive.
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intermediate as

yk(i, t) =
(

pK(t)
pk(i, t)

)2

YK(t) and yl(i, t) =
(

pL(t)
pl(i, t)

)2

YL(t), (3.9)

where pk(i, t) is the price per unit of yk(i, t) and pl(i, t) is the one per unit of
yl(i, t).

The third sector comprises monopolists each producing one of the intermediate
goods with a linear production function, i. e., yk(i, t) = k(i, t) and yl(i, t) = l(i, t),
where k(i, t) is capital input and l(i, t) the input of unskilled labor at t. Here,
profit-maximization leads to (symmetric) prices

pk(t) = 2r(t) and pl(t) = 2w(t), (3.10)

where r(t) and w(t) denote the price per unit of capital and labor that the mo-
nopolists incur.

Consider a symmetric configuration of these three sectors. Then, yk(t) = k(t),
yl(t) = l(t), and the factor market clearing conditions read m(t)k(t) = K(t) and
n(t)l(t) = L, respectively. Here, K(t) > 0 and L > 0 denote the endowments of
capital and unskilled labor.12 As a consequence, YK(t) = m(t)K(t) and YL(t) =

n(t)L, so that

Y(t) = F (m(t)K(t), n(t)L) . (3.11)

Hence, increasing m(t) and n(t) has an interpretation as capital-, respectively,
labor-augmenting technical change. The flow profits accruing to each of the re-
spective monopolist amount to

πk(t) =
r(t)K(t)

m(t)
and πl(t) =

w(t)L
n(t)

. (3.12)

The fourth sector is the research sector. It consists of competitive research firms
that invent new varieties of intermediates. Let Sk(t) ≥ 0 (Sl(t) ≥ 0) denote
the “number” of scientists that research firms engaged in the invention of new
capital-intensive (labor-intensive) intermediates hire. These research firms have
access to the following technologies for invention

ṁ(t)
m(t)

= Sk(t)− δ and
ṅ(t)
n(t)

= Sl(t)− δ, (3.13)

12To simplify the notation, capital does not depreciate. Moreover, I follow Acemoglu and set
L(t) = L.
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where δ ∈ R++ is the obsolescence rate of existing varieties. At all t, there are
S scientists in the economy, i. e., market clearing requires Sk(t) + Sl(t) = S. Let
ωS(t) denote the real wage of a scientist at t. Competition in the research sec-
tor implies zero profits, i. e., ωS(t) must be equal to the value a scientist creates
by inventing new varieties. Denote Vk(t) and Vl(t) the value of a variety of the
respective type at t. Then, using (3.13) any configuration where research is con-
ducted on both types of intermediates must have

ωS(t) = m(t)Vk(t) = n(t)Vl(t). (3.14)

3.2.2 The Household Side

The economy admits a representative household. The economy’s net output cor-
responds to the resources that this household can allocate to consumption and
to the accumulation of capital. To determine this amount the household’s flow
income must be derived.

The household owns the capital stock, K(t), L units of unskilled labor, n(t) and
m(t) monopoly firms each producing one intermediate-good variety, all research
firms, and S units of labor services as a scientist. Potentially, it earns income on
all these possessions.

Using (3.7) - (3.10) and the respective factor market clearing conditions reveals
that

r(t) =
m(t)F1 [m(t)K(t), n(t)L]

2
and w(t) =

n(t)F2 [m(t)K(t), n(t)L]
2

,

i. e., due to the price-cost margins of the monopolists the prices of capital and of
unskilled labor fall short of their respective marginal product in the production
of the final good.

With constant returns in (3.6) it follows that the household income from capital
holdings and unskilled labor amounts to

r(t)K(t) + w(t)L =
Y(t)

2
. (3.15)

Invoking (3.12) the dividend income of the household resulting from the owner-
ship of intermediate-good monopolists is m(t)πk(t) + n(t)πl(t). With (3.15) one
finds

m(t)πk(t) + n(t)πl(t) =
Y(t)

2
. (3.16)
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Inspection of (3.15) and (3.16) reveals that household income due to the owner-
ship of the four factors of production in (3.11) adds up to Y(t).

What about the wage income of the scientists? In a sense, the representative
household pays it to itself. Since research firms make zero profits, their revenue
from selling blueprints satisfies m(t)Vk(t)Sk(t) + n(t)Vl(t)Sl(t) = wSS. New mo-
nopolists buy these blueprints at a price equal to Vk(t) and Vl(t), respectively, and
finance these purchases through the issue of shares. These shares are bought by
the representative household and yield dividends equal to πk(t) and πl(t) in the
future. Hence, this purchase of shares may be interpreted an act of saving. At the
same time, it qualifies as an innovation investment since the resources are even-
tually transferred to the research firms and allow them to break even. However,
the important point is that these resources correspond to the scientists’ aggregate
salary. Therefore, they remain available as household income. In other words,
since innovation investments generate income in the present model they leave
the amount of resources available for consumption and capital accumulation un-
changed. Accordingly, net output and gross output coincide, i. e., V(t) = Y(t).

3.2.3 Net Output and the Steady State

The following proposition highlights the link between the steady-state path of
the economy and Theorem 1.

Proposition 2 Consider the economy described by (3.11), (2.4), (2.5) with gL = 0,
and (3.13). Suppose there exists a steady-state path starting at date τ < ∞ such that
Y(t) > C(t) > 0 for all t ≥ τ. Then, the following holds:

1. If gm 6= 0, then net output has the form

V(t) = βF [K(t)]
αF
[
eg(t−τ)L

]1−αF
,

where

g =
αFgm

1− αF
+ gn,

gm = Sk − δ, gn = Sl − δ, and Sk + Sl = S.

2. If F is not Cobb-Douglas then gm = 0 and g = gn = S− 2δ.
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To prove Proposition 2 start with the observation that F of (3.11) has constant
returns to capital and labor. The conclusion of Section 3.2.2 is that V(t) = Y(t).
Hence, the economy described by (3.11), (2.4), and (2.5) with gL = 0 satisfies all
assumptions of Theorem 1 for I(t) = 0, i. e., of Uzawa’s original theorem. Accord-
ingly, steady-state technical change has a representation as labor-augmenting.

The definition of a steady state includes the requirement of exponential growth
for m(t) and n(t). Hence, with (3.13) it must be that gm = Sk − δ and gn = Sl − δ.
Let BF(t) ≡ m(t) and AF(t) ≡ n(t). Then, (net) output can be written as V(t) =
F [BF(t)K(t), AF(t)L]. Accordingly, Remark 1 applies and suggests the distinction
of the two cases mentioned in the proposition. First, gm 6= 0 can only occur if F
is of the Cobb-Douglas type. Here, the parameters αF and βF are as introduced
in Corollary 2. Accordingly, g = αFgm/ (1− αF) + gn is the steady-state growth
rate of the economy. The steady-state levels of gm and gn remain undetermined
but will have to be consistent with the market clearing condition for scientists,
Sk + Sl = S.

The second case follows immediately from the first. Any functional form other
than the Cobb-Douglas type implies gm = 0 and, under full employment of sci-
entists, g = gn = S− 2δ.

Hence, Theorem 1 dictates the feasible form of steady-state technical change.
However, as I(t) = 0 and technical change is factor-augmenting Corollary 2
can be replaced by the simpler reasoning of Remark 1. The following extension
of Acemoglu (2003) reveals that a similar simplification may be possible even if
I(t) > 0.

3.3 Example 3: The Multi-Sector Model of Acemoglu (2009)

For the purpose of this paper it is also revealing to take a new look at the exten-
sion of the model in Acemoglu (2003) that allows for a price effect and a market
size effect to determine the direction of technical change (see, Acemoglu (2009),
Chapter 15.6). Here, I show that this extension gives rise to a strictly positive
aggregate investment function, i. e., I(t) > 0, that suggests an application of The-
orem 1. This is the main point of Proposition 3 below.

To account for a price and a market size effect two changes to the production sec-
tor of Section 3.2.1 are made. First, scale effects are added to the production func-
tions in (3.8). Second, monopolists manufacture machines (intermediate goods)
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out of current final-good output as the only input. Due to the latter change, gross
and net output differ.

To make this more precise reconsider the second sector of Section 3.2.1, i. e., the
competitive intermediate-good firms that produce YK(t) and YL(t), respectively.
Replace the production functions in (3.8) by

YK(t) = 2
√

K(t)
∫ m(t)

0

√
yk(i, t)di and YL(t) = 2

√
L
∫ n(t)

0

√
yl(i, t)di. (3.17)

Here, the appearance of K(t) and L is new. Hence, the disjoint sets [0, m(t)] and
[0, n(t)] represent machines that are either complementary to capital or to labor.
All machines in use at t fully depreciate after use. Therefore, profit maximiza-
tion in this intermediate-good sector is static and delivers the demand for each
machine as

yk(i, t) =
(

pK(t)
pk(i, t)

)2

K(t) and yl(i, t) =
(

pL(t)
pl(i, t)

)2

L. (3.18)

Moreover, the demands for capital and labor satisfy the first-order conditions

pK(t)
∫ m(t)

0

√
yk(i, t)di√

K(t)
= r(t) and

pL(t)
∫ n(t)

0

√
yl(i, t)di

√
L

= w(t). (3.19)

Next, reconsider the third sector of Section 3.2.1, i. e., the monopolists each pro-
ducing one variety of the machines used in (3.17). The new feature is that the
production of machines uses current final output as the sole input. Assume that
1/2 units of the final good are used as an input per machine. Then, profit maxi-
mization of all monopolists delivers (symmetric) machine prices

pk(t) = pl(t) = 1, (3.20)

and monopolistic flow profits are equal to

πk(t) =
p2

K(t)K(t)
2

and πl(t) =
p2

L(t)L
2

. (3.21)

With these changes a symmetric configuration of the three production sectors has
the following important properties. Combining (3.17), (3.18), and (3.20) delivers
the derived production functions for the two intermediates, i. e.,

YK(t) = 2pK(t)m(t)K(t) and YL(t) = 2pL(t)n(t)L(t). (3.22)
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With (3.6) final-good output may be written as

Y(t) = 2F (pK(t)m(t)K(t), pL(t)n(t)L) . (3.23)

Hence, increasing pK(t)m(t) and pL(t)n(t) has an interpretation as capital-, re-
spectively, labor-augmenting technical change. In addition, with (3.19) factor
prices are

m(t)p2
K(t) = r(t) and n(t)p2

L(t) = w(t). (3.24)

What are the relevant implications for the household sector? As in the previous
section, the representative household owns the capital stock, K(t), L units of un-
skilled labor, n(t) and m(t) monopoly firms producing one intermediate good
each, all research firms, and S units of labor services as a scientist. Potentially, it
earns income on all these possessions.

From (3.17), (3.18), (3.20), (3.24) and constant returns in (3.6) it follows that the
household income from capital holdings and unskilled labor amounts to

r(t)K(t) + w(t)L =
Y(t)

2
. (3.25)

Invoking (3.21), (3.24), and (3.25) the dividend income of the household resulting
from the ownership of intermediate-good monopolists is

m(t)πk(t) + n(t)πl(t) =
r(t)K(t) + w(t)L

2
=

Y(t)
4

. (3.26)

Inspection of (3.25) and (3.26) reveals that household income due to the owner-
ship of the four factors of production in (3.23) adds up to 3Y(t)/4. The remaining
quarter corresponds to the final output used as an input in the production of the
yk (i, t) and yl (i, t) machines. Let I(t) denote the total amount of these resources.
Since each machine is manufactured out of 1/2 units of the final good one obtains
for a symmetric configuration

I(t) =
m(t)yk(t) + n(t)yl(t)

2
=

r(t)K(t) + w(t)L
2

=
Y(t)

4
, (3.27)

where use is made of (3.18), (3.20), (3.24), and (3.25). For the reasons set out in
Section 3.2.2, the research sector does not add any net output that can be either
consumed or used to accumulate capital. Hence, net output is equal to

V(t) = Y(t)− I(t). (3.28)
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With (3.23), one finds

V(t) =
3Y(t)

4
=

3F (pK(t)m(t)K(t), pL(t)n(t)L)
2

. (3.29)

The following proposition has the link between the steady-state path of the econ-
omy and Theorem 1. To simplify the notation define BF(t) ≡ pK(t)m(t), AF(t) ≡
pL(t)n(t), gBF ≡ gpK + gm, and gAF ≡ gpL + gn.

Proposition 3 Consider the economy described by (3.29), (2.4), (2.5) with gL = 0,
and (3.13). Suppose there exists a steady-state path starting at date τ < ∞ such that
Y(t) > V(t) > C(t) > 0 for all t ≥ τ. Then, the following holds:

1. If gBF 6= 0, then net output has the form

V(t) = βF [K(t)]
αF
[
eg(t−τ)L

]1−αF
,

where

g =
αFgBF

1− αF
+ gAF ,

gBF = Sk − δ− gpK , gAF = Sl − δ− gpL , and Sk + Sl = S.

2. If F is not Cobb-Douglas, then gBF = 0 and g = gAF = S− 2δ−
(

gpK + gpL

)
.

Despite the more complex structure of the economy, Proposition 3 looks strik-
ingly similar to Proposition 2. To see why this is so start with the observation
that F of (3.29) has constant returns to capital and labor. Since V(t) = Y(t)− I(t)
and I(t) = Y(t)/4 > 0, the economy described by (3.29), (2.4), and (2.5) with
gL = 0 satisfies the assumptions of Theorem 1 with I(t) > 0. Accordingly, in
steady state, technical change has a representation as purely labor-augmenting.
The technologies for invention stated in (3.13) are consistent with this require-
ment.

From (3.29) it also follows that the aggregate production and the aggregate invest-
ment function are the same up to a multiplicative constant. Moreover, technical
change is factor-augmenting. Hence, if gBF 6= 0 then Remark 1 implies that net
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output must be Cobb-Douglas with a growth rate of “labor-augmenting techni-
cal change” as indicated in Claim 1 of Proposition 3.13 As in Proposition 2 the
growth rates of BF(t) and AF(t) remain undetermined. Moreover, whenever F is
not Cobb-Douglas, BF(t) is constant in steady state.14

4 Concluding Remarks

Why is technical change labor-augmenting in the steady state? This paper ar-
gues that the answer to this question hinges on whether the reduced form of the
macroeconomic model under scrutiny is consistent with the generalized steady-
state growth theorem established above as Theorem 1. If this is the case then the
answer is clear: in steady state technical change must be labor-augmenting in the
aggregate production function, the aggregate investment function, and, hence,
in the net output function. Moreover, the growth rate of per-worker variables is
determined by the growth rate of labor-augmenting technical change.

Capital-augmenting technical change may only arise in steady state if technical
change retains a representation as labor-augmenting in the net output function.
This is feasible when technical change is factor-augmenting, and the aggregate
production function and/or the aggregate investment function are of the Cobb-
Douglas type. In any of these cases, the growth rates of the capital- and the labor-
augmenting technologies in these aggregates must be aligned so that these aggre-
gates grow at the same rate.

From the perspective of these findings, the present paper revisits three recent
growth models with endogenous capital- and labor-augmenting technical change.
In Irmen (2013), current output serves as an input in productivity enhancing
innovation investments. These innovation investments reduce the amount of

13To justify Claim 1 of Proposition 3, one may alternatively invoke Claim 4 of Corollary 2 with
αF = αI .

14Observe that the way I defined factor-augmenting technical change gives rise to the growth
rates gpK and gpL to show up in Proposition 3. Generically, these growth rates vanish in steady
state. For instance, if the aggregate production function F of (2.1) has a constant elasticity of sub-
stitution different from unity then the factor-price frontier implied by the first-order conditions
(3.7) requires gpK = gpL = 0 in steady state. However, this reasoning is not directly related to
Theorem 1 and, therefore, will not be deepened here.
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resources available for consumption and capital accumulation, i. e., the aggre-
gate investment function is strictly positive. Therefore, Theorem 1 applies to this
model. Moreover, in conjunction with Corollary 2 the pattern of steady-state tech-
nical change can be inferred.

In Acemoglu (2003) innovations occur in a research sector that employs scien-
tists. The resources necessary to finance research tend to reduce what is left for
consumption and capital accumulation. However, these resources accrue as in-
come to scientists and, therefore, remain available for consumption and capital
accumulation. In other words, gross and net output coincide. As the latter ex-
hibits constant returns in capital and (unskilled) labor Uzawa’s original theorem
can be applied to derive the pattern of technical change in steady state.

Finally, I study an extension of Acemoglu (2003) that accounts for market-size ef-
fects (Acemoglu (2009), Chapter 15.6). This model gives rise to a strictly positive
aggregate investment function since contemporaneous final-good output serves
as an input for downstream intermediate-good monopolists. As a consequence,
gross and net output differ, and Theorem 1 applies. Since, up to a multiplicative
constant, the aggregate production function is the same as the aggregate invest-
ment function the analysis of the steady-state pattern of technical change leads to
similar conclusions as for Acemoglu (2003).

Hence, in the existing literature the generalized steady-state growth theorem
provides the intuitive underpinning for why only labor-augmenting technical
change is viable in the steady state even though capital-augmenting technical
change is feasible. However, this observation should not be interpreted as a plea
to neglect or eliminate capital-augmenting technical change altogether. Indeed,
the results derived in Irmen (2013) suggest that both the normative and the pos-
itive implications of models with endogenous technical change crucially hinge
upon whether capital-augmenting technical change is included in the analysis
or not. Future research will have to elucidate this point. It will be of particu-
lar interest to study whether policy recommendations are robust if endogenous
capital-augmenting technical change is added to the picture.
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5 Appendix: Proofs

5.1 Proof of Theorem 1

Observe that Y(t) > V(t) > C(t) > 0 implies both Y(t) > I(t) > 0 and V(t) > C(t) > 0.
Moreover, without loss of generality let τ = 0.

Part I Given time-invariant growth rates, date t quantities may be expressed in terms of date 0
quantities, i. e., V(t) = V(0)egV t, Y(t) = Y(0)egY t, and I(t) = I(0)egI t. Then, from the definition
of V(t), I have for all t ≥ 0

V(0)egV t = Y(0)egY t − I(0)egI t. (5.1)

Dividing both sides by egV t gives

V(0) = Y(0)e(gY−gV)t − I(0)e(gI−gV)t.

Differentiation with respect to t delivers

0 = (gY − gV)Y(0)e(gY−gV)t − (gI − gV) I(0)e(gI−gV)t.

The latter can hold for all t if any of the following conditions are satisfied; a) gV = gY = gI , b)
gY = gI and Y(0) = I(0), c) gV = gY and I(0) = 0, and d) gV = gI and Y(0) = 0. Alternatives b)
- d) contradict Y(0) > I(0) > 0. Hence, gV = gY = gI must apply.

With K(t) = K(0)egK t and C(t) = C(0)egCt, capital accumulation of (2.4) delivers

K(0)egK t(gK + δK) = V(0)egV t − C(0)egCt. (5.2)

Divide both sides by egK t and obtain

K(0)(gK + δK) = V(0)e(gV−gK)t − C(0)e(gC−gK)t.

Differentiation of the latter with respect to t gives

0 = (gV − gK)V(0)e(gV−gK)t − (gC − gK)C(0)e(gC−gK)t.

The latter can hold for all t if any of the following conditions are satisfied: a) gV = gK = gC, b)
gV = gC and V(0) = C(0), c) gV = gK and C(0) = 0, and d) gC = gK and V(0) = 0. Alternatives
b) - d) contradict V(0) > C(0) > 0. Hence, gV = gK = gC must apply as claimed. This completes
the proof of Part I.

Part II In light of (2.3), for any t ≥ 0, net output at time 0 may be written as

e−gV t ·V(t) = Ṽ
[
e−gK t · K(t), e−gLt · L(t), AF(0), AI(0)

]
.

Multiplying both sides by egV t and using constant returns of Ṽ gives

V(t) = Ṽ
[
e(gV−gK)t · K(t), e(gV−gL)t · L(t), AF(0), AI(0)

]
. (5.3)
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From Part I, I have gV = gK , hence for any t ≥ 0

V(t) = Ṽ
[
K(t), e(gV−gL)t · L(t), AF(0), AI(0)

]
.

Since the latter equation is true for all t ≥ 0 and Ṽ is linear homogenous in the first two arguments,
there exists a linear homogeneous function V : R2

+ → R+ such that

V(t) = V
[
K(t), e(gV−gL)t · L(t)

]
= V [K(t), A(t)L(t)]

with A(t) = e(gV−gL)t ∈ R++.

Part I and constant returns to scale imply that net output per-worker as well as all other per-
worker variables grow at rate g = gV − gL. This establishes the second part of the theorem. �

5.2 Proof of Corollary 1

Again, without loss of generality let τ = 0.

Part I Since Y(t) > V(t) = C(t) > 0 we now have Y(t) > I(t) > 0 and V(t) = C(t) > 0.
Therefore, the proof of gV = gY = gI remains as in the proof of Theorem 1. However, V(t) = C(t)
and (2.4) deliver gV = gC and gK = −δK, respectively. This proves Part I of Corollary 1.

Part II The first two steps in the proof of Part II of Theorem 1 remain valid. Then, using gK = −δK

in (5.3) delivers for any t ≥ 0

V(t) = Ṽ
[
e(gV+δ)t · K(t), e(gV−gL)t · L(t), AF(0), AI(0)

]
.

Since the latter equation is true for all t ≥ 0 and Ṽ is linear homogenous in the first two arguments,
there exists a linear homogeneous function V : R2

+ → R+ such that

V(t) = V
[
e(gV+δK)t · K(t), e(gV−gL)t · L(t)

]
= V [B(t)K(t), A(t)L(t)]

with B(t) = e(gV+δK)t ∈ R++ and A(t) = e(gV−gL)t ∈ R++. Hence, V(t) is as stated in Corollary 1.
Capital per worker, K(t)/L(t), grows at rate gK − gL = − (δK + gL). Moreover, since gV = gY =

gI = gC all remaining per-worker variables grow at rate g = gV − gL. �

5.3 Proof of Corollary 2

Let me introduce

κF(t) =
AF(t)L(t)
BF(t)K(t)

and κI(t) =
AI(t)L(t)
BI(t)K(t)

.
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Now, consider (2.7) and divide by K(t). This gives

V(t)
K(t)

=
Y(t)
K(t)

− I(t)
K(t)

,

= BF(t)F [1, κF(t)]− BI(t)I [1, κI(t)] ,

= BF(t) f (κF(t))− BI(t)i (κI(t)) ,

where f : R+ → R+ and i : R2
+ → R+ are respectively defined as f (κF(t)) ≡ F [1, κF(t)] and

i (κI(t)) ≡ I [1, κI(t)].

Observe that net output of (2.7) is a special case of the formulation given in (2.3). Therefore, Part
I of Theorem 1 applies and imposes the requirement that gV = gY = gI = gK, i. e., the fraction
V(t)/K(t) as well as Y(t)/K(t) = BF(t) f (κF(t)) and I(t)/K(t) = BI(t)i (κI(t)) are constant in
steady state. Then, four cases may arise. They correspond to the four claims made in the corollary.
I consider each in turn.

1. If gBF = gBI = 0 then gκF = gκI = 0. Taken together, the implication is that gAF = gAI =

gK − gL. Since gV = gK, the growth rate of per-worker variables is gAF = gAI = gV − gL =

g.

2. If gBF = 0 and gBI 6= 0 then gκF = 0 whereas gκI 6= 0. For aggregate production the
implication is that gAF = gK − gL. For aggregate investment the growth rates gBI 6= 0 and
gκI 6= 0 must be of opposite sign such that BI(t)i (κI(t)) with i′ (κI(t)) > 0 can remain
constant over time. In other words, the time derivative of this product must vanish, i. e.,

ḂI(t)i (κI(t)) + BI(t)κ̇I(t)i′ (κI(t)) = 0, (5.4)

or, in steady state,

i′ (κI(t)) κI(t)
i (κI(t))

= −
gBI

gκI

.

Integration reveals that the solution can be written as

i (κI(t)) = cIκI(t)1−αI ,

where cI > 0 is a constant of integration and αI = 1 + gBI /gκI . A positive, yet declining
marginal product of capital requires 0 < αI < 1. Then, for all t ≥ τ

I(t) = cI (BI(t)K(t))
αI (AI(t)L(t))1−αI = cI (BI(τ)K(t))

αI
(

AI(τ)eg(t−τ)L(t)
)1−αI

,

where g = αI gBI / (1− αI)+ gAI . Introducing the constant β I , I(t) may be written as stated
in Claim 2.

To align gI and gY, express the growth rate of I(t) as

gI = αI
(

gBI + gK
)
+ (1− αI)

(
gAI + gL

)
.
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Since gI = gK the latter becomes

gI =
αI gBI

1− αI
+ gAI + gL.

Next, recall that gY = gK = gAF + gL. Then, gY = gI requires

gAF =
αI gBI

1− αI
+ gAI = g.

Hence, any set of growth rates {gAF , gBI , gAI} ∈ R2 ×R \ {0} must satisfy the latter con-
dition to be consistent with a steady state.

3. The case where gBF 6= 0 and gBI = 0 is the mirror image of the previous case. Mutatis
mutandis, the proof of Claim 2 applies here, too.

4. If gBF 6= 0 and gBI 6= 0 then the proof of Cases 2 and 3 implies immediately that aggregate
production and aggregate investment can be written as

Y(t) = βFK(t)αF
(

eg(t−τ)L(t)
)1−αF

,

I(t) = β IK(t)αI
(

eg(t−τ)L(t)
)1−αI

,

where g is given by (2.10), the condition that any set of growth rates {gBF , gAF , gBI , gAI} ∈
R2 ×R \ {0, 0} must satisfy to be consistent with a steady state. Accordingly, net output
has the form given in Claim 4.

�

5.4 Proof of Proposition 1, 2, and 3

To be found in the main text. �
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