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Abstract 
 
In this paper we investigate the time-varying relationship between oil and natural gas in the 
UK. We develop a model where relative prices can move between pricing-regimes; markets 
switch between being decoupled and integrated. Our model endogenously accounts for 
periods where oil and natural gas temporarily decouple due to gas specific pricing. We show 
that gas-specific pricing is primarily related to fall/winter peak-load gas pricing and that mean 
reversion in relative prices is dependent on the time of the year. Most of the reversion back to 
oil occurs in spring and summer when demand for gas to heating and electricity is low and 
net-availability and transport capacity high. Accounting for periods of gas specific pricing is 
relevant when determining the long-run equilibrium value of oil relative to natural gas. 
Utilizing the regime where evidence is strongest for integrated markets we find that oil is 
historically priced at 2.3 times the value of natural gas in the UK, and that markets have been 
decoupled for 49% of the sample. Our results do not indicate that peak-load pricing has 
become more prevalent in recent years, i.e., we find no evidence of underinvestment in 
capacity after deregulation. 
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1. Introduction 

 

The relative price of oil versus gas has been scrutinized in the literature. In particular, it has been tested whether 

deregulation of the gas market has led to decoupling of the oil and the natural gas price. To ascertain whether 

this has happened one has to account for seasonal fluctuations in the natural gas price. The relative price 

occasionally drops associated with seasonal peak-load pricing in natural gas, associated with a highly cyclical 

nature of the demand for natural gas. Thus, the natural gas market is not integrated og decoupled. Tather, it 

switches between the two states. However, the seasonal pattern is not regular across the sample. If gas-specific 

pricing only manifests when gas specific demand is close to availability and pipelines are at full-capacity, a 

linear model with a deterministic seasonality component will not capture this property. Seasonal peak-load 

pricing will with such analytical approach be imposed even in years where no seasonality is necessarily present, 

i.e., in warmer winters. An appropriate model for relative prices should have the flexibility to allow both peak-

load and non-peak-load pricing periods. When significant peak-load pricing is present, natural gas is valued by 

its immediate marginal productive value in generating electricity/heating in the home market. The price of oil is 

then likely not to be a major component in gas pricing. In this sense gas prices become decoupled from oil, and 

valuing gas relative to oil in these periods is not meaningful. Any arbitrage constraint on price differentials 

between oil and natural gas is likely only binding when natural-gas availability and transport capacity is 

sufficiently high. The peak-load prices manifest as asymmetrical persistent negative shocks to relative prices and 

will affect the empirical measure of relative values.   

 

Interspersed periods of gas-specific pricing means that markets move between being decoupled and integrated. 

The likelihood of moving between pricing regimes will depend on market fundamentals such as gas-specific 

demand, gas availability and the pipeline infrastructure. A similar type of dynamics is investigated in electricity 

markets (Mount et al., 2006; Kanamura and Ohasi 2007; Geman and Roncoroni 2006). In electricity markets a 

hockey stick shaped supply curve gives rise to changes in pricing regimes within trading days. When capacity 

utilization is high in mornings and afternoons, electricity prices might spike and then quickly revert. Electricity 

and natural gas however differ form electicity at a fundamental level. The novelty of our paper is to adjust this 

approach and apply it to the natural gas market. Natural gas can be stored, allowing supply smoothing within 

certain capacity constraints. Storage ensures that demand shock effects can be distributed inter-temporarily. In 
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this sense peak-load pricing is likely to be less extreme but more persistent than what observed in electricity 

markets.  

 

Based on models used to characterize spikes in electricity prices we develop a regime switching model for 

oil/natural gas pricing which allows pricing to shift between two regimes. We are motivated by the possibility to 

account for the peak-load pricing effect in relative prices. Regime switching allows pricing to move between 

gas specific pricing (decoupled relative prices) or oil-dependent pricing (integrated markets) and/or seasonal or 

non-seasonal pricing. Contrary to electricity models, where peak-load pricing is incorporated by a price-jump 

regime, we allow price dynamics to change between two linear dynamic time-series models. Recognizing that 

variations in gas demand is likely to affect the probability of being in either regime, we use a temperature 

measure to proxy for seasonal gas demand. For modeling price spikes in electricity markets it is recognized that 

seasonal effects needs to be incorporated (Lucia and Schwartz, 2002). The same is true for peak-load pricing in 

natural gas markets. The direct use of gas for heating and electricity generation means seasonal demand is likely 

to affect the likelihood of changing pricing regimes. In our model temperatures are allowed to affect both the 

conditional mean of the relative price and the probability of changing regimes. 

 

Our paper contributes to the literature on the relationship between natural gas and oil prices. A majority of 

studies in this area investigate the relationship by means of linear vector error correction models. We contribute 

by analyzing a non-linear model having the flexibility to account for periods of gas-specific pricing in the 

relationship. Moving to the family of non-linear models can shed light on facets of the price relationship not 

accounted for by linear models. Our results are important for at least two reasons. 1) There has been an effort to 

deregulate the EU market for natural gas to make the market more competitive (Asche et al., 2006; Panagiotidis 

and Ruthledge, 2007). However, there have also been suggestions that this will lead to underinvestment in 

infrastructure such as pipelines. If gas-specific pricing is becoming more prevalent, this can be interpreted as 

evidence that the regulations are succeeding in creating more competition. This gives better capacity utilization 

in the pipelines. If combined with weaker incentives to invest in upstream and transportation capacity, however, 

this may also create more and longer periods of peak load pricing. For this change to generate lower and less 

volatile gas prices in the time to come, one depends on the extent to which new fields will be developed under 

new market conditions. If oil and gas prices become decupled it will be difficult for gas buyers to enter into oil-
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linked contracts, as they will face hard competition from spot gas in periods of high oil prices. We still see new 

long-term contracts, but often linked to spot gas prices.  

 

 

A crucial question is whether increased liquidity in the gas spot market provides sufficient guarantees to 

producers to recoup large and irreversible investments in new fields and pipelines. 2) A condition for 

determining an economically meaningful measure of the relative value of oil to natural gas is that the markets are 

integrated. If prices periodically decouple in one direction, such as for gas-specific pricing, an arithmetic mean 

of relative prices - or a linear specification between prices - will give a biased measure of the relative value. Our 

regime dependent model allows us to isolate periods where evidence is strongest for decoupled/integrated 

markets. Using the periods where evidence is strongest of integrated markets we find that oil is historically 

priced as 2.3 times the value of natural gas. Our results suggest that oil is valued higher relative to natural gas in 

the UK than what would be implied by a linear specification of relative prices. Our model also suggests that 

markets are decoupled in 49% of the sample.  

 

2. The literature 

The structure of the petroleum market has changed substantially during recent decades, primarily driven by 

deregulation of gas markets. This occurred first in the USA (DeVany and Walls, 1993; Doane and Spulber, 

1994), and then in Europe; commencing in the UK and then increasingly in continental Europe (Asche et al., 

2002; Silverstov et al., 2005; Asche et al., 2006). Until deregulation there was a direct link between oil and gas 

prices due to the pricing formulas used in long-term gas contracts. Moreover, there was little or no evidence of 

peak load pricing as local retail monopolies tended to overinvest in capacity. Although it was expected that 

deregulations should lead to gas-to-gas competition and a separate price determination process for gas (Doane 

and Spulber, 1994; DeVany and Walls, 1993; Asche et al., 2006), the link between oil and gas has prevailed. 

This is the case for the UK (Asche et al., 2006; Panagiotidis and Rutledge, 2007), and to a lesser degree the USA 

(Serletis and Herbert, 1999; Brown and Yucel, 2008; Bencivenga et al., 2011)2. 

 

2 Oversupply of shale-gas in the USA has lead to a decoupling of U.S. natural-gas and oil prices since 2009 
(Erdȍs, 2012).  
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FIGURE 1. Oil (Brent front month) and Natural Gas (ICE front month) and corresponding log of relative price 

oil/natural gas (lower panel) 

 

The development in Brent oil and ICE natural gas front month futures prices is shown in Figure 1. The figure 

also shows the logarithm of relative prices (oil divided by natural gas). Cointegration analysis indicates that oil 

and natural gas markets are integrated in the UK, with the law of one price holding (Asche et al. 2006; 

Panagiotidis and Ruthledge, 2007). In addition oil is generally found to be weakly exogenous (Asche et al., 

2006). Even though markets are integrated there is substantial short-run variation in natural-gas prices not 

accounted for by oil. As is demonstrated in the relationship between natural gas (Henry Hub) and oil (WTI) in 

the U.S., additional variables such as temperature fluctuations are needed to account for short-run variations in 

gas prices (Ramberg and Pearsons, 2012). Figure 1 shows how relative prices occasionally drop associated with 

seasonal peak-load pricing in natural gas. However, the seasonal pattern is not regular across the sample. The 

spring of 2007 had high relative prices and the following fall/winter did not manifest in peak-load pricing This 

warrants a regime switching model for oil/natural gas pricing which allows pricing to shift between two regimes 
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In the next section we give a brief overview of the markets for natural gas and oil in the UK and in section 4 we 

we discuss the effect of gas-specific pricing on the relative price relationship.  We specify and estimate the 

regime-shifting model in section 5 and estimation results are presented in section 6. In section 7 the results are 

discussed and compared to a linear-model counterpart, and we.discusses implications for the value of oil relative 

to natural gas. Section 8 concludes. 

 

 

3. The Markets for Natural Gas and Oil in the UK 

During the last decades, demand for natural gas in the UK has more than doubled (Asche et al.,  2008). This is 

largely due to the increased use of gas in the power sector. Combined cycle gas turbine technology in gas-fired 

power plants has increased fuel efficiency and requires lower capital and operating costs. Moreover, construction 

times are short, 2-3 years. This has led to a substantial increase in the use of natural gas for electricity generation 

in the UK. Gas-fired power primarily competes against coal and nuclear power, and the increase of the share of 

UK gas consumption for gas-fired power plants thus potentially contributes to a weaker link towards oil.  

 

The price premium of oil relative to natural gas is limited over time due to substitution in consumption. If, e.g., 

natural gas becomes much cheaper than oil, there is an economic incentive for energy customers to switch to 

natural gas, and thereby contribute to a movement back to the historic mean relative price. Substitution and the 

resulting price correction, however, may be time consuming and therefore relative price imbalances may persist 

for some time. Some types of substitution is quick, e.g., for customers with dual burners. Other types of 

substitution often require investments. Substitution in such cases takes time. First the energy customers must be 

convinced that the price deviation will last long enough for them to recoup the investments; thereafter there is 

lead time on installation of new equipment (Bachmeier and Griffin, 2006). Other types of energy consumption 

cannot in the ordinary price range be substituted adequately with existing technology, e.g., oil still has an 

advantage over gas for transportation purposes. Long lasting price deviation from the historic mean level, 

however, may lead to R&D that reduces this gap. The gas-to-liquid transformation cost imposes a cap on the oil-

gas price relation, and this technology might be expected to improve in cases of long lasting deviation from 

relative price mean. Generally, changes in consumption technology that only apply to oil or natural gas may 

trigger shifts in the price premium.  
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Since natural gas in the UK is used for direct heating in addition to being a fuel input to electricity, it implies that 

demand is highly seasonal, correlated with temperatures. Demands typically peaks in winter, there is little air 

conditioning in the UK. Thus, natural gas prices are peakier since oil is not used significantly more in the heating 

season. However, this is not a consistent pattern. If natural gas availability is high, and the winter is mild, it is 

unlikely that seasonality in demand will be transmitted to prices. On the other hand, if demand and capacity 

utilization is high, seasonality in demand is more likely to transmit to price movements. If immediate gas 

availability is 𝐴 and consumption demand for gas is 𝑄, the net availability of gas at any time is 𝑋 = 𝐴 − 𝑄.  As 

𝑋 approaches zero, less gas is available to smooth further demand fluctuations and instantaneous price and 

volatility will increase. This property of storable commodity prices is well established in the competitive storage 

literature (Deaton and Laroque, 1992, 1996; Wright and Williams, 1991; Pirrong, 2012), where 𝑋 will denote 

amount of gas stored from one period to another. 

 

Figure 2 below illustrates a possible market setup for pricing of natural gas and resulting relative prices. The co-

integration relationship between oil and natural gas implies that a constant long-run equilibrium relative price 

exists. In the figure the equilibrium relative price (oil divided by gas) for a given oil price is denoted by 𝑦𝑒 . 

Associated with this price is an equilibrium natural gas price 𝑃𝑒 . For given gas availability, and marginal cost 

setup, a supply curve for natural gas exists. Equating with demand, the equilibrium natural gas price is 

established.  

 

 

 

  

 

  

 

 

 
 

FIGURE 2.  A setup for pricing of natural gas as and the oil/gas relative price 

 

We assume oil supply to be weakly exogenous (Asche et al., 2003; Asche et al., 2006) and the supply curve of 
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natural gas to be strictly convex. The question of interest is how natural-gas demand changes might affect 

observed relative prices. The given market setup implies that as capacity utilization becomes high (net 

availability low), natural gas prices start peaking, reaching for example 𝑃2 in figure 2. For relative prices this 

will result in a negative peak – point 𝑦1  in the relative price figure. The relative price is pushed away from its 

long-run equilibrium. This will represent a period of diverging relative prices or decoupled prices. Once demand 

has reached its peak and eventually starts shifting back, relative price will revert back towards its long-run 

equilibrium level. Dependant on the convexity of the supply curve, the equilibrium relative price is relatively 

close to prices established when gas demand is low, as for example for prices 𝑃2 and 𝑦2 in the figure below. As 

such negative demand shifts (relative to the equilibrium relative price) will result in a relative price not easily 

identifiable from the equilibrium long-run relative price: 𝑦2 is relatively close to 𝑦𝑒 . This suggests that we can 

approximate the equilibrium long-run relative price better if we can account for the peak load pricing periods.  

 
For a strictly convex supply curve the occasional peak-load pricing will manifest itself in negative spikes in 

relative prices. If these periods are not accounted for, the value of oil to natural gas will be underestimated. 

Valuing natural-gas by competing energy sources (such as oil in take-or-pay contracts) is not economically 

meaningful when natural gas is priced as a unique commodity in itself. Accounting for the peak-load pricing by a 

deterministic seasonal component will however overestimate the relative value.  A linear dynamic model with 

deterministic seasonality is hence not sufficient to account for dynamics in relative prices.  A rule of thumb in oil 

and natural gas prices is that oil should be twice the price of natural gas on an equivalent energy basis. In our 

data set, using the traditional method, we find the relative price to be 2....  Thus, based on a linear time series 

model the rule of thumb will tend to overvalue the price relationship of natural gas relative to oil. This motivates 

the use of a flexible regime-switching model to account for the periods of gas-specific pricing. 

 

In our model setup relative prices will decouple in periods where increasing demand pushes prices significantly 

away from the long-run equilibrium. Decoupled prices imply the relative price contains a unit-root (assuming the 

oil price contains a unit-root). Since natural gas demand is highly seasonal, this also suggests that the relative 

price contains a seasonal component in a decoupled regime.  When natural gas demand shifts downward, relative 

prices will revert back to its long-run equilibrium level. Here markets are integrated, displaying mean  

reversion. Shifts between these regimes will depend on the net availability of natural gas. Investments in 

capacity will shift the supply curve out, increasing the threshold at which demand starts significantly affecting 
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prices. Additional capacity will hence reduce peak-load pricing. Totally eliminating peak-load pricing in all 

years is likely to lead to excess capacity. It is not unreasonable that some years will contain peak-load pricing, 

while others not. A model for relative prices should allow for this.  

 

4. Temperature and Relative Prices 

Our measure of oil price is the crude oil Brent FOB front month futures price denoted in $/MMbtu. The natural 

gas price is the ICE Natural Gas front month futures price, also denoted in $/MMbtu. The National Balancing 

Point (NBP) in the UK is the pricing and delivery point for the ICE natural gas contracts. Strictly speaking, our 

results are only valid for the UK. However, as the European gas market is well integrated (Asche et al, 2002; 

Silverstov et al, 2005), the UK price can be regarded as a representation of the European price, and the 

qualitative results should be of interest also for the rest of the European gas market. As a measure of demand 

seasonality we use the London England Actual Weather Data mean temperature measure. All data are at a 

weekly frequency from week 1 in 1998 to week 15 in 2011. The oil and natural gas prices are shown in figure 1. 

We focus our analysis on the logarithm of the relative price of oil to natural gas: 𝑦𝑡 = 𝑙𝑛(𝑜𝑖𝑙𝑝𝑟𝑖𝑐𝑒𝑡) −

𝑙𝑛(𝑔𝑎𝑠𝑝𝑟𝑖𝑐𝑒𝑡). The series is depicted in figure 1. 

 

Figure 3 shows relative prices along with fitted values from the linear regression: 𝑦𝑡 = 𝜇 + 𝛽𝑡𝑒𝑚𝑝𝑡 + 𝜀𝑡, with 𝜇 

an intercept, 𝑡𝑒𝑚𝑝𝑡  temperature and 𝜀𝑡 model errors. 

 

 
FIGURE 3. The oil/gas relative price (black line) and fitted temperatures (dotted line).  
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The negative peaks in relative prices are associated with lower temperatures. The regression illustrates how the 

simple linear temperature model predicts the timing of seasonality in seasonal years, but that it fails to account 

for 1) the magnitude of the seasonal effect 2) the lack of seasonal effects in years with no apparent seasonality, 

such as for example the 1999/2000 and 2009/2010 seasons.  

 

Our baseline empirical model is a first order autoregressive model with temperature accounting for seasonal 

effects: 

 

 𝑦𝑡+1 = 𝜇 + 𝛽𝑦𝑡 + 𝛾𝑡𝑒𝑚𝑝𝑡 + 𝜎𝜀𝑡+1,                       (1) 

 

In equation (1) 𝑦𝑡+1 is next week’s log relative price, 𝑙𝑛 � 𝑜𝑖𝑙𝑡+1
𝑔𝑎𝑠𝑡+1

�,  𝜇 an intercept and 𝑡𝑒𝑚𝑝𝑡  current week 

temperature. 𝜎 is the standard-deviation of the error-term 𝜀𝑡. Estimation results are shown in table 1. Note the 

high degree of shock persistence. The implied half-life of a shock to relative prices is approximately 47 weeks, 

nearly a year. The effect of the significantly negative temperature measure is to adjust the dynamic effect of 

shocks. This highlights the seasonally dependent dynamics in the series. When temperatures are high, the 

temperature adjusts the conditional mean price downwards in anticipation of starting fall/winter pricing for the 

front month futures. When temperatures are low, conditional mean price increases in anticipation of higher 

prices.   

 

TABLE 1. Linear Seasonal Model 
        
 Coef. Std.Dev.  Specification tests value p-value  
µ 0.0422 0.0078  Portmanteau(24) 51.126 0.0007  
β 0.9854 0.0095  Autocorrelation (24) 44.384 0.0069  
γ -0.0028 0.0006  ARCH 1-12  3.0997 0.0003  
σ 0.2832   Asymptotic Normality 131.43 0.0000  
    Normality 47.441 0.0000  
N 691       
Log- Likelihood 764.15   Skewness -0.6162   
    Kurtosis 1.7452   
Note: Portmanteau test is carried out with 24 lags, null distribution is χ2(23). Autocorrelation test is also carried out with 24 
lags, null distribution is χ2(24). ARCH 1-12 test refers to the test for ARCH effects of lags up to 12. Null distribution is 
F(12,667).  Tests for normality has null distribution χ2(2). 
 
The effect of seasonality on dynamics is confirmed if we estimate the model without temperature. In this 

instance the autoregressive coefficient drops to 0.9705. A lack of linear effects is confirmed by the non-linearity 

Core Index test (Castle and Hendry, 2010). The test is based on orthogonalized regressors and is distributed as 
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χ2(6) under the null of linearity. The test strongly rejects linearity.3  Miss-specification from the linear model is 

apparent when looking at misspecification tests. There is evidence of significant residual autocorrelation in 

addition to ARCH effects. We strongly reject normality - there is excess kurtosis and negative skewness. The 

negative skewness is likely due to the natural-gas peak-load pricing.   

 

5. A Seasonal Regime Switching Model  

The regime model in this section is based on the regime shifting model of Hamilton (1989) and Hamilton and 

Susmel (1994). Since its introduction the regime switching model has become popular in non-linear time-series 

modeling. It is by now a staple model in the class of non-linear time series models. Applications of the model 

can be found in the business cycle literature (Hamilton, 1989; Bansal et al., 2004), and in interest rate modeling 

(Garcia and Perron, 1996; Gray, 1999; Ang and Bekaert 2002). In commodity markets the model has been 

popular when modeling electricity prices (Mount et al., 2006; Kanamura and Ohasi, 2007). In the original regime 

switching model the probability of changing regimes depended on a constant probability transition matrix. This 

was later relaxed to allow the probability transition matrix to change dependent on predetermined driving 

variables (Diebold et al., 1994). Since regime switching is likely to depend on underlying factors, it is this model 

setup we utilize to analyze relative prices of oil and natural gas.  

 

The purpose of the regime switching model is to addresses the shortcomings of the linear dynamic seasonal 

model. We wish to develop a model which better incorporates the periodic peak load pricing effect in the oil/gas 

relationship. The model is fundamentally based on the assumption of a convex supply curve for natural gas and 

an exogenous oil price. Relative price is allowed to move between two regimes, where the regimes are a priori 

identical but can potentially account for the non-linear effect of prices moving along a convex supply curve.  

 

We assume the relative price (𝑦𝑡) can change between two a priori identical pricing regimes. Relative prices in 

each regime follow the same dynamics as in the linear seasonal dynamic model: 

 

 𝑦𝑡+1 = 𝜇𝑅 + 𝛽𝑅𝑦𝑡 + 𝛾𝑅𝑡𝑒𝑚𝑝𝑡 + 𝜎𝑅𝜀𝑡+1,      (2) 

 

3 The p-value is 0.0019. 
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where 𝑅 = [1,2] denote the regime at time 𝑡. In the original two-state model, the regimes change is conditional 

on a constant probability transition matrix:  

 

 𝑃 = � 𝑝11 1 − 𝑝22
1 − 𝑝11 𝑝22

� ,         (3) 

       

where 𝑝𝑖𝑖 is probability of remaining in regime 𝑖 in the next period if price is in regime 𝑖 today. We can 

summarize the state of the market at time 𝑡, conditional on information at time 𝑡, in the [2 × 1] vector 𝑆𝑡|𝑡, 

where row 𝑖 is equal to 1 if the market is in regime 1 and zero otherwise. The expected next period regime is 

then equal to 𝑆𝑡+1|𝑡 = 𝑃𝑆𝑡|𝑡. Note that 𝑆𝑡|𝑡 can be interpreted as the probability of existing in either regime at 

time 𝑡 based on information at time 𝑡. Assuming a starting state 𝑆0|0, this allows a recursive projection and 

updating procedure where probabilities of existing in either regime at time  𝑡 can be derived. Details on the 

implementation of the classical regime switching model can be found in Hamilton (1994).  

 

The constant transition probability matrix imposes non-duration dependence on regimes. This restriction has 

been found to be invalid in electricity markets (Kanamura and Ohasi, 2007). Our model setup also suggests 

transition probabilities should vary with demand fluctuations, and hence be correlated with temperatures. This 

implies that the transition probability matrix is seasonal. Note that seasonal fluctuations in transition probabilities 

mean that seasonal pricing is stochastic – the model allows for prices in some years not to display seasonality. 

This is not allowed if seasonality is imposed on the conditional mean equation only, as in the linear seasonal 

model. 

 

The transition probability matrix is modeled by a logistic function dependent on current week temperature: 

   

 𝑝11,𝑡 = 𝑒𝑥𝑝�𝛼1,1+𝛼1,2𝑡𝑒𝑚𝑝𝑡�
1+𝑒𝑥𝑝�𝛼1,1+𝛼1,2𝑡𝑒𝑚𝑝𝑡�

,            𝑝22,𝑡 = 𝑒𝑥𝑝�𝛼2,1+𝛼2,2𝑡𝑒𝑚𝑝𝑡�
1+𝑒𝑥𝑝�𝛼2,1+𝛼2,2𝑡𝑒𝑚𝑝𝑡�

.    (4) 

 

Given parameter values we can form the likelihood at time 𝑡 + 1 as 𝑓𝑡+1 = �𝑃𝑡𝑆𝑡|𝑡�′𝐹𝑡+1, where 𝐹𝑡+1 is the 

[2 × 1] vector of likelihoods for each individual regime at time 𝑡 + 1 and  𝑃𝑡 is the probability transition matrix 

with elements given by equation (4). For a starting state, which we assume to be the steady state, the sum of the 

log likelihoods over the sample can be maximized using conventional maximum likelihood methods. Given 
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estimated parameters we run a backwards recursion deriving regime probabilities incorporating the full sample 

information. This produces the smoothed regime probabilities 𝑆𝑡|𝑇. For further information on estimation of the 

model see Mount and Xiaobin (2006).  

 

Two hypotheses are of specific interest when evaluating the model. The first relates to the seasonality in the 

conditional mean relative price. Will pricing move between regimes with and without seasonality in the 

conditional mean? For this to be the case the temperature coefficient must satisfy 𝛾𝑖 ≠ 0 and 𝛾𝑗 = 0 for 𝑖, 𝑗 =

1,2. The restriction is tested using a standard likelihood-ratio test. Another hypothesis of interest is whether 

markets move between being decoupled and integrated. Decoupled prices imply that the relative price has a unit-

root. In our model setup this implies that 𝛽𝑖 = 1 and  𝛽𝑗 < 1 for 𝑖, 𝑗 = 1,2. Given the non-standard asymptotic 

distribution of 𝛽𝑖 in the presence of a unit-root, we evaluate this hypothesis by bootstrapping. We derive the 

finite sample distribution of 𝛽𝑖 under the null of a unit-root in one of regimes.   

 

6. Estimation Results 

The output from estimating the unrestricted regime switching model is reported in table 2. The model has eight 

more parameters than the linear model counterpart. Since the models are non-nested, we cannot apply 

conventional likelihood ratio tests to discriminate between models.  

 

TABLE 2. Regime Switching Model with Time Varying Transition Probabilities 
          
 Regime 1  Regime 2     

 Coef. Std.Dev  Coef. Std.Dev  Specification Tests Value p-value 
Mean Equation       Portmanteau(24) 32.625 0.1122 
µ 0.0553 0.0089  0.0464 0.0132  Autocorrelation (24) 31.927 0.1288 
β 0.9345 0.0119  0.9967 0.0145  ARCH 1-12  0.9187 0.5275 
γ -0.0004 0.0005  -0.0046 0.0012  Asymptotic Normality 9.3746 0.0092 
σ 0.0514   0.0975   Normality 7.4728 0.0238 
          
Prob. Equation       Skewness -0.2085  
α1 10.8377 3.6261  1.2742 0.8598  Kurtosis 0.3764  
α2 -0.4357 0.1799  0.2339 0.1305     
          
N 691         
Log- Likelihood 818.95         
          
Note: Portmanteau test is carried out with 24 lags, null distribution is χ2(23). Autocorrelation test is also carried out with 24 
lags, null distribution is χ2(24). ARCH 1-12 test refers to the test for ARCH effects of lags up to 12. Null distribution is 
F(12,667).  Tests for normality has null distribution χ2(2). 
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To address the concern that the linear model might generate dynamics similar to the regime switching model, we 

derive finite sample likelihood-ratio statistics by bootstrapping. We simulate 1000 time series realizations of the 

linear model estimated above (table 1).The lengths of the simulated series are set equal to the length of the 

original data. The simulated series are estimated using the regime switching model to arrive at likelihood ratios. 

If the models where nested the likelihood ratio statistics should be distributed as χ2(8) under the null. The 

95%/99% percentiles of the bootstrapped likelihood-ratios are (16.83/ 23.05). These are not too far from the 

χ2(8) values (15.5/20.1). The likelihood ratio for the model estimated on real data is 109.62. This provides 

statistical evidence against the linear dynamic model generating dynamics similar to the regime switching model.  

 

Model comparison can also be done by evaluating how well competing models encompass the data. Contrary to 

the linear dynamic model there is much weaker evidence for residual autocorrelation in the regime switching 

model. In addition ARCH effects are accounted for. Since we allow conditional variance to change between 

regimes, conditional variance is not constant in the regime switching model. The model also accounts for more 

of the skewness and kurtosis in the data. Overall, the statistical evidence favours the regime switching model 

over the linear model. 

 

7. Implications for the value of oil relative to natural gas  

Comparing dynamics in the two regimes, we find significant difference in both the conditional mean and 

variance. Regime 1 is characterized by mean-reversion (half-life of shocks is only 10 weeks), no seasonal effects 

in the conditional mean and lower volatility. For regime 2 we find weak evidence for mean-reversion, seasonal 

effects in the conditional mean and larger price volatility. The smoothed probability of existing in regime 2 and 

the relative prices are shown in figure 4. 

 
Regime 2 (with low mean reversion and significant temperature effects) tends to account for the major 

downward movements in relative prices in addition to the negative peak prices. These are periods associated 

with increasing gas prices. Conceptually these periods are where increasing gas demand pushes prices 

significantly upwards on the supply curve. Regime 1 (mean-reversion, no significant seasonality) is associated 

with periods where prices are increasing and stable. These are periods associated with lower gas prices. The 
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regime switching is fairly regular in certain periods, like the early 2000 to 2006 period. However, it is less 

regular in the start and at the end of the sample. 

 
FIGURE 4. The oil/gas relative price and the smoothed probability of being in regime 2.  
 

Our results suggest that pricing moves between a decoupled regime with significant seasonality (regime 2), and a 

stable/less volatile integrated regime (regime 1). The hypothesis that prices move between seasonal/non-seasonal 

pricing regimes can be tested by imposing the restriction that one of regimes have no significant temperature 

effects in the conditional mean. We test this by re-estimating the model with the restriction that the temperature 

effect is zero in regime 1 (𝛾1 = 0). The p-value for the restriction is 0.5341. Given that regime 2 shows weak 

evidence for mean-reversion, we would like to evaluate whether regime 2 can be characterized by a unit-root 

process. We do this by imposing the restriction 𝛽2 = 1. The p-value for the restriction is 0.8671. Testing both 

restrictions simultaneously produces a p-value of 0.5071. Imposing a unit-root in one of the regimes is however 

not straight forward. Under the null of a unit-root in one of the regimes the asymptotic distribution of 𝛽1 is non-

standard. To investigate the finite-sample distribution of 𝛽1 under the null of a unit-root we bootstrap the 

distribution. We do this by simulating 1000 time-series realizations of the original regime switching model under 

the restriction that 𝛾1 = 0 and 𝛽2 = 1. The simulated series have the same length as the original series. The 

simulated data by construction moves between a unit-root and non-unit-root regime. Figure 5 show the 

bootstrapped distributions. 

 

The mean(median) for 𝛽2 is 0.9942(0.9924). Standard deviation for 𝛽2 is 0.0135. The distribution is negatively 

skewed (-0.97). There is a slight downward bias in the mean relative to the null unit value. The mean(median) 

for 𝛽1 is 0.9413(0.9413) with a standard deviation of 0.01. The negative skeweness is somewhat reduced (-0.49). 

There is a slight upward bias for the mean of 𝛽1 (null value for simulated series is 0.9345). The 
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positive(negative) bias in mean estimates is possibly due to the difficulty in differentiating between regimes for 

certain simulated series, for 1% of the estimates 𝛽1 > 𝛽2. Overall, however, the bootstrap results show that the 

model estimation can reasonably well differentiate between regimes. The bootstrapped standard-deviations are 

also fairly close to the asymptotic standard-deviations in table 2. The 5%/95% confidence interval for 𝛽1 and 𝛽2  

using the finite-sample distribution is (0.9231/0.9556) and (0.9668/1.0111). The unrestricted estimate for the 

autoregressive coefficient in regime 2 was 𝛽2 = 0.9967.  The probability that the model with a unit-root in the 

regimes produces a coefficient lower than this is 0.593. Furthermore, none of the estimates in the mean-reverting 

regime produces such a high value (the highest estimate for 𝛽1 in the bootstrap estimation was 0.97). The 

bootstrapping exercise shows that evidence against a hypothesis that relative prices move between an integrated 

mean-reverting and a decoupled unit-root regime is weak.  

 

 

FIGURE 5. Bootstrapped distributions of 𝛽1 and 𝛽2 under the null that 𝛽1 = 0.9345 and 𝛽2 = 1. 

 

The empirical results suggest that relative prices move between an integrated and a non-integrated regime. In the 

non-integrated regime the gas price is decoupled from oil and contains a seasonal component related to the 

occasional seasonal peak-load pricing. When temperatures starts increasing in later winter, demand decreases, 

and natural gas is more likely to be integrated with oil. This suggests that an equilibrium relationship between 

the energy carriers is more likely to manifest when consumption demand is relatively low and 

transport/production capacity available. To investigate the model dynamics further we simulate 1000 realizations 

of the regime switching model using the fit from table 2. Each simulation starts at the first price observations and 

uses the states implied by the estimated model.  
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 FIGURE 6. 5% and 95% confidence intervals of simulated prices along with observed relative prices. 

 

The 5% and 95% confidence intervals for the simulated series are shown in figure 6. We observe that the 

simulated prices are stable despite one of the regimes (regime 2) having an autoregressive coefficient close to 1. 

This is because prices regularly change to a regime (regime 1) with relatively strong mean-reversion. The 

periods with wider error bands are associated with the decoupled regime (regime 2). We observe how the model 

can account for peak-load pricing, although the uncertainty of prices in this regime is large. For 2007, for 

example, relative prices were high in the spring and summer with no peak-load pricing in the winter. There is 

evidence of decoupling (regime 2 is predicted) although with no apparent peak-load gas pricing effect.     

 

It is also of interest to examine how temperature affects the probability of changing regimes. Looking at 

smoothed probabilities, prices tend to change from regime 1 to regime 2 in early September, and then change 

back to regime 1 in February. These periods are associated with the start and end of fall/winter gas pricing. The 

fact that regime shifts occur throughout our sample suggest that demand is the main driver, and that deregulation 

has had limited impact. To illustrate how the transition probabilities depend on temperature we plot the 

likelihood of changing regimes as a function of temperature. This is shown in figure 7. The effect is largest in 

moving from regime 1 to regime 2 (from integrated to decoupled markets). The probability of a switch increases 

in temperature. When temperature is high, demand is low, and demand is more likely to switch and start 

increasing. This is due to the highly cyclical nature of demand for natural gas. This switch is most likely to occur 

in late summer when mean temperatures eventually starts decreasing. Demand will then start moving outwards 

on the supply-curve and peak-load pricing might occur. 
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FIGURE 7. The effect of temperature on the probability of changing regimes. 

 

When calculating the historical relative value of oil to natural gas, we should account for the periods where 

evidence points towards decoupled markets. In these periods gas is priced as a unique commodity in itself. The 

gas is valued predominantly by its marginal productive value in generating electricity/heating at that specific 

point in time. If we use the periods where evidence is strongest for an integrated market (regime 1) we find that 

the mean relative value of oil to natural gas on an equivalent energy basis is 2.33. Thus mean relative value is 

higher than the previously assumed rule of thumb of 2.0. This is reasonable if the rule of thumb did not account 

for peak-load pricing. Our model illustrates that mean reversion in relative prices is dependent on the time of the 

year. Most of the reversion back to oil occurs in spring and summer when demand for gas to heating and 

electricity is low and net-availability and transport capacity are high. Using evidence for when markets are 

decoupled (regime 2) we find that for 49% of the sample the markets where decoupled.  

 

Our empirical results do not indicate that peak-load pricing has become more prevalent in later years. There is no 

clear evidence of underinvestment in capacity after deregulation of gas markets in the UK. Considering the 

general increase in demand for natural-gas, capacity has likely increased as a response to growing demand. This 

would leave net availability similar across the sample period. Fears of underinvestment in capacity following 

deregulation seem unfounded. Our results do not contradict previous findings of integrated markets, but rather 

provide a more detailed picture of the relationship, emphasizing that markets occasionally decouple due to gas-

specific pricing, and switches between being decoupled and integrated. 
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8. Concluding Remarks 

The fact that gas demand tends to be seasonal (Asche et al., 2008), together with limited transfer capacity, 

suggest that peak load pricing is possible. A number of studies (Serletis and Herbert, 1999; Asche et al., 2006; 

Panagiotidis and Rutledge, 2007) suggest that the relationship between the oil and the gas price is stable over 

time when using a linear specification. This paper incorporates the non-linear effects of peak-load pricing on the 

dynamics of relative prices, showing that the UK natural gas marked switches between two states. We do this by 

applying a regime shifting model where pricing can change between cointegrated and decoupled (peak-load) 

prices. While electricity markets experience extreme price peaks of short duration, the storing option for natural 

gas suggests less extreme price variation and a smoother shift between seasonal pricing regimes.  

 

Accounting for peak-load pricing is relevant when evaluating the long-run relative value of oil to natural gas. 

Our model distinguishes between a mean-reverting/integrated regime and a decoupled pricing regime. The 

model can account for periods where gas-specific demand determined the value of gas. These will be the 

traditional peak-load pricing periods. Accounting for these periods we find that relative prices revert to a ratio of 

approximately 2.3. This means that in periods on cointegration Brent is on average approximately 2.3 times more 

valuable than natural gas on an energy equivalent basis. This is different from the previously assumed 2.0 rule of 

thumb, and provides an indication of the bias caused by not accounting for the non-linear dynamics.  

 

Our results show that relative prices tend to revert in the spring/summer when demand for natural gas for heating 

and electricity generation is lower. The estimated regimes suggest that in periods natural gas in the UK is priced 

independently of oil. This does not imply that relative prices are not stable in the long-run. As long as natural gas 

reverts back from peak-load pricing a stable relative price regime is still established. The existence of two 

pricing regimes suggests that deregulation has partly been able to create a separate price determination process 

for natural gas. However, as the regime shift occurs on an almost annual basis, temperature conditions seem to 

be the main driver of the regimes rather than increased competition.  
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