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Abstract 
 
We assess whether “undue optimism” (Pigou) contributes to business cycle fluctuations. In 
our analysis, optimism (or pessimism) pertains to total factor productivity, which determines 
economic activity in the long run. Optimism shocks are perceived changes in productivity that 
do not actually materialize. We develop a new strategy to identify optimism shocks in a VAR 
model. It is based on nowcast errors regarding current output growth, that is, the difference 
between actual growth and the real-time prediction of professional forecasters. We find that 
optimism shocks – in line with theory - generate a negative nowcast error, but simultaneously 
a positive short-run output response. 
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1 Introduction

Do autonomous changes in expectations—changes of expectations that are not due to

changes in fundamentals—cause business cycle fluctuations? This question dates back

to Pigou (1927), who discusses the possibility that “errors of undue optimism or undue

pessimism” are a genuine cause of “industrial fluctuations”. Keynes’ notion of “animal

spirits” is a related, but distinct concept.1 More recently, Beaudry and Portier (2004)

explore the possibility of “Pigou cycles” in a quantitative business cycle model featuring

possibly undue expectations regarding future productivity. Lorenzoni (2009) puts forward a

model in which misperceptions regarding the current state of productivity (“noise shocks”)

turn out to be an important source of cyclical fluctuations.

In this paper, we take up the issue empirically. We estimate a vector autoregression (VAR)

model on U.S. time-series data and seek to identify “optimism shocks”, that is, changes in

expectations due to a perceived change in total factor productivity that does not actually

materialize. While changes may be positive or negative (“pessimism shocks”), we refer to

“optimism shocks” throughout. Blanchard et al. (2013) show that identification constitutes

a formidable challenge in this case because optimism shocks are essentially mistakes of

market participants. If, roughly speaking, we were able to detect such a mistake at a

given point in time, so should market participants. Hence, there should be an immediate

correction and no mistake to speak of in the first place. In light of these difficulties, one may

resort to estimating full-fledged dynamic general equilibrium models in order to achieve

identification (Barsky and Sims, 2012; Blanchard et al., 2013). This approach, however, is

fairly restrictive as it imposes a lot of specific structure on the data.

In what follows, we maintain the less restrictive VAR framework, but develop a new identifi-

cation strategy based on an informational advantage over market participants. Specifically,

we show that it is possible to identify optimism shocks within a VAR model that includes

an ex post measure of agents’ misperceptions, namely the nowcast error regarding current

output growth. We obtain the nowcast from the Survey of Professional Forecasters (SPF)

and compute the nowcast error as the difference between actual output growth and the

median of the predicted values in real time. A positive realization of the nowcast error

thus implies that nowcasts have been too pessimistic. Still, we emphasize that nowcast

errors are a reduced-form measure.

In order to identify optimism shocks we therefore need to make additional assumptions.

Regarding the short run we assume that nowcast errors are caused on impact by either

1Keynes’ animal spirits are “a spontaneous urge to action rather than inaction”, which drive economic
decisions beyond considerations based “on nothing but a mathematical expectation” (Keynes 1936, pp.
161–162). 1



optimism shocks or shocks to total factor productivity (“technology shocks”). To tell both

shocks apart, we assume that optimism shocks do not impact labor productivity in the

long run. This restriction is weaker than the widely employed long-run restriction on

labor productivity originally proposed by Gaĺı (1999). Our short-run restriction on the

nowcast error is new and requires some justification. It boils down to assuming that the

median professional forecaster does not systematically misjudge the effect of structural

disturbances on the economy and is generally able to detect them. Technology shocks,

however, are different because they are not observable in real time. Significant nowcasts

errors may thus be due to technology shocks or perceived shocks which do not actually

materialize, that is, optimism shocks.

We provide evidence in support of our identification assumptions in the first part of the

analysis. Specifically, as we conduct a detailed analysis of nowcast errors, we assess whether

they respond to well-known measures of structural innovations. We find that innovations

that are publicly observable, such as monetary and fiscal policy shocks or uncertainty

shocks (as measured by stock-market volatility), do not cause significant nowcast errors.

By contrast, technology shocks have a significant effect on nowcast errors, presumably

because they impact current output growth but are not observable by market participants

in real time. Hence, there is also scope for undue optimism to induce nowcast errors.

In the second part of our analysis we establish formally that nowcast errors are the key

to the identification of optimism shocks. For this purpose we rely on a fairly standard

business cycle model. It features in a stylized way an informational friction that gives rise

to nowcast errors. The model is a version of the dispersed-information model of Lorenzoni

(2009), for which we are able to obtain closed-form solutions. Using the model, we formalize

the identification restrictions on which we rely in our empirical analysis and establish that

the VAR model is fundamental such that we are able to recover optimism shocks from the

reduced-form residuals.

In the third part of our analysis we detail the estimation of the VAR model and present re-

sults. We find that technology shocks raise both output and the nowcast error. Optimism

shocks, by contrast, raise output but lower the nowcast error. In our view this finding is

remarkable for two reasons. First, we find that the unconditional correlation of nowcast

errors and output is positive and strong. And yet, the correlation—unrestricted under

our baseline identification scheme—changes from unconditionally positive to negative con-

ditional on optimism shocks. Second, this negative comovement conforms well with the

specific nature of optimism shocks: it is precisely because there is undue optimism and,

hence, growth is overestimated, that economic activity expands—but less than expected,

2



such that a negative nowcast error obtains. We find that nowcast errors account for up to

15 percent of output fluctuations in the short run.

Our results are also robust across a range of alternative specifications, including alternative

samples and measures of the nowcast error, and alternative identification strategies. When

employing the latter, we relax each of our identification assumptions one-by-one. First,

we allow other shocks in addition to optimism and technology shocks to impact nowcast

errors contemporaneously, albeit to a lesser extent. Second, we use sign restrictions and

impose ex-ante that the comovement between the nowcast error and output is negative

conditional on optimism shocks. This comovement reflects the specific nature of optimism

shocks and emerges as a result under the baseline identification. Imposing it ex ante allows

us to discard the short-run restriction on the nowcast error altogether or, alternatively, the

long-run restriction on labor productivity. We find that the impulse responses in these

cases resemble closely those obtained for our baseline identification scheme.

As a caveat we note that for optimism shocks to be reflected in nowcast errors, we require

them to pertain to current productivity. This does not imply, however, that undue opti-

mism is necessarily limited to the current period. Rather, market participants may expect

productivity gains to be longer lasting or even permanent and indeed—as we document

below—forecasts rarely shift independently of nowcasts. In our analysis, we do not capture

the effects of undue optimism to the extent that it pertains to future fundamentals only.

Including forecast errors in the VAR model is of little help in this regard, because they are

also the result of fundamental innovations along the entire forecasting horizon. In order to

identify “noisy news” rather than optimism shocks, one may instead resort to a dynamic

rotation of the VAR’s reduced-form residuals (Forni et al., 2017).

Conceptually, our analysis relates to a number of recent studies on the role of exogenous

shifts in expectations as a source of business cycle fluctuations. Angeletos and La’O (2013)

develop a model where “sentiment shocks” arise, because market participants are unduly

but simultaneously optimistic about their terms of trade. These shocks trigger aggregate

fluctuations even if productivity is known to be constant.2 Milani (2011) introduces “expec-

tation shocks” in a New Keynesian model with near-rational expectation formation. The

model is estimated on U.S. data, including expectations data from the SPF. Expectation

shocks are found to account for about half of the volatility of output.

A number of contributions have focused on the distinction between unexpected and antici-

pated technology shocks. Evidence from Beaudry and Portier (2006) suggests that business

2 Within a VAR framework, Angeletos et al. (2015) construct a single shock that is responsible for the
bulk of short-run fluctuations. This shock has features quite distinct from shocks operating in conventional
business cycle models. Instead, it arguably has the flavor of a sentiment or confidence shock.

3



cycles are largely driven by expected future changes in productivity (see also Beaudry et al.

2011, Schmitt-Grohé and Uribe 2012, and Leduc and Sill 2013), while Barsky and Sims

(2011) find the role of expected productivity innovations to be limited. To the extent that

anticipated shocks do not materialize as expected, a recession might ensue (Jaimovic and

Rebelo 2009).

Our analysis also relates to earlier studies that attempt to estimate the importance of

optimism or sentiments for business cycle fluctuations. Blanchard (1993) provides an

animal-spirits account of the 1990–91 recession, focusing on consumption. Carroll et al.

(1994) show that consumer sentiment is a good predictor of consumption spending—aside

from the information contained in other available indicators. Yet, in concluding, they

suggest a “fundamental explanation” based on habits and precautionary saving motives.

Oh and Waldman (1990) show that “false macroeconomic announcements”, identified as

measurement errors in early releases of leading indicators, cause future economic activity.

They refrain from a structural interpretation, however. Mora and Schulstad (2007) show

that, once announcements regarding current growth are taken into account, the actual

growth rate has no predictive power in determining future growth.

Finally, there is recent work that uses survey-based expectations data in order to show

that incomplete information, imperfectly rational expectations or confidence may impact

macroeconomic outcomes not only as an autonomous source but also by altering decision-

making more generally. Nimark (2014) and Melosi (2017) develop and estimate dispersed-

information models on data sets, which include inflation expectations as reported in the

SPF. Both studies illustrate the potential of informational frictions in accounting for busi-

ness cycle dynamics. Gennaioli et al. (2015) document that corporate investment is well

explained by expectations data that, in turn, fail to satisfy a number of rationality tests.

Bachmann and Sims (2012) show that consumer confidence amplifies the transmission of

fiscal shocks in times of economic slack.

The remainder of the paper is structured as follows. The next section introduces our

measure of nowcast errors and provides a number of descriptive statistics. Section 3 puts

forward a simple theoretical model that allows us to clarify issues pertaining to the notion

of optimism shocks and their identification. Section 4 presents the VAR model, our results,

and an extensive sensitivity analysis. A final section concludes. The appendix provides

more details on the theoretical model and reports results from a Monte Carlo exercise.
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2 A reduced-form measure of misperceptions

In our analysis, we aim to uncover the effects of optimism shocks, that is, perceived changes

in total factor productivity that do not actually materialize. In this section, as a first step

towards this end, we consider a reduced-form measure of misperceptions by computing

nowcast errors regarding current U.S. output growth. Nowcast errors can be the result of

optimism shocks, but they may also be due to other structural innovations. Still, nowcast

errors will play a key role in our identification strategy. In what follows, we therefore

describe the construction of nowcast errors and compute a number of statistics in order to

illustrate their scope, possible causes, and their relation to economic activity.

2.1 Data

Our main data source is the SPF, initiated by the American Statistical Association and

the NBER in 1968Q4, now maintained at the Federal Reserve Bank of Philadelphia.3 The

SPF is a widely recognized measure of private-sector expectations regarding the current

state and prospects of the U.S. economy. It is also a benchmark frequently used to assess

forecasting models (e.g. Giannone et al., 2008).

The survey is conducted on a quarterly basis. We focus on the forecast for output growth

in the current quarter, that is, the nowcast. In this regard, it is important to note that

panelists receive questionnaires at the end of the first month of the quarter and have to

submit their answers by the second to third week of the following month. The results of the

survey are released immediately afterwards. At this stage, no information regarding current

output is available from the Bureau of Economic Analysis (BEA). At most, in order to

nowcast output growth for the current quarter, forecasters may draw on the NIPA advance

report regarding output in the previous quarter. Predicted quarterly output growth is

annualized and measured in real terms. Note that, initially, within the SPF, output is

measured by GNP, later by GDP.4

As a first pass at the data, Figure 1 illustrates how nowcasts relate to forecasts, using data

3Professional forecasters are mostly private financial-sector firms. The number of participating institu-
tions declined from 50 to fewer than 20 in 1988. After the Philadelphia Fed took over in 1990, participation
rose again; see Croushore (1993). Regarding our latest observation in 2014Q4, 42 forecasters participated
in the survey.

4For the SPF forecasts of GNP/GDP, we use the series DRGDP2, which we obtain from the Real-time
Data Research Center of the Philadelphia Fed. This series corresponds to the median nowcast of the
quarterly growth rate of real output, seasonally adjusted at annual rates (real GNP prior to 1992 and real
GDP afterwards). Prior to 1981Q3, the SPF asks for nominal GNP only. In this case, the implied forecast
for real GNP is computed on the basis of the nowcast for the price index of GNP.

5
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Figure 1: Revisions of nowcasts and forecasts. Left panel plots revision of median nowcast
(vertical axis) against revision of one-quarter-ahead median forecast (horizontal axis), measured in
annualized percentage points. Right panel: frequency of forecast revisions across individual fore-
casters (for forecasting horizons t+1 to t+3); red: forecasters revise nowcast and forecast simul-
taneously; blue: forecasters revise forecast, but not nowcast; whiskers represent 95%-confidence
intervals.

for the period 1969Q1–2014Q4. The left panel plots the revision of the median nowcast

against the revision of the median one-quarter-ahead forecast.5 Revisions are positively

correlated and often of comparable magnitude. The correlation is 0.47 and significant

at the 1%-level. The right panel exploits the cross section of the data set. It shows the

fraction of professional forecasters who revise forecasts for future output growth—one, two,

and three quarters ahead, respectively. We indicate in red the fraction of forecasters who

simultaneously revise forecasts and nowcasts. Blue markers, in turn, depict the fraction of

forecast revisions that take place while nowcasts remain unchanged. The later instances are

fairly rare in our sample. Overall, we thus find evidence that is consistent with the view that

expectations about output growth tend to shift simultaneously across the entire forecasting

horizon under consideration. This includes, in particular, the nowcast for current output

growth.

Our analysis below is based on nowcast errors. We compute it as the difference between

the survey’s median nowcast and the actual value reported later by the BEA. We use the

median nowcast error over all forecasters, as it is less prone to outliers than the mean

error. Also, nowcast errors based on the mean rather than the median exhibit a somewhat

higher variance. Results, however, remain robust when the mean nowcast error is used.

5The revision of the nowcast is the difference between the estimate in period t and the estimate in
period t− 1 of output growth in period t. Correspondingly, the revision of the forecast for output growth
in period t + 1 is the change in the estimate between periods t− 1 and t.
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Figure 2: Nowcast errors. Left panel: series based on first-release data (solid lines) and final-
release data (dashed lines). Errors are measured in annualized percentage points (vertical axis).
Right panel: cumulative impulse response of output growth to nowcast error based on local
projections. Horizontal axis measures quarters; vertical axis measures percentage deviation of
output from the average growth path. Dashed lines indicate 90%-confidence bounds implied by
Newey-West standard errors.

We compute two measures of nowcast errors based on the advance and the final estimate

for actual output growth, which correspond to the BEA’s first and third data release. We

thereby address concerns that the assessment of nowcasts or, more generally, forecasts

depends on what is being used as “actual” or realized values (see, for example, Stark and

Croushore 2002).6 Throughout we refer to nowcast errors as either “based on first-release”

on “based on final-release” data. Note that our final-release-based measure is computed

on data prior to further comprehensive and benchmark revisions of the data, which take

place at a later date.7

2.2 Nowcast errors

The left panel of Figure 2 shows the time series of nowcast errors, measured in annualized

percentage points. The solid and dashed lines represent results based on first and final-

release data, respectively. Although the two series comove strongly (correlation: 0.94),

there are perceptible differences. For instance, there are sizeable negative errors in the

6In fact, the authors consider a set of alternative definitions of actuals and find statistically signifi-
cant differences in forecast evaluations for real output. We show below, however, that our results hold
irrespective of the choice of first or final-release data.

7Benchmark revisions take place approximately every five years. Comprehensive revisions are more
frequent and may also be quite substantial concerning, for instance, the classification of R&D expenditure.
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Table 1: Summary statistics for nowcast errors

Ljung–Box test

N Mean SD Min Max Q-stat. p-value

Final release 185 0.058 0.539 -1.585 1.843 12.048 0.442

First release 185 0.022 0.457 -1.299 1.358 10.716 0.553

Notes: Nowcast errors computed on the basis of final release (top) and first release
(bottom), measured in percentage points; sample: 1968Q4–2014Q4. Means are
tested against zero based on a standard t-test. For both series, H0 = 0 cannot be
rejected at the 10%-level. The last two columns report Q-statistics and p-values for
a Ljung-Box test assessing the null hypothesis of zero autocorrelations up to 12 lags.

second half of 2008 only for the measure based on the final release. Presumably, at the be-

ginning of the Great Recession, the actual growth slowdown was larger not only relative to

what professional forecasters predicted in real time but also to what initial data suggested.

The same holds true for 2012Q4 as the U.S. economy approached its so-called fiscal cliff.

Instead, during the first half of the sample, errors based on first-release data are shifted

somewhat downward relative to those based on final-release data.

We provide summary statistics for both time series in Table 1. The mean of nowcast errors

is not significantly different from zero. The standard error and the largest realizations of

the nowcast error are somewhat larger in the case of final-release data. Finally, the last

two columns of Table 1 report results of a Ljung–Box test, suggesting that there is no serial

correlation in neither series.8 Hence, in this regard, nowcast errors differ markedly from

forecast errors, which tend to exhibit considerable persistence.9

What causes nowcast errors? Assuming that the average forecaster has a correct under-

standing of the economy, structural innovations that are public information should not

induce systematic errors. On the other hand, structural innovations that are not directly

observable by market participants may generate nowcast errors. To assess this hypothe-

8We also reject the hypothesis that there is first or higher-order serial correlation if tested individually
for each lag length up to 12 lags.

9Zarnowitz (1985) finds that serial correlation in forecast errors tends to increase with the forecasting
horizon for many macroeconomic variables in the SPF. In addition, serial correlation seems to be most
prevalent in inflation forecasts, generating a large body of literature on the topic, while evidence for GDP
forecasts is rather mixed.
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Table 2: Nowcast errors and structural innovations in...

Monetary Defense Taxes Uncertainty Productivity
policy spending

69Q1–96Q4 68Q4–13Q4 68Q4–07Q4 68Q4–08Q2 68Q4–14Q4

Nowcast error .087 .047 -.053 .021 .266***
Final release (.070) (.040) (.067) (.040) (.035)

Nowcast error .082 .029 -.041 .012 .209***
First release (.054) (.030) (.055) (.035) (.030)

Notes: Impact effect on nowcast error obtained from univariate regression of nowcast error
on structural innovations (standardized regression coefficients); regression includes four lags
of the nowcast error; Newey-West standard errors robust for autocorrelation up to four lags
are reported in parentheses; time series of structural innovations in monetary policy, defense
spending, taxes, uncertainty, and productivity are provided by Romer and Romer (2004),
Ramey (2014), Romer and Romer (2010), Bloom (2009), and Fernald (2014), respectively.

sis, we run regressions of nowcast errors on popular (and relatively uncontroversial) series

of structural innovations. Specifically, we consider monetary policy shocks identified by

Romer and Romer (2004), defense spending news identified by Ramey (2014), tax shocks

identified by Romer and Romer (2010), uncertainty shocks identified by Bloom (2009), and

productivity shocks based on the TFP estimate of Fernald (2014).10

In each instance, we regress nowcast errors on the contemporaneous realization of the

structural shock while also including four lags of the nowcast error in the regression model.

The sample varies across regressions, since we use the longest overlapping sample in each

case. We standardize regression coefficients such that they represent the nowcast error

associated with a one-standard-deviation innovation in the shock series. Table 2 reports

results, with Newey-West standard errors displayed in parentheses. The top row reports

10We use Fernald’s measure for TFP growth (dtfp). Controlling for factor utilization (dtfp util) does
not alter our results. Regarding uncertainty shocks, we rely on the quarterly average of the monthly series
of stock-market-volatility shocks identified in the baseline VAR of Bloom (2009). In the case of monetary
policy and tax shocks, we use the quarterly average of the monthly shock series (RESID) and the “sum of
deficit-driven and long-run tax changes” (EXOGENRRATIO) of Romer and Romer (2004) and Romer and
Romer (2010), respectively. The defense news identified by Ramey (2014) are the present-value changes
in expected defense spending due to political events scaled by lagged nominal GDP.
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results based on the final-release data; the bottom row is based on the first-release data.

We find that, for monetary and fiscal policy innovations, as well as for uncertainty shocks,

there is indeed no significant impact on nowcast errors, in line with the hypothesis that the

effect of observable innovations on economic activity is relatively well understood by fore-

casters.11 Productivity innovations, instead, have a significant impact, both statistically

and economically. Specifically, positive productivity innovations tend to raise the nowcast

error contemporaneously, that is, they tend to raise the growth of economic activity beyond

the expected level.

2.3 Nowcast errors and economic activity

Nowcast errors are positive surprises regarding current activity. They are also positively

correlated with output growth.12 To explore systematically how current nowcast errors

relate to economic activity, we estimate the dynamic relationship on the basis of local

projections (Jordà, 2005). In particular, we relate current and future output growth to

current nowcast errors.13

The right panel of Figure 2 shows the cumulative impulse response function of output

growth to a nowcast error. The horizontal axis measures quarters, the vertical axis per-

centage deviation of output from the average growth path. Dashed lines indicate 90%-

confidence bounds implied by Newey-West standard errors. We find that nowcast errors

predict a strong, mildly hump-shaped increase in economic activity. The effect is initially

a bit stronger for our measure based on first-release data, yet differences are generally very

moderate. The finding that (reduced-form) nowcast errors predict future activity to in-

crease is particularly noteworthy in light of our estimates regarding the effects of optimism

shocks documented in Section 4 below.

11Coibion and Gorodnichenko (2012) find that mean forecast errors of inflation respond persistently
to shocks. In order to resolve an apparent conflict with our results regarding the effects of policy and
uncertainty shocks, we make two observations. First, we are interested in output growth rather than
inflation. In a related paper, Coibion and Gorodnichenko (2015) consider to what extent current forecast
revisions predict forecast errors. In a univariate context, the contribution of forecast revisions (averages
over all considered horizons; sample: 1968–2014) appears to be strongly significant for inflation, but not
significant in the case of output growth. Second, we focus on nowcast rather than on forecast errors.
It is thus important to recognize that professional forecasters tend to adjust forecasts rather smoothly
(Nordhaus 1987). Indeed, Coibion and Gorodnichenko (2015) find that, while forecast revisions tend to
predict forecast errors (averages over all considered variables), the effect is only marginally significant for
nowcast errors.

12The correlation between GDP growth and the nowcast error is 0.51 and 0.47 for the final-release
measure and first-release measure, respectively.

13To capture potential serial correlation, we apply Newey-West standard errors. The error structure is
assumed to be possibly heteroskedastic and autocorrelated up to lag 4. We also include four lags of GDP
growth in the regression.

10



3 Optimism shocks: Theory

In our empirical analysis, we impose as little structure as possible on the data in order to

identify optimism shocks. Yet, by way of example, we now put forward a specific model

that allows us to formally define optimism shocks, discuss conditions under which they may

affect economic activity, and clarify issues pertaining to identification. The model captures

in a stylized way the informational friction that gives rise to nowcast errors. Lorenzoni

(2009) and Coibion and Gorodnichenko (2012) find that models of information rigidities

in general, and of noisy information in particular, are successful in predicting empirical

regularities of survey data on expectations.

Our model thus builds on the noisy and dispersed information model of Lorenzoni (2009).

As our goal is to derive robust qualitative predictions, we simplify the original model,

notably by assuming predetermined rather than staggered prices. As a result, it is possible

to solve an approximate model in closed form. A key feature of the model is that agents

do not observe output at the time of decision-making. Importantly, the econometrician’s

information set differs in this regard, because aggregate output, and hence a measure of the

nowcast error, becomes available ex post. This difference is crucial in terms of identification

as we show below.

3.1 Setup and timing

There is a continuum of islands (or locations), indexed by l ∈ [0, 1], each populated by

a representative household and a unit mass of producers, indexed by j ∈ [0, 1]. Each

household buys from a subset of all islands, chosen randomly in each period. Specifically,

it buys from all producers on n islands included in the set Bl,t, with 1 < n < ∞.14

Households have an infinite planning horizon. Producers produce differentiated goods on

the basis of island-specific productivity, which is determined by a permanent, economy-wide

component and a temporary, idiosyncratic component.15 Both components are stochastic.

Financial markets are complete such that, assuming identical initial positions, wealth levels

of households are equalized at the beginning of each period.

The timing of events is as follows: each period consists of three stages. During stage

14This setup ensures that households cannot exactly infer aggregate productivity from observed prices.
At the same time, individual producers have no impact on the price of households’ consumption baskets.

15As argued by Lorenzoni (2009), this setup can account for the empirical observations that the firm-
level volatility of productivity is large relative to aggregate volatility and that individual expectations are
dispersed.
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one of period t, information about all variables of period t−1 is released. Subsequently,

nominal wages are determined and the central bank sets the interest rate based on expected

inflation.

Shocks emerge during the second stage. We distinguish between shocks that are directly

observable and shocks that are not. Optimism and productivity shocks are not directly

observable in the following sense: information about idiosyncratic productivity is private

to each producer, but, in addition, all agents observe a signal about average productivity.

While the signal is unbiased, it contains an i.i.d. zero-mean component: the optimism

shock. We allow for one generic shock that is observable. To simplify the discussion,

we refer to this shock as a “monetary policy shock” with the understanding that other

observable shocks would play a comparable role in terms of identification. Given these

information sets, producers set prices.

During the third and final stage, households split up. Workers work for all firms on

their island, while consumers allocate their expenditures across differentiated goods based

on public information, including the signal, and information contained in the prices of

the goods in their consumption bundle. Because the common productivity component is

permanent and households’ wealth and information are equalized in the next period, agents

expect the economy to settle on a new steady state from period t+1 onwards.

3.2 Households

A representative household on island l (“household l”, for short) maximizes lifetime utility,

given by

Ul,t = El,t

∞∑
k=t

βk−t lnCl,k −
L1+ϕ
l,k

1 + ϕ
ϕ ≥ 0, 0 < β < 1,

where El,t is the expectation operator based on household l’s information set at the time of

its consumption decision in stage three of period t (see below). Cl,t denotes the consumption

basket of household l, while Ll,t is its labor supply. The flow budget constraint is given by

Et%l,t,t+1Θl,t+Bl,t+
∑
m∈Bl,t

∫ 1

0

Pj,m,l,tCj,m,l,tdj ≤
∫ 1

0

Πj,l,tdj+Wl,tLl,t+Θl,t−1+(1+rt−1)Bl,t−1,

where Cj,m,l,t denotes the amount bought by household l from producer j on island m and

Pj,m,l,t is the price for one unit of Cj,m,l,t. At the beginning of the period, the household

receives the payoff Θl,t−1, given a portfolio of state-contingent securities purchased in the
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previous period. Πj,l,t are the profits of firm j on island l and %l,t,t+1 is household l’s

stochastic discount factor between t and t+1. The period-t portfolio is priced conditional

on the (common) information set of stage one, hence we apply the expectation operator

Et. Bl,t are state non-contingent bonds paying an interest rate of rt. The complete set

of state-contingent securities is traded in the first stage of the period, while state-non-

contingent bonds can be traded via the central bank throughout the entire period. The

interest rate of the non-contingent bond is set by the central bank. All financial assets are

in zero net supply. The bundle Cl,t of goods purchased by household l consists of goods

sold in a subset of all islands in the economy

Cl,t =

 1

n

∑
m∈Bl,t

∫ 1

0

C
γ−1
γ

j,m,l,tdj


γ
γ−1

γ > 1.

While each household purchases a different random set of goods, we assume that the

number n of islands visited is the same for all households. The price index of household l

is therefore

Pl,t =

 1

n

∑
m∈Bl,t

∫ 1

0

P 1−γ
j,m,l,tdj

 1
1−γ

.

3.3 Producers and monetary policy

The central bank follows an interest-rate feedback rule but sets rt before observing prices,

that is during stage one of period t:

rt = ψEcb,tπt + νt ψ > 1,

where πt is economy-wide net inflation, calculated on the basis of all goods sold in the

economy. The expectation operator Ecb,t is conditional on the information set of the

central bank. This set consists of information from period t−1 only, that is, the central

bank enjoys no informational advantage over the private sector.16 νt is a monetary policy

shock that is observable by producers and households alike.

16Pre-set prices and interest rates allow us to discard the noisy signals about quantities and inflation
observed by producers and the central bank in Lorenzoni (2009), simplifying the signal-extraction problem
without changing the qualitative predictions of the model. Pre-set wages, on the other hand, guarantee
determinacy of the price level. They do not affect output dynamics after optimism and productivity shocks,
because goods prices may still adjust in the second stage of the period.
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Producer j on island l produces according to the following production function

Yj,l,t = Aj,l,tL
α
j,l,t 0 < α < 1,

featuring labor supplied by the local household as the sole input. Aj,l,t = Al,t denotes the

productivity level of producer j, which is the same for all producers on island l. During

stage two, the producer sets her optimal price for the current period. Given prices, the

level of production is determined by demand during stage three.

3.4 Productivity and signal

Log-productivity on each island is the sum of an aggregate and an island-specific idiosyn-

cratic component

al,t = xt + ηl,t,

where ηl,t is an i.i.d. shock with variance σ2
η and mean zero. It aggregates to zero across

all islands. The aggregate component xt follows a random walk

∆xt = εt.

The i.i.d. productivity shock εt has variance σ2
ε and mean zero. During stage two of each

period, agents observe a public signal about xt. This signal takes the form

st = εt + et,

where et is an i.i.d. optimism shock with variance σ2
e and mean zero. Producers also observe

their own productivity. Hence, their expectations of ∆xt are

Ej,l,t∆xt = ρpxst + δpx(aj,l,t − xt−1),

with Ej,l,t being the expectation of producer j on island l when setting prices (in stage two).

The coefficients ρpx and δpx are the same for all producers, where these and the following ρ

and δ-coefficients are functions of the structural parameters that capture the informational

friction. They are non-negative and smaller than unity; see Appendix A. Finally, while

shopping during stage three, consumers observe a set of prices. Given that they have also

observed the signal, they can infer the productivity level of each producer in their sample.
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Consumers’ expectations are thus given by

El,t∆xt = ρhxst + δhx ãl,t,

where ãl,t is the average over the realizations of am,t− xt−1 for each island m in household

l’s sample. ρhx and δhx are equal across households. The model nests the case of complete

information about all relevant variables for households and producers if σ2
e = 0. If σ2

e > 0,

producers will set prices based on potentially overly optimistic or pessimistic expectations

of productivity. Consumers also have complete information if n→∞.

3.5 Market clearing

Goods and labor markets clear in each period:∫ 1

0

Cj,m,l,tdl = Yj,m,t ∀j,m Ll,t =

∫ 1

0

Lj,l,tdj ∀l,

where Cj,m,l,t = 0 if household l does not visit island m. The asset market clears in

accordance with Walras’ law.

3.6 Results

We derive a solution of the model based on a linear approximation to the equilibrium con-

ditions around the symmetric steady state; see Appendix A for details. Lower-case letters

denote percentage deviations from steady state. We obtain the following propositions for

which we provide proofs in Appendix B.

Proposition 1 A positive optimism shock (et > 0), a positive productivity shock (εt > 0),

and a negative monetary policy shock (νt < 0) raise output. Formally, we have

yt = xt−1 + ρhx(1− Ω)︸ ︷︷ ︸
>0

et +
[
(δhx + ρhx)(1− Ω) + Ω

]︸ ︷︷ ︸
>0

εt−
α

α + ψ(1− α)︸ ︷︷ ︸
<0

νt,

with 0 < Ω = n−δhx(1−α)[(n−1)δpx+1]

nα+(1−α){(1−δhx)[1+δpx(n−1)]+(n−1)γ(1−δpx)} < 1.

Proposition 2 A positive optimism shock induces a negative nowcast error, while a posi-

tive productivity shock induces a positive nowcast error. This holds for nowcast errors
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of producers and households alike. Monetary policy shocks do not cause nowcast errors.

Formally,

yt − Ek,tyt = −ρkx
[
δhx(1− Ω) + Ω

]︸ ︷︷ ︸
<0

et +
[
δhx(1− Ω) + Ω

]
(1− δkx − ρkx)︸ ︷︷ ︸

>0

εt,

with Ek,t standing for either Ej,l,t or El,t, and ρ
k, δk correspondingly for ρp, δp or ρh, δh.

Hence, productivity and optimism shocks raise actual output but also lead to output mis-

perceptions. Consider first the optimism shock. Producers expect aggregate productivity

to be high—resulting in higher demand—but also observe that their own productivity is

unchanged, which they attribute to a negative realization of the idiosyncratic productivity

component. Consequently, they raise prices above what they expect the average price level

to be. However, due to strategic complementarities in price-stetting, the deviation from the

expected average price level is subdued. Consumers, in turn, observe higher prices besides

the public signal. They, too, attribute this increase to adverse temporary productivity

shocks suffered by those particular firms from which they buy. This allows households to

entertain the notion of higher aggregate productivity and future income. They thus raise

expenditures despite the observed price increase and, hence, economic activity expands.17

Yet, as each producer and each household considers itself unlucky relative to its peers,

current output is actually lower than expected: a negative nowcast error obtains.

After a productivity shock, producers also do not fully trust the signal about the aggregate

component and attribute some of the increased productivity to idiosyncratic factors. They

therefore reduce prices below what they expect the average price level to be. Consumers, in

turn, observe lower prices and expect higher income. They consequently raise consumption.

However, both producers and their customers expect other producers to set higher prices

and consequently underestimate actual output. A positive nowcast error obtains.

Finally, we stress that monetary policy shocks have no impact on nowcast errors. More

generally, any other shock that enters the information set of households and producers will

not generate nowcast errors, as both are aware of the economic environment and, hence, the

effect of shocks. Misperceptions about economic activity thus arise only after imperfectly

observed shocks, such as innovations in productivity, or optimism shocks.

17As pointed out by Lorenzoni (2009), the optimism shock provides a possible microfoundation for the
traditional concept of a demand shock: agents are too optimistic about economic fundamentals, resulting
in unusually high demand.
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3.7 VAR representation

In addition to clarifying the nature of optimism shocks, the model allows us to address

concerns about whether optimism shocks can be uncovered at all on the basis of an esti-

mated VAR model. In this regard, the set of actual time series used in the estimation is

crucial. Noting that we estimate our VAR in Section 4 on time series for nowcast errors,

labor productivity, and hours worked, that is, on the following vector

Ỹ ′t =
[

∆yt − Ek,t∆yt ∆(yt − lt) lt

]
,

we obtain the following proposition.

Proposition 3 Given Ỹt, the dynamics of the model can be represented by a VAR(1):

Ỹt = AỸt−1 +BṼt,

where

Ṽ ′t =
[
εt et νt

]
contains shocks to aggregate productivity, optimism, and monetary policy. The matrices A

and B are given in the proof (see Appendix B).

Intuitively, we are able to cast the model dynamics in VAR form because we rely on

variables that are not contemporaneously observed by agents in the model. Specifically,

we make use of the fact that we as econometricians can observe aggregate time series,

which are released with a lag and hence not observable (by the agents in the model) in

real time. If, instead, one were to restrict the VAR to contain variables observed by agents

in real time, the model would generally not be invertible. Proposition 3 is thus consistent

with the result of Blanchard et al. (2013), according to which optimism shocks cannot

be recovered from actual time-series data by an econometrician who has no informational

advantage over market participants. Yet, as documented in Section 2, actual nowcast errors

regarding output growth can be sizable. To the extent that they can be measured ex post,

they allow us to identify optimism shocks.

Finally, the model also provides us with specific identification restrictions, which we impose

on the VAR model below. Given matrices A and B, we obtain the following corollary.
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Corollary 1 Monetary policy shocks have no impact on the nowcast error, neither in the

short nor the long run. Furthermore, optimism shocks do not alter labor productivity in

the long run.

Our results are based on a model that is deliberately stylized. We therefore use Monte

Carlo methods to check the validity of our identification strategy for a richer setup. For

this purpose, we use Lorenzoni’s original model as the data-generating process. It features

richer dynamics because of staggered price-setting. Figure C.1 in the appendix shows the

results. Given the vector of observables Ỹ ′t as well as our identification assumptions stated

below, we find that the VAR performs well, although there is a tendency in small samples

to somewhat underestimate the effects of both technology and optimism shocks.

4 Optimism shocks: Evidence

We are now in a position to identify the effects of optimism shocks in actual time-series data

and to quantify their contribution to short-run fluctuations. For this purpose, we estimate

a VAR model on U.S. data. It includes—as the key to our identification strategy—a time

series of realized nowcast errors. As it is available ex post only, we have an informational

advantage over market participants and are able to identify autonomous shifts in optimism

or pessimism (that is, their misperceptions or mistakes). Our baseline identification strat-

egy combines short and long-run restrictions. Yet, as we document in Section 4.3 below,

our main results also obtain under less restrictive identification strategies.

4.1 VAR specification and identification

Our point of departure is the VAR model put forward by Gaĺı (1999) in order to identify the

effects of technology shocks. It features, in addition to the growth rate of labor productivity

and (the log of) hours worked, the nowcast error computed on the basis of first-release

data.18 Formally, as we collect these variables in the vector Ỹt, we can represent the VAR

model in reduced form as follows:

Ỹt =
L∑
i=1

AiỸt−i + ut. (4.1)

18Labor productivity is output per hour of all persons in the business sector. The data source is the
Bureau of Labor Statistics (BLS).
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Here, L is the number of lags and ut is a vector of potentially mutually correlated innova-

tions with covariance matrix Ω = Euu′. We also include a constant and a linear-quadratic

time trend in the VAR model.19

We estimate the model on quarterly data covering the period 1983Q1–2014Q4. While

our measure of nowcast errors has been available since the late 1960s (see Section 2),

we disregard observations prior to 1983 because the U.S. business cycle was subject to

considerable changes in the early 1980s, possibly due to a change in the conduct of monetary

policy (Clarida et al. 2000; McConnell and Perez-Quiros 2000). In our sensitivity analysis,

we show that results for the full sample are not significantly different from those for the

baseline sample. The same is true for a sample that ends before the financial crisis.

Regarding the number of lags L, we account for concerns about a lag-truncation bias.

Chari et al. (2008) show that it is particularly severe if long-run restrictions are imposed in

VAR models. Hence, we set L = 12 for our baseline specification. This value also ensures

that our residuals do not display autocorrelation, which is present for smaller values of L.20

We consider alternative specifications with fewer lags in our sensitivity analysis below.

Turning to identification, assume that Ỹt includes from top to bottom, the nowcast error,

labor productivity, and hours worked. Moreover, let εtecht denote a technology shock, εoptt

an optimism shock and εunlabt a third shock to which we do not attach any structural

interpretation (the “unlabeled shock”). We stack the shocks in the following vector:

εt =

 εtecht

εoptt

εunlabt

 , where ut = Bεt and Eεε′ = I. (4.2)

In order to identify matrix B, given estimates of matrices Ω and Ai, we impose three zero

restrictions on the impact matrix B and the long-run matrix A0:

B =

 ∗ ∗ 0

∗ ∗ ∗
∗ ∗ ∗

 , A0 ≡

(
I −

L∑
i=1

Ai

)−1

B =

 ∗ ∗ 0

∗ 0 ∗
∗ ∗ ∗

 . (4.3)

19See the discussion in Francis and Ramey (2005) and Gaĺı and Rabanal (2005). Below, we consider
alternative trend specifications to address the potential non-stationarity of the time series for hours worked.

20Here, we rely on a Lagrange-multiplier test (Johansen, 1995). Moreover, Monte Carlo evidence suggests
that a higher number of lags reduces the lag-truncation bias considerably (De Graeve and Westermark,
2013). Finally, also note that too parsimonious specifications risk underestimating the true dynamics of
the population process and are characterized by spuriously tight confidence intervals (Kilian, 2001).
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These restrictions are justified in light of the following considerations. First, the key to

our identification strategy is the assumption that—in line with theory—nowcast errors are

only due to either technology or optimism shocks, both in the short and the long run

(Corollary 1).21 Formally, this is captured by the upper-right elements of the matrices B

and A0. To appreciate the restriction on the long-run matrix A0, note that it constrains

the cumulative response of nowcast errors to the unlabeled shock to zero. In the model

developed above (Section 3), optimism and technology shocks impact nowcast errors in

a purely transitory way and, hence, by the same token, have a permanent effect on the

cumulative nowcast error. Other shocks impact neither the nowcast error on impact nor

the cumulative nowcast error. While, according to the model, the second result is an

immediate implication of the first one, this no longer holds in our VAR, as it features

richer dynamics. Hence, we restrict the response of the nowcast error in the short and in

the long run.

Second, the restriction on the impact matrix B boils down to assuming that the median

professional forecaster does not systematically misjudge the effect of structural disturbances

on the the economy and is generally able to detect them. In Section 2 we present evidence

that is consistent with this restriction: we find that structural shocks, except for TFP

shocks, do not affect nowcast errors. Still, as a practical matter, it is conceivable that

there are other structural shocks that are incorrectly measured by professional forecasters

and, hence, give rise to nowcast errors. Such shocks, however, are bound to induce—just

like technology shocks—a positive comovement of nowcast errors and economic activity.

To see this, consider a generic contractionary shock that is not fully observed. It depresses

economic activity and, at the same time, induces a negative nowcast error—growth turns

out to be lower than expected. Expansionary optimism shocks, by contrast, also induce

a negative nowcast error but boost economic activity (Proposition 2), a pattern which

consistently characterizes our results below. This reflects the specific nature of optimism

shocks: economic activity expands precisely because agents are too optimistic and, hence,

overestimate growth (which implies a negative nowcast error).

Third, we use a third restriction to tell technology and optimism shocks apart, namely

the zero restriction in the second row of the long-run matrix A0. We rule out a long-

run response of labor productivity to optimism shocks. Hence, we employ a somewhat

weaker assumption here than the commonly employed restriction that, in the long run,

labor productivity is driven by technology shocks only (see Gaĺı, 1999, and many others).

We merely restrict the long-run impact of optimism shocks on labor productivity to zero.

21In our sensitivity analysis below, we relax this assumption and permit other shocks to have effects on
the nowcast error.
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Figure 3: Impulse responses to one-standard-deviation shock under baseline identification.
Notes: Solid lines indicate point estimates; shaded areas 90%-confidence bounds obtained by
bootstrap sampling (1000 repetitions). Horizontal axes measure quarters. Vertical axes: percent-
age points in case of nowcast error; percentage deviations from pre-shock level otherwise.

4.2 Results

We compute impulse response functions on the basis of the estimated VAR model and

display results in Figures 3-5. In each figure, the top panels display the responses to a

technology shock, while the bottom panels show the responses to an optimism shock. In

each instance, the size of the shock corresponds to one standard deviation. Solid lines

represent the point estimate, while dashed lines indicate 90%-confidence bounds obtained

by bootstrap sampling. The rows in Figure 3 display the responses of the nowcast error,

output (implied by those of labor productivity and hours), and labor productivity. Here

and in the figures below, horizontal axes measure time in quarters, while vertical axes

measure deviations from the pre-shock level in percent (or in percentage points in the case

of the nowcast error).

A first important result is the joint response of the nowcast error and output to both struc-

tural shocks. While technology shocks induce a positive comovement of output and the

nowcast error, optimism shocks induce a negative comovement. Recall that the comove-

ment is unrestricted under our identification scheme. Yet, in line with the prediction of

the model developed in Section 3, we find that optimism shocks induce a negative nowcast
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Figure 4: Impulse responses to one-standard-deviation shock under baseline identification.
Notes: Solid lines indicate point estimates, shaded areas 90%-confidence bounds obtained by
bootstrap sampling (1000 repetitions). Horizontal axes measure quarters. Vertical axes: percent-
age points in case of nowcast error, percentage deviations from pre-shock level otherwise.

error and boost the level of economic activity at the same time. This finding is particularly

remarkable in light of the unconditional positive comovement of nowcast errors and output

(see Section 2). In our view, it lends additional support to our identification strategy.

The response of the nowcast error is short-lived, while the response of output to both shocks

is sizeable, hump-shaped and persistent. Comparing the response to technology shocks and

optimism shocks, we find that optimism shocks induce a weaker and shorter-lived response.

The response of output to optimism shocks, in particular, ceases to be significant after less

than two years, while the response to technology shocks is still significant after four years.

The third column shows the response of labor productivity. It increases in response to a

technology shock on impact, and particularly in the long run. Instead, labor productivity

remains basically flat after an optimism shock.

We display the responses of hours in the first column of Figure 4. They show a sharper,

hump-shaped pattern in response to the technology shock, but also increase in response to

the optimism shock. In the long run, they are back to the pre-shock level in both instances.

In order to flesh out the transmission mechanism of optimism shocks, we consider further

variables and include them in VAR model. To economize on the degrees of freedom, we add
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Figure 5: Impulse responses to one-standard-deviation shock under baseline identification.
Notes: Solid lines indicate point estimates, shaded areas 90%-confidence bounds obtained by
bootstrap sampling (1000 repetitions). Horizontal axes measure quarters. Vertical axes: percent-
age points in case of nowcast error, percentage deviations from pre-shock level otherwise.

variables sequentially and reestimate the resulting four-variable VAR in each instance.22

Results for consumption and investment are shown in Figure 4.23 We find that technol-

ogy and optimism shocks raise consumption and investment, although the effect is again

stronger and more persistent in the case of technology shocks.

The first column of Figure 5 shows the response of the consumer price index.24 We find

that technology shocks are weakly deflationary in the short run. Optimism shocks, instead,

induce a significant rise in the price level. They thus share important features of what

has been traditionally referred to as a “demand shock”. The second column of Figure 5

shows the response of stock prices in real terms.25 They increase strongly in response

to technology shocks, but also rise in response to optimism shocks. Finally, in the last

column, we show the response of a direct measure of total factor productivity (adjusted for

22We add the fourth variable in first differences of the natural logarithm. We rule out that the fourth
element in εt impacts contemporaneously any other variable but the one added to the VAR. These restric-
tions, however, are immaterial as we do not attach a structural interpretation to the fourth shock.

23Consumption is measured by real personal consumption expenditures and investment by real gross
private domestic investment, both obtained from the BEA.

24The consumer price index refers to all urban consumers and all items less energy (BLS).
25We consider quarterly averages of the S&P 500 Composite, deflated by the CPI index and divided by

the civilian non-institutional population provided by Datastream and the BLS, respectively.
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Table 3: Forecast error variance decomposition

Horizon Technology Optimism Unlab

Nowcast error 1 81.18 18.82 0.00
4 78.73 20.78 0.49

12 67.26 25.73 7.01
20 65.25 26.64 8.11

Output 1 52.63 11.60 35.77
4 60.09 14.54 25.36

12 69.35 8.030 22.62
20 71.08 6.927 21.99

Labor productivity 1 17.09 2.960 79.95
4 11.72 7.130 81.15

12 11.48 30.78 57.74
20 53.75 12.45 33.81

Hours 1 43.53 55.23 1.24
4 63.44 32.17 4.39

12 71.53 19.04 9.43
20 70.68 19.11 10.21

Notes: VAR model under baseline identification; each panel reports the
decomposition of the forecast error variance for the variable of interest
(in %), considering a forecast horizon of 1, 4, 12 and 20 quarters. Each of
the three right-most columns reports the contribution of one shock type.

the utilization of capital and labor; see Section 2). It displays a strong and lasting increase

after a technology shock but no significant reaction to optimism shocks in either the short

or the long run.

Overall, we consider the dynamics triggered by optimism shocks as plausible. Hence, we

turn to the question of to what extent optimism shocks are an autonomous source of

business cycle fluctuations. In order to gauge their contribution to economic fluctuations,

we compute a forecast error variance decomposition. Table 3 reports the results for the

variables of our baseline VAR model. Regarding the nowcast error (first panel), we find

that it is driven mostly by technology shocks. Still, optimism shocks account for about

one quarter of the forecast error variance. Technology shocks account for the bulk of
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fluctuations in output (second panel), yet optimism shocks also contribute substantially.

In the short run, their contribution amounts to about 15 percent. Technology shocks also

dominate optimism shocks as a driving force for variations in labor productivity in the

short run (third panel), while the opposite holds for hours (fourth panel).

Our findings are similar in magnitude compared with Blanchard et al. (2013). They esti-

mate a medium-scale DSGE model featuring “noise shocks”. These shocks are structurally

identical to optimism shocks as defined in the present paper and found to account for about

20 percent of short-run output volatility.26 Instead, Barsky and Sims (2012), estimating

a fully specified DSGE model by means of indirect inference methods, find that “animal

spirit” shocks account for almost none of the volatility of output. While their animal spirit

shock is conceptually closely related to optimism shocks, it is restricted to pertain to fu-

ture productivity (growth) only. Moreover, their analysis is centered around innovations in

consumer confidence as reported by the Michigan Survey of Consumers. They find these

innovations to reflect correctly anticipated future output growth, that is, according to their

estimates, confidence innovations represent news rather than undue optimism. Reassur-

ingly, once we include their time series of confidence innovations as an additional variable

in our VAR model, we find it to be driven mostly by innovations that are orthogonal to

optimism shocks.27

In a last step, we use the estimated VAR model to measure the contribution of opti-

mism and technology shocks to actual output fluctuations. Figure 6 represents a historical

decomposition of U.S. output fluctuations. The panels show the contribution of technol-

ogy shocks (top) and optimism shocks (bottom) to output growth (beyond the average).

Shaded areas indicate NBER recessions. According to our estimates, the role of optimism

shocks has been different in each of the three recessions. While the 1990–91 recession took

place against the backdrop of weak contributions of technology to output growth, our re-

sults are consistent with the notion that pessimism shocks may have triggered the recession

(Blanchard, 1993). At the same time, we observe that optimism contributed to the quick

26In a similar exercise, Hürtgen (2014) obtains a value of 14 percent. While conceptually distinct,
it might be noteworthy that the contribution of “noisy news” to the short-run fluctuations of output
amounts to some 50 percent, according to Forni et al. (2017). Angeletos et al. (2015) find that the single
most important business cycle shock contributes similarly to the business cycle (see Footnote 2 above).

27Specifically, we include the innovations as an additional variable in our baseline VAR. Retaining a just-
identified system, we identify a fourth shock that impacts only confidence innovations contemporaneously.
Computing a forecast error variance decomposition, we find that about 18 percent of the short-run variance
of confidence innovations is due to technology shocks, while another 78 percent is driven by the confidence-
specific shock. The optimism shock, however, accounts for less than 2 percent. Moreover, optimism shocks
have no significant impact on confidence innovations.
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Figure 6: Historical decomposition of output growth. Notes: Contribution of technology and
optimism shocks to the quarter-on-quarter growth rate of GDP. Shaded areas indicate NBER
recessions.

output recovery in the following years. Regarding the 2001 recession, there was apparently

no contribution of optimism shocks. Recall, however, that the recession was preceded by

the bust in U.S. equity markets in 2000—precisely at the time when pessimism was a ma-

jor drag on GDP growth. Turning to the Great Recession, we detect a very strong role

played by optimism. It contributed strongly to output growth in the run-up to the reces-

sion. From around 2007 onwards, the contribution started to decline and turned negative

precisely when the recession began. Importantly, the impact of pessimism remained strong

after the recession ended. Hence, in contrast to technology shocks, (undue) pessimism

played an important role in the sluggishness of the recovery after 2009.

4.3 Partial identification

In what follows, we assess to what extent our results are robust once we relax our identi-

fication restrictions. For this purpose, we consider three alternative sets of identification

restrictions. In each instance, rather than a unique structural model B, we obtain a set

of models that satisfy the restrictions (for further details, see, for instance, Kilian, 2013).

To account for parameter uncertainty, not only in terms of the structural model B but

also in terms of the reduced form, we re-estimate our VAR model using Bayesian tech-
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niques. Specifically, we estimate a Bayesian VAR (BVAR) model while entertaining a flat

Normal-Wishart prior.

In the first specification, we relax our identification restrictions on the response of the

nowcast error and rely merely on a “size restriction”. We no longer require the nowcast

error to respond only to technology shocks and optimism shocks. Rather, we permit it

to respond to other shocks as well—in both the short and the long run. Yet, for the

short run, we assume that both technology and optimism shocks impact nowcast errors

contemporaneously more strongly than any other shock.28 The response of the nowcast

error in the long run remains unrestricted, while the long-run response of labor productivity

to optimism shocks is still required to be zero. We refer to this identification scheme as

the “weakly restricted nowcast error” or “alternative identification I”.

In the second specification (“alternative identification II”), we maintain the short-run re-

striction that nowcast errors are only due to technology or optimism shocks (as in the base-

line identification scheme). However, we no longer impose long-run restrictions. Instead,

we restrict the sign of the impulse responses as in Uhlig (2005). In particular, we require

that positive optimism shocks increase economic activity, but less than contemporaneously

expected: they are restricted to induce a negative nowcast error and a non-negative GDP

response on impact. Positive technology shocks, on the other hand, are assumed to induce

a positive nowcast error and a non-negative GDP response, as they raise economic activity

beyond the expected level. As we restrict the output response under the sign restriction

scheme directly, we include GDP in the VAR model rather than hours worked.

Finally, we consider a specification which combines the long-run restriction on labor produc-

tivity in addition to the sign restrictions discussed in the previous paragraph (“alternative

identification III”). In this case we are able to relax the zero restriction on the nowcast

error. Hence, we permit other shocks besides disturbances to optimism and technology to

impact nowcast errors in any way.

In order to implement all three (partial) identification strategies, we draw from the un-

restricted posterior distribution of the BVAR parameters and retain all possible matrices

B that fulfill the set of identification restrictions. We rely on the procedure proposed by

Balleer and Enders (2012) to impose zero restrictions jointly with either the size or the

sign restrictions.29 This procedure considers the entire space of possible rotations for a

28Their contribution to the forecast error variance at horizon 1 is thus larger than those of other shocks.
That is, we require the coefficient determining the impact of the unlabeled shock on the nowcast error
in the matrix B to be smaller in absolute value than the corresponding entries for the technology and
optimism shocks.

29For each draw, we perform a lower-triangular Cholesky decomposition of the estimated variance-
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given zero restriction, placing equal weights on all admissible rotations that are associated

with a specific draw from the posterior distribution.30 It thus avoids imposing additional

and unintended restrictions, an issue highlighted by Arias et al. (2014).31

We compute impulse responses for all three identification schemes and report results in

Figure 7. In each case, the solid line corresponds to the median across all responses. The

shaded area is the highest-posterior-density interval, which covers a posterior probability

of 68 percent. The left panel shows results for the weakly restricted nowcast error (al-

ternative identification I). The right panel shows the results under the sign-restrictions

approach. The solid line depicts the median responses of the specification with no restric-

tion on the long-run response of labor productivity (alternative identification II). Shaded

areas correspond to the density intervals. The solid line with markers denotes the median

responses which does not impose a zero restriction on the impact response of the nowcast

error (alternative identification III).

In both panels, the left column shows the impulse responses to a technology shock while

the right column features the impulse responses to an optimism shock. Overall, results are

very similar to those obtained for the baseline identification scheme—not only qualitatively

but also quantitatively (see Figure 3). In sum, we find that our results are robust once we

consider somewhat weaker or alternative identification assumptions.

4.4 Further sensitivity analysis

We also conduct a number of experiments to explore the robustness of the results while

maintaining our baseline identification scheme. First, we consider alternative measures of

the nowcast error, as it is central to our identification strategy. Our baseline VAR model

is estimated on nowcast errors computed on the basis of first-release data for current GDP

growth. Results in Section 2 suggest that nowcast errors differ somewhat depending on the

release by the BEA. Hence, we reestimate the baseline VAR model on time-series for the

covariance matrix Ω. We then systematically rotate this matrix on a grid with 5,000 gridpoints, which
spans the entire admissible space that satisfies the short or long-run zero restrictions. For each gridpoint,
we check whether the resulting candidate matrix B satisfies the remaining restrictions. If it does, we
keep the draw. We repeat the whole procedure for each draw from the unrestricted posterior distribution
of the structural parameters of the BVAR until we have 100,000 responses that fulfill the identification
restrictions. In terms of VAR specification, we stick to the baseline. In the alternative without long-run
restrictions we estimate the VAR in levels.

30As Baumeister and Hamilton (2015) point out, it is generally impossible to place flat priors on all
coefficients of the impact matrix. As we lack evidence to generate reasonable prior distributions for most
of the elements in B, we simply opt for uniform distributions of the angles of our rotation matrix.

31These authors develop an alternative method by drawing from all possible rotation matrices while
ensuring that the admissible rotations obtain equal weights. Using their code yields results virtually
identical to those reported below.
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Figure 7: Impulse responses to technology and optimism shock under partial identification.
Notes: Left panel shows results for weakly restricted nowcast error (alternative identification I);
right panel shows results for identification based on sign restrictions. Solid lines display the
median response for specification without long-run restriction on labor productivity; shaded areas
indicate 68% highest-posterior-density intervals (alternative identification II). Solid lines with
markers display the median response of specification without short-run restriction on nowcast
error (alternative identification III). Horizontal axes measure quarters. Vertical axes: percentage
points in case of nowcast error; percentage deviations from pre-shock level otherwise.

nowcast error based, in turn, on the second and final release of the BEA. The left panel

of Figure 8 shows the results. The shaded area represents the confidence interval of the

baseline specification (first-release data), while the solid lines with markers represent the

alternative specifications. In both instances, we observe only minor differences relative to

the baseline specification.

Next, we show results for specifications where we vary the number of lags included in

the VAR model in the right panel of Figure 8. The shaded area represents again the

confidence interval of the baseline specification (12 lags). Lines with markers represent the

point estimates obtained for 4 and 8 lags, respectively. It turns out that results are similar

across specifications. The point estimates for the alternative specifications are included in

the confidence interval of the baseline in all instances.
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Figure 8: Impulse responses to technology and optimism shock under alternative model
specifications (baseline identification). Notes: Shaded areas indicate bootstrapped 90%-
confidence intervals of baseline specification (see Figure 3). Left: lines with ∗ ( ◦ ): point estimate
for model with nowcast error based on second-release (final) data rather than first-release data.
Right panel ∗ ( ◦ ): point estimate for model estimated on 4 (8) lags rather than 12 lags. Horizon-
tal axes measure quarters. Vertical axes: percentage points in case of nowcast error; percentage
deviations from pre-shock level otherwise.

We also investigate robustness with respect to alternative assumptions regarding the trend

in the time series for hours worked. This issue has received considerable attention in the

literature, as some studies found the trend specification to be crucial for the sign of the

response of hours worked to a technology shock. This is not the case in our setup, as

the left panel of Figure 9 illustrates. Here, as before, the shaded area corresponds to the

baseline specification (linear-quadratic trend), while lines with circles represent the point

estimate for a specification where hours enter in first differences and lines with asterisks

correspond to a specification with a linear time trend. We find once more that results are

not strongly affected by these modifications to the VAR setup, not only in the case of the

response of hours but also those of output and labor productivity.32 We also find that

results are not sensitive to whether hours worked and labor productivity correspond to the

entire business sector (baseline) or to the non-farm business sector (not shown).

32Not shown. In the difference specification, there is a permanent effect of optimism shocks on output
and hours. The long-run effects, however, are not significant.
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Figure 9: Impulse responses to technology and optimism shock under alternative model
specifications (baseline identification). Notes: Shaded areas indicate bootstrapped 90%-
confidence intervals of baseline specification (see Figure 3). Left: lines with ∗ ( ◦ ): point estimate
for model with hours linearly detrended (in first differences) rather than with linear quadratic
trend. Right panel ∗ ( ◦ ): point estimate for model estimated on data for 1968Q4–2014Q4
(1983Q1–2007Q4) rather than 1983Q1–2014Q4. Horizontal axes measure quarters. Vertical axes:
percentage points in case of nowcast error; percentage deviations from pre-shock level otherwise.

The right panel of Figure 9, in turn, contrasts results for different sample periods. The

shaded area represents the confidence interval for the baseline sample (1983Q1–2014Q4).

Lines with an asterisk represent results when the baseline VAR model is estimated on the

longest possible sample for which data are available (1968Q4–2014Q4); lines with circles

correspond to a sample where we drop observations for the financial crisis. Again, results

are fairly similar to those obtained for the baseline sample.

Finally, we explore to what extent results are robust once we consider a different sampling

frequency, because our identification strategy relies on assumptions regarding the available

information at the time forecasters are asked to predict current output growth. Specifically,

forecasters are assumed to have no information regarding current innovations in output

growth. Due to the frequency of releases of GDP data, our baseline VAR model is estimated

on quarterly observations. In order to construct an alternative monthly measure of the

nowcast error, we use data for industrial production and a survey of professional forecasters
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Figure 10: Impulse responses to technology and optimism shock, given monthly observa-
tions (baseline identification). Notes: Sample is 1996M10–2014M12; nowcast error based on
Bloomberg’s survey of professional forecasters for industrial production. Horizontal axes measure
months. Vertical axes: percentage points in case of nowcast error; percentage deviations from
pre-shock level otherwise.

by Bloomberg.33 Results are shown in Figure 10. They are in line with those obtained

for the baseline VAR model, despite considerable differences in the sample (1996M10–

2014M12), data frequency, and the measure of economic activity.

5 Conclusion

Are business cycle fluctuations caused by undue optimism and, if so, to what extent? In

this paper, we pursue a new approach to address this question. Barsky and Sims (2012) and

Blanchard et al. (2013) estimate fully specified DSGE models to quantify the importance

of “noise” or “undue optimism”. This approach is fairly restrictive as it imposes a lot of

specific restrictions on the data. Moreover, both studies reach quite different conclusions

as to the quantitative importance of optimism shocks. We therefore pursue an alternative,

33The Bloomberg survey forecasts have been available since 1996M10. We consider data up to 2014M12.
Since there is no time series for hours that corresponds directly to industrial production, we use the natural
logarithm of average weekly hours in manufacturing as reported by the BLS. We compute the growth rate of
labor productivity as the difference between the growth rates of the volume index of industrial production
in the manufacturing sector (source: Federal Reserve) and average weekly hours in manufacturing. We
estimate the VAR on 12 lags and a linear time trend.
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less restrictive approach based on a structural VAR model. Yet, as shown by Blanchard

et al. (2013), identifying the effects of optimism shocks within VAR models constitutes a

formidable challenge.

Our empirical strategy is based on an ex post informational advantage over market par-

ticipants. Namely, we compute nowcast errors regarding current output growth as the

difference between actual output growth and the median nowcast of the Survey of Profes-

sional Forecasters. Nowcast errors are a reduced-form measure of misperceptions, which

we show to respond systematically to innovations in total factor productivity. However, we

do not find them to be significantly affected by policy innovations or uncertainty shocks,

which are, to some degree, contemporaneously observable by market participants.

Drawing on Lorenzoni (2009), we put forward a stylized business cycle model that gives rise

to nowcast errors due to technology and optimism shocks, as agents do not observe output

contemporaneously. Shocks that are common information do not generate a nowcast error.

Importantly, we use this model to show that optimism shocks can be identified in a VAR

model that includes time-series data on nowcast errors.

We estimate our VAR model on U.S. time series for the period 1983Q1–2014Q4 and identify

unanticipated shocks to technology and optimism shocks by combining short and long-

run restrictions. Specifically, we assume for our baseline identification scheme that only

optimism shocks and technology shocks generate nowcast errors and that only technology

shocks impact labor productivity permanently. We find that, while both shocks raise

output persistently, their effect on the nowcast error differs. Technology shocks induce a

positive nowcast error, that is, growth turns out to be higher than expected. Optimism

shocks, on the other hand, induce a negative nowcast error, that is, growth turns out to

be lower than expected. After all, professional forecasters have been too optimistic in this

case.

According to the forecast error variance decomposition, the contribution of optimism shocks

to output fluctuations amounts to about 15 percent. This is a sizeable contribution. Still,

the fact that the unconditional correlation between the nowcast error and output growth

is positive also suggests that optimism shocks are not the major source of business cycle

fluctuations. By their very nature, optimism shocks induce a negative comovement of

nowcast errors and output growth. The fact that we uncover such a negative comovement

in our VAR framework conditional on optimism shocks lends plausibility to our approach

and makes us confident that we are indeed able to identify optimism shocks in actual

time-series data.
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Appendix

In Appendix B, we provide the proofs for Propositions 1-3 in Section 3. In a preliminary

step, we outline the model solution and key equilibrium relationships in Appendix A.

Throughout, we consider a linear approximation to the equilibrium conditions of the model.

Lower-case letters indicate percentage deviations from steady state.

A Model solution

We solve the model by backward induction. That is, we start by deriving inflation expec-

tations regarding period t+ 1. Using the result in the Euler equation of the third stage of

period t allows us to determine price-setting decisions during stage two. Eventually, we ob-

tain the short-run responses of aggregate variables to unexpected changes in productivity

or optimism shocks.

Expectations regarding period t + 1. Below, Ek,t stands for either Ej,l,t, referring to

the information set of producer j on island l at the time of her pricing decision, or for El,t,

referring to the information set of the household on island l at the time of its consumption

decision. Variables with only time subscripts refer to economy-wide values. The wage in

period t+ 1 is set according to the expected aggregate labor supply

Ek,tϕlt+1 = Ek,t(wt+1 − pt+1 − ct+1).

This equation is combined with the aggregated production function

Ek,tyt+1 = Ek,t(xt+1 + αlt+1),

the expected aggregate labor demand

Ek,t(wt+1 − pt+1) = Ek,t[xt+1 + (1− α)lt+1],

and market clearing yt+1 = ct+1 to obtain Ek,txt+1 = Ek,tyt+1 = Ek,tct+1. Furthermore, the

expected Euler equation, together with the Taylor rule, is

Ek,tct+1 = Ek,t(ct+2 + πt+2 − ψπt+1).
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Agents expect the economy to be in a new steady state tomorrow (Ek,tct+1 = Ek,tct+2),

given the absence of state variables other than technology, which follows a unit root process.

Ruling out explosive paths yields

Ek,tπt+2 = Ek,tπt+1 = 0.

Stage three of period t. After prices are set, each household observes n prices in the

economy. Since the productivity signal is public, the productivity level aj,l,t = al,t—which

is the same for all producers j ∈ [0, 1] on island l—can be inferred from each price pj,l,t of

the good from producer j on island l. Hence, household l forms its expectations about the

change in aggregate productivity according to

El,t∆xt = ρhxst + δhx âl,t,

where âl,t is the average over the realizations of am,t−xt−1 for each location m in household

l’s sample. The coefficients ρhx and δhx are equal across households and depend on n, σ2
e , σ

2
ε ,

and σ2
η in the following way:

ρhx =
σ2
η/n

σ2
e + σ2

η/n+
σ2
eσ

2
η/n

σ2
ε︸ ︷︷ ︸

→0 if n→∞

, δhx =
σ2
e

σ2
e + σ2

η/n+
σ2
eσ

2
η/n

σ2
ε︸ ︷︷ ︸

→1 if n→∞

. (A.1)

Producers, on the other hand, only observe the signal and their own productivity. They

thus form expectations according to

Ej,l,t∆xt = ρpxst + δpx(al,t − xt−1),

with

ρpx =
σ2
η

σ2
e + σ2

η +
σ2
ησ

2
e

σ2
ε

δpx =
σ2
e

σ2
e + σ2

η +
σ2
ησ

2
e

σ2
ε

,

such that δhx > δpx because of the higher information content of households’ observations.

Consumption follows an Euler equation with household-specific inflation, as only a subset

of goods is bought. Agents expect no differences between households for t + 1, such

that expected aggregate productivity and the overall price level impact today’s individual
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consumption. Also using El,tpt+1 = El,tpt and El,txt+1 = El,txt gives

cl,t = El,txt + El,tpt − pl,t − rt. (A.2)

Similar to the updating formula for technology estimates, households use their available

information to form an estimate about the aggregate price level pt according to

El,tpt = ρhpst + δhp âl,t + κhpwt + τhp xt−1 − ηhprt. (A.3)

Combining the above gives

cl,t = (1 + τhp )xt−1 + ρhxpst + δhxpâl,t + κhpwt − (1 + ηhp )rt − pl,t, (A.4)

where ρhxp = ρhx + ρhp and δhxp = δhx + δhp . We will solve for the undetermined coefficients

below.

Stage two of period t. During the second stage, firms obtain idiosyncratic signals

about their productivity. In the following, the index p̃l,t is the average price index of

customers visiting island l. If customers bought on all (that is, infinitely many) islands in

the economy, p̃l,t would correspond to the overall price level. Since consumers only buy on

a subset of islands, the price of their own island has a non-zero weight in their price index,

which is taken into account further below. Firms set prices according to

pj,l,t = wt +
1− α
α

Ej,l,tyj,l,t −
1

α
al,t

≡ k′ + k′1Ej,l,tp̃l,t + k′2Ej,l,tyt − k′3al,t,

with

k′ =
α

α + γ(1− α)
wt k′1 =

γ(1− α)

α + γ(1− α)
k′2 =

1− α
α + γ(1− α)

k′3 =
1

α + γ(1− α)
.

(A.5)

From here onwards, expressions that are based on common knowledge only (such as k′) are

treated like parameters in notation terms, i.e. they lack a time index. This facilitates the

important distinction between expressions that are common information and those that

are not. Evaluating the expectation of firm j about aggregate output in period t, given
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equation (A.4), results in

Ej,l,tyt =κh + ρhxpst + δhxpEj,l,t

(
1

n
al,t +

n− 1

n
Ej,l,txt − xt−1

)
−
(

1

n
pj,l,t +

n− 1

n
Ej,l,tpt

)
,

where κh = (1 + τhp )xt−1 − (1 + ηhp )rt + κhpwt contains only publicly available information.

Furthermore, it is taken into account that the productivity of island l has a non-zero

weight in the sample of productivity levels observed by consumers visiting island l. Note

that producers still take the price index of the consumers as given, since they buy infinitely

many goods on the same island. Inserting the above into the pricing equation (A.5) yield

(here, pt is the average of the prices charged by producers of all other islands, which is the

overall price index as there are infinitely many locations)

pj,l,t ≡k + k1Ej,l,tpt + k̃st − k3al,t,

with

Ξ = 1− 1

n
(k′1 − k′2) k =

1

Ξ

{
k′ + k′2κ

h +
k′2δ

h
xp

n
[(n− 1)(1− δpx)− 1]xt−1

}
(A.6)

k1 =
n− 1

nΞ
(k′1 − k′2) k̃ =

k′2
Ξ

(
ρhxp + δhxpρ

p
x

n− 1

n

)
k3 =

1

Ξ

{
k′3 +

k′2δ
h
xp

n
[(n− 1)δpx − 1]

}
.

Note that, according to (A.5), 0 < k′1 − k′2 < 1 because 0 < α < 1 and γ > 1. Using the

definition of k1 in (A.6), this implies (observe that n > 1)

0 < k1 < 1.

Aggregating over all producers gives the aggregate price index

pt = k + k1Etpt + k̃st − k3xt,

where
∫
al,tdl = xt, and Etpt =

∫∫
Ej,l,tpt djdl is the average expectation of the price level.

The expectation of firm j of this aggregate is therefore

Ej,l,tpt = k + k̃st − k3Ej,l,txt + k1Ej,l,tEtpt

= k +
(
k̃ − k3ρ

p
x

)
st − k3δ

p
xal,t − k3(1− δpx)xt−1 + k1Ej,l,tEtpt. (A.7)
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Inserting the last equation into (A.6) gives

pj,l,t = k + k1k − k1k3(1− δpx)xt−1 +
[
k̃ + k1

(
k̃ − k3δ

p
x

)]
st − (k3 + k1k3δ

p
x) a

j
t + k2

1Ej,l,tEtpt.

To find Ej,l,tEtpt, note that firm j’s expectations of the average of (A.7) are

Ej,l,tEtpt = k − k3(1− δpx)(1 + δpx)xt−1 +
(
k̃ − k3ρ

p
x − k3δ

p
xρ

p
x

)
st − k3δ

p
x

2al,t + k1Ej,l,tE
(2)

t pt,

where E
(2)

is the average expectation of the average expectation. The price of firm j is

found by plugging the last equation into the second-to-last:

pj,l,t =
(
k + k1k + k2

1k
)
−
[
k1k3(1− δpx) + k2

1k3(1− δpx)(1 + δpx)
]
xt−1

+
[
k̃ + k1

(
k̃ − k3ρ

p
x

)
+ k2

1

(
k̃ − k3ρ

p
x − k3δ

p
xρ

p
x

)]
st

−
(
k3 + k1k3δ

p
x + k2

1k3δ
p
x

2
)
al,t + k3

1Ej,l,tE
(2)
pt.

Continuing like this results in some infinite sums

pj,l,t =k
(
1 + k1 + k2

1 + k3
1 . . .

)
− k1k3(1− δpx)

[
1 + k1(1 + δpx) + k2

1(1 + δpx + δpx
2) + k3

1(1 + δpx + δpx
2 + δpx

3 . . .)
]
xt−1

+
[
k̃ + k1

(
k̃ − k3ρ

p
x

)
+ k2

1

(
k̃ − k3ρ

p
x − k3δ

p
xρ

p
x

)
+ k3

1

(
k̃ − k3ρ

p
x − k3ρ

p
xδ
p
x − k3ρ

p
xδ
p
x

2
)

+ . . .
]
st

− k3

(
1 + k1δ

p
x + k2

1δ
p
x

2 + k3
1δ
p
x

3 . . .
)
al,t + k∞1 Ej,l,tE

(∞)
pt.

For the terms in the third line, we have

k̃ + k1

(
k̃ − k3ρ

p
x

)
+ k2

1

(
k̃ − k3ρ

p
x − k3δ

p
xρ

p
x

)
+ k3

1

(
k̃ − k3ρ

p
x − k3ρ

p
xδ
p
x − k3ρ

p
xδ
p
x

2
)

+ k4
1

(
k̃ − k3ρ

p
x − k3ρ

p
xδ
p
x − k3ρ

p
xδ
p
x

2 − k3ρ
p
xδ
p
x

3
)
. . .

=k̃(1 + k1 + k2
1 + k3

1 . . .)−
(
k1k3ρ

p
x + k2

1k3ρ
p
x + k3

1k3ρ
p
x . . .

)
−
(
δpxk

2
1k3ρ

p
x + δpxk

3
1k3ρ

p
x + δpxk

4
1k3ρ

p
x . . .

)
−
(
δpx

2k3
1k3ρ

p
x + δpx

2k4
1k3ρ

p
x + δpx

3k5
1k3ρ

p
x . . .

)
. . .

=k̃(1 + k1 + k2
1 + k3

1 . . .)− k1k3

(
ρpx

1− k1

+
ρpxδ

p
xk1

1− k1

+
ρpxδ

p
x

2k2
1

1− k1

. . .

)
=

k̃

1− k1

− k1k3ρ
p
x

1− k1

(
1 + δpxk1 + δpx

2k2
1 . . .

)
=

k̃

1− k1

− k1k3ρ
p
x

(1− k1)(1− δpxk1)
.
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Proceeding similarly with the terms in the other lines results in

pj,l,t =
k

1− k1

−k1(1− δpx)
1− k1

k3

1− k1δ
p
x
xt−1+

1

1− k1

(
k̃ − ρpx

k1k3

1− k1δ
p
x

)
st−

k3

1− k1δ
p
x
al,t+k

∞
1 E

(∞)

t︸ ︷︷ ︸
→0

pt.

Setting idiosyncratic technology shocks equal to zero in order to track the effects of aggre-

gate shocks and observing that all firms then set the same price gives

pt ≡ k̄1 + k̄2st + k̄3xt,

with

k̄1 =
1

1− k1

[
k − (1− δpx)

k1k3

1− k1δ
p
x
xt−1

]
k̄2 =

1

1− k1

(
k̃ − ρpx

k1k3

1− k1δ
p
x

)
k̄3 = − k3

1− k1δ
p
x
.

(A.8)

To arrive at qualitative predictions for the impact of the structural shocks εt and et on

output growth and the nowcast error, we need to determine the sign and the size of k̄3.

Note that, according to (A.6),

−k3 =δhxp
k′2 − nk′3/δhxp + k′2(n− 1)δpx

n− (k′1 − k′2)
,

where the first part of the numerator can be rewritten, by observing (A.5), as

k′2 − nk′3/δhxp =
1− n/δhxp − α
α + γ(1− α)

.

Using (A.5) and (A.6) thus yields

−k3 = δhxp
(1− α)[(n− 1)δpx + 1]− n/δhxp

(n− 1)[α + γ(1− α)] + 1
.

Plugging this into the definition of k3 in (A.8) gives

k3 = δhxp

(1−α)[(n−1)δpx+1]−n/δhxp
(n−1)[α+γ(1−α)]+1

1− δpx (n−1)(γ−1)(1−α)
(n−1)[α+γ(1−α)]+1

.

To obtain δhxp = δhx + δhp , we need to find the undetermined coefficients of equation (A.3).
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Start by comparing this equation with household l’s expectation of equation (A.8):

El,tpt = k1 + k3xt−1︸ ︷︷ ︸
κhpwt+τ

h
p xt−1−ηhp rt

+
(
k2 + k3ρ

h
x

)︸ ︷︷ ︸
ρhp

st + k3δ
h
x︸︷︷︸

δhp

âl,t. (A.9)

Hence, δhxp = δhx(1 + k3). Inserting this into the above expression for k3 yields

k3 ≡−
n/Υ− δhxΨ

Φ− δhxΨ
, (A.10)

with

Υ = (n− 1)[α + γ(1− α)] + 1 > 0 Ψ =(1− α)[(n− 1)δpx + 1]/Υ > 0

Φ = 1− δpx(n− 1)(γ − 1)(1− α)/Υ.

The signs obtain because n > 1, 0 < α < 1, δpx > 0, and γ > 1. Observe that ΨΥ < n

because δpx ≤ 1. Hence, n/Υ− δhxΨ > 0 because

n− δhx︸︷︷︸
>0,<1

ΨΥ︸︷︷︸
<n

> 0,

implying that the numerator of (A.10) is positive. Turning to the denominator Φ − δhxΨ,

observe that Φ − Ψ > 0. The denominator of (A.10) is therefore positive as well, and we

have k3 < 0. Next, consider that n/Υ < Φ and we obtain

−1 < k3 < 0.

This is a key result for the derivation of Propositions 1-3; see Appendix B. Multiplying

the nominator and the denominator of the fraction in equation (A.10) by Υ and rewriting

gives the expression used in Proposition 1.

Stage one of period t As information sets of agents are perfectly aligned during stage

one, we use the expectation operator Et to denote (common) stage-one expectations in

what follows. Combining the results regarding expectations about inflation in period t+ 1

with the Euler equation, the Taylor rule, and the random-walk assumption for xt gives

Etyt = Etxt − ψEtπt.
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Remember that the monetary policy shock emerges after wages are set. Its expected value

before wage-setting is zero. Using Etxt = Etyt (which results from combining labor supply

and demand with the production function), we obtain

Etπt = 0.

Nominal wages are set in line with these expectations. We thus have determinacy of

the price level. The central bank also expects zero inflation in the absence of monetary

policy shocks. To find the effects of monetary policy shocks on the interest rate, including

feedback effects via changes in expected inflation, note that, according to equation (A.9),

k1 + k3xt−1 = κhpwt + τhp xt−1 − ηhprt,

where, observing equations (A.5), (A.6), and (A.8),

k1 =
1

(1− k1)Ξ

[
α

α + γ(1− α)
+ k′2κ

h
p

]
wt −

k′2(1 + ηhp )

(1− k1)Ξ
rt

+
1

(1− k1)Ξ

{
k′2(1 + τhp ) + k′2δ

h
xp

[
n− 1

n
(1− δpx)− 1

]
− (1− δpx)k1k3Ξ

1− k1δ
p
x

}
xt−1.

We can hence determine the coefficient ηhp as

−ηhp =
k′2(1 + ηhp )

(1− k1)Ξ
=
α− 1

α
,

which is the impact of rt on the price level. To finally determine the response of rt, use

this insight in the Taylor rule, resulting in

rt = ψ
α− 1

α
rt + νt =

α

α + ψ(1− α)
νt. (A.11)
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B Proofs

Proof of Proposition 1 Aggregating individual Euler equations (A.2) over all individ-

uals, using (A.8), (A.9), and (A.11), gives

yt =El,txt + El,tpt − pt − rt

=xt−1 + ρhx(1 + k3)st +
[
δhx + k3(δhx − 1)

]
εt −

α

α + ψ(1− α)
νt (B.1)

=xt−1 + ρhx(1 + k3)︸ ︷︷ ︸
>0

et +
[
δhx + ρhx − k3(1− δhx − ρhx)

]︸ ︷︷ ︸
>0

εt−
α

α + ψ(1− α)︸ ︷︷ ︸
<0

νt,

where 1 − δhx − ρhx > 0 because of (A.1). Note that, if households have full information

(n→∞), we get ρhx → 0 and δhx → 1. Defining Ω ≡ −k3, we can write

yt = xt−1 + ρhx(1− Ω)et +
[
(δhx + ρhx)(1− Ω) + Ω

]
εt −

α

α + ψ(1− α)
νt.

The signs indicated above result from 0 < Ω = −k3 < 1 (derived in Appendix A), com-

pleting the proof. �

Proof of Proposition 2 Now consider the nowcast error, where expectations are either

those of households or producers, that is, Ek,t substitutes for either Ej,l,t or El,t, and ρk, δk

correspondingly for ρp, δp or ρh, δh. Taking expectations of equation (B.1) gives

Ek,tyt =xt−1 + ρhx
(
1 + k3

)
st +

[
δhx + k3(δhx − 1)

]
Ek,tεt − rt

=xt−1 +
{
ρhx(1 + k3) + [δhx + k3(δhx − 1)]ρkx

}
st +

[
δhx + k3(δhx − 1)

]
δkxεt − rt.

yt − Ek,tyt =− ρkx
[
δhx + k3(δhx − 1)

]
st +

[
δhx + k3(δhx − 1)

]
(1− δkx)εt

=−ρkx
[
δhx + k3(δhx − 1)

]︸ ︷︷ ︸
<0

et +
[
δhx + k3(δhx − 1)

]︸ ︷︷ ︸
>0

(1− δkx − ρkx)︸ ︷︷ ︸
>0

εt,

or

yt − Ek,tyt = −ρkx
[
δhx(1− Ω) + Ω

]
et +

[
δhx(1− Ω) + Ω

]
(1− δkx − ρkx)εt.
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The fact that 0 < −k3 < 1 allows us to determine the signs of the effects of the shocks on

the nowcast error. �

Proof of Proposition 3 The model can be written in the following state-space system:

X̃t+1 = CX̃t +DṼt

Ỹt = FX̃t +GṼt,

with Ỹt and Ṽt defined in the main text, C = 0, D = I3, and

F =

 0 0 0
Ω−1
α

(1− α)(1− ρhx − δhx) 1−Ω
α
ρhx(1− α) α−1

α+ψ(1−α)

0 0 0



G =


[
δhx(1− Ω) + Ω

]
(1− δkx − ρkx) −ρkx

[
δhx(1− Ω) + Ω

]
0

Ω + 1−Ω
α

[
1− (1− α)(ρhx + δhx)

]
α−1
α
ρhx(1− Ω) 1−α

α+ψ(1−α)
(Ω−1)
α

(1− δhx − ρhx) 1−Ω
α
ρhx

−1
α+ψ(1−α)

 .
The dynamics of the model can then be represented by the following VAR (see Fernández-

Villaverde et al. 2007 for details):

Ỹt+1 = F
∞∑
j=0

(C −DG−1F )jDG−1Ỹt−j +GṼt+1 = F
∞∑
j=0

(−G−1F )jG−1Ỹt−j +GṼt+1.

The matrix FG−1 results as

FG−1 =

 0 0 0

0 0 1− α
0 0 0

 ,
such that

FG−1FG−1 = 0
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and we obtain the final VAR(1) representation34

Ỹt+1 = FG−1︸ ︷︷ ︸
≡A

Ỹt + G︸︷︷︸
≡B

Ṽt+1.

�

Proof of Corollary 1 Using the equations derived in the proof of Proposition 3, the

long-run impact matrix—showing the effect of the shocks on the accumulated variables—

can be calculated as (I3 − FG−1)
−1
G, that is

 1 0 0

0 1 1− α
0 0 1



[
δhx(1− Ω) + Ω

]
(1− δkx − ρkx) −ρkx

[
δhx(1− Ω) + Ω

]
0

Ω + 1−Ω
α

[
1− (1− α)(ρhx + δhx)

]
α−1
α
ρhx(1− Ω) 1−α

α+ψ(1−α)
(Ω−1)
α

(1− δhx − ρhx) 1−Ω
α
ρhx

−1
α+ψ(1−α)


=

 ∗ ∗ 0

1 0 0

∗ ∗ ∗

 ,
where asterisks represent non-zero elements. The middle row captures the long-run impact

of the shocks on the level of labor productivity, as labor productivity enters in first differ-

ences. The short-run impact of νt on the nowcast error equals the upper-right entry of G;

it is zero. �

34Note that the “poor man’s invertibility condition” of Fernández-Villaverde et al. (2007) is satisfied as
the matrix −G−1F has rank one and therefore, at most, one non-zero eigenvalue. The trace equals zero,
such that all eigenvalues are zero and hence strictly less than unity.
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C Monte Carlo assessment of the VAR
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Figure C.1: Impulse responses to one-standard-deviation shock under baseline identifica-
tion: model vs. estimation (Monte Carlo). Notes: Black line represents true response; sample
comprises 128 (blue dashed-dotted line) or 1000 (red dashed line) observations, both lines are
medians over 100 point estimates each. VAR specification as in baseline (see Section 4), without
trend and seasonal dummies. Model corresponds to dispersed-information setup of Lorenzoni
(2009), with interest-rate shock added to the Taylor rule (volatility set according to estimates by
Smets and Wouters 2007).
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