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Abstract 
 
Previous research shows that collective action to avoid a catastrophic threshold, such as a 
climate “tipping point,” is unaffected by uncertainty about the impact of crossing the 
threshold but that collective action collapses if the location of the threshold is uncertain. 
Theory suggests that behavior should differ dramatically either side of a dividing line for 
threshold uncertainty. Inside the dividing line, where uncertainty is small, collective action 
should succeed. Outside the dividing line, where uncertainty is large, collective action should 
fail. We test this prediction in the experimental lab. Our results strongly support the 
prediction: behavior is highly sensitive to uncertainty around the dividing line. 

JEL-Code: C720, F510, H410, H870, Q540. 
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Despite more than two decades of diplomatic effort, concentrations of 

greenhouse gases continue to trend upwards, creating the risk that we may 

someday cross a threshold for “dangerous” climate change
1-3

. While climate 

thresholds are very uncertain, new research is trying to devise “early warning 

signals” of an approaching tipping point
4-11

. This research offers a tantalizing 

promise: while collective action fails when threshold uncertainty is large, 

reductions in this uncertainty may bring about the behavioral change needed to 

avert a climate “catastrophe”
5
. Here we present the results of an experiment, 

rooted in a game-theoretic model, showing that behavior differs dramatically 

either side of a dividing line for threshold uncertainty. On one side of the 

dividing line, where threshold uncertainty is relatively large, free riding proves 

irresistible and trust illusive, making it virtually inevitable that the tipping point 

will be crossed. On the other side, where threshold uncertainty is small, the 

incentive to coordinate is strong and trust more robust, often leading the players 

to avoid crossing the tipping point. Our results show that uncertainty must be 
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reduced to this “good” side of the dividing line in order to stimulate the 

behavioral shift needed to avoid ”dangerous” climate change. 

 

Our approach can be applied to a variety of situations, from the collapse of a fishery 

to sudden transitions of ecological6,12-15 or other complex systems6,16, but our focus in 

this paper is on averting “dangerous” climate change1-11, perhaps the greatest 

challenge for collective action ever. We begin by presenting a game-theoretic model 

of countries’ decisions to limit their greenhouse gas emissions and avoid crossing a 

critical tipping point. In our model, avoiding the tipping point is feasible and 

collectively optimal, but individual optimization by countries sustains this desirable 

outcome only when uncertainty about the location of the threshold is sufficiently 

small; when uncertainty is larger, our model predicts that individual behavior, 

motivated by self-interest, will push countries over the tipping point, resulting in 

“catastrophe.” Our main contribution is to test this prediction of a behavioral regime 

shift in the lab.  

 

Our game-theoretic model assumes that there are N identical countries, each able to 

reduce emissions by up to qmax
A units using technology A and by up to qmax

B units using 

technology B. The per-unit costs of reducing emissions using these technologies are 

constant but different, with cA < cB. Technology A can be thought of as low-cost 

“ordinary abatement,” and B as a high-cost technology for removing carbon dioxide 

from the atmosphere17.  

 

Let Q  denote the total reduction in emissions by all countries using both 

technologies, and let b represent the marginal benefit to an individual country of 
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avoiding “gradual” climate change. Assuming cB > bN > cA > b  gives the classical 

prisoners’ dilemma. For these parameter values, self-interest impels each country to 

abate zero, whereas collectively all countries are better off when each abates 

qmax
A units using technology A. Technology B would never be used to address 

“gradual” climate change in this model, but is essential for avoiding the tipping point. 

 

Since climate thresholds can be related to cumulative emissions18,19, threshold 

avoidance can be expressed in terms of abatement from business as usual. Denote the 

threshold by Q , and assume that Q  is a random variable distributed uniformly such 

that the probability of avoiding the threshold is 0 for Q < Qmin , 

Q − Qmin( ) Qmax − Qmin( )  for Q ∈ Qmin ,Qmaxª¬ º¼ , and 1 for Q > Qmax . We assume that 

avoidance of the threshold is technically feasible but requires using technology B in 

addition to A. Abatement short of Q  results in loss of value X. Theory20 and 

experimental evidence21 suggest that uncertainty about the impact of crossing the 

threshold, X, should not affect behavior and so we assume that the value of X is 

certain.  

 

We next solve two different optimization problems (see the Methods section below in 

addition to the SI Methodological Details). We first show that all countries 

collectively will want to abate Qmax  so long as X ≥ cB − bN( ) Qmax − Nqmax
A( ) N . In this 

paper we assume that this condition is always satisfied, making the consequences of 

crossing the tipping point truly “catastrophic.”  
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We next show that if every other country abates Qmax N , each will want to abate 

Qmax N , making the avoidance of “catastrophe” a Nash equilibrium, provided 

X ≥ cB − b( ) Qmax − Qmin( ) . Of course, in this game zero abatement is also a Nash 

equilibrium. Hence, when this second condition holds, the collective action problem is 

for countries to coordinate their abatement so as to sustain the “safe” Nash 

equilibrium. When this condition does not hold, the players are trapped in a prisoners’ 

dilemma; they would rather stay on the safe side of the tipping point, but free rider 

incentives draw them inexorably towards the unique but “catastrophic” equilibrium.  

 

Rearranging this second condition, we can define φ = X cB − b( ) to be the dividing 

line for the range of threshold uncertainty. Assuming that all countries abate the same 

amount, our model thus predicts that countries will play qi
A = qmax

A ,  qi
B = Qmax N − qmax

A  

to the left of the dividing line, where Qmax − Qmin ≤ φ , and qi
A = qi

B = 0 to the right of 

the dividing line, where Qmax − Qmin > φ . (Note that, in our experiment, because 

abatement is expressed in discrete units, the efficient outcome may not be exactly 

symmetric; see SI Methodological Details). 

 

In the experiment, the game is played by groups of ten players. At the start of each 

game, every participant was given €11, distributed between Accounts A (€1) and B 

(€10). Contributions to the public good consisted of poker chips (abatement) 

purchased from these accounts. Chips purchased from Account A cost €0.10 each (cA 

= 0.1), and there were 10 chips ( qmax
A = 10). Chips paid for out of Account B cost 

€1.00 each (cB = 1), and again there were 10 chips ( qmax
B  = 10). Participants were also 

given an “endowment fund” of €20, allocated to Account C. This fund could not be 
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used to contribute to the public good; it was included only to ensure that no player 

could be left out of pocket. At the conclusion of the game, each participant received a 

payoff equal to the amount of money left in his or her accounts, after making two 

adjustments: First, each subject was given €0.05 for every poker chip contributed by 

the group (b = 0.05) regardless of who had contributed the chips and from which 

account they had been taken. Second, each subject’s payoff was reduced by €15 (X = 

15) unless Q  or more chips were contributed by the group. In the baseline treatment, 

the threshold was certain and set equal to Q = 150 (chips). In the other treatments, the 

threshold was a random variable, distributed uniformly over a range of values: 

145/155, 140/160, 135/165, and 100/200. Thus all treatments share the same expected 

value (150) but differ in the size of the range of possible threshold values. Notice that, 

for the above parameter values, φ = 15.8 . Our model thus predicts that players should 

avoid “catastrophe” in the 150 and 145/155 treatments but not in the 140/160, 

135/165, and 100/200 treatments.  

 

In total, 500 students participated in the computerized experiment, 100 per treatment 

(10 groups × 10 players/group). The games were played in stages. In the first stage, 

every participant proposed a contribution target for their group and pledged an 

amount they would contribute individually. It was common knowledge that these 

declarations were non-binding but would be communicated to the group. After these 

declarations were revealed, the participants chose their actual contributions in the 

second stage. All the participants were then informed about everyone’s decisions and 

asked to complete a short questionnaire, giving a picture of their reasoning and 

emotions during the game. Finally, a computerized “spinning wheel” was activated to 

determine the actual value for the threshold. 
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The experimental results strongly support the hypotheses arising from our theoretical 

model (Figure 1). In the 150 treatment, “catastrophe” is avoided eight out of 10 times. 

In 145/155, “catastrophe” is avoided four out of 10 times with probability 100% and 

in the other six cases with probability of at least 30%. The difference between 150 and 

145/155 is statistically insignificant (Mann-Whitney-Wilcoxon (MWW) test, n = 20, 

p = .23). By contrast, in 140/160, “catastrophe” is never avoided, despite the 

closeness of this uncertainty range to 145/155. “Catastrophe” also occurs every time 

in the 135/165 treatment. In 100/200, one group out of 10 managed to reduce the 

probability of “catastrophe” seven percent. Again, the differences among 140/160, 

135/165, and 100/200 are insignificant (n = 20, p > .05 each). But the differences 

between 150 and 145/155 on the one hand and 140/160, 135/165, and 100/200 on the 

other hand are all highly significant (n = 20, p < .01 each). Consistent with the theory, 

there is a qualitative change in behavior either side of the dividing line.  

 

As predicted, contributions in the treatments 150 and 145/155 do not differ 

significantly from the full cooperative levels of 150 and 155, respectively (see Table 1 

and Figure 2; T-test, n = 10, p = .72 for 150 and p = .25 for 145/155). Moreover, the 

average contribution in 145/155 is higher than in 150, though the difference lacks 

statistical significance (MWW test, n = 20, p = .85).  

 

Consistent with our theoretical model, contributions in the treatments 140/160, 

135/165, and 100/200 are significantly different from their full cooperative levels—

160, 165, and 200, respectively (T-test, n = 10, p = .00 each). However, contributions 

exceed the predicted value of zero (one-sided T-test, n = 10, p = .00 each). We should 
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not be surprised. To the right of the dividing line, the players face a prisoners’ 

dilemma, and it is a common finding in the experimental literature that groups playing 

this game contribute somewhere between the full cooperative and non-cooperative 

levels22 (SI Literature). In our experiment, the tendency to contribute above the non-

cooperative level is especially strong because contributions from Account A are very 

cheap. 

 

To the left of the dividing line, average proposals and pledges closely track their full 

cooperative levels; to the right, they fall relative to full cooperation as the uncertainty 

range increases (Table 1 and Figure 2). Our ex post questionnaire (SI Empirical 

Analysis) reveals that, to the left of the dividing line, proposals are mainly chosen to 

maximize the collective payoff of the group, pledges to signal intended contributions. 

To the right of the dividing line, in contrast, proposals and pledges are mainly chosen 

to stimulate contributions by others. 

 

Figure 3 reveals the effect of uncertainty on individual pledges and contributions. To 

the left of the dividing line, contributions are tightly bunched near the full cooperative 

levels. To the right, contributions move progressively closer to zero and 10, the 

cheap-chips level, as the range of uncertainty increases. When the uncertainty range 

reaches 100/200, the full cooperative level has lost its attraction, with the majority of 

players contributing zero or 10, and with only 2 players contributing 20. To the left of 

the dividing line, the players had incentives to be trustworthy and trusting, and most 

players contributed at least as much as they pledged (98% in 150 and 80% in 

145/155). To the right of the dividing line, the incentives were different, and far fewer 
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players contributed the amounts they pledged (55% in 140/160, 46% in 135/165, and 

only 18% in 100/200).  

 

The contribution of poker chips in our experiment is best thought of as a metaphor for 

the things countries need to do to prevent “dangerous” climate change. Rockström et 

al., for example, identify an atmospheric CO2 concentration level of 350 ppmv as 

“safe,” based on paleoclimatic evidence suggesting that the polar ice sheets “tipped” 

previously somewhere between 350 and 550 ppmv23. Assuming that these values 

represent the range of the distribution for a critical threshold, our model can be 

interpreted, roughly, as suggesting that countries would do no better collectively than 

to limit concentrations to 350 ppmv, provided our first condition 

( X ≥ cB − bN( ) Qmax − Nqmax
A( ) N ) held, but that they could be expected to behave so 

as to allow concentrations to top 550 ppmv unless our second condition 

( X ≥ cB − b( ) Qmax − Qmin( ) ) also held. To give our analysis empirical real-world 

relevance, more sophisticated versions of these relations could be developed and 

estimated, but this will require further research24.  

 

Improved climate models25-27 and early warning signals are valuable, not least as an 

aid to adaptation. By reducing threshold uncertainty, they may also stimulate 

emergency measures to limit emissions. However, early warning signals may fail 

completely8,28; or, being prone to false positives and false negatives9, may reduce 

uncertainty by too little to prevent a critical threshold from being breached. Making 

matters worse, early warning signals arrive late. Even if early warning changed the 
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incentives to act, the ability to act may be severely circumscribed, leaving few 

immediate options besides adaptation and geoengineering.  

 

The impact of crossing a tipping point can be interpreted as a punishment imposed by 

Mother Nature. When uncertainty about a tipping point is small, the fear of crossing it 

serves as an effective deterrent. When threshold uncertainty is large, however, this 

punishment fails as a deterrent, and strategic enforcement mechanisms are needed to 

deter players from straying into the climate “danger zone”29,30. A good example of 

strategic enforcement is the use of trade restrictions in the Montreal Protocol, which 

has successfully protected the ozone layer. Similar mechanisms, our research implies, 

are needed to avoid “dangerous” climate change.  

 

Methods 

The two key conditions of our theoretical model result from two different 

optimization exercises. If countries cooperate fully, they will choose their individual 

abatement levels so as to maximize their expected aggregate payoff, 

E Π( ) = bQN − cAqi
A

i
¦ − cBqi

B − XN 1− Q − Qmin( ) Qmax − Qmin( )ª¬ º¼
i
¦  for 

Q ∈ Qmin ,Qmaxª¬ º¼ .  Under our assumptions, it will pay all countries collectively to 

abate Qmax in the aggregate, just, so long as XN ≥ cB − bN( ) Qmax − Nqmax
A( )  (SI 

Methodological Details). We assume that this condition is always satisfied. If 

countries choose their abatement levels independently, every country i will maximize 

its own expected payoff, E π i( ) = bQ − cAqi
A − cBqi

B − X 1− Q − Qmin( ) Qmax − Qmin( )ª¬ º¼  

for Q ∈ Qmin ,Qmaxª¬ º¼ , taking the abatement levels of other countries as given. Zero 

abatement is always a Nash equilibrium, but per-country abatement in the amount 
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Qmax N is also a Nash equilibrium when X ≥ cB − b( ) Qmax − Qmin( )  (SI 

Methodological Details). This last condition is satisfied in two of our experimental 

treatments (150 and 145/155); it is not satisfied for the three remaining treatments 

(140/160, 135/165, and 100/200). 

 

The experimental sessions were conducted in a computer laboratory at the University 

of Magdeburg, Germany, using students recruited from the general student 

population. In each session, subjects were seated randomly at linked computers. A set 

of written instructions including several numerical examples and control questions 

was handed out. The control questions tested subjects’ understanding of the game to 

ensure that they were aware of the available strategies and the implications of making 

different choices. At the beginning of each session, subjects were assigned randomly 

to 10-person groups and played five practice rounds, with the membership of groups 

changing after each round. After a final reshuffling of members, each group played 

the game for real. Note that there is no significant correlation between the average 

contributions made in the practice rounds and the contributions made in the real round 

(in every case, the p values were insignificant at the 10% level). To ensure anonymity, 

each member of a group was identified by a different letter (A to J). At the end of 

each session, after the actual threshold value was determined by the “spinning wheel,” 

students were paid their earnings in cash (for more details see the SI Methodological 

Details). 
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Figure legends: 

Figure 1 Probability of “catastrophe” by treatment. In 150, “catastrophe” is 

avoided eight out of 10 times. In 145/155, “catastrophe” is avoided four out of 10 

times with probability 100% and in the other six cases with probability between 30% 

and 80%. In 140/160 and 135/165, “catastrophe” is never avoided. In 100/200, 

“catastrophe” occurs nine out of 10 times with probability 100% and once with 

probability 93%.  

 

Figure 2 Treatment means versus predicted values. Mean contributions are 

consistent with the predicted values to the left of the dividing line. To the right of the 

dividing line, mean contributions lie between the full cooperative and the predicted 

(non-cooperative) values. Mean proposals and mean pledges match the full 

cooperative values to the left of the dividing line; to the right, a wedge opens up 

between these values as the uncertainty range widens. 

 

Figure 3 Individual pledges and contributions by treatment. To the left of the 

dividing line, pledges and contributions are tightly bunched, more so in 150 than in 

145/155. To the right of the dividing line, in 140/160, 135/165, and 100/200, values 

vary widely, with contributions increasingly falling short of pledges with higher 

uncertainty. A series of Spearman’s correlation tests gives: n = 100, rho = .38, p = .00 

in 150; rho = .59, p = .00 in 145/155; rho = .33, p = .00 in 140/160; rho = -.01, p = .93 

in 135/165; rho = .10, p = .34 in 100/200. A small noise (2%) has been inserted to 

make all data points visible. 
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Tables: 

Table 1 Summary statistics by treatment. 

Treatment Proposal Pledge Contribution Group contribution 

 Mean 
(Std dev) 

Mode 
(%) 

Mean 
(Std dev) 

Mode 
(%) 

Mean 
(Std dev) 

Mode 
(%) 

Mean 
(Std dev) Min / max 

150 151.9 
(1.57) 

150 
(83%) 

14.7 
(0.51) 

15 
(74%) 

15.1 
(0.77) 

15 
(56%) 

150.9 
(7.69) 136 / 159 

145/155 158.0 
(1.40) 

160 
(48%) 

15.1 
(0.62) 

16 
(53%) 

15.4 
(0.38) 

16 
(45%) 

153.5 
(3.84) 148 / 160 

140/160 161.0 
(2.64) 

160 
(69%) 

15.1 
(0.83) 

16 
(64%) 

11.7 
(1.69) 

16 
(33%) 

117.4 
(16.85) 80 / 139 

135/165 163.3 
(8.75) 

170 
(41%) 

15.4 
(1.10) 

17 
(36%) 

11.3 
(1.98) 

10 
(33%) 

112.9 
(19.84) 68 / 130 

100/200 166.3 
(9.85) 

200 
(29%) 

15.8 
(1.69) 

20 
(32%) 

7.7 
(1.67) 

10 
(36%) 

77.2 
(16.67) 55 / 107 

 

To the left of the dividing line for threshold uncertainty (the area shaded in blue), 

actual contributions closely follow the proposals and pledges. To the right of the 

dividing line (the area shaded in red), contributions fall short of the proposals and 

pledges. Here, mean and especially modal proposals and pledges increase with the 

uncertainty range (that is, with the full cooperative contribution level), while mean 

and modal contributions decrease. The treatments 150 and 100/200 are taken from ref 

21. 
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This file contains Supplementary Text, Supplementary Tables S1-S6, Supplementary 

Figures S1-S4, and additional references. 

 

1. Supplementary Methodological Details 

Derivations of main results from theoretical model 

In this section we provide details behind the key theoretical results described in the 
paper. Our analysis here assumes that abatement levels (contributions) are continuous, 
but the results do not change in a significant way when these values must be integers, 
as in our experiment (see, for example, the caption to Figure S1). All the variables and 
parameters used in this model are described in Table S1. 
Lemma 1. Full cooperation requires eliminating the chance of catastrophe if and 
only if XN ≥ cB − bN( ) Qmax − Nqmax

A( ) . 

Proof. Full cooperation requires that countries maximize their expected collective 
payoff 

E Π( ) =

bQN − cAqi
A − cBqi

B − XN  for Q <Qmin
i
∑

i
∑

bQN − cAqi
A − cBqi

B − XN 1−
Q −Qmin( )
Qmax −Qmin( )

$

%
&
&

'

(
)
)

 for Q∈ Qmin,Qmax$% '(
i
∑

i
∑

bQN − cAqi
A − cBqi

B  for Q >Qmax
i
∑

i
∑

+

,

-
-
-

.

-
-
-

 (1) 

subject to qi
A ∈ 0,  qmax

A"# $%  and qi
B ∈ 0,  qmax

B"# $%∀i . By assumption, bN > cA ; and so 

maximization of E Π( )  requires qi
A = qmax

A for all i irrespective of the value of Q .  
Also by assumption, cB > bN , so that full cooperation requires setting qi

B = 0  for all i 
unless this abatement can reduce the probability of catastrophe—that is, unless 
Q∈ Qmin,  Qmax⎡⎣ ⎤⎦ . Upon maximizing the middle expression in eq. (1) by choice of qi

B  

for Q∈ Qmin,Qmax⎡⎣ ⎤⎦ , a necessary condition for setting qi
B > 0  is 

XN ≥ cB − bN( ) Qmax −Qmin( ) . Given the linear nature of this model, it will pay to set 

qi
B =Qmax N − qmax

A  if this weak inequality holds (and abatement is assumed 
symmetric) and qi

B = 0  if the inequality does not hold. The expected collective 
payoffs corresponding to these choices are 

E Π;  qi
A = qmax

A ,  qi
B = 0( ) = bqmax

A N 2 − cAqmax
A N − XN

E Π;  qi
A = qmax

A ,  qi
B =Qmax N − qmax

A( ) = bQmaxN − cAqmax
A N − cB Qmax N − qmax

A( )N
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The latter payoff is at least as great as the former (that is, full cooperation requires 
eliminating the chance of catastrophe) if and only if 

XN ≥ cB − bN( ) Qmax − qmax
A N( ) .         (2) 

As noted before, we also require XN ≥ cB − bN( ) Qmax −Qmin( ) . By assumption, 

Qmin ≥ Nqmax
A . Hence, this second condition will hold so long as (2) holds, making 

inequality (2) a necessary and sufficient condition for full cooperation to require 
eliminating the chance of catastrophe. ! 

Lemma 2. Play qi
A = 0 , qi

B = 0  for all i is a Nash equilibrium. 

Proof. Taking the abatement of every other country as given, each country i is 
assumed to maximize its expected payoff 

E π i( ) =

bQ − cAqi
A − cBqi

B − X  for Q <Qmin

bQ − cAqi
A − cBqi

B − X 1−
Q −Qmin( )
Qmax −Qmin( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 for Q∈ Qmin,Qmax⎡⎣ ⎤⎦

bQ − cAqi
A − cBqi

B  for Q >Qmax

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (3) 

subject to qi
A ∈ 0,  qmax

A⎡⎣ ⎤⎦,  qi
B ∈ 0,  qmax

B⎡⎣ ⎤⎦ , and the abatement by countries other than i 
being given. In this model, only the aggregate level of abatement by other countries 
matters; from i’s perspective this amount is given by Q− i = qj

A + qj
B( )

j , j≠i
∑ .  

So, how will i choose to play? Suppose that Q− i ∈ 0,  Qmin − qmax
A − qmax

B⎡⎣ ⎤⎦ . Then, no 

matter what i does, aggregate abatement cannot exceed Qmin . Moreover, since cA > b  
by assumption, i won’t even want to undertake any ordinary abatement to reduce 
gradual climate change (since cB > cA , i will also not undertake any abatement using 
technology B). Since countries are symmetric, this will be true for every country i, 
making play q

i

A = qi
B = 0∀i a Nash equilibrium. ! 

Lemma 3. Play qi
A = qmax

A , qi
B =Qmax N − qmax

A  for all i is a Nash equilibrium if 

X ≥ cB − b( ) Qmax −Qmin( ) . 

Proof. Provided Q−i ∈ Qmin − qmax
A − qmax

B ,  Qmax( ) , abatement by country i may be in i’s 
self-interest. This is because, by reducing its own emissions, i can reduce the 
probability of catastrophe. By assumption, Qmin ≥ Nqmax

A . Hence, in a symmetric 
outcome, every country must abate using technology B in addition to using A in order 
to reduce the probability of catastrophe. From eq. (3), for Q∈ Qmin,  Qmax⎡⎣ ⎤⎦ , 

maximization of E π i( )  requires choosing: (1) qi
B > 0  if b + X Qmax −Qmin( )− cB ≥ 0  

or, upon rearranging, X ≥ cB − b( ) Qmax −Qmin( ) , and (2) qi
A > 0  if 

X ≥ cA − b( ) Qmax −Qmin( ) . By assumption, cB > cA ; and so the second condition will 
hold so long as the first inequality holds.  Since technology A is cheaper than B, if it 
pays i to abate one unit of emissions using B, it will also pay i to abate qi

A = qmax
A . 
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Moreover, since the first condition holds for every unit of abatement using technology 
B for Q∈ Qmin,  Qmax⎡⎣ ⎤⎦ , in a symmetric equilibrium it will pay every country i to abate 

qi
B =Qmax N − qmax

A  so that the probability of catastrophe is reduced to zero. In 

summary, provided X ≥ cB − b( ) Qmax −Qmin( ) , there exists a Nash equilibrium in 

which it pays every country i to abate qi
A = qmax

A and qi
B =Qmax N − qmax

A . ! 

Our main result is easily proved using these three lemmas: 

Proposition. Let φ = X cB − b( ) represent the dividing line for the uncertainty range 

Qmax −Qmin , and assume that the condition specified in Lemma 1 holds so that it is 
collectively optimal for every player to play qi

A = qmax
A  and qi

B =Qmax N − qmax
A . Then, 

for Qmax −Qmin ≤φ , sustaining the full cooperative outcome and thus avoiding 
catastrophe is a Nash equilibrium, achievable by coordination, whereas for 
Qmax −Qmin >φ the Nash equilibrium is unique and requires that every country play 
qi
A = qi

B = 0 , making abatement a prisoners’ dilemma. 

Figures S1 and S2 illustrate the situations that pertain, respectively, either side of the 
dividing line, φ = X cB − b( ) . Table S2 summarizes the experimental treatments and 
the corresponding theoretical hypotheses. In our experiment, the condition specified 
in Lemma 1 requires Qmax ≤ 400 , which obviously holds for all treatments. 

 

Experimental Design and Procedure 

As is conventional practice in the literature, our experiment involved students as 
participants (all but one of the twelve studies listed in Table S3 used students). The 
experimental sessions were held in a computer lab at the University of Magdeburg, 
Germany, with 500 students recruited from the general student population (using the 
recruiting software Orsee; S1). The five treatments were run in a between-subjects 
design, meaning that each student took part in one treatment only. One hundred 
subjects were randomly assigned to each treatment. In each session, 20 subjects were 
seated randomly at linked computers (using the game software Ztree; S2). Before the 
subjects got to know the game, they were invited to play and become familiar with the 
computerized “spinning wheel” (see Figure S3). Probabilities must be communicated 
with care (S3), which is why we used this novel way of demonstrating a uniform 
probability distribution; it facilitated the participants’ understanding of the risk and its 
implications for the game. Written instructions, including several numerical examples 
and control questions, were then handed out. The instructions assumed a neutral frame 
for the context and language of the experiment in order to avoid any potential bias 
(there was no mention of “climate change”). 
 

Experimental instructions  

(The instructions below are for the 150 treatment, translated from German.) 

Welcome to our experiment! 
1. General information 
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In our experiment you can earn money. How much you earn depends on the 
gameplay, or more precisely on the decisions you and your fellow co-players 
make. You will receive €20 for your participation, but note that a loss during 
the experiment will be deducted from that amount while a gain will be added. 
For a successful run of this experiment, it is essential that you not talk to other 
participants. Now, read the following rules of the game carefully. If you have 
any questions, please give us a hand signal. It is important that you read up to 
the STOP sign only. Please wait when you get there, as we will give you a 
brief oral presentation before we continue. 
2. Game rules 

There are 10 symmetric players in the game, meaning you and 9 other players. 
Each player is faced with the same decision problem. All decisions in the 
experiment are anonymous. For the purpose of anonymity, you will be 
identified by a letter (between A and J), which you will see in the lower left 
corner of your display.  
At the beginning of the game, you will receive 20 poker chips, which are 
credited to two personal accounts, Account A and Account B. During the 
experiment, you can use the poker chips in your accounts to contribute to a 
joint project or you can leave these chips untouched. Chips from Account A 
are cheap; they cost €0.10 each. But you can contribute no more than 10 chips 
from Account A. Chips from Account B are more expensive; they cost €1.00 
each. You can contribute at most 10 chips from Account B. So, overall you 
can contribute any integer amount of chips between 0 and 20 to the joint 
project: 10 chips from Account A and 10 chips from Account B. 

At the end of the game, the amount of chips you have left in Accounts A and 
B will be paid to you in cash: €0.10 for each chip in Account A and €1.00 for 
each chip in Account B. There are two further adjustments: First, you will get 
€0.05 for every poker chip contributed to the joint project, irrespective of who 
contributed the chip and whether the chip was purchased from Account A or 
B. Second, if the group as a whole contributes fewer than 150 poker chips to 
the joint project, every player will lose €15. If the group contributes 150 or 
more poker chips to the joint project, no player will lose any money. 

Before you and the other players decide how many chips to contribute, 
everyone will be given an opportunity to make two non-binding 
announcements: First, each player will make a proposal for how many chips 
the group as a whole should contribute to the joint project. Second, each player 
will make a pledge for how many chips he or she intends to contribute to the 
joint project. All the proposals and pledges made by the players will be 
displayed before you and the others decide how much to contribute. 
The game will be played and paid out only once. You should think carefully 
about how to decide in the game. Before playing “for real,” 5 trial rounds will 
be played so that you and the other players can become familiar with the 
game. The people you will play with in the 5 trial rounds and the real round 
will always change, so that you will never play more than one round with the 
same group of people. 
3. Example 
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Here, you can see a (hypothetical) example of the decisions made by the 10 
players. 

[Screenshot] 
The leftmost column (“Proposals”) shows every player’s proposal for the 
collective contribution target. The column next to it (“Pledges”) shows each 
player’s pledge for his or her own contribution. The next column 
(“Contributions”) displays each player’s actual contribution. The rightmost 
column (“Payoffs”) shows the corresponding payoff levels. When you have 
played the game, you will see this information displayed. 

[STOP sign]  

Please wait for the oral description of the game. 

4. Control questions 

Please answer the following control questions. 

a. Take a look at the hypothetical example in part 3 above. Are the 
collective contributions of the group as a whole sufficient to avoid the loss? 

 Yes    No  

b. How many chips does each player have to contribute on average, if the 
group were to contribute 150 chips in total?  

 0   5   10   15   20 

c. Assume that the group as a whole (including yourself) has contributed 
0 chips to the joint account. What would be your payoff (excluding the 
participation fee)?  

 – €4.00  €0.00  €10.00  €12.50  €17.50 

d. Assume that the group as a whole (including yourself) has contributed 
100 chips to the joint account. Assume also that you have contributed 10 chips 
from Account A and 0 chips from Account B. What would be your payoff 
(excluding the participation fee)?  

 – €4.00  €0.00  €10.00  €12.50  €17.50 

e. Assume that the group as a whole (including yourself) has contributed 
150 chips to the joint account. Assume also that you have contributed 10 chips 
from Account A and 5 chips from Account B. What would be your payoff 
(excluding the participation fee)?  

 – €4.00  €0.00  €10.00  €12.50  €17.50 

f. Assume that the group as a whole (including yourself) has contributed 
150 chips to the joint account. Assume also that you have contributed 10 chips 
from Account A and 0 chips from Account B. What would be your payoff 
(excluding the participation fee)?  

 – €4.00  €0.00  €10.00  €12.50  €17.50 

g. Assume that the group as a whole (including yourself) has contributed 
200 chips to the joint account. Assume also that you have contributed 10 chips 



6 
 

from Account A and 10 chips from Account B. What would be your payoff 
(excluding the participation fee)?  

 – €4.00  €0.00  €10.00  €12.50  €17.50 

Please use the pocket calculator to calculate other examples! Give us a hand 
signal after you have answered all the control questions. We will come to you 
and check that you have answered all the questions. The game will begin after 
we have checked the answers of all the players and answered any questions 
you may have. Good luck! 

 

2. Supplementary Literature 
Public goods games have been studied extensively in experimental settings. Many 
researchers have employed the linear public goods game with a unique Pareto 
inefficient equilibrium to study human cooperation. The results show that a full range 
of behavior exists; some contribute everything (the Pareto-efficient amount), some 
contribute zero (the free riding amount), and some choose a middle course. Average 
contributions are typically halfway between the Pareto-efficient level and the free 
riding level and, when the game is repeated finitely, decline steadily with repetition 
(for reviews, see S4 and S5). In threshold public goods games, the public good is 
provided only if the sum of contributions reaches a predetermined threshold, and there 
exist two sets of Nash equilibria (in pure strategies), one of which is efficient. The 
players’ task in these games is to correlate their action (coordination) rather than to 
suppress free riding incentives (cooperation). The provision of these public goods 
often but not always succeeds. Increases in thresholds increase contributions but also 
increase the likelihood that the threshold will not be reached (for reviews, see S4 and 
S6).  

Threshold public goods experiments with varying uncertainty about the threshold 
have been conducted in the context of discrete public goods and common pool 
resources; for an overview see Table S3 (and S7-S18). In the latter literature, players 
are allowed to claim any amount of a collectively owned resource, but they are 
unaware of the precise resource size and receive a payoff of zero if the total quantity 
claimed exceeds the resource stock. A key result of this literature is that increasing 
resource uncertainty causes players to overestimate the resource size and, as a 
consequence, request more. They also expect their co-players to request more. These 
studies generally refer to cognitive biases in the perception of uncertainty to explain 
the results, e.g. an erroneous belief that the variability and the central tendency of a 
probability distribution are positively correlated (S16). Other explanations include an 
optimism bias (S15) and an egoism bias (S7). As can be seen in Table S3, the typical 
experimental protocol involves five players in a group. The games are played over 
several rounds and every participant plays all uncertainty ranges (within-subjects 
test). The players are not allowed to communicate with each other and typically they 
don’t receive information about others’ behavior or the true threshold until the end of 
the experiment. A closer look at the literature reveals that increasing uncertainty about 
the threshold decreases contributions to the public good (or increases requests of the 
common pool resource) only if the increase in the uncertainty range is very large. The 
effects are insignificant when the increase in the uncertainty range is moderate. 
Our paper departs from this literature in a number of ways. First, we study threshold 
uncertainty in the context of climate change; contributions in our model alleviate 
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“gradual” climate change and “abrupt and catastrophic” climate change; players had 
two ways of contributing, rather than one, each achieved at a different marginal cost. 
Second, our games were played by 10 players—significantly more than in previous 
studies (which refrained from deception). Third, we used a between-subjects design, 
i.e. every participant played one uncertainty range only. Together with the use of the 
“spinning wheel” to communicate the uncertainty, we think this design facilitates the 
participants’ understanding of the games. Finally, we placed great emphasis on 
communication—a possibility ignored by all previous studies. Specifically, we allow 
players not only to pledge their own intended contribution, but also to propose a target 
for the group contribution. The experimental literature on communication has shown 
that this form of restricted and anonymous communication among participants can 
improve coordination but works much less reliably for cooperation (for reviews see 
S6 and S19-S21, see also S22-S23). 

 

3. Supplementary Empirical Analyses 
Table S4 shows the significance of differences in proposals, pledges, and 
contributions between treatments. As predicted, the average contribution for 145/155 
is higher than for 150 but, given the tightness of this uncertainty range, the difference 
lacks statistical significance. Note that the results for 145/155 are all the more 
remarkable considering that the players in this treatment lack an obvious focal point 
(S24). For 150, it is fairly obvious that each player should contribute 15. For 145/155, 
however, there does not exist an efficient symmetric equilibrium (given that 
contributions must be in integer values). To support the full cooperative outcome, 
some players must contribute more than others, and determining which individuals 
should contribute more and which less requires extraordinary coordination. 

Consistent with theoretical predictions, contributions in 150 and 145/155 do differ 
significantly from the contributions made in each treatment to the right of the dividing 
line, 140/160, 135/165, and 100/200. Table S4 also shows that contributions made 
under large uncertainty (100/200) differ significantly from those made under 
intermediate uncertainty (140/160 and 135/165). Although this observation is not 
predicted by the theory, it confirms a finding from previous experiments on threshold 
uncertainty (see Table S3).  

A similar picture evolves for the variances in contributions. There are no significant 
differences in standard deviations within the coordination zone to the left of the 
dividing line (between 150 and 145/155) or within the prisoners’ dilemma zone to the 
right of the dividing line (between 140/160, 135/165, and 100/200). But comparing 
the treatments on either side of the dividing line reveals almost always statistically 
significant differences. 

In a symmetric coordination game, with communication, the players all know what to 
do; above all, they want to reach the efficient equilibrium and avoid catastrophe. Each 
treatment in this territory thus has a single attractor: the full cooperative contribution 
level. This is why aggregate contributions in these games are relatively close to the 
full cooperative level and show little variation. In a prisoners’ dilemma, by contrast, 
the players are ambivalent. Their collective interest makes them want to contribute so 
as to avoid catastrophe; but their self-interest makes them want to lower their 
contributions to save costs. In addition to the full cooperative contribution level, there 
are two more attractors in this game: zero, the Nash contribution level, and 10, the 
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cheap-chips level. The multiplicity of attractors leads to a much larger variation in 
aggregate contributions. As the uncertainty range increases, the full cooperative level 
loses its attraction; more and more people contribute either zero or 10. The 
percentages of people making these contributions increase from 38% in 140/160 to 
44% in 136/165 and 66% in 100/200. 

Figure S4 shows to what extent players’ contributions deviated from their pledges 
depending on what the group as a whole had pledged. The vertical axis shows the 
aggregate pledges (the sum of the individual pledges) and the horizontal axis shows 
the gap between players’ individual pledges and their actual contributions. In the 150 
treatment, the aggregate pledges cluster around 150, the obvious focal point. For 
aggregate pledges equal or greater than 150, the gap between individual pledges and 
contributions is very small; players had no reason to deviate from their pledge. For 
aggregate pledges below 150, the gap is negative, indicating that players increased 
their contributions when they noticed that their pledges would not suffice to avoid 
catastrophe. The lower the aggregate pledge the larger is the gap. There are only two 
players who gave less than they pledged. Things are a little more complicated in 
145/155. There are two clusters for the aggregate pledges; one around 155 and 
another one just below 150. For aggregate pledges around 155, the gap between 
individual pledges and contributions is relatively small. Though, the gap is not as 
small as in 150. When the aggregate pledge is below 150, the gap is larger. Again, the 
lower the aggregate pledge the larger is the gap. But this time the gap widens in both 
directions. Players’ reactions to a low aggregate pledge varied; some increased their 
contributions (moved to the left of the vertical line at zero) while others decreased 
their contributions (moved to the right). We interpret this as saying that a sufficiently 
high aggregate pledge affirmed players’ trust and made them want to keep their word 
while a low aggregate pledge eroded trust and made them unsure how to play the 
game.  

The picture for the treatments within the prisoners’ dilemma zone (140/160, 135/165, 
and 100/200) is very different. The deviations between individual pledges and 
contributions do not follow a certain pattern; players lacked the incentive to keep their 
word regardless of what the group as a whole had pledged. Also, with a larger 
uncertainty range more and more players moved to the right of the vertical line at 
zero, meaning that the gap between what people say and what they do became larger. 

Table S5 presents participants’ responses to our follow-up questionnaire. In general, 
whenever the questions are about general attitudes, responses vary little across 
treatments (questions 7, 8, and 9). The same is true for risk aversion (question 12). 
Subjects’ risk aversion does not significantly differ between treatments (Chi-square 
test, n = 200, p > .05 each). There is no significant correlation between individual risk 
aversion and individual contributions (Spearman's correlation test, n = 100, p > .05 
each) or between the number of risk averse members in a group and group 
contributions (n = 10, p > .05 each). Thus, we cannot reject the hypothesis that risk 
aversion and behavior in the game are independent. The average estimations of the 
threshold (question 13) are not significantly different from the expected value 150 (T-
test, n = 100, p > .05 each) and they do not significantly differ between treatments 
(MWW test, n = 200, p > .05 each). Not surprisingly, participants in all treatments did 
not feel very confident about their estimations (question 14). However, the confidence 
level does not significantly differ between treatments (Chi-square test, n = 200, p > 
.05 each). This suggests that the different contribution levels we observe in the 
different experimental treatments are not the consequence of a misperception of risk 
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or different levels of confidence. There is no significant correlation between 
individual confidence levels and contributions in the game (Spearman's correlation 
test, n = 100, p > .05 each). 
By contrast, responses to the questions about subjects’ reasoning and emotions during 
the games vary considerably between treatments. Subjects playing in 150 and 145/155 
were more contented with the game’s outcome and less regretful than subjects playing 
in 140/160, 135/165, and 100/200 (questions 1 and 2). Fairness and trust were more 
important in the coordination games (questions 3, 4, and 10). For example, when 
asked, “Did you trust the other players to make the contributions they pledged?” 47% 
answered “Very much” in 145/155, whereas only 27% gave this answer in 140/160. 
The results differ on either side of the dividing line, but also reflect a trend. When 
asked the above question, only 10% of the people playing 100/200 answered “Very 
much,” whereas the percentage answering “Not at all” increased from 2% in 150 to 
41% in 100/200. Similarly, proposals and pledges were found to be more helpful for 
coordination (questions 5 and 6). When asked, “Do you agree with the statement that 
the exchange of pledges was helpful?” 50% of respondents playing 145/155 
responded “Very much,” whereas only 26% of the respondents playing 140/160 gave 
this answer. There is again a clear difference either side of the dividing line. There is 
also a background trend. The percentage of respondents answering “Very much” 
declines from 68% in 150 to 10% in 100/200. By contrast, the percentage answering 
“Not at all” increases from 3% in 150 to 33% in 100/200. Interestingly, when asked if 
they feel betrayed by others (question 11), responses form an inverse U-shape across 
treatments. The share of participants answering this question with “Very much” rose 
from 10% in 150 to 30% in 140/160 and then declined to 16% in 100/200, arguably 
because the players in the latter treatment didn’t expect a better outcome. Overall, we 
find a general trend: greater uncertainty makes mutual trust and cooperation 
increasingly difficult. Around the dividing line, however, there is a qualitative and 
profound change in behavior and motives. 

Table S6 presents subjects’ responses to the open questions about their motivation for 
making their proposals, pledges, and contributions, respectively. The responses were 
classified and assigned to certain response categories. The comparison of responses 
between the treatments can be summarized as follows: As a motivation to propose a 
certain group target, joint payoff maximization became less important with increasing 
uncertainty while the stimulation of others’ contributions and suggesting a realistic 
target became more important. Fairness and safety tended to be of less relevance 
under higher uncertainty. As a motivation for the pledges, truthful signaling of 
intended contributions and the creation of trust clearly became less important with 
increasing uncertainty while the stimulation of others’ contributions became more 
important. Finally, for the actual contribution decision, the wish to contribute the fair 
share of the burden and fulfill the own pledge became less important with increasing 
uncertainty. The willingness to compensate for potentially missing contributions 
decreased. Instead, own payoff maximization, resignation and distrust became more 
important. Also, with increasing uncertainty, more and more people stated that they 
threw in the cheap chips to compromise between group interest and own interest. 
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Table S1. Description of parameters and variables  

Description Symbol Value 

Number of players N  10 

Marginal benefit of reducing gradual 
climate change b  0.05 

Marginal cost of abatement using 
technology A cA  0.10 

Marginal cost of abatement using 
technology B cB  1.00 

Maximum abatement using technology A qmax
A

 10 

Maximum abatement using technology B qmax
B

 10 

Cost of catastrophe X  15 

Lower threshold bound Qmin  
Varies by 
treatment* 

Upper threshold bound Qmax  
Varies by 
treatment** 

Player i’s abatement using technology A qi
A

  

Player i’s abatement using technology B qi
B

  

Aggregate abatement Q = qi
A + qi

B( )i∑   

Aggregate abatement except for player i Q− i = qj
A + qj

B( )j , j≠i∑   

Player i’s expected payoff E π i( )   

Expected collective payoff E Π( )   
*150 for the 150 treatment; 145 for 145/155, 140 for 140/160, 135 for 135/165, and 
100 for 100/200. **150 for the 150 treatment; 155 for 145/155, 160 for 140/160, 
165 for 135/165, and 200 for 100/200. 
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Table S2. Experimental treatments and hypotheses.  

Treatment Threshold Game Full 
cooperation 

Non 
cooperation 

Catastrophe 
avoided? 

150 150 Coordination 150 0, 150 Yes 

145/155 [145, 155] Coordination 155 0, 155 Yes 

140/160 [140, 160] Prisoners’ Dilemma 160 0 No 

135/165 [135, 165] Prisoners’ Dilemma 165 0 No 

100/200 [100, 200] Prisoners’ Dilemma 200 0 No 

 
The treatments 150 and 145/155 represent coordination games to the left of the 
dividing line for threshold uncertainty; the remaining treatments 140/160, 135/165, 
and 100/200 represent prisoners’ dilemma games to the right of the dividing line. 
Assuming that players use the proposals and pledges to coordinate to the efficient 
equilibrium, contributions in 150 and 145/155 are predicted to reach the full 
cooperative level and avoid catastrophe. Since the Nash equilibrium in the prisoners’ 
dilemma games is unique, contributions are predicted to fall to zero. The treatments 
150 and 100/200 are taken from (S25). 
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Table S3. Cooperation experiments with varying threshold uncertainty. 

Study 
(S7-S18) 

Contribution 
decision 

Uncertainty 
test and 
rounds 

Benefits Marginal 
costs N Threshold 

distribution 
Threshold 
ranges 

Communi-
cation 

Effect of increasing 
uncertainty on 
contributions 

Climate change games 

This paper Simultaneous; 
discrete [0, 20] 

Between-
subject test; 
one-shot 

Continuous and 
discontinuous 

Stepwise 
constant 10 Continuous 

uniform 

150 
[145, 155] 
[140, 160] 
[135, 165] 
[100, 200] 

Yes; 
proposals 
and 
pledges 

Negative unless the 
increase in 
uncertainty is very 
small 

Discrete public goods games 

Gustafsson 
et al. 2000 * 

Simultaneous;  
[0, 2000] 

Within-
subject test;  
2 x 8 rounds 

Discontinuous Constant 5 

Sequences of 
numbers with 
same mean (5000) 
and different 
variances 
represent prior 
thresholds 

Std dev =  
625.2 or 
1068.9 

No Negative 

McBride 
2010 

Simultaneous; 
binary {0, 1} 

Within-
subject test;  
2 x 15 rounds 

Discontinuous Constant 5 Discrete 
uniform 

3 
{2, 3, 4} 

{1, 2, 3, 4, 5} 
No 

Tends to be 
negative for low 
public good value 

Suleiman et 
al. 2001 

Simultaneous; 
discrete [0, 5] 

Within-
subject test;  
3 x 8 rounds 

Discontinuous Constant 5 Discrete 
uniform 

10 
[8, 12] 
[6, 14] 
15 
[13, 17] 
[11, 19] 

No Positive for low 
threshold mean 

Wit / Wilke 
1998 * 

Sequential;      
discrete [0, 15] 

Between-
subject test; 
one-shot 

Discontinuous Constant 100 Continuous 
uniform 

[800, 1000] 
[400, 1400] No 

Negative, especially 
when combined with 
high strategic 
uncertainty 

Common pool resource games 

Budescu et 
al. 1990 

Simultaneous; 
any request 

Within-
subject test; 
3 x 10 rounds 

Discontinuous Constant 5 Continuous 
uniform 

500 
[250, 750] 
[0, 1000] 

No Negative 

Budescu et 
al. 1995a 

Simultaneous 
and sequential; 
any request 

Within-
subject test;  
5 x 4 rounds 

Discontinuous Constant 5 Continuous 
uniform 

[495, 505] 
[465, 535] 
[400, 600] 
[310, 690] 
[220, 780] 

No Negative for large 
uncertainty 

Budescu et 
al. 1995b 

Simultaneous 
and sequential; 
any request 

Within-
subject test; 
3 x 10 rounds 

Discontinuous Constant 

5 Continuous 
uniform 

500 
[250, 750] 
[0, 1000] 

No Negative 

3 Continuous 
uniform 

500 
[480, 520] 
 [420, 580] 
 [120, 880] 
 [0, 1000] 

No Negative for large 
uncertainty 

2 Continuous 
uniform 

500 
[480, 520] 
[450, 550] 
[420, 580] 
[240, 760] 
[120, 880] 
[60, 940] 
[0, 1000] 

No Negative for large 
uncertainty 

Gustafsson 
et al. 1999a 
* 

Simultaneous; 
any request 

Within-
subject test;  
6 x 4 rounds 

Discontinuous Constant 5 Continuous 
uniform 

[250, 750] 
[0, 1000] 
[750, 1250] 
[500, 1500] 
[1250, 1750] 
[1000, 2000] 

No Tends to be 
negative 

Gustafsson 
et al. 1999b 
* 

Simultaneous; 
any request 

Within-
subject test;  
2 x 8 rounds 

Discontinuous Constant 5 

Sequences of 
numbers with 
same mean (5000) 
and different 
variances 
represent prior 
resource sizes 

Std dev =  
625.2 or 
1068.9 

No Negative 

Rapoport et 
al. 1992 

Simultaneous; 
any request 

Within-
subject test;  
5 x 4 rounds 

Discontinuous Constant 5 Continuous 
uniform 

500 
[375, 625] 
[250, 750] 
[125, 875] 
[0, 1000] 

No Negative for large 
uncertainty 

Rapoport et 
al. 1993 

Sequential; 
any request 

Within-
subject test;  
3 x 10 rounds 

Discontinuous Constant 5 Continuous 
uniform 

500 
[250, 750] 
[0, 1000] 

No Negative 

Suleiman et 
al. 1996 

Sequential;  
any request 

Within-
subject test;  
3 x 5 rounds 

Discontinuous Constant 5 Continuous 
uniform 

500 
[250, 750] 
[0, 1000] 

No Negative 

* Hypothetical or deceptive experiments in which participants were given false information about the game and their payoff. 
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Table S4. Significance of differences between treatments.  
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Pl
ed
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C
on

tri
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n 

145/155 .0002 
(.5289) 

.0878 
(.3823) 

.8490 
(.1770)          

140/160 .0002 
(.5606) 

.3250 
(.0311) 

.0004 
(.1188) 

.0027 
(.3470) 

.9095 
(.1612) 

.0002 
(.0260)       

135/165 .0032 
(.0145) 

.1120 
(.0116) 

.0002 
(.0425) 

.0232 
(.0108) 

.2721 
(.0470) 

.0002 
(.0090) 

.1112 
(.0290) 

.5702 
(.3365) 

.8498 
(.5993)    

100/200 .0002 
(.0052) 

.0638 
(.0170) 

.0002 
(.0137) 

.0961 
(.0039) 

.1502 
(.0375) 

.0002 
(.0008) 

.2113 
(.0107) 

.1726 
(.1285) 

.0009 
(.6730) 

.5449 
(.6707) 

.4268 
(.3484) 

.0015 
(.8428) 

Treatment 150 145/155 140/160 135/165 

 
P-values from a Mann-Whitney-Wilcoxon rank-sum test of treatment differences in 
mean values; in parentheses, p-values from a Levene test of treatment differences in 
variances. 
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Table S5. Responses to the ex post questionnaire.  

Question Response 150 145/155 140/160 135/165 100/200 
1) Were you generally satisfied with the game's 
outcome? 

Very much 
Somewhat 
Little 
Not at all 

63 
18 
5 
14 

32 
40 
17 
11 

6 
22 
32 
40 

5 
36 
21 
38 

10 
31 
26 
33 

2) Knowing how the game was played, with the benefit 
of hindsight, do you wish you had made a different 
contribution? 

Very much 
Somewhat 
Little 
Not at all 

2 
19 
27 
52 

6 
19 
24 
51 

11 
24 
19 
46 

16 
21 
33 
30 

11 
17 
22 
50 

3) Did fairness play a role for your contribution 
decision? 

Very much 
Somewhat 
Little 
Not at all 

61 
16 
11 
12 

48 
32 
8 
12 

44 
24 
18 
14 

36 
30 
16 
18 

24 
10 
21 
45 

4) Did trust play a role for your contribution decision? Very much 
Somewhat 
Little 
Not at all 

58 
22 
9 
11 

44 
36 
13 
7 

43 
28 
17 
12 

39 
28 
19 
14 

18 
12 
23 
47 

5) Do you agree with the statement that the exchange of 
proposals was helpful? 

Very much 
Somewhat 
Little 
Not at all 

49 
27 
13 
11 

37 
32 
21 
10 

20 
38 
29 
13 

17 
40 
29 
14 

6 
28 
34 
32 

6) Do you agree with the statement that the exchange of 
pledges was helpful? 

Very much 
Somewhat 
Little 
Not at all 

68 
24 
5 
3 

50 
34 
13 
3 

26 
42 
19 
13 

25 
27 
32 
16 

10 
30 
27 
33 

7) Generally speaking, do you trust other people? Very much 
Somewhat 
Little 
Not at all 

25 
60 
13 
2 

29 
51 
20 
0 

23 
55 
19 
3 

27 
63 
9 
1 

21 
60 
17 
2 

8) Generally speaking, do you agree with the statement 
that, if a person fails to keep his or her word, they 
deserve another chance? 

Very much 
Somewhat 
Little 
Not at all 

24 
54 
18 
4 

39 
46 
14 
1 

35 
44 
18 
3 

39 
47 
13 
1 

41 
45 
14 
0 

9) Generally speaking, do you try to keep your word? Always 
Often 
Sometimes 
Rarely 
Never 

56 
41 
1 
1 
1 

54 
45 
1 
0 
0 

55 
43 
2 
0 
0 

44 
54 
2 
0 
0 

36 
60 
4 
0 
0 

10) Did you trust the other players to make the 
contributions they pledged? 

Very much 
Somewhat 
Little 
Not at all 

47 
43 
8 
2 

47 
38 
12 
3 

27 
41 
24 
8 

29 
32 
19 
20 

10 
23 
26 
41 

11) Knowing how the game was played, with the benefit 
of hindsight, do you feel, that some of the other players 
betrayed your trust in them? 

Very much 
Somewhat 
Little 
Not at all 

10 
12 
37 
41 

14 
39 
33 
14 

30 
28 
23 
19 

28 
20 
28 
24 

16 
21 
23 
40 

12) Please imagine the following situation in another 
unrelated experiment: You have an initial endowment of 
€40. There is a 50% possibility that you will lose your 
€40. However, you can avoid this loss by paying €20 up 
front. Would you rather pay this amount and get €20 for 
certain or would you rather accept the risk of losing the 
€40 with probability 50%? 

€40 uncertain 
Indifferent 
€20 certain 

15 
27 
58 

15 
14 
71 

18 
14 
68 

12 
22 
66 

25 
13 
62 

13) The contribution threshold will soon be determined 
by the “spinning wheel”. What single value do you 
estimate for the threshold? 

 
Mean  149.87 149.68 149.05 150.71 

14) How confident are you about your estimate of the 
contribution threshold? 

Very much 
Somewhat 
Little 
Not at all 

 10 
33 
35 
22 

5 
41 
30 
24 

13 
32 
32 
23 

6 
39 
35 
20 

 
Numbers are percentages of subjects per treatment (except for question 13, which 
shows mean values). 
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Table S6. Responses to the ex post open-ended questions.  

Question Response 150 145/155 140/160 135/165 100/200 
1) What was the most 
important reason for your 
proposal for the group 
contribution? 

Joint payoff maximization 
Fairness 
Safety 
Stimulation of others' contributions 
Realistic target 
Other reason 

82 
3 
8 
2 
0 
5 

77 
8 
3 
5 
5 
2 

63 
5 
6 
10 
12 
4 

42 
4 
4 
18 
27 
5 

22 
1 
0 
31 
39 
7 

2) What was the most 
important reason for your 
pledge for your own 
intended contribution? 

Signaling of intended contribution / 
creation of trust  

Stimulation of others' contributions 
Safety 
Other reason 

71 
 
17 
5 
7 

72 
 
19 
5 
4 

50 
 
33 
8 
9 

29 
 
46 
15 
10 

24 
 
66 
4 
6 

3) What was the most 
important reason for your 
contribution? 

Fair share to reach target / own 
pledge 

Compensation of potentially missing 
contributions / safety 

Own payoff maximization 
Resignation / distrust 
Cheap chips / compromise between 

group and own interest 
Other reason 

56 
 
33 
 
10 
0 
0 
 
1 

64 
 
17 
 
15 
1 
1 
 
2 

47 
 
5 
 
16 
17 
11 
 
4 

34 
 
4 
 
21 
21 
19 
 
1 

12 
 
0 
 
24 
30 
33 
 
1 

 
Subjects’ responses were classified by keyword search. Numbers are percentages of 
subjects per treatment. 
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Figure S1. Avoiding catastrophe a Nash equilibrium.  
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b + X
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Q−i =
Qmax N −1( )

N

Q

 

This figure describes qualitatively the incentives for every country i to abate so as to 
eliminate any chance of catastrophe, given that all other countries abate the same 
amount. The figure is consistent with the treatment 145/155. In this case, we have N = 
10, b = 0.05 , cA = 0.10 , cB = 1, X = 15 , Q−i =139.5 , Qmax =155 , Qmin =145 , 

qmax
A =10 , and qmax

B = 10 . Hence, the dividing line is φ = X cB − b( ) = 15.8 ; and, since 

Qmax −Qmin = 10 , the game is played to the left of the dividing line. Using the above 
values we find b + X Qmax −Qmin( ) = 1.55 . Since this value exceeds cB = 1, it will pay 

i to abate qi
A = qmax

A = 10,  and qi
B =Qmax N − qmax

A = 5.5 . This assumes continuous 
abatement. In our experiment, abatement must be in integer units. It is easy to confirm 
that play qA = 10 , qB = 5  by half the players and play qA = 10 , qB = 6 by the other 
half is a Nash equilibrium. Of course, there are also many more asymmetric Nash 
equilibria, but in our set up, contributions that are approximately symmetric are 
particularly focal. 
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Figure S2. Avoiding catastrophe not a Nash equilibrium.  
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This figure describes qualitatively the absence of incentives for abatement by 
countries acting independently. The figure is consistent with the treatments 140/160, 
135/165, and 100/200. Let’s focus on 140/160. In this case, we have N = 10, 
b = 0.05 , cA = 0.10 , cB = 1, X = 15 , Q− i = 144 , Qmax = 160 , Qmin = 140 , qmax

A =10 , 

and qmax
B = 10 . The dividing line is φ = X cB − b( ) = 15.8 ; and, since Qmax −Qmin = 20 , 

the game is played to the right of the dividing line. Using the above values we find 
b + X Qmax −Qmin( ) = 0.8 . Since this value is less than cB = 1, it will pay i to abate 

qi
B = 0 . In other words, if every country j,  j ≠ iwere initially to play qj =Qmax N , it 

will pay i to play qi
B = 0 . Hence, play qi

A = qmax
A ,  qi

B =Qmax N − qmax
A cannot be a Nash 

equilibrium. 
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Figure S3. The “spinning wheel.” 

 
 

At the end of the experiment, a volunteer was invited to activate a computerized 
“spinning wheel,” with the “ends” of the wheel at 12 o’clock representing the 
minimum and maximum values of the uncertainty range (145/155, 140/160 shown 
here, 135/165, and 100/200). Every subject was able to observe the wheel being spun, 
and see where the arrow came to rest, determining the value for the threshold (the 
selected value was also displayed next to the wheel). The wheel generated random 
numbers (rounded to two decimal places), i.e. it was not possible to manipulate the 
outcome. All participants had 15 minutes to play and become familiar with the wheel 
before they got to know the game. To spin the spinner, players had to click on the 
spinner and swipe to the side, away from the spinner. 
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