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Abstract 

 
In impulse response analysis estimation uncertainty is typically displayed by constructing 
bands around estimated impulse response functions. These bands may be based on frequentist 
or Bayesian methods. If they are based on the joint distribution in the Bayesian framework or 
the joint asymptotic distribution possibly constructed with bootstrap methods in the 
frequentist framework often individual confidence intervals or credibility sets are simply 
connected to obtain the bands. Such bands are known to be too narrow and have a joint 
confidence content lower than the desired one. If instead the joint distribution of the impulse 
response coefficients is taken into account and mapped into the band it is shown that such a 
band is typically rather conservative. It is argued that a smaller band can often be obtained by 
using the Bonferroni method. While these considerations are equally important for 
constructing forecast bands, we focus on the case of impulse responses in this study. 
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1 Introduction

The problem of constructing frequentist confidence bands or Bayesian credi-
ble sets around impulse responses of structural VAR processes is discussed ex-
tensively in the literature (see, e.g., Sims and Zha (1999), Staszewska (2007),
Jordà (2009), and Lütkepohl, Staszewska-Bystrova and Winker (2013)). A
recent Bayesian proposal is due to Inoue and Kilian (2013). They suggest
constructing a credible set with a preassigned probability, say 1−γ, based on
the posterior of the VAR coefficients and map that into a credible set for the
impulse responses by considering all impulse response functions correspond-
ing to the parameter values within the credible set for the VAR parameters.

It is pointed out in a number of studies that simply connecting individual
confidence intervals with the desired confidence level does not result in a band
with a preassigned confidence level but will result in a band that is too narrow
and contains the true impulse response function with probability less than
the desired confidence level in a frequentist framework or likewise a Bayesian
error band with posterior probability less than the posterior probability of
the individual credible sets. Thus, the problem arises how to construct bands
containing the true impulse response function with a preassigned probability.

In a frequentist framework one could construct an asymptotically valid
confidence set for the estimated VAR parameters for a given confidence level
1 − γ based on the Wald statistic. One could then consider the band that
includes all impulse responses associated with VAR parameters within the
Wald confidence set. Such a strategy leads in fact to conservative error bands
for the impulse responses because the latter are constructed by considering
the area between the minimum and the maximum of the impulse responses
in the confidence set for each propagation horizon. To better understand
this procedure let us consider just two impulse response coefficients jointly.
Constructing the confidence band for the two impulse responses amounts
to considering all impulse responses in a box that contains all points cor-
responding to VAR parameters in the Wald confidence set. Since impulse
responses are nonlinear functions of the VAR parameters, the image of the
VAR parameters will not be a box in the impulse response space but some
other subset in the plane. Hence, the box might contain also other values
than those in the confidence set corresponding to the Wald confidence set for
the VAR parameters and, consequently, it is a conservative set. We show that
such a confidence box may even have considerably more probability content
than a set constructed according to the standard Bonferroni principle.

The same features arise in Bayesian estimation which is nowadays often
used for VAR analysis. In a proper Bayesian analysis the joint posterior
distribution of the impulse responses of interest can be constructed. This
distribution can then be used to derive a credible set with preassigned prob-
ability 1−γ. Then the question arises, however, how to map that set into an
error band for the impulse responses that can be plotted in the usual way.
The standard method appears to correspond to drawing a box around the
credible set. Strictly speaking the Bayesian set may not even be dense in a
higher dimensional Euclidean space (see Inoue and Kilian (2013)). However,
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even then the interpretation of the impulse responses is often linked to a band
that covers the full set of impulse response functions between the boundaries
of the credible set. In that case, using arguments based on the Bonferroni
inequality may result in smaller bands and, hence, more precise inference.

In this study we focus on a frequentist setting because it simplifies the
discussion from our point of view and allows for a more rigorous evaluation
of some of our methods. For Bayesians it should be apparent how to use
analogous arguments and adjustments to their procedures to improve their
inference.

In the following we first formally compare Wald and Bonferroni confidence
bands for impulse responses. We demonstrate that in a standard setting a
frequentist confidence band (or a Bayesian error band) around impulse re-
sponses constructed with Bonferroni’s method may be smaller than the cor-
responding set obtained by drawing a box around the confidence region or
credible set of parameter estimates obtained via the Wald statistics and pro-
jected into the impulse response space. While both methods are conservative,
we show that Bonferroni typically results in smaller error bands than using
the Wald statistic. We conclude that studies constructing error bands based
on the Wald statistic should be reconsidered. We also point out adjustments
to both Bonferroni and Wald bands that result in more precise and at the
same time smaller bands than the unadjusted, conservative methods. Since
we have to rely on asymptotic arguments in a frequentist setting, a small
sample simulation experiment is carried out to study the small sample im-
plications of our asymptotic results. We also illustrate the methods by a
structural VAR analysis of the market for crude oil from Kilian (2009) and a
monetary economic system from Uhlig (2005). The examples show that the
method for constructing impulse responses is important in practice because
alternative methods may lead to different conclusions.

The problem of constructing confidence bands also occurs in forecasting
where often a sequence of different forecast horizons is of interest. Construct-
ing confidence ellipsoids based on the Wald statistic has been discussed in the
literature for joint forecast regions (see, e.g., Lütkepohl (2005, Sec. 2.2.3),
Kim (1999), Kim (2004), Grigoletto (2005)). In this literature the ellipsoids
are obtained for the forecasts, that is, the objects of direct interest. Even
then, if a plot of a forecast band is needed the same problem occurs and the
analysis of the present study becomes relevant in that context as well. We
leave a detailed analysis of the specific issues related to forecasting to future
work.

The structure of this study is as follows. In the next section the Wald
and Bonferroni bands are first reviewed and compared in a general but ide-
alized setting based on a normal distribution assumption for the parameter
estimators. The advantage of using such an idealized setting is that precise
results can be obtained. Then the bands are placed in a more realistic set-
ting where only asymptotic normality is obtained in a frequentist framework.
Impulse response analysis for structural vector autoregressive (VAR) models
is considered as a specific area where the results are relevant. In Section 3 a
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Monte Carlo investigation of error bands for impulse responses is presented
and examples are considered in Section 4. Section 5 concludes.

2 Confidence Bands for Functions of Param-

eters

For simplicity we present the procedure in an idealized setting first and then
present the more realistic version that is relevant in practice.

2.1 The Idealized General Procedures

Consider a (G× 1) parameter vector θ and a normally distributed estimator
θ̂ such that

θ̂ ∼ N (θ,Σθ), (2.1)

where Σθ is a nonsingular (G × G) covariance matrix that we assume to be
known for the moment. Suppose we are interested in a (M×1) vector φ(θ) =
(φ1(θ), . . . , φM(θ))′ that is a function of θ and we would like to construct a
1− γ confidence or error band for φ(θ). Then, the following procedures can
be used.

For the first approach, let χ2(G)1−γ be the 1 − γ quantile of a χ2 distri-
bution with G degrees of freedom. Then, the set

Wθ
1−γ = {θ|W = (θ̂ − θ)′Σ−1θ (θ̂ − θ) ≤ χ2(G)1−γ}. (2.2)

is a 1− γ confidence set for θ based on the Wald statistic W . It contains the
true parameter vector with probability 1 − γ in a repeated sampling sense.
Hence, the set

Wφ(θ)
1−γ = {φ(θ)|θ ∈ Wθ

1−γ} (2.3)

is an exact 1−γ confidence set for φ(θ) if the function is one-to-one or it has
at least 1− γ confidence level if the function φ(·) is not one-to-one.

If φ(θ) is more than 3-dimensional, plotting the confidence set Wφ(θ)
1−γ is

not practical and usually one plots a band around the elements of φ(θ). In

other words, instead of Wφ(θ)
1−γ we choose

lm = min{φm(θ)|θ ∈ Wθ
1−γ}

and

um = max{φm(θ)|θ ∈ Wθ
1−γ}

for m = 1, . . . ,M , and use

Wband
1−γ = [l1, u1]× · · · × [lM , uM ] (2.4)
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as an error band. Clearly,

Pr[φ(θ) ∈ Wband
1−γ ] ≥ Pr[φ(θ) ∈ Wφ(θ)

1−γ ] ≥ 1− γ.

Hence, the Wald error band Wband
1−γ is generally conservative.

Alternatively, we may construct an error band using Bonferroni’s princi-
ple. In that case the band is constructed for the individual elements of φ(θ)
by ignoring any information on a possible dependence between the elements.
The approach is to construct a 1−γ/M confidence interval for each element.
Thus, the Bonferroni band is

B1−γ = [L1, U1]× · · · × [LM , UM ], (2.5)

where, for m = 1, . . . ,M , Lm and Um are the γ/2M and 1− γ/2M quantiles
of the distribution of φm(θ̂), respectively. It is well-known that

Pr[φ(θ) ∈ B1−γ] ≥ 1− γ.

Hence, the band is also conservative. It may be worth emphasizing that
equality does not even hold and, hence, the band is conservative, if the
elements of φ(θ̂) are stochastically independent.

Because the Bonferroni error band is based on the marginal distributions
of the components of φ(θ̂) only and ignores any stochastic dependence, the
band can in fact be rather conservative. This problem was pointed out by a
number of authors in the past (e.g., Lütkepohl et al. (2013)). Since the Wald
statistic fully utilizes the joint dependence, it appears useful to compare the
Wald and the Bonferroni bands. Before we do so systematically in more
generality, it is instructive to focus on a very special case.

Consider a bivariate vector θ and the identity transformation, that is,
φ(θ) = θ. Moreover, suppose that the variances are unity so that

Σθ =

[
1 ρ
ρ 1

]
.

In that case the Wald statistic in (2.2) becomes

W = [(θ̂1 − θ1)2 + 2ρ(θ̂1 − θ1)(θ̂2 − θ2) + (θ̂2 − θ2)2]/(1− ρ2)

and the corresponding confidence set Wφ(θ)
1−γ is an ellipse that depends on the

correlation ρ and the confidence level 1 − γ. Of course, a circle is obtained
for ρ = 0. The corresponding Wald confidence bands Wband

1−γ are obtained as
squares or boxes that fully cover the ellipses.

In contrast, the Bonferroni confidence bands are

B1−γ = [θ̂1 − c1−γ/4, θ̂1 + c1−γ/4]× [θ̂2 − c1−γ/4, θ̂2 + c1−γ/4],

where cη is the η × 100% quantile of a standard normal distribution. In this
case Wband

1−γ is larger than B1−γ. Thus, the Bonferroni confidence band can
well be smaller than the band based on the Wald statistic.
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Table 1: Relative Widths of Bonferroni and Wald Confidence Boxes for In-
dependent iid N (0, 1) Variables

Confidence level
1− γ = 0.68 1− γ = 0.90

M B1−γ Wband
1−γ B1−γ Wband

1−γ
2 1.0369 1.1140 1.0057 1.1012
3 1.0395 1.2064 1.0066 1.1827
4 1.0387 1.2857 1.0068 1.2528
5 1.0375 1.3561 1.0068 1.3153
6 1.0363 1.4200 1.0067 1.3720
7 1.0352 1.4787 1.0066 1.4243
8 1.0343 1.5333 1.0065 1.4731
9 1.0334 1.5845 1.0064 1.5188

10 1.0326 1.6329 1.0064 1.5621
15 1.0298 1.8433 1.0060 1.7513
20 1.0279 2.0188 1.0057 1.9098
30 1.0255 2.3091 1.0054 2.1732
40 1.0239 2.5501 1.0051 2.3929
50 1.0228 2.7598 1.0050 2.5846

To assess the magnitude of the differences between the Wald and Bon-
ferroni boxes, let us consider the case of independent components of the
M -dimensional vector θ̂ with covariance matrix IM . For this case we can
determine a precise confidence box with confidence level exactly 1− γ. Such
a precise box is obtained if individual confidence intervals with confidence
level 1 − γind are chosen with γind = 1 − (1 − γ)1/M . For this choice we get
(1− γind)M = 1− γ. A precise confidence box has width 2× c1−γind/2, while
the width of the Bonferroni box is 2 × c1−γ/2M and the width of the Wband

1−γ
box is 2×

√
χ2(M)1−γ.

Examples for different M and confidence levels are presented in Table
1. The numbers in the table are the widths of B1−γ and Wband

1−γ relative to
the width of the perfect box that has exact confidence level 1 − γ. For this
example the widths of the Bonferroni boxes are considerably smaller than
those of the Wald boxes. For both confidence levels, 1 − γ = 0.68 or 0.90
the Bonferroni boxes are about as wide as the perfect boxes. Note that
68% error bands are not uncommon in the VAR literature which is why
we have included that level in the table. In fact, since both γind and γ/M
converge to zero for M → ∞, the Bonferroni and the perfect boxes become
indistinguishable for large M . In contrast, the Wald boxes remain rather
large and grow in width relative to the perfect box when M →∞.

Of course, this example deals with a very special case that is unrealistic
in various respects. It illustrates the principle, however, and it clearly shows
that the Bonferroni boxes can be very close to the perfect box with exact
coverage. In fact, when the widths of the boxes are very similar, also the
coverage levels are very close together. In other words, the Bonferroni boxes
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may have almost exact coverage although they do not use any information
on the dependence of the underlying estimators while the perfect box is
constructed under the assumption that independence of the components is
known. On the other hand, the example also shows that the confidence boxes
constructed from the Wald statistics can be much wider than the Bonferroni
boxes.

In practice the situation is more complex in different dimensions. In
particular, the dependence structure of the impulse responses is not known
precisely. We look into that problem in the context of impulse response
analysis in the following.

2.2 In Practice

In frequentist statistics, the distribution of the estimator θ̂ in (2.1) is typically
not known. Instead an asymptotically normally distributed estimator θ̂ based
on a sample of size T , that is,

√
T (θ̂ − θ) d→ N (0,Σθ), (2.6)

may be used, where Σθ is an unknown nonsingular (G×G) covariance matrix.
The Wald statistic, T (θ̂− θ)′Σ−1θ (θ̂− θ), based on such an asymptotic result
often has a distribution that is not well approximated by a χ2(G) in small
samples. To obtain a better small sample approximation to the distribution
of the Wald statistic, the following bootstrap procedure can be used.

Bootstrap the estimator θ̂ so as to get bootstrap estimates θ̂n and Σ̂θ(n),
n = 1, . . . , N , and define

wn = T (θ̂n − θ̂)′Σ̂θ(n)−1(θ̂n − θ̂). (2.7)

Order the bootstrap estimates such that w1 ≤ · · · ≤ wN and choose the Wald
confidence set such that

Wθ
1−γ = {θ|W = T (θ̂ − θ)′Σ̂−1θ (θ̂ − θ) ≤ w(1−γ)N}. (2.8)

Clearly, as T and N go to infinity,

Pr[T (θ̂ − θ)′Σ̂−1θ (θ̂ − θ) ≤ w(1−γ)N ]→ 1− γ,

if the usual conditions underlying the bootstrap are satisfied. Hence, asymp-
totically

Pr[θ ∈ Wθ
1−γ]→ 1− γ,

so that Wθ
1−γ is an asymptotically valid confidence set. The corresponding

confidence band can be obtained by determining

lm = min{φm(θ̂n)|n = 1, . . . , (1− γ)N}

and

um = max{φm(θ̂n)|n = 1, . . . , (1− γ)N},
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for m = 1, . . . ,M , and setting

Wband
1−γ = [l1, u1]× · · · × [lM , uM ].

Finally, the corresponding Bonferroni band is obtained as in (2.5), where,
however, for m = 1, . . . ,M , Lm and Um are now the γ/2M and 1 − γ/2M
bootstrap quantiles, respectively, of the empirical bootstrap distribution of
φ(θ̂n).

In the following subsection these general considerations are applied in
constructing confidence bands for impulse responses of structural VAR mod-
els.

2.3 Confidence Bands for VAR Impulse Responses

Consider the reduced form VAR(p) model for yt = (y1t, . . . , yKt)
′ in lag op-

erator notation

A(L)yt = ν + ut (2.9)

with A(L) = IK −A1L− · · · −ApLp. The Ai (i = 1, . . . , p) are (K ×K) pa-
rameter matrices and ut ∼ (0,Σu) is a K-dimensional zero mean white noise
process with covariance matrix E(utu

′
t) = Σu. Other deterministic terms

than the K-dimensional intercept vector ν are possible but not essential for
the following discussion. Stability and stationarity of the process is ensured
if

detA(z) = det(IK − A1z − · · · − Apzp) 6= 0 for z ∈ C, |z| ≤ 1. (2.10)

If this condition is satisfied, the process has the moving average (MA) rep-
resentation

yt = A(1)−1ν + A(L)−1ut = µ+
∞∑
i=0

Φiut−i, (2.11)

where µ = A(1)−1ν, Φ0 = IK and
∑∞

i=0 ΦiL
i = A(L)−1. Thus, the MA

coefficient matrices are functions of the Ai parameter matrices.
Let εt = B−1ut be a set of structural shocks, obtained by a linear trans-

formation of ut. For example, B may be a lower-triangular matrix obtained
by a Cholesky decomposition of Σu. Replacing ut in (2.11) by Bεt shows that
the responses to structural shocks are obtained as Θi = ΦiB, i = 0, 1, . . . .
Thus, the impulse responses of the kth variable to the ith shock are functions
of the VAR parameters and the framework of the previous subsection can be
used to construct confidence bands for the impulse responses.

In the following we investigate the relative performance of Wald and Bon-
ferroni confidence bands in small samples. The main issue of interest in this
context is to check whether the asymptotic properties are also seen in small
sample situations. In other words, we are interested in exploring which of
the methods is more conservative in specific situations that are relevant in
applied work.
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Of course, we are not only interested in the coverage of the two types of
bands but also in their widths. Our precise measure for the width of a con-
fidence band is specified in the next section. At this point it may be worth
emphasizing that a confidence band being conservative is not a bad property
per se. Only if that also leads to excessively wide bands this may be prob-
lematic because it can cover up interesting features in the data generation
mechanism. For example, the response of a variable to a shock may appear
insignificantly different from zero although in practice the variable reacts
quite strongly to the shock. In the literature modifications to the Bonfer-
roni band have been proposed to alleviate this problem (see Lütkepohl et al.
(2013)). Similar modifications are also possible for the Wald bands and are
considered in the Monte Carlo section.

For the evaluation of the bands it is of central importance to be clear
about the functions of interest, φ(θ). If the responses of all K variables to
all K shocks for propagation horizon H are of interest, that is, all elements
of [Θ0,Θ1, . . . ,ΘH ] are of interest, then, φ(θ) has dimension M = K2H +
K(K + 1)/2 if a triangular initial effects matrix Θ0 is considered. Thus,
even for a VAR of moderate dimension the number of individual confidence
intervals considered in the Bonferroni approach becomes large. For example,
if there are only K = 3 variables and the propagation horizon is H = 12 (e.g.,
the responses are traced for one year for monthly data), the total number
of impulse responses of interest is M = 114. Clearly that is a problem
for the Bonferroni approach. For example, if we choose a confidence level
of 68%, that is, γ = 0.32 one would have to choose individual confidence
intervals with level 1 − γ/M = 0.9972 for the aforementioned example of a
three-dimensional VAR process. Clearly, even if only a rather small overall
confidence level is desired, the individual confidence level of the Bonferroni
procedure is very close to one in this example which is not unrealistic for
empirical analysis.

Of course, it is also possible that only the responses to specific shocks
are of interest. For instance, in monetary analysis the responses of some
of the variables to monetary shocks may be of interest only. That reduces
the dimension of φ(θ) substantially and such reductions should be taken into
account in the Bonferroni procedure.

Another feature worth taking into account in impulse response analysis is
that there is a one-to-one mapping between the VAR parameters (including
the white noise covariance matrix) and the impulse response matrices up
to propagation horizon H = p. More precisely, it follows easily from the
derivations in Lütkepohl (1988) that the mapping

[A1, . . . , Ap,Σu]→ [Θ0,Θ1, . . . ,Θp]

is one-to-one onto if triangularity of Θ0 is taken into account. That result
implies that all Θi with i > p are completely determined by [Θ0,Θ1, . . . ,Θp].
Hence, for constructing Bonferroni confidence bands, we can restrict atten-
tion to propagation horizons of at most up to the VAR lag order. In other
words, the maximum M to be considered is M = K2p + K(K + 1)/2 if all
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responses to all shocks are of interest. Of course, for moderate dimensional
VAR systems even that number can be quite substantial, in particular, since
choosing relatively large VAR orders is not uncommon.

3 Monte Carlo Comparison with other Meth-

ods

3.1 Monte Carlo Design

We follow Lütkepohl et al. (2013) and use a bivariate DGP from Kilian
(1998) for our Monte Carlo comparison of different methods for constructing
confidence bands for impulse responses. The DGP is a VAR(1),

yt =

[
α 0

0.5 0.5

]
yt−1 + ut, ut ∼ iid N

(
0,

[
1 0.3

0.3 1

])
, (3.1)

with α ∈ {−0.95,−0.9,−0.5, 0, 0.5, 0.9, 0.95, 1}. Thus, most of the processes
are stationary (|α| < 1) but some are quite persistent with |α| = 0.95 and
one process even has a unit root (α = 1).

Sample sizes T = 50, 100 or 200 are used and the number of bootstrap
replications is N = 2000, γ = 0.1 and 2000 Monte Carlo replications are
used. Responses to orthogonal innovations, where B is a lower-triangular
matrix obtained from the Cholesky decomposition of the estimated residual
covariance matrix, are investigated. We have run experiments where the
true lag order is used and we have also used the popular model selection
criterion AIC for lag order selection. The maximum lag length used with lag
order selection depends on the sample size and is given by 10, 12, and 14 for
samples of 50, 100, and 200 observations, respectively.

3.2 Methods for Constructing Confidence Bands

In addition to the basic Wald and Bonferroni bands we also include modified
versions in the comparison that are inspired by adjustments considered by
Lütkepohl et al. (2013). They are meant to account for the conservativeness
of the Bonferroni and Wald bands. In these methods the residual based
bootstrap procedure is implemented as in the paper by Lütkepohl et al.
(2013). Overall we consider the following alternative bands.

Bonferroni (B) The abbreviation B is used for the basic Bonferroni band
constructed for an individual impulse response function. In that case
the band is constructed from individual (1 − γ/H) × 100% or (1 −
γ/(H + 1))× 100% bootstrap confidence intervals.

Joint Bonferroni (JB) JB stands for the basic Bonferroni bands constructed
for all impulse response functions jointly. These are obtained from
(1 − γ/(K2H + K(K + 1)/2)) × 100% bootstrap confidence intervals.
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In other words, the full set of impulse response functions of all K vari-
ables to the K shocks is considered jointly and the confidence level is
chosen such that the bands include all the true response functions with
at least the desired probability 1− γ.

Adjusted Bonferroni (Ba) As mentioned earlier, the Bonferroni bands
are in theory conservative bands and in practice usually contain more
than (1−γ)N bootstrap response functions. Thus, it is possible to fur-
ther adjust these bands. If a single response function is investigated, an
adjusted Bonferroni band is proposed by Lütkepohl et al. (2013). The
band is abbreviated as Ba and constructed as follows. The bootstrap
response functions fully within the Bonferroni band are counted and
their number is denoted by NB. If NB > (1 − γ)N , a sequential pro-
cedure aimed at removing NB − (1− γ)N bootstrap impulse responses
is applied. In each step, the bootstrap impulse responses are identified
which provide at least one point on the current bounds. There are
at most 2(H + 1) such functions. The function which contributes the
most to the size of the current band (measured as sum of widths) is
rejected. The procedure terminates after NB− (1−γ)N functions have
been eliminated. The band is obtained as an envelope of the remaining
(1− γ)N bootstrap impulse responses.

Adjusted Joint Bonferroni (JBa) A similar adjustment procedure can
also be applied in the case all impulse response functions are of inter-
est. The resulting bands are denoted by JBa. The bands are calculated
in the following way. The joint Bonferroni bands are constructed. The
number of bootstrap samples providing bootstrap response functions
inside all the bands is denoted by NB. If NB > (1− γ)N , a sequential
procedure aimed at removing superfluous bootstrap samples is applied.
In each step, the bootstrap impulse responses are identified that provide
at least one point on the bounds of at least one band. The function
which contributes the most to the sum of widths of all the bands is
identified and the bootstrap impulse responses corresponding to the
given bootstrap sample are rejected from all the bands. The procedure
terminates when the joint coverage with respect to the bootstrap sam-
ples is equal to (1− γ)N . The bands are obtained as envelopes of the
remaining bootstrap impulse responses.

Reduced Joint Bonferroni (JB∗) As already mentioned in Section 2.3,
for a VAR(p) process, the joint confidence bands are completely de-
termined by the first p + 1 impulse responses. More precisely, the Θi

for i > p are fully determined by Θ0, . . . ,Θp. Hence, when joint sets
of impulse responses are considered we may focus on the latter set of
impulse responses only and construct Bonferroni bands for initial p+ 1
periods accordingly from individual (1 − γ/M) × 100% confidence in-
tervals where M = K2p+K(K + 1)/2. The bounds for the remaining
periods are given by the envelope of the bootstrap impulse responses
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covered up to h = p by these intervals. These bands are referred to as
reduced Bonferroni bands in the following and abbreviated as JB∗.

Adjusted Reduced Joint Bonferroni (JBa
∗) An adjustment to the re-

duced joint Bonferroni bands can be computed exactly as for the joint
Bonferroni bands. The resulting bands are denoted by JBa

∗.

Wald (W) The basic Wald band is abbreviated as W in the following. The
band is joint by construction and so it does not differ when individual
or all impulse responses are considered. W bands usually cover more
than (1− γ)N bootstrap response functions (both when an individual
impulse response function is investigated and also when all impulse
responses are considered jointly). Thus, adjustments of these bands
can be considered. Alternative adjustments are plausible and, hence,
are included in the Monte Carlo comparison.

Adjusted Wald (Wa) The first adjustment consists in rejecting bootstrap
functions corresponding to w(1−γ)N−1, w(1−γ)N−2, w(1−γ)N−3, . . . until
the bootstrap coverage is as close to (1−γ)× 100% as possible (and at
least (1 − γ) × 100%). In the case a single impulse response function
is of interest, the bands constructed using this adjustment are denoted
by Wa.

Joint Adjusted Wald (JWa) If all impulse responses are considered jointly,
a joint adjusted band may be obtained by investigating the coverage
of each band and rejecting the bootstrap samples until the bootstrap
coverage of one of the bands becomes as close to the desired coverage
level as possible. This band is abbreviated as JWa.

Bonferroni-adjusted Wald (WBa) Alternatively the Wald band can be
adjusted just as the Bonferroni band by eliminating impulse response
functions until only (1− γ)× 100% are left over. The resulting band is
abbreviated as WBa.

Joint Bonferroni-adjusted Wald (JWBa) Focussing on all K2 impulse
response functions jointly and applying the same reduction method as
used for WBa, results in the joint Bonferroni-adjusted Wald band which
we abbreviate as JWBa. It is considered in the following simulation
comparison for completeness.

Lütkepohl et al. (2013) also look at some other frequentist methods for
constructing confidence bands for impulse responses. They find that most
of these are inferior to the Bonferroni or adjusted Bonferroni bands, while
some exhibit a similar performance. Therefore we do not consider them here.
There are also other adjustments for the Bonferroni inequality that amount to
using different significance levels for different propagation horizons (see, e.g.,
Holm (1979), Hommel (1988), Hochberg (1988), Benjamini and Hochberg
(1995)). Such refinements may be worth exploring in future research.
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3.3 Evaluation Criteria

In comparing the Wald and Bonferroni confidence bands for the impulse
responses, we use the actual coverage rate and the widths of the bands mea-
sured as the sum of the widths of the intervals around the individual impulse
response coefficients of interest. As regards the coverage rates it is important
to note that if responses to all shocks up to horizon H are of interest and
the matrix of initial effects is lower-triangular, the function of interest, φ(θ),
has dimension M = 4H + 3. If only the response of one variable to a specific
shock is of interest, M = H or M = H + 1, depending on whether the initial
effect is estimated or restricted to zero. We consider both types of situations
because the theoretical comparison in Section 2 suggests that M is crucial
for the relative widths of the bands.

3.4 Monte Carlo Results

We discuss results separately for individual impulse responses (i.e., for the
case when the response of a specific variable to a specific shock is of interest,
see Section 3.4.1) and for all impulse responses considered jointly (i.e., for
the case when responses of all variables to every shock are of interest, see
Section 3.4.2).

When individual responses are considered, the coverage probability is
estimated as the fraction of Monte Carlo (MC) replications in which the
band covers the true response function. The width is calculated as the sum
of the widths of the band for h = 0, 1, . . . , H. When all impulse responses
are considered jointly, the coverage probability is estimated as the proportion
of MC replications in which all the bands cover the true response functions.
The width is calculated as the sum of widths of all the bands.

3.4.1 Individual impulse response functions

Selected results for individual impulse response functions are reported in
Tables 2 and 3. Both tables report results for sample size T = 100 and
propagation horizon H = 10. They differ in that the true VAR order p = 1
is used in Table 2 while the VAR order is chosen with the AIC criterion in
Table 3. The coverage rates are reported and the average widths are given
in parentheses.

The following main results emerge from Table 2.

1. As expected, both Bonferroni and Wald bands are conservative. For all
MC designs reported in the table, except when α = 1, the actual rela-
tive coverage frequency is larger than 90%. The W bands typically have
larger coverage rates than the B bands. Correspondingly, the widths of
the B bands are smaller than those of the W bands. For the integrated
process (α = 1) the coverage rates of the B bands for the responses of
the variables to the first shock are slightly below 90%. Apart from that
the situation is the same as for the stationary processes.
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2. All adjustments lead to smaller coverage rates that are still close to
90% in most cases. The exception is again the case of an integrated,
nonstationary process (α = 1). In most cases the adjusted bands are
considerably smaller than B and W. Thus, the adjustments serve the
purpose of bringing the actual coverage closer to the nominal coverage
rates and thereby reduce the costs in terms of band width.

3. The Ba and WBa bands in most cases have very similar coverage rates
and band widths. This result is not surprising because both the B and
the W bands are in a sense unnecessarily wide and are reduced by the
same procedure. So they end up with similar bands. The Ba and WBa

bands have the smallest width and are for that reason attractive from
an applied point of view.

In Table 3 it can be seen that the results for known order do not change
much if the order is estimated by AIC. The relative ordering of the methods
in terms of coverage rates and widths of the bands remains the same. The
coverage rates are reduced a little and the widths are slightly larger than in
the known order case. Again these results are not surprising given the addi-
tional uncertainty due to not knowing the true VAR order. One implication
is, however, that the adjusted bands now tend to have coverage rates a bit
smaller than 90%. Although they are still typically above 85%, it is of course
an issue how much undercoverage one wants to tolerate. For the case of an
integrated process the actual coverage rate for the impulse responses to the
first shock are in fact quite low and do not even reach 75%. Since in practice
processes with unit root properties are not uncommon, the issue may be im-
portant, at least when only moderately long time series are available. Note
that we are discussing results for samples of size T = 100 now which may
not even be available for macroeconomic time series.

As mentioned in Section 3.1, we have also considered a wide range of other
MC designs. The results are not reported because they are qualitatively very
similar to those in the tables for T = 100. We just summarize the main
deviations here.

1. Coverage rates go down substantially when the sample size is reduced
to T = 50. Thus, in that case the unadjusted bands B and W become
more attractive if a precise coverage rate is a major concern. They still
are considerably wider than the adjusted bands, however. If the sample
size is increased to T = 200 the situation is again very similar to that
in Tables 2 and 3. That is, B and W are very conservative and, hence,
these bands are unnecessarily wide.

2. If the propagation horizon increases to H = 20, the situation is again
very similar to that for H = 10. By construction, B becomes even more
conservative while W is not much affected. The latter band still tends
to be more conservative than the Bonferroni band.

Thus, overall the original B and W methods can be recommended when
one wants to be on the safe side regarding coverage with B being slightly less
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conservative than W. The price to pay in terms of width of the bands around
the impulse responses can be high, however.

3.4.2 All impulse responses considered jointly

So far we have considered results for the case that the response function of
a single variable to a single shock is of interest. That situation appears to
be relevant in many applied studies. It has been argued, however, notably
by Inoue and Kilian (2013) that in principle, if all impulse responses are
of interest, the error bands should be such that all impulse responses are
covered jointly with a preassigned probability. Hence, in this section we
discuss results taking this requirement into account.

As discussed in Section 3.2, it is in principle easy to adjust our methods so
as to account for the fact that impulse responses of all variables to all shocks
are of interest jointly. In particular, the Bonferroni bands just have to be
widened in a suitable way to ensure that a larger set of impulse responses
falls within the confidence regions constructed in this way. Some coverage
and width results for the bands constructed for the overall set of impulse
responses are shown in Tables 4 and 5. The former table presents results for
known VAR order while the order is estimated by AIC in the latter table.
Since the coverage evaluation criterion now refers to all impulse responses
simultaneously, there is no need to distinguish between different variables
and impulse responses. Hence, only one coverage rate is reported for each
MC design. Results for three different sample sizes are presented (T =
50, 100, 200) but the propagation horizon is chosen to be H = 10.

The following results emerge from Table 4.

1. The actual coverage rates of the JB and W regions are remarkably close
to the nominal 90% for all stationary processes (α 6= 1) even for sample
size T = 50. The coverage is excellent for T = 100 and 200 even for
the unit root process. Now the joint Bonferroni and the Wald bands
do not differ much in coverage but often JB is slightly wider than W.
Clearly this result is due to the fact that a large number of estimated
impulse responses is considered jointly and the Bonferroni band has to
be expanded accordingly. Thus, comparing only JB and W, the latter
has a slight advantage in both coverage precision and band width.

2. We have argued in Section 2.3 that adjusting the Bonferroni region by
simply counting all estimated impulse response coefficients ignores the
fact that they depend on a smaller number of estimated VAR param-
eters. The JB∗ bands take this fact into account. For the presently
considered simulation setup with propagation horizon H = 10 it can
be seen in Table 4, however, that JB∗ bands do not have an advantage
over JB. The gains in band width are very moderate if they exist at
all and the coverage rates of JB∗ are usually considerably lower than
those of JB.

3. The adjustments of the JB and W methods work in the expected way.
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In other words, they reduce the coverage but also the widths of the
bands. In fact, their coverage precision is quite remarkable for processes
that are not very persistent if the sample size is at least T = 100.
While the coverage is only reduced slightly, the width is often reduced
substantially. For example, for α = 0.9 and T = 200, JB has a coverage
of 94.8 and a band width of 22.55 while JBa has a coverage of 86.9 and
a width of 16.9. Thus, the width is reduced by roughly one fourth
whereas the coverage of both methods is close to the nominal 90%.

4. JBa and JWBa are usually very similar in terms of coverage and width.
Thus, this result carries over from the case when only single impulse
response functions are considered.

Comparing these results to those in Table 5 where the VAR order is
estimated by AIC, it becomes clear that the additional uncertainty in VAR
order estimation tends to reduce the coverage levels. This is especially true
for small sample sizes of T = 50 observations only. Even for T = 100 the
coverage rates are often substantially lower than in the known order case.
However, for a sample size of T = 200 the bands are again remarkably
precise in terms of coverage. Gains in terms of width can be obtained by
considering the adjustments. However, if the coverage level is viewed as the
dominant criterion, using the JB or W bands is the recommended strategy.
They both lead to very similar coverage levels for T = 100 and 200, while W
has a slight advantage for T = 50.

We have also considered longer propagation horizons of the shocks and
do not report the detailed results because they are similar to the results
reported in the tables. A main difference is that the JB bands are even more
conservative for H = 20 than for H = 10. This increases the precision of
the coverage level when it is below 90% in the tables but also increases the
widths of the bands. For longer propagation horizons it can pay to utilize
the relation between the VAR parameters and the impulse responses and use
JB∗ instead of JB. For H = 20 the widths of the JB∗ bands are typically
slightly smaller than those of the JB bands and for large sample sizes the
coverage rates are also satisfactory. Overall the gains from using JB∗ are
limited, however. Therefore we do not show the corresponding results in
detail.

Thus, as an overall summary of our MC experiment we can conclude that
the Bonferroni and Wald methods both result in coverage levels that are
close to or above the nominal level if the sample sizes are not very small and
the processes are not very persistent. Whether individual impulse response
functions or the whole set of all impulse responses is considered jointly, the
methods are in fact remarkably precise as far as coverage is concerned. The
price to pay is of course a rather large band width. The adjustments proposed
address this problem by reducing the width sometimes substantially. In
more difficult circumstances (small sample size, large propagation horizon,
estimated VAR order) they may however lead to undesirably low coverage
rates. Hence, in practice the original B and W methods may be the preferred
choice to be on the safe side.
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4 Examples

In this section two examples are presented. The first one concerns a model
for the market for crude oil from Kilian (2009) and the second example in-
vestigates the effects of monetary policy shocks in the U.S. (see, e.g., Uhlig
(2005)). Both examples are also considered by Inoue and Kilian (2013) to
illustrate their methods for constructing Bayesian error bands for impulse
responses. The prime objective of our analysis is to compare how differ-
ent approaches for constructing frequentist confidence bands for the impulse
responses affect the conclusions drawn from the analysis.

4.1 Oil Market

We begin with a model for the market of crude oil from Kilian (2009). It
is a three-dimensional system of the percent change in global crude oil pro-
duction, ∆prod, an index of real economic activity, rea, and the real price
of oil, rpo. We use monthly observations from Kilian (2009) for the period
1973M1-2007M12. Hence, the sample size is T = 420. The system was also
used by Lütkepohl et al. (2013) to illustrate different types of frequentist
confidence bands around impulse responses.

Kilian uses a VAR(24) with intercept and so do we. Following Kilian we
use a response horizon of H = 18 and a recursive identification scheme with
lower-triangular B matrix obtained from a Cholesky decomposition of the
reduced form residual covariance matrix. Kilian (2009) constructs pointwise
confidence intervals around his impulse responses with a bootstrap method
that differs from ours. Moreover, he reports one- and two-standard error
bounds around his impulse responses which roughly correspond to 68 and
95% confidence bounds in a normal distribution setting. For better compara-
bility with our confidence bands we have computed 90% confidence intervals
for the individual impulse response coefficients with our residual based boot-
strap method and show the resulting impulse responses and bands obtained
by simply connecting the individual intervals in Figure 1. The zero line,
corresponding to no response of a particular variable to a specific shock is
obviously not fully covered by some of the bands. Such a result is commonly
interpreted as evidence for a significant response of the variable. Specifically
we draw attention to the response of the real price of oil to an aggregate
demand shock and the reaction of real activity to an oil-market specific de-
mand shock. Both responses would be classified as significant based on the
bands in Figure 1.

For comparison the 90% confidence bands calculated for each impulse
response function separately by the B, Ba, W, and Wa methods are shown in
Figure 2. Furthermore, joint 90% bands based on JB, JBa, JB∗, and JWa are
depicted in Figure 3. In both figures the Wald bands are overall the widest
which is well in line with our simulation results. Obviously, in some cases
the other bands are considerably smaller than the W bands, see for example
the response of rea to an oil-market specific demand shock. Of course, our
simulation results raise the question which of the bands is more reliable in
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the present case. The sample size is quite large but also the VAR order is
substantial. Thus, to be on the safe side, one may want to rely on the B or
W bands if the focus is on individual impulse response functions or on JB
and W if the whole set of impulse responses is considered jointly.

Now looking at the response of the real price of oil to an aggregate de-
mand shock it is seen in Figures 2 and 3 that the zero line is fully inside
the Wald bands and just barely outside the adjusted Bonferroni and Wald
bands. Thus, relying on a proper confidence band, the evidence for a positive
response of the real price of oil is much less convincing than in Kilian’s study.
Similarly, the significant reaction of real activity to an oil-market specific de-
mand shock seen in Figure 1 has disappeared in Figures 2 and 3. Now the
zero line is even covered by the adjusted bands. Thus, a reaction of real
activity to an oil-market specific demand shock has much less support when
the full uncertainty in the response function is taken into account. Clearly,
constructing full bands as in our study rather than considering individual
confidence intervals makes a difference for the interpretation of the results.

4.2 U.S. Monetary Policy Analysis

For analysing the effects of monetary policy, we use the monthly U.S. bench-
mark dataset from Uhlig (2005) for a system consisting of the six variables
real GDP, GDP deflator, commodity prices, federal funds rate, nonborrowed
reserves and total reserves. The sample period is 1965M1 - 2003M12. All se-
ries apart from the federal funds rate are in logs. Similar systems for shorter
sample periods have also been analyzed by Bernanke and Mihov (1998b,
1998a). As in Uhlig (2005) we use a VAR order of p = 12. While Uhlig
does not use any deterministic terms, we include an intercept. Also we use
a recursive identification as in Bernanke and Mihov (1998b) that contrasts
with the sign identification approach used by Uhlig. Note that Uhlig also
considers a recursive identification scheme for comparison purposes and we
will compare our results to that benchmark system.

Interest centers primarily on the responses of the variables to a monetary
policy shock which is the fourth shock in our vector of structural shocks. One
could even argue that we are mainly interested in the GDP and price level
responses to monetary policy shocks. The total number of responses con-
sidered together makes a difference for the confidence bands. Therefore, we
present two types of bands for response functions: first, bands constructed for
individual response functions to a monetary policy shock, and second, bands
constructed for the whole set of 36 response functions considered jointly.

The estimated impulse-responses (for the monetary policy shock) and
the 68% confidence bands calculated for each function separately (B, Ba, W,
Wa) are shown in Figure 4. Joint 68% bands (JB, JBa, JB∗, W, JWa) are
depicted in Figure 5. A confidence level of 68% is used now because that
level is quite common in the related literature and it is also used by Uhlig
in his benchmark analysis. Again the Wald band is an outer envelope for
most of the impulse response functions if individual bands are used. In some
cases the other bands are much more narrow. If joint bands are used, the
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unadjusted bands JB, JB∗ and W are usually quite similar and form an outer
envelope for the other bands (see Figure 5).

In the upper left-hand panels of Figures 4 and 5 the response of real GDP
is seen to be barely significant. In particular, an initial significantly positive
reaction to a contractionary monetary policy shock as observed in Uhlig’s
benchmark study (his Figure 5) is not seen. Based on our simulation results
and taking into account that a very large model is estimated and a large
number of impulse responses is considered jointly even if individual impulse
response functions are considered, the most reliable choices might be the B
and W bands. Based on them the evidence for a negative response of real
GDP to a contractionary monetary policy shock is not very strong. Moreover,
no significant response of the GDP deflator to a monetary policy response is
found. In particular, a price puzzle, that is, a positive response of the price
level after a contractionary monetary policy shock, is not observed. This
result is in sharp contrast with Uhlig’s benchmark analysis where a significant
price puzzle is obtained using 68% Bayesian error bands. Our results are well
in line with Inoue and Kilian (2013, Figure 7) who use different Bayesian 68%
error bands and find that the initial positive reaction of real GDP may not
be significant and that there is no significant price puzzle.

5 Conclusions

In this study we have compared different methods for constructing error
bands around multivariate estimates with the example of impulse responses
in VAR analysis in mind. The main objective is to ensure a prespecified
coverage probability. In other words, the analyst is assumed to desire a band
in which the true impulse response function is contained with a prespecified
probability in a frequentist setting. The same problem is equally relevant in
a Bayesian setting where a posterior probability band may be of interest.

We have identified two main approaches to construct such bands. The
first one is based on the Bonferroni principle and ensures the desired coverage
probability by increasing confidence intervals for individual impulse response
coefficients sufficiently. The method depends to some extent on the number
of quantities included in the analysis. For impulse response analysis this
means that Bonferroni bands differ depending on whether individual impulse
response functions, that is, the impulse responses of one variable to one
specific shock, or all impulse response functions jointly are of interest.

The second approach uses the Wald statistic to specify a confidence set of
sufficient coverage and maps that into a confidence band around the impulse
response functions. This method is also used by Bayesians who construct
error bands on the basis of the posterior distribution.

Both methods are theoretically conservative and a number of adjustments
are proposed to move the actual confidence level closer to the desired level
with the prime objective to reduce the widths of the bands. The width is
measured as the sum of the widths of the intervals around the individual
impulse response coefficients.
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We have compared the Bonferroni and the Wald bands theoretically and
empirically. Theoretical considerations suggest that Bonferroni bands may
well be considerably smaller than Wald bands in an idealized setting where
normally distributed estimators are available. This result is remarkable
because Bonferroni does not use information on the dependence structure
among the quantities of interest considered jointly while the Wald method
uses such information.

The framework for our theoretical analysis does not account for important
aspects of applied impulse response analysis, however. In particular, in a fre-
quentist VAR analysis only asymptotic distributions of estimators are known
and the implications of not knowing the precise underlying distributions for
constructing the alternative error bands are of interest. We have therefore
conducted a MC simulation experiment based on bivariate VAR processes.
The main results are as follows. Both Bonferroni and Wald methods result
in coverage levels for impulse response functions that are close to or above
the nominal level if the sample sizes are moderate or large and the processes
are not very persistent. The methods tend to be slightly conservative but are
overall remarkably precise in terms of coverage level regardless of whether in-
dividual impulse response functions or the whole set of all impulse responses
are considered jointly. The Wald bands tend to be wider than the Bonferroni
bands.

Unfortunately, both types of error bands are rather wide. Therefore the
adjustments proposed in this study are worth contemplating. If the sample
size is small, the propagation horizon large or the VAR order is estimated, our
adjustments may however lead to coverage rates markedly below the nominal
level. Hence, in practice the original Bonferroni and Wald methods may be
preferrable to be on the safe side. The price in terms of band width can
be high, however. Taking together all the evidence, the Bonferroni methods
seem to have a slight advantage in terms of coverage precision and width.
This result suggests that also Bayesian inference can be improved by using the
Bonferroni results when doing inference regarding multivariate parameters.

We have also illustrated the methods for constructing error bands for
impulse responses with two examples from the literature. The first one is
a model for the market of crude oil and the second one is a macro system
for investigating U.S. monetary policy. For both systems it turns out that
our bands are wider than those previously considered in the literature based
on individual confidence intervals. Such bands are known to have an actual
confidence level far below the desired one. Using our more realistic bands
some of the previously drawn conclusions are not supported any more or at
least have much less support from the data.

A natural extensions of our present work is to use the methods for con-
structing joint forecast bands for forecasts of different horizons. Such bands
have been discussed extensively in the literature (e.g., Jordà and Marcellino
(2010), Staszewska-Bystrova (2011), Wolf and Wunderli (2012), Staszewska-
Bystrova and Winker (2013)). Forecasts based on VAR processes are very
similar to impulse responses and the methods considered here can be used
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straightforwardly in that context. They may also be useful, however, in
considering sequences of forecasts obtained with alternative models such as
factor or dynamic regression models.
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Table 2: Estimated Coverage Probabilities and Total Width (in brackets) for
Nominal 90% Confidence Bands for Individual Impulse Responses for bivari-
ate VAR(1) Processes (based on sample size T = 100, 2000 MC replications
and 2000 bootstrap replications, H = 10, true lag order)

first shock second shock
band y1 y2 y1 y2

α = −0.95
B 94.50 (8.09) 93.05 (3.69) 99.15 (2.36) 92.70 (2.58)
Ba 87.05 (5.75) 88.75 (3.09) 93.95 (1.54) 86.75 (2.00)
W 96.35 (9.00) 95.95 (4.22) 99.30 (2.46) 95.45 (2.75)
Wa 85.85 (6.23) 88.90 (3.39) 93.35 (1.61) 88.35 (2.25)
WBa 86.55 (5.73) 88.20 (3.10) 93.95 (1.54) 87.45 (2.00)

α = −0.9
B 94.45 (7.68) 93.20 (3.64) 99.20 (2.01) 93.20 (2.58)
Ba 84.10 (5.73) 85.55 (3.11) 94.40 (1.32) 87.55 (1.97)
W 96.75 (8.44) 95.65 (4.13) 99.25 (2.11) 96.40 (2.76)
Wa 85.50 (6.13) 86.65 (3.40) 94.45 (1.39) 87.70 (2.23)
WBa 83.95 (5.71) 84.80 (3.13) 94.35 (1.32) 88.00 (1.97)

α = −0.5
B 95.35 (2.58) 95.30 (2.68) 99.00 (0.78) 94.25 (2.42)
Ba 88.70 (1.95) 89.70 (2.22) 96.75 (0.56) 87.45 (1.76)
W 97.90 (2.76) 97.45 (3.03) 99.10 (0.80) 97.15 (2.56)
Wa 91.70 (2.17) 89.35 (2.53) 97.20 (0.59) 91.85 (2.00)
WBa 88.55 (1.95) 89.80 (2.23) 96.95 (0.56) 87.30 (1.76)

α = 0
B 95.30 (1.63) 94.85 (3.15) 99.15 (0.94) 93.90 (2.64)
Ba 91.45 (1.35) 89.25 (2.54) 96.00 (0.65) 88.05 (1.93)
W 97.55 (1.79) 97.15 (3.51) 99.20 (0.97) 97.40 (2.80)
Wa 92.50 (1.48) 89.85 (2.86) 96.00 (0.68) 91.40 (2.13)
WBa 92.00 (1.36) 89.35 (2.55) 95.95 (0.65) 88.15 (1.92)

α = 0.5
B 94.30 (3.30) 95.10 (5.01) 99.25 (1.86) 93.70 (3.41)
Ba 88.55 (2.61) 88.65 (4.04) 95.40 (1.28) 87.80 (2.57)
W 96.75 (3.54) 97.50 (5.44) 99.40 (1.93) 96.55 (3.62)
Wa 89.90 (2.82) 89.95 (4.40) 95.35 (1.36) 90.60 (2.78)
WBa 89.15 (2.61) 88.45 (4.04) 95.30 (1.28) 88.40 (2.57)

α = 0.9
B 93.15 (8.69) 93.40 (8.81) 99.00 (4.94) 93.85 (5.61)
Ba 86.90 (6.65) 87.75 (6.93) 93.85 (3.33) 86.90 (4.22)
W 95.50 (9.36) 95.85 (9.62) 99.10 (5.28) 96.80 (6.06)
Wa 89.35 (7.10) 89.80 (7.42) 92.90 (3.54) 88.55 (4.49)
WBa 86.90 (6.63) 87.45 (6.91) 93.85 (3.33) 88.05 (4.20)

α = 0.95
B 92.85 (9.43) 93.20 (9.09) 99.15 (5.63) 93.60 (6.00)
Ba 85.90 (7.01) 86.40 (6.98) 93.35 (3.77) 85.75 (4.50)
W 95.80 (10.21) 95.75 (9.99) 99.20 (6.06) 97.05 (6.52)
Wa 90.20 (7.64) 89.60 (7.59) 91.75 (4.01) 88.00 (4.81)
WBa 86.05 (6.99) 86.85 (6.95) 93.35 (3.77) 86.50 (4.48)

α = 1
B 87.20 (9.35) 86.85 (8.70) 98.95 (6.05) 93.05 (6.17)
Ba 75.10 (6.64) 74.55 (6.46) 94.35 (4.00) 85.85 (4.60)
W 92.55 (10.29) 92.45 (9.71) 99.15 (6.55) 96.30 (6.72)
Wa 83.05 (7.38) 82.10 (7.12) 92.00 (4.28) 86.85 (4.94)
WBa 75.05 (6.61) 74.25 (6.43) 94.30 (4.00) 86.40 (4.58)

22



Table 3: Estimated Coverage Probabilities and Total Width (in brackets)
for Nominal 90% Confidence Bands for Individual Impulse Responses for
bivariate VAR(1) Processes (based on sample size T = 100, 2000 MC repli-
cations and 2000 bootstrap replications, H = 10, lag order estimated using
AIC)

first shock second shock
band y1 y2 y1 y2

α = −0.95
B 92.05 (8.32) 91.45 (3.91) 97.55 (2.93) 89.20 (2.88)
Ba 85.20 (5.98) 86.20 (3.32) 90.75 (1.99) 83.40 (2.31)
W 95.30 (9.38) 95.60 (4.53) 98.70 (3.22) 93.60 (3.16)
Wa 84.90 (6.50) 86.00 (3.62) 90.20 (2.12) 83.95 (2.56)
WBa 85.20 (5.96) 86.45 (3.33) 90.60 (1.99) 84.30 (2.31)

α = −0.9
B 92.90 (7.84) 91.80 (3.85) 97.35 (2.51) 90.55 (2.86)
Ba 81.80 (5.92) 83.05 (3.33) 91.25 (1.73) 84.45 (2.28)
W 95.90 (8.73) 95.35 (4.43) 98.80 (2.78) 95.15 (3.15)
Wa 84.10 (6.36) 85.05 (3.61) 91.65 (1.84) 85.65 (2.53)
WBa 81.95 (5.91) 83.80 (3.34) 91.15 (1.73) 85.70 (2.28)

α = −0.5
B 93.00 (2.80) 93.90 (2.93) 96.50 (1.05) 91.85 (2.69)
Ba 86.85 (2.19) 88.05 (2.47) 93.65 (0.82) 84.60 (2.05)
W 97.05 (3.07) 96.95 (3.37) 98.25 (1.16) 96.45 (2.94)
Wa 89.20 (2.42) 86.75 (2.79) 93.70 (0.86) 88.55 (2.29)
WBa 86.95 (2.19) 88.20 (2.49) 93.95 (0.82) 84.65 (2.05)

α = 0
B 93.25 (1.83) 93.25 (3.37) 97.80 (1.11) 91.90 (2.87)
Ba 89.60 (1.55) 87.80 (2.77) 94.25 (0.83) 85.75 (2.18)
W 97.00 (2.06) 96.50 (3.82) 98.95 (1.21) 96.00 (3.12)
Wa 89.70 (1.68) 89.00 (3.08) 93.70 (0.87) 89.20 (2.39)
WBa 90.25 (1.56) 87.60 (2.78) 94.25 (0.84) 86.20 (2.17)

α = 0.5
B 92.70 (3.47) 94.00 (5.18) 97.10 (2.05) 91.20 (3.64)
Ba 86.75 (2.79) 86.65 (4.23) 92.60 (1.47) 85.60 (2.81)
W 95.70 (3.80) 96.70 (5.73) 98.55 (2.20) 95.75 (3.96)
Wa 88.15 (3.00) 88.85 (4.58) 92.05 (1.57) 88.70 (3.03)
WBa 87.40 (2.80) 86.80 (4.23) 92.95 (1.48) 86.10 (2.81)

α = 0.9
B 90.85 (8.82) 92.05 (8.95) 97.20 (5.22) 91.10 (5.91)
Ba 84.35 (6.81) 85.40 (7.11) 90.55 (3.62) 83.65 (4.53)
W 94.40 (9.67) 95.35 (9.95) 98.35 (5.75) 94.85 (6.55)
Wa 87.30 (7.30) 87.75 (7.62) 89.80 (3.88) 84.90 (4.84)
WBa 84.85 (6.79) 85.55 (7.08) 90.65 (3.62) 84.75 (4.51)

α = 0.95
B 90.80 (9.61) 91.45 (9.27) 98.00 (5.90) 90.95 (6.28)
Ba 84.35 (7.21) 84.95 (7.18) 90.65 (4.03) 82.95 (4.77)
W 94.45 (10.57) 94.80 (10.33) 98.90 (6.52) 95.30 (6.96)
Wa 88.50 (7.87) 88.00 (7.82) 89.25 (4.34) 84.15 (5.12)
WBa 84.95 (7.18) 85.15 (7.15) 90.55 (4.03) 84.00 (4.75)

α = 1
B 83.60 (9.67) 85.50 (9.03) 97.10 (6.42) 90.70 (6.55)
Ba 73.20 (6.96) 73.30 (6.78) 91.20 (4.35) 82.40 (4.95)
W 90.70 (10.82) 91.45 (10.22) 98.55 (7.14) 95.20 (7.29)
Wa 80.20 (7.75) 81.30 (7.49) 89.80 (4.72) 84.25 (5.34)
WBa 73.25 (6.93) 73.20 (6.75) 91.30 (4.35) 83.10 (4.92)
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Table 4: Estimated Coverage Probabilities and Total Width (in brackets)
for Nominal 90% Confidence Bands for All Impulse Responses considered
jointly for bivariate VAR(1) Processes (based on 2000 MC replications and
2000 bootstrap replications, H = 10, true lag order)

T = 50 T = 100 T = 200
α = −0.95

JB 87.75 (28.06) 91.45 (19.50) 93.70 (13.69)
JBa 79.70 (21.05) 84.10 (14.62) 85.20 (10.23)
JB∗ 77.50 (27.40) 83.95 (18.92) 86.45 (13.39)
JBa

∗ 75.15 (22.78) 81.55 (15.78) 84.00 (11.05)
W 88.15 (26.86) 90.65 (18.44) 92.05 (12.88)
JWa 81.95 (23.98) 85.45 (16.52) 86.40 (11.53)
JWBa 80.25 (21.12) 84.10 (14.67) 85.35 (10.26)

α = −0.9
JB 88.00 (27.16) 92.05 (18.46) 93.75 (12.72)
JBa 79.95 (20.80) 82.10 (14.25) 85.20 (9.75)
JB∗ 77.40 (26.87) 84.70 (18.08) 88.00 (12.53)
JBa

∗ 75.95 (22.43) 82.25 (15.36) 85.20 (10.53)
W 88.40 (26.00) 91.85 (17.44) 92.65 (11.82)
JWa 83.40 (23.26) 86.05 (15.74) 87.50 (10.75)
JWBa 80.70 (20.84) 83.25 (14.28) 85.65 (9.78)

α = −0.5
JB 90.05 (17.02) 93.80 (10.08) 95.85 (6.55)
JBa 83.40 (12.20) 86.35 (7.63) 85.70 (5.08)
JB∗ 78.10 (17.42) 84.60 (9.92) 87.30 (6.30)
JBa

∗ 77.35 (13.68) 83.30 (8.24) 85.50 (5.38)
W 89.65 (15.35) 93.30 (9.15) 93.85 (6.01)
JWa 86.25 (13.75) 89.55 (8.39) 90.00 (5.55)
JWBa 83.65 (12.28) 86.45 (7.67) 86.45 (5.11)

α = 0
JB 89.05 (16.94) 93.60 (9.99) 95.45 (6.45)
JBa 82.45 (11.87) 85.85 (7.44) 85.65 (4.92)
JB∗ 78.25 (17.45) 83.80 (9.90) 87.60 (6.24)
JBa

∗ 77.50 (13.52) 82.40 (8.10) 85.80 (5.23)
W 89.65 (15.36) 93.35 (9.06) 93.25 (5.88)
JWa 85.70 (13.44) 88.85 (8.15) 88.40 (5.34)
JWBa 83.10 (11.94) 86.15 (7.47) 86.25 (4.94)

α = 0.5
JB 89.50 (26.82) 92.65 (16.17) 95.30 (10.46)
JBa 82.15 (19.29) 84.75 (12.13) 87.85 (7.99)
JB∗ 79.45 (28.06) 83.80 (16.55) 87.55 (10.51)
JBa

∗ 78.20 (22.20) 82.40 (13.46) 86.25 (8.70)
W 89.90 (24.71) 92.40 (14.54) 94.20 (9.38)
JWa 85.45 (21.64) 87.80 (13.04) 90.25 (8.48)
JWBa 83.00 (19.42) 85.85 (12.17) 88.30 (8.00)

α = 0.9
JB 85.45 (45.29) 92.35 (32.54) 94.80 (22.55)
JBa 76.75 (34.27) 83.25 (24.64) 86.90 (16.90)
JB∗ 76.00 (46.54) 84.30 (33.01) 87.45 (22.90)
JBa

∗ 73.75 (37.85) 81.90 (27.09) 85.15 (18.60)
W 87.30 (44.11) 91.30 (30.32) 93.65 (20.50)
JWa 81.95 (38.92) 85.90 (26.54) 88.90 (17.94)
JWBa 78.10 (34.35) 83.70 (24.62) 87.10 (16.87)

α = 0.95
JB 84.10 (47.37) 91.65 (35.03) 93.85 (24.80)
JBa 74.15 (35.49) 82.15 (25.98) 85.80 (18.12)
JB∗ 74.95 (48.66) 82.40 (35.33) 86.50 (25.02)
JBa

∗ 71.70 (39.16) 80.20 (28.61) 84.35 (19.98)
W 85.60 (46.39) 91.75 (32.79) 92.45 (22.66)
JWa 79.55 (40.69) 85.30 (28.51) 87.10 (19.50)
JWBa 75.40 (35.54) 82.50 (25.96) 85.95 (18.10)

α = 1
JB 78.15 (47.29) 87.15 (35.46) 89.95 (25.01)
JBa 62.60 (34.90) 73.75 (25.40) 76.15 (17.40)
JB∗ 70.80 (48.47) 79.90 (35.71) 83.60 (25.17)
JBa

∗ 63.80 (38.65) 74.25 (28.14) 77.35 (19.28)
W 80.60 (46.58) 87.65 (33.27) 90.00 (22.87)
JWa 74.70 (40.50) 80.60 (28.46) 81.05 (19.32)
JWBa 63.65 (34.93) 74.35 (25.38) 76.15 (17.38)
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Table 5: Estimated Coverage Probabilities and Total Width (in brackets)
for Nominal 90% Confidence Bands for All Impulse Responses considered
jointly for bivariate VAR(1) Processes (based on 2000 MC replications and
2000 bootstrap replications, H = 10, lag order estimated using AIC)

T = 50 T = 100 T = 200
α = −0.95

JB 76.35 (33.02) 87.65 (21.07) 91.55 (14.54)
JBa 69.15 (25.85) 80.10 (16.08) 81.15 (11.02)
JB∗ 66.75 (32.77) 79.75 (20.50) 84.55 (14.24)
JBa

∗ 64.35 (27.49) 76.95 (17.26) 81.55 (11.84)
W 78.80 (33.13) 87.75 (20.29) 90.10 (13.87)
JWa 71.35 (29.41) 81.10 (18.11) 82.70 (12.37)
JWBa 69.70 (25.86) 80.25 (16.12) 81.45 (11.04)

α = −0.9
JB 74.90 (32.25) 89.05 (19.84) 91.80 (13.45)
JBa 67.85 (25.73) 78.60 (15.59) 82.15 (10.44)
JB∗ 65.40 (32.06) 81.00 (19.48) 84.30 (13.28)
JBa

∗ 64.00 (27.26) 78.70 (16.69) 81.65 (11.22)
W 77.25 (32.44) 89.25 (19.09) 90.20 (12.68)
JWa 70.75 (28.86) 82.45 (17.14) 83.50 (11.49)
JWBa 68.20 (25.73) 78.90 (15.61) 82.00 (10.47)

α = −0.5
JB 79.40 (21.04) 91.25 (11.27) 93.60 (7.04)
JBa 73.55 (16.40) 82.70 (8.84) 84.05 (5.56)
JB∗ 68.70 (21.46) 80.45 (11.14) 82.55 (6.93)
JBa

∗ 67.50 (17.78) 79.30 (9.45) 80.65 (6.00)
W 80.70 (20.36) 90.80 (10.54) 92.35 (6.57)
JWa 75.65 (18.21) 84.55 (9.64) 87.60 (6.04)
JWBa 74.05 (16.46) 82.70 (8.88) 84.75 (5.59)

α = 0
JB 76.30 (20.97) 90.85 (10.97) 92.35 (7.00)
JBa 69.85 (16.18) 82.70 (8.44) 82.75 (5.47)
JB∗ 66.15 (21.47) 80.85 (10.91) 85.20 (6.79)
JBa

∗ 65.40 (17.69) 79.60 (9.10) 83.45 (5.77)
W 78.45 (20.39) 91.05 (10.21) 91.35 (6.52)
JWa 73.75 (18.02) 85.65 (9.19) 84.50 (5.91)
JWBa 69.95 (16.23) 82.95 (8.46) 82.85 (5.48)

α = 0.5
JB 78.15 (29.82) 90.35 (17.06) 92.50 (10.95)
JBa 71.75 (22.79) 81.70 (13.07) 83.90 (8.51)
JB∗ 69.20 (30.91) 80.75 (17.45) 85.60 (11.07)
JBa

∗ 67.45 (25.28) 78.90 (14.36) 83.25 (9.27)
W 79.55 (29.08) 89.90 (15.69) 92.35 (10.03)
JWa 73.90 (25.50) 84.45 (14.03) 87.20 (9.03)
JWBa 72.25 (22.88) 82.50 (13.09) 84.75 (8.52)

α = 0.9
JB 72.90 (48.49) 88.75 (33.61) 93.15 (22.99)
JBa 64.40 (37.52) 78.40 (25.70) 84.30 (17.35)
JB∗ 64.85 (49.64) 80.80 (34.09) 84.25 (23.42)
JBa

∗ 62.20 (40.56) 77.30 (28.02) 81.10 (19.08)
W 75.75 (49.19) 88.10 (31.92) 92.35 (21.22)
JWa 69.80 (43.15) 81.65 (27.83) 85.95 (18.49)
JWBa 65.90 (37.55) 79.15 (25.67) 84.80 (17.32)

α = 0.95
JB 70.45 (51.58) 88.35 (36.13) 92.35 (25.45)
JBa 60.90 (39.44) 77.55 (27.04) 83.50 (18.75)
JB∗ 61.90 (52.71) 79.50 (36.44) 86.15 (25.52)
JBa

∗ 58.90 (42.55) 76.10 (29.58) 82.65 (20.42)
W 73.35 (52.66) 88.30 (34.37) 91.60 (23.62)
JWa 67.05 (45.94) 81.05 (29.76) 85.40 (20.26)
JWBa 62.40 (39.43) 78.25 (27.00) 83.85 (18.72)

α = 1
JB 67.05 (52.57) 83.80 (37.13) 89.50 (25.87)
JBa 53.20 (39.58) 70.70 (26.94) 74.10 (18.15)
JB∗ 65.00 (49.56) 76.45 (37.35) 81.80 (26.16)
JBa

∗ 65.00 (41.20) 70.30 (29.56) 76.00 (20.11)
W 71.00 (53.83) 85.00 (35.46) 89.35 (23.98)
JWa 63.65 (46.64) 76.45 (30.22) 79.10 (20.21)
JWBa 54.70 (39.55) 70.75 (26.91) 74.00 (18.12)
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Figure 1: Impulse response analysis for the empirical VAR(24) model based
on data from Kilian (2009) and H = 18. Responses of ∆prod, rea and rpo to
the oil supply shock, the aggregate demand shock and the oil-market specific
demand shock are given, respectively, in the first, second and third rows of
the graph. The point estimates are supplemented with the 90% individual
confidence intervals around the impulse-responses.
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Figure 2: Impulse response analysis for the empirical VAR(24) model based
on data from Kilian (2009) and H = 18. Responses of ∆prod, rea and rpo to
the oil supply shock, the aggregate demand shock and the oil-market specific
demand shock are given, respectively, in the first, second and third rows of
the graph. The point estimates are supplemented with the 90% confidence
bands obtained individually for each impulse-response function.
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Figure 3: Impulse response analysis for the empirical VAR(24) model based
on data from Kilian (2009) and H = 18. Responses of ∆prod, rea and
rpo to the oil supply shock, the aggregate demand shock and the oil-market
specific demand shock are given, respectively, in the first, second and third
rows of the graph. The point estimates are supplemented with the 90% joint
confidence bands.
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Figure 4: Impulse response analysis for the empirical VAR(12) model based
on data from Uhlig (2005) and H = 60. The graph shows responses of all
the modelled variables to the monetary policy shock together with the 68%
confidence bands obtained individually for each impulse-response function.
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Figure 5: Impulse response analysis for the empirical VAR(12) model based
on data from Uhlig (2005) and H = 60. The graph shows responses of all
the modelled variables to the monetary policy shock together with the joint
68% confidence bands.
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