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Abstract 
 
This paper extends the Mirrlees (1971) model of optimal non-linear income taxation with a 
monitoring technology that allows the government to verify labor effort at a positive, but non-
infinite cost. Monitored individuals receive a penalty, which increases if individuals earn a 
lower income (provide less work effort) or have a higher earning ability. We analyze the joint 
determination of the non-linear monitoring and tax schedules and the conditions under which 
these can be implemented. Monitoring of labor effort reduces the distortions created by 
income taxation and raises optimal marginal tax rates, possibly above 100 percent. The 
optimal intensity of monitoring increases with the marginal tax rate and the labor-supply 
elasticity. Our simulations demonstrate that monitoring strongly alleviates the trade-off 
between equity and efficiency as welfare gains of monitoring are around 1.4 percent of total 
output. The optimal intensity of monitoring follows a U-shaped pattern, similar to that of 
optimal marginal tax rates. Our paper explains why large welfare states optimally rely on 
work-dependent tax credits, active labor-market policies, benefit sanctions and work bonuses 
in welfare programs to redistribute income efficiently. 
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“Informational frictions are a specification of a particular type of technology. For
example, when we say “effort is hidden”, we are really saying that it is infinitely
costly for society to monitor effort. The desired approach would be to devise optimal
tax systems for different specifications of the costs of monitoring different activities
and/or individual attributes. To be able to implement this approach, we need to ...
extend our modes of technical analysis to allow for costs of monitoring other than
zero or infinity.” Kocherlakota (2006, pp. 295-296)

1 Introduction

Redistribution of income is one of the most important tasks of modern welfare states. However,

redistribution is expensive as it distorts the incentives to provide work effort. As a result,

there is a trade-off between equity and efficiency. On a fundamental level, Mirrlees (1971)

demonstrates that the trade-off between equity and efficiency originates from an information

problem. Earnings ability and labor effort are private information, and the government cannot

condition redistributive taxes and transfers on earnings ability. Therefore, the government

cannot distinguish individuals that are unable to work from individuals that are unwilling to

work. Hence, redistribution from high-income to low-income earners inevitably distorts the

incentives to provide work effort.

In practice, labor effort is not completely non-verifiable, as assumed by Mirrlees (1971).

Indeed, some welfare states do condition the tax burden on some measure of labor supply. For

example, in the UK low-income individuals receive a tax credit if they work more than 30 hours.

This policy can only be implemented if the government is able to verify hours worked. Similar

restrictions apply to in-work tax credits in Ireland and New Zealand, see also OECD (2011).

Clearly, the assumption that work effort and earnings ability are not verifiable is a too strong

assumption. In the real world, the government does verify work effort of some individuals to

some extent, albeit at a cost. Consequently, the government can – to some extent – separate

shirking high-ability individuals from hard-working low-ability individuals.

This paper extends Mirrlees (1971) by allowing the government to operate a monitoring

technology. The monitoring technology allows the government to verify labor effort of an in-

dividual at a positive, but finite cost. If an individual is monitored, the government perfectly

verifies his/her labor effort and can thus deduce a worker’s ability. The government sets the

monitoring schedule as a function of gross income. That is, the probability that an individual

is monitored depends (possibly non-linearly) on his/her gross labor earnings. Monitoring work

effort provides incentives to individuals to adjust their labor supply in a direction that the

government desires. When individuals are monitored, they receive an exogenous penalty. The

penalty is increasing in ability as high-ability individuals are required to earn more income. The

penalty is decreasing in earnings, as a higher level of earnings indicates a higher labor effort for

given ability. The role of penalties should not be taken too literally. We could reformulate the

model such that individuals would receive a bonus or a tax credit when they adjust their labor

supply in the direction desired by the government.

Each individual is aware of the monitoring schedule and the penalty function before making

labor-supply decisions. Hence, individuals can alter their monitoring probability and penalties
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by adjusting their labor effort. The total wedge on labor effort consists of the explicit income

tax rate and an implicit subsidy on labor effort due to monitoring. Monitoring of effort acts

as an implicit subsidy on labor supply for two reasons. First, the expected penalty decreases

with labor effort, since the penalty is assumed to be decreasing in gross earnings. Second,

the monitoring intensity, and therefore the probability of receiving a penalty, may decrease

with gross earnings, depending on the shape of the monitoring schedule. For a given tax rate,

monitoring can thus reduce the distortions of the income tax on labor effort, thereby increasing

both equity and efficiency.

The government maximizes social welfare by optimally setting the non-linear monitoring

intensity, alongside the optimal non-linear income tax. In our model, first-best can generally

not be obtained. Because the penalty function is exogenous, penalties are generally not sufficient

to ensure that all individuals supply the desired level of labor effort, and hence, some monitored

workers will receive a penalty.1 We solve for the optimal non-linear tax and monitoring schedules

by decentralizing the optimal, incentive-compatible direct mechanism that induces truthful

revelation of ability types. We do not deviate from Mirrlees (1971) in that individuals always

truthfully report earnings.2

The schedule of optimal non-linear labor wedges is affected in two important ways in compar-

ison to Mirrlees (1971). First, an increase in the labor wedge reduces labor supply, and hence,

increases marginal penalties for monitored individuals. Marginal penalties have the largest

impact on individuals’ labor-supply decisions when the probability of receiving a penalty is

high. Therefore, an increase in the monitoring intensity reduces the efficiency costs of the labor

wedge. Second, a decrease in labor supply directly increases the actual penalty. This increases

within-ability inequality between monitored and non-monitored individuals, since the monitored

individuals receive a penalty, whereas the unmonitored individuals do not. Therefore, higher

marginal taxes result in a distributional loss due to monitoring activities. The net effect of

monitoring on the optimal wedge is thus theoretically ambiguous.

In Mirrlees (1971) tax rates at, or above, 100 percent can never be optimal. In contrast

to Mirrlees (1971), we demonstrate that marginal tax rates could optimally be larger than 100

percent due to optimal monitoring. In particular, individuals may exert positive work effort

even if the marginal income tax rate is above 100 percent, as long as the total wedge on labor

remains below 100 percent. This could explain why effective marginal tax rates of close to, or

even higher than, 100 percent are observed in real-world tax-benefit systems in the phase-out

range of means-tested benefits. See Immervoll (2004), Spadaro (2005), Brewer et al. (2010) and

1If the government would be able to optimize the penalty function a trivial first-best outcome would result
by either raising the penalty to infinity or adjusting the penalty function such that the implicit subsidy on work
exactly off-sets the explicit tax on work. It could be possible to endogenize both the penalty function and the
monitoring function in our model if we assume that monitoring is imperfect. In such a setting, large penalties
are undesirable, since hard-working individuals may inadvertently be monitored as shirking (see e.g. Stern, 1982,
Diamond and Sheshinski, 1995 and Jacquet, forthcoming). However, extending our model to allow for imperfect
monitoring would complicate our analysis without affecting the key mechanism of our model – that monitoring
alleviates the equity-efficiency trade-off.

2We realize that the assumption of truthful reporting of earnings is not always realistic due to, for example tax
evasion and avoidance. This issue has been discussed in, amongst others, Cremer and Gahvari (1996), Schroyen
(1997) and Chander and Wilde (1998). In most developed countries, however, firms are required to report gross
labor earnings directly to the tax authorities, which prevents underreporting of earnings for a very large fraction
of labor earnings (see e.g. Kleven et al., 2011).
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OECD (2011) for examples in OECD countries.

The non-linear monitoring schedule is set so as to equate the marginal cost of monitoring to

the marginal efficiency gain associated with monitoring at each gross income level. The efficiency

gain of monitoring is increasing in the distortion created by the wedge on labor. Therefore, the

optimal monitoring intensity increases with both the total labor wedge and the labor-supply

elasticity.

Unfortunately, there is no closed-form solution for the optimal tax and monitoring schedules.

Therefore, we resort to numerical simulations based on a realistic calibration of the model

to US data. Our simulations demonstrate that the optimal tax schedule follows a U-shape,

which closely resembles the simulations of Saez (2001). Moreover, the monitoring schedule

also follows a U-shape. This confirms that the monitoring intensity should indeed be large

when tax distortions on labor supply are large. The simulations demonstrate that the marginal

tax rates with monitoring are generally higher than without monitoring. Hence, monitoring

always results in more redistribution of income from high- to low-ability individuals, despite the

inequality within-ability groups that results due to monitoring and penalizing individuals.

Strikingly, our simulations demonstrate that the optimal tax rate at the bottom end of the

income scale is substantially above 100 percent. This implies that the implicit subsidy on work

due to monitoring is very effective in reducing the total tax wedge on labor effort at the lower end

of the income scale. Indeed, the optimal monitoring probability is close to one at the bottom, but

it drops substantially towards middle-income levels. There is a slight increase in the monitoring

probability towards the top, as tax rates increase. We conclude from our simulations that

monitoring is most important at the bottom of the income distribution. Strongly redistributive

governments should therefore optimally employ a high monitoring intensity at the low end of

the income scale, for example, via job-search requirements, benefit sanctions, work bonuses, and

active labor-market programs. Moreover, our findings suggest that work-dependent tax credits

for low-income earners, like those in the UK, Ireland and New Zealand, are indeed part of an

optimal redistributive tax policy.

The welfare gains of monitoring are shown to be large. Compared to the optimal non-linear

tax schedule without monitoring, monitoring increases average labor earnings by 1.35 percent

in our baseline simulation. Moreover, the transfer increases by about 4 percent. The monetized

welfare gain of monitoring is about 1.4 percent of total output. The optimal monitoring proba-

bility does not exceed 20 percent anywhere except at the lower end of the income distribution.

In our baseline simulations, the cost of monitoring and the average penalty are both only very

small fractions of average labor earnings. Extensive sensitivity analyses demonstrate that the

results are robust to parameter changes in the monitoring technology, on which little empirical

evidence exists.

The setup of the paper is the following. The next section gives a brief overview of the

related literature. The third section introduces the model and derives the conditions for first-

and second-order incentive compatibility. The fourth section derives the optimality conditions

for monitoring and redistribution. The fifth section presents the simulations. Finally, the sixth

section concludes.
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2 Review of the literature

Our model builds upon two strands in the mechanism-design literature. Mirrlees (1971), Dia-

mond (1998) and Saez (2001) develop the theory of the optimal non-linear income tax under the

assumption that both effort and ability are completely private information, implicitly assuming

that verification of either effort or ability is infinitely costly. On the other hand, the literature

on costly state verification develops principal-agent models where the outcome of a project is

a function of both the state of the world and the action of the agent (see, e.g., Mirrlees, 1999,

1976, Holmstrom, 1979, and Townsend, 1979). The outcome is observed, but the action and

the state of the world can only be verified through costly monitoring. Monitoring can then

improve the ex-ante utility of both the principal and the agent. We apply the theory of costly

state verification to the Mirrlees (1971) model and show that monitoring of effort can increase

welfare significantly.

In a related paper, Armenter and Mertens (2010) study the effect of optimal monitoring of

ability types on the optimal tax schedule. They analyze a dynamic model of optimal taxation

where the government can use a monitoring technology to establish the ability of an agent. In

their model, the monitoring intensity is exogenous, while penalties are endogenous. In equilib-

rium, individuals do not misreport their ability, and are therefore never penalized. Indeed, the

economy is shown to converge to first best in an infinite-horizon setting. We instead analyze the

case where monitoring is endogenous and penalties are exogenously given. Because penalties are

exogenously given, individuals may misreport their ability type in equilibrium. Consequently,

our model does not converge to a first-best outcome. An advantage of allowing for an endoge-

nous monitoring intensity is that we do not need to worry about a tax-riot equilibrium in which

all individuals misreport their type when they expect other individuals to do the same (Bassetto

and Phelan, 2008).

The effect of monitoring has also been studied in the literature on tax evasion and the

literature on unemployment insurance. The literature on tax evasion (see, e.g., Allingham

and Sandmo, 1972, Sandmo, 1981, Mookherjee and Png, 1989, Slemrod, 1994, Cremer and

Gahvari, 1994, 1996, Chander and Wilde, 1998, and Slemrod and Kopczuk, 2002) extends the

Mirrlees (1971) framework by allowing individuals to underreport their earned income to the

tax authorities.3 Compared to the standard Mirrlees (1971) model, income taxation is more

distortionary, because it not only reduces labor supply, but also increases tax evasion. However,

the government can monitor individuals by auditing their tax returns and fine them when

they evade taxes. In a two-type economy with non-linear taxation and monitoring Cremer and

Gahvari (1994, 1996) show that the welfare-maximizing policy is to levy a positive marginal

tax rate on the bottom type and a zero tax rate at the top. All individuals reporting income

below a threshold level should be monitored with positive probability. The tax rate and the

monitoring schedules are strategic complements for the government, because a higher tax rate

induces an increase in tax evasion, thereby increasing the social value of monitoring.

In our model the only choice variable of individuals is their labor effort.4 The monitoring

3A comprehensive survey of the literature can be found in Slemrod and Yitzhaki (2002).
4An alternative interpretation would be that individuals exogenously supply labor, but can use a costly evasion

technology.
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instrument is therefore aimed at measuring effort instead of evasion. We extend the literature

by considering optimal non-linear tax and monitoring under a continuum of skill types. This

allows us to derive an elasticity-based formula for the optimal non-linear tax and monitoring

schedule in the spirit of Diamond (1998) and Saez (2001). Moreover, we can determine the

shape of non-linear tax and monitoring schedules over the entire income distribution through

simulations.

In the literature on unemployment insurance, Ljungqvist and Sargent (1995a,b) study the

effect of monitoring on equilibrium employment in welfare states.5 In their model, unemployed

workers may receive a job offer each period. In the absence of monitoring, the benefits in-

duce workers to decline an inefficiently large number of job offers. Monitoring can help raising

efficiency by punishing those workers who decline job offers. Simulations using Swedish data

demonstrate that welfare states with large benefits and progressive taxation can have low equi-

librium unemployment rates, provided the monitoring probability and sanctions are sufficiently

large. In a model of optimal income redistribution with search, Boadway and Cuff (1999) de-

termine the welfare-maximizing monitoring probability and demonstrate that it is increasing in

the level of the benefits. Boone and Van Ours (2006) and Boone et al. (2007) develop a search

model where the government can actively monitor and sanction job-search effort. They show

that monitoring and sanctioning may be more effective in reducing unemployment than cutting

the replacement rate. In addition, they show that monitoring may be effective, even when the

duration of unemployment benefits is limited. This literature has focused on monitoring the

search effort of unemployed workers. We contribute to this literature by studying the effect of

monitoring on employed workers.

Finally, we contribute to the literature on optimal non-linear tax simulations (see, for exam-

ple, Mirrlees, 1971, Tuomala, 1984, Saez, 2001, Brewer et al., 2010 and Zoutman et al., 2013).

We show that monitoring can lead to significant improvements in both equity and efficiency.

3 Model

3.1 Households

The setup of our model closely follows Mirrlees (1971). Individuals are heterogeneous in their

earnings ability, n, which denotes the productivity per hour worked. Ability is distributed

according to cumulative distribution function F (n) with support [n, n], where n could be infinite.

The density function is denoted by f(n). Workers are perfect substitutes in production and the

wage rate per efficiency unit of labor is constant and normalized to one. n therefore corresponds

to the number of efficiency units of labor of each worker. Gross labor income of an individual

is the product of his/her ability and his/her labor effort zn = nln.

Individuals derive utility from consumption cn and disutility from labor effort ln. Net

income is what remains of gross-labor income after taxes T (zn) and possibly a sanction, P , of

not supplying enough labor effort. All net income is consumed.

π(zn) is the probability that an individual with earnings zn is monitored by the government.

5A large literature exists on optimal unemployment insurance, see Fredriksson and Holmlund (2006) for a
survey of this literature. However, this literature typically does not consider monitoring of search effort.
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It denotes the fraction of monitored individuals with gross earnings zn. π(zn) is also referred

to as the monitoring intensity. We assume the government receives a perfect signal of the

individual’s labor effort ln if an individual is monitored. The ability of a monitored individual

can then be inferred from the production relation: n = zn/ln.

Monitored individuals will receive a penalty or bonus depending on their observed earnings

zn and ability n:

P ≡ P (zn, n), P, Pn,−Pz ≥ 0, Pzn ≤ 0, ∀n, z. (1)

We will refer to P (·) as the penalty function. The penalty function P (·) is exogenously given

and assumed to be continuous and twice differentiable in both arguments. We restrict penalties

to be non-negative. Alternatively, we could have framed the model in terms of work bonuses

rather than penalties, where individuals receive a bonus (or negative penalty) when they earn

a higher income.6

For given gross income zn, penalties are assumed to be larger for individuals with higher

ability n: Pn > 0. Intuitively, a low-ability individual has to work harder to earn a given

gross income than a high-ability individual. Furthermore, penalties decrease in gross income

(Pz < 0), since an individual needs to supply more effort to earn a higher income for a given level

of ability. In addition, we make the logical assumption that the marginal penalty, −Pz, increases

in ability, such that Pzn ≤ 0. Hence, the government provides stronger work incentives to those

with higher earnings potential. Later, we will derive that this assumption helps to ensure

incentive compatibility.

As an example, a special case of the penalty function is P (zn, n) = P̂
(
zn
n

)
= P̂ (ln), with

P̂ ′(·) < 0. In this case, individuals receive penalties strictly on the basis of the amount of

their work effort. With this penalty function, marginal penalties are increasing in ability if the

elasticity of the marginal penalty is smaller than one:

Pzn(·) ≤ 0⇐⇒ −dP̂ ′(ln)

dln

ln

P̂ ′(ln)
≤ 1. (2)

That is, if a one-percent decrease in labor effort does not lead to an increase in the marginal

penalty of more than one percent. Figure 2 displays an example of penalties that are only a

function of labor effort. As can be seen, the penalty decreases quadratically in actual earnings

up to ln = l∗n, after which it remains constant at 0. Such a penalty function will be used in the

simulations later.

We assume that the penalty function P (zn, n) is exogenous and outside the control of the

redistributive government. The reason is that if P (zn, n) would be optimally set, the results

would become trivial. In particular, if the penalty function could be optimized, the optimal

penalty for any deviation of work effort from the first-best level would be infinity, so that all

individuals would choose to perform the first-best labor effort. We believe that constraining

P (zn, n) can be defended on legal grounds as the legal system imposes limitations on the gov-

6The main difference is that in our setting with positive penalties shirking individuals will adjust their labor
supply to avoid being monitored, whereas in a setting with bonuses hard-working individuals will adjust their
labor supply in an attempt to get monitored. As such, the shape of the optimal monitoring schedule could be
different when the government provides bonuses instead of penalties. However, optimal second-best allocations
would be the same under the same informational and technological constraints.
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Figure 1: Example of a penalty function

ernment’s ability to use infinite penalties. A more thorough discussion on these issues can be

found in Schroyen (1997), Mirrlees (1997), and Mirrlees (1999).

What is not outside the control of the tax authority is the determination of the tax rate and

monitoring probability. An individual with ability n is monitored with probability π(zn) and

not monitored with probability 1 − π(zn). The consumption of an unmonitored individual is

given by cUn ≡ zn− T (zn). The consumption of a monitored (and penalized) individual is given

by cPn ≡ zn − T (zn)− P (zn, n).

Individuals are assumed to maximize expected utility subject to their budget constraints in

monitored and unmonitored states. We follow Diamond (1998) by assuming that all individuals

have an identical quasi-linear expected utility function:

u(zn, n) ≡ π(zn)cPn + (1− π(zn))cUn − v(ln), v′(·) > 0, v′′(·) > 0, (3)

= zn − T (zn)− π(zn)P (zn, n)− v(zn/n), ∀n,

where we substituted the household budget constraint and ln = zn/n in the second line.

The first term in the first line represents the non-monitoring probability times the consump-

tion of an individual that is not monitored. The second term in the first line is the monitoring

probability times the consumption of an individual that is monitored. The last term in the first

line is the disutility of labor effort. An important analytical advantage of this quasi-linear-in-

consumption utility function is that individuals are risk-neutral.7

Individuals choose the optimal amount of gross income based on their productivity n, the

tax function T (·), the monitoring function π(·), and the penalty function P (·). An income level

zn is incentive compatible if it maximizes u(zn, n). The first-order condition for optimal labor

7We could allow for risk-aversion in the utility function. In that case we are only able to solve for the optimal
non-linear tax and monitoring schedules if the social welfare function is utilitarian. Intuitively, the problem
becomes analytically untractable if the government has a different degree of risk-aversion – which is implied by
a non-utilitarian social welfare function – than households. Without risk aversion, this problem is always absent
and we can allow for any degree of inequality aversion in the social welfare function.
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supply is given by:

v′(zn/n) = n
(
1− T ′(zn)− π′(zn)P (zn, n)− π(zn)Pz(zn, n)

)
, ∀n. (4)

On the right-hand side, we see that policy drives a wedge between the private and social benefits

of labor supply. The total labor wedge Wn is given by:

Wn ≡
n− v′(zn/n)

n
= T ′(zn)︸ ︷︷ ︸

explicit tax

+ π′(zn)P (zn, n) + π(zn)Pz(zn, n)︸ ︷︷ ︸
implicit tax

, ∀n. (5)

In a laissez-faire equilibrium the right-hand side of eq. (4) equals n and the total labor wedgeWn

is zero. The total labor wedge consists of the explicit marginal tax on labor (T ′) and the implicit

marginal tax (subsidy) on labor due to monitoring (π′P + πPz). If T ′ + π′P + πPz > 0, the

redistributive tax and monitoring policy reduces optimal labor effort below the laissez-faire level,

and vice versa if it is smaller than zero. The wedge is naturally increasing in the explicit marginal

rate T ′. Furthermore, it increases in the marginal monitoring probability, π′, if penalties are

positive, P > 0. π′ gives the marginal increase in the monitoring probability as a function of

gross earnings. If the monitoring probability increases (decreases) with income, this reduces

(increases) the incentive to exert effort, because a higher labor income increases (decreases) the

probability of receiving a penalty. Therefore, an increase in the marginal monitoring probability

decreases the incentive to exert work effort.8

Proposition 1 shows that without loss of generality we can assume that expected consump-

tion, C(zn) ≡ zn − T (zn) − π(zn)P (zn, n), is non-decreasing in earnings zn. Consequently, the

total labor wedge Wn can never be larger than one, i.e. larger than 100 percent.

Proposition 1 All implementable continuous allocations can be implemented through a con-

tinuous non-decreasing expected consumption function C(zn), ∀n. If C(zn) is continuous and

differentiable, the wedge Wn can never exceed 1.

Proof. The proof directly follows Mirrlees (1971). Let C̃(z) be any continuous expected con-

sumption function. The individual maximization problem is given by:

zn = arg max
zn
C̃(zn)− v(zn/n), ∀n. (6)

Now consider function C(zn) = maxz̃n≤zn C̃(z̃n). Clearly, C(·) is non-decreasing and continuous,

because C̃(·) is continuous. Now, consider the maximization problem:

max
zn
C(zn)− v(zn/n) = max

zn

[
max
z̃n≤zn

C̃(z̃n)

]
− v(zn/n), ∀n. (7)

Assume zn is the solution to problem (6). The solution to this second maximization problem

must also be zn. To see this, evaluate C(·) at zn: C(zn) = maxz̃n≤zn C̃(z̃n). Either C(zn) = C̃(zn)

8Note that an equivalent wedge can be obtained using a bonus function instead of a penalty function.
In particular, let B(zn, n) denote the bonus function, which gives a bonus B if an audited individual earn-
ing zn is found to have ability n. Using the bonus function, the wedge on labor can be written as:
Wn = T ′(zn) − π′(zn)B(zn, n) − π(zn)Bz(zn, n). Hence, the penalties and bonuses can achieve an identical
labor wedge π′(zn)B(zn, n) + π(zn)Bz(zn, n) = −π′(zn)P (zn, n)− π(zn)Pz(zn, n).

8



or C(zn) = C(z̄n) with z̄n < zn. In the first case, maximization problems (7) and (6) are

equivalent, and hence, they must have the same solution. In the second case, because v′(·) is

strictly increasing in zn, z̄n must give a higher value to the objective function in eq. (6) than does

zn. Hence, we arrive at a contradiction, because zn could not have been the solution to problem

(6) in the first place. Therefore, without loss of generality we can focus on non-decreasing

functions C(·). Now, suppose C(·) is differentiable and consider its derivative.

C′(zn) = 1− T ′(zn)− π′(zn)P (zn, n)− π(zn)Pz(zn, n) = 1−Wn, ∀n. (8)

C(zn) is non-decreasing if its derivative is greater than or equal to zero: C′(zn) ≥ 0⇔Wn ≤ 1.

Proposition 1 has an intuitive interpretation. Suppose, an individual has a budget constraint

such that expected consumption is decreasing in gross income over some interval. Then, this

individual will never choose gross income in this interval, because he can work less and consume

more, both yielding higher utility. Consequently, the government can never increase social

welfare by setting the wedgeWn above 1. The explicit marginal tax rate T ′(zn), however, could

be above 1, provided that monitoring implies a sufficiently large implicit marginal subsidy

on work, i.e. πPz + π′P < 0, such that the overall wedge remains below 1. This is the

case if the expected penalty decreases sufficiently fast in labor effort so that −π′P > πPz.

Therefore, monitoring can give incentives to provide work effort when the tax schedule reduces

the incentives to work.

3.2 Government

The government designs an optimal income tax system and monitoring schedule so as to maxi-

mize social welfare, subject to resource and incentive constraints. The government’s objective

function is a concave sum of individual utilities:

ˆ n

n
G(u(zn))dF (n), G′(·) > 0, G′′(·) < 0. (9)

G(·) is the social welfare function. Redistribution from high-income individuals to low-income

individuals raises social welfare because the government is inequality averse. Due to quasi-

linearity of private utility there is no social desire to redistribute income if the social welfare

function is utilitarian. The government is constrained in its ability to redistribute income,

because the ability of individuals is private information. However, the government can infer

the ability of an individual from costly monitoring activities or it can induce self-selection by

sacrificing on redistribution.

The total cost of monitoring is given by:

ˆ n

n
k(π(zn))dF (n), k(0) = 0, k′(·), k′′(·) > 0. (10)

The cost of monitoring is increasing and convex in the monitoring probability π. Since there is

a perfect mapping between skill n and labor earnings zn, we can also write π(·) as a function
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of the skill level n, where we use the short-hand notation π(zn) = πn. However, π′(zn) ≡ dπn
dzn

always denotes the derivative of monitoring with respect to gross earnings.

The economy’s resource constraint implies that total labor earnings equal aggregate con-

sumption plus monitoring costs:

ˆ n

n
zndF (n) =

ˆ n

n

(
(1− π(zn))cUn + π(zn)cPn + k(π(zn))

)
dF (n). (11)

By defining unpenalized consumption as cn ≡ cUn = cPn + P (zn, n), we can write for aggregate

consumption:

ˆ n

n

(
(1− π(zn))cUn + π(zn)cPn

)
dF (n) =

ˆ n

n
(cn − π(zn)P (zn, n))dF (n). (12)

Hence, using eq. (12) the economy’s resource constraint (11) can be rewritten as:

ˆ n

n
(zn + π(zn)P (zn, n))dF (n) =

ˆ n

n
(cn + k(π(zn)))dF (n). (13)

We do not need to consider the government budget constraint, since it is automatically implied

by Walras’ law if the individual budget constraints and the economy’s resource constraint are

satisfied.

The timing of the model is as follows:

1. The government announces the exogenously given penalty function, as well as the optimal

non-linear income tax and monitoring schedules.

2. Each individual optimally chooses the amount of labor effort.

3. The government observes the labor incomes chosen by each individual and taxes income

and monitors individuals accordingly. The government penalizes all monitored individuals

according to the penalty function.

4. Individuals receive utility from consumption and leisure.

By the revelation principle any indirect mechanism can be replicated with an incentive-

compatible direct mechanism (Myerson, 1979; Harris and Townsend, 1981). Therefore, we

can find the optimal second-best allocation by maximizing welfare subject to feasibility and

incentive-compatibility constraints. We can decentralize the optimal second-best allocation as

a competitive market outcome through the non-linear tax and monitoring schedules.

3.3 First-order incentive compatibility

By using the envelope theorem we can derive a differential equation for the indirect utility

function un which is a necessary condition for incentive compatibility. The next subsection

derives the conditions under which the first-order condition is indeed sufficient. The incentive

10



compatibility constraint is found by totally differentiating eq. (3) with respect to n:

dun
dn

=
∂u(zn, n)

∂n
+
∂u(zn, n)

∂zn

dzn
dn

=
lnv
′(ln)

n
− π(zn)Pn(zn, n), ∀n, (14)

where ∂u(zn,n)
∂zn

= 0 due to the individual’s first-order condition in eq. (4). Thus, if the optimal

allocation satisfies eq. (14), individuals’ first-order conditions for utility maximization are also

satisfied.

3.4 Second-order incentive compatibility

Without further restrictions we cannot be certain that the optimal allocation derived under

the first-order incentive compatibility constraint (14) is also implementable. An implementable

allocation should satisfy additional requirements to ensure that the first-order approach also

respects the second-order conditions for utility maximization. The next Lemma summarizes

the requirements for second-order incentive compatibility.

Lemma 1 Second-order conditions for utility maximization are satisfied under the first-order

approach if the following conditions hold at the optimal allocation for all n:

i) single-crossing conditions on the utility and penalty functions are satisfied:

∂(v′(ln)/n)

∂n
+ π(zn)Pzn(zn, n) + π′(zn)Pn(zn, n) ≤ 0, (15)

ii) zn is non-decreasing in ability:
dzn
dn
≥ 0. (16)

Proof. The second-order condition for the utility-maximization problem (3) is given by:

∂2u(zn, n)

∂z2
n

≤ 0, ∀n. (17)

This second-order condition can be rewritten in a number of steps. Totally differentiating the

first-order condition (4) gives:

∂2u(zn, n)

∂z2
n

dzn
dn

+
∂2u(zn, n)

∂zn∂n
= 0, ∀n. (18)

Substitution of this result in eq. (17) implies that the second-order condition is equivalent to:

∂2u(zn, n)

∂zn∂n

(
dzn
dn

)−1

≥ 0, ∀n. (19)

11



Differentiating the first-order condition (4) with respect to n and substituting the result yields:(
∂(v′(ln)/n)

∂n
+ π(zn)Pzn(zn, n) + π′(zn)Pn(zn, n)

)(
dzn
dn

)−1

≤ 0, ∀n. (20)

The inequality holds if all conditions of the Lemma are satisfied.

The single-crossing condition and the monotonicity of gross earnings are well-known from

the Mirrlees model (Mirrlees, 1971; Ebert, 1992). The single-crossing condition ensures that

– at the same consumption-earnings bundle – individuals with a higher ability have a larger

marginal willingness to provide work effort. In our model, the single-crossing condition contains

three elements. The first is the standard Spence-Mirrlees condition on the utility function, i.e.
∂(v′(ln)/n)

∂n . If this term is negative, the marginal disutility of work for individuals with a higher

ability level is lower. Most utility functions considered in the literature exhibit this property,

including our own. The second term is determined by Pzn(zn, n). As discussed before, the

assumption that Pzn ≤ 0 implies that marginal penalties do not decrease in ability. Hence,

high-ability individuals are more likely to self-select in higher income-consumption bundles if

the marginal penalty for earning less income increases with ability. The third term concerns

the slope of the monitoring schedule, π′(zn)Pn(zn, n) and its sign is determined by the the

monitoring schedule, since Pn > 0. If the marginal monitoring probability decreases in gross

earnings (π′(zn) < 0) individuals will work harder in order to decrease the probability of being

monitored and penalized. Whereas the first two terms feature uncontroversial signs, the last

term is determined by the endogenous monitoring schedule. Hence, high-ability individuals

can be induced to self-select into higher income-consumption bundles, unless the monitoring

probability increases too fast with ability.

A second requirement to induce self-selection is that gross earnings are indeed increasing

with ability at the optimal schedule. Consequently, a tax schedule that provides higher income

to higher ability individuals induces self-selection of higher ability types into higher income-

consumption bundles.

In the remainder we assume that all the conditions derived in Lemma 1 hold at the optimal

allocation. In our simulations, we check the second-order sufficiency conditions ex-post and we

always confirm that they are respected.
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4 Optimal second-best allocation with monitoring

The optimization problem with monitoring can be specified formally as:

max

ˆ n

n
[(1− πn)G(cn − v(zn/n)) + πnG(cn − P (zn, n)− v(zn/n))]f(n)dn, (21)

s.t.

ˆ n

n
[zn + πnP (zn, n)− cn − k(πn)]f(n)dn = 0, (22)

dun
dn

=
znv
′(zn/n)

n2
− πnPn(zn, n), (23)

un = cn − πnP (zn, n)− v(zn/n), ∀n, (24)

πn ≥ 0, ∀n. (25)

The final constraint assumes that the probability of monitoring cannot be smaller than zero.

We assume that the cost of monitoring is sufficiently large to ensure that the constraint πn ≤ 1

is never binding.

The Hamiltonian function of this problem is given by:

H ≡
[
(1− πn)G(uUn ) + πnG(uPn ) + λ(zn + πnP (zn, n)− cn − k(πn))

]
f(n) (26)

−θn
(
znv
′(zn/n)

n2
− πnPn(zn, n)

)
+ µn(un − cn + πnP (zn, n) + v(zn/n)) + ηnπn,

cn, zn and πn are control variables. un is a state variable with θn as its associated co-state

variable. uUn ≡ cn − v(zn/n) and uPn ≡ uUn − P (zn, n) denote the utility of the unpenalized and

penalized individuals, respectively. µn is the Lagrange multiplier for the definition of utility. λ is

the Lagrange multiplier of the economy’s resource constraint. ηn is the Kuhn-Tucker multiplier

of the non-negativity constraint on πn.

The first-order necessary conditions are given by:

∂H
∂cn

= 0 :
[
(1− πn)G′(uUn ) + πnG

′(uPn )− λ
]
f(n)− µn = 0, ∀n, (27)

∂H
∂zn

= 0 :

[
−(1− πn)G′(uUn )

v′(·)
n
− πnG′(uPn )

(
v′(·)
n

+ Pz(·)
)

+ λ(1 + πnPz(·))
]
f(n) (28)

− θn
(
v′(·) + znv

′′(·)/n
n2

− πnPzn(·)
)

+ µn

(
v′(·)
n

+ πnPz(·)
)

= 0, ∀n,

∂H
∂πn

= 0 :
[
G(uPn )−G(uUn )− λ

(
k′(πn)− P (·)

)]
f(n) + θnPn(·) + µnP (·) + ηn = 0, ∀n,

(29)

∂H
∂un

=
dθn
dn

:
dθn
dn

= µn, ∀n, (30)

ηnπn = 0, ηn ≥ 0, πn ≥ 0, ∀n, (31)

lim
n→n

θn = lim
n→n̄

θn = 0. (32)

Compared to the analysis of Mirrlees there are two new first-order conditions. Eq. (29) states

the optimal monitoring condition, and eqs. (31) state the Kuhn-Tucker conditions for the
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non-negativity constraint on πn.

4.1 Optimal wedge on labor

Proposition 2 gives the conditions for optimal income redistribution.

Proposition 2 The optimal net marginal wedge on labor Wn at each ability level satisfies:

Wn

1−Wn
= AnBnCn −Dn, ∀n, (33)

where

An ≡ 1 +
1

εn
+ πn

n

v′(zn/n)
εPz , (34)

Bn ≡
´ n
n (1− gm)f(m)dm

1− F (n)
, (35)

Cn ≡ 1− F (n)

nf(n)
, (36)

Dn ≡ −Pz(zn, n)
n

v′(zn/n)
σn, (37)

σn ≡
(1−πn)πn(G′(uPn )−G′(uUn ))

λ > 0 is a measure for the welfare cost of inequality between penalized

and unpenalized individuals at ability level n, εn ≡
(
lnv′′(ln)
v′(ln)

)−1
> 0 is the compensated wage

elasticity of labor supply, εPz ≡ − n
Pz

∂Pz
∂n > 0 is the elasticity of the marginal penalty with respect

to ability, and gn ≡ (1−πn)G′(uUn )+πnG′(uPn )
λ > 0 is the average, marginal social value of income,

expressed in money units, for individuals at ability level n.

Proof. Integrate eq. (30) using a transversality condition from eq. (32). If follows that

θn = λ
´ n
n (1 − gm)f(m)dm. Substitute this result and eq. (27) in eq. (28), use eq. (5), and

simplify to obtain the Proposition.

The An-term is related to the inverse of the efficiency cost of the labor wedge at income

level zn. The second term in An, 1/εn, is the inverse of the labor-supply elasticity and it enters

because the deadweight loss of the wedge increases in the labor-supply elasticity. The third

term represents the efficiency gains of monitoring. Penalties are more effective in seperating

high- and low-ability individuals if marginal penalties are strongly increasing in ability. That

is, if the elasticity of the marginal penalty with respect to ability, εPz , is larger. This effect

is stronger if the monitoring intensity π is larger. In addition, the third term decreases in

the marginal disutility of labor v′/n. Intuitively, the benefit of increasing earnings, in order

to reduce the marginal penalty, is smaller if the disutility of earning that additional income is

larger. Hence, in comparison to the optimal wedge without monitoring (cf. Diamond, 1998;

Saez, 2001) monitoring reduces the efficiency cost of taxation if marginal penalties increase in

ability.

The Bn-term measures the equity gain of an increase in the wedge at income level zn.

The first term, 1, captures the revenue gain of a larger marginal labor wedge at n, such that

individuals with an income level above zn pay one unit of extra income tax. The welfare loss
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of extracting one unit of income from the individuals above n is gm for all individuals m ≥ n.

Therefore,
´ n
n (1− gm)dF (n) measures the redistributional gain of the labor wedge at n. The

Bn-term is not directly affected by monitoring. Since welfare weights gn are always declining

with income, Bn always rises with income, see also Diamond (1998).

Cn is the inverse relative hazard rate of the skill distribution. Its numerator is the fraction

of the population whose net income is decreased by increasing the wedge and its denominator

captures the size of the tax base that is distorted by the wedge. Hence, the numerator in Cn

gives weights to average equity gains in Bn and the denominator to average efficiency losses in

An – as in the model without monitoring. The numerator of Cn always declines with income;

there are fewer individuals paying marginal taxes if the tax rate is increased at a higher income

level. Hence, for a given Bn the total distributional benefits of raising the labor wedge fall as

the income level rises. For a unimodal skill distribution the denominator of Cn always increases

with income before the mode, since both n and f(n) are rising. Thus, labor wedges always

decrease with income before modal income. After the mode, f(n) falls, although n continues

to rise with income. Hence, it depends on the empirical distribution of n whether Cn rises or

falls with income after modal income. For most empirical distributions, Cn appears to rise after

the mode and converges to a constant at the top. See also Diamond (1998), Saez (2001) and

Zoutman et al. (2013).

Finally, Dn measures the welfare loss associated with within-ability inequality. If the labor

wedge increases, earnings at n decrease. Therefore, the penalty at n increases, which in turn

increases inequality between monitored and unmonitored individuals. σn measures the marginal

welfare cost of this within-ability inequality. The effect of a wedge on within-ability inequality

is increasing in the marginal penalty, −Pz. It decreases in the marginal cost of earning one unit

of additional income, v′/n, because, again, the relative effect of the penalty function on gross

earnings decreases if the disutility of labor earnings increases. Dn increases in the monitoring

probability for πn < .5 because the within-ability variance of monitoring is increasing in πn for

πn < .5. Finally, Dn is increasing in the concavity of the welfare function, because the difference

in welfare weights between penalized and unpenalized individuals, G′(upn)−G′(uun)
λ , is larger if the

government is more inequality averse.

We can summarize the impact of monitoring on optimal labor wedges as follows. Monitor-

ing decreases the efficiency cost of setting a higher labor wedge, but introduces within-ability

inequality. Therefore, the total effect of monitoring on the optimal labor wedge is theoretically

ambiguous. Our simulations below demonstrate that the efficiency gains of monitoring outweigh

the distributional loss due to inequality between monitored and non-monitored individuals.

We can derive the non-linear tax function, which implements the second-best allocation as

the outcome of decentralized decision making in a competitive labor market. Substituting eq.

(4) into eq. (33) yields:

T ′(zn) + π′(zn)P (zn, n) + π(zn)Pz(zn, n)

1− T ′(zn)− π′(zn)P (zn, n)− π(zn)Pz(zn, n)
= AnBnCn −Dn, ∀n. (38)

Thus, when we know the optimal monitoring schedule π(zn), this equation implicitly defines

the optimal non-linear income tax function T (zn).
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4.2 Optimal monitoring

The next proposition derives the optimal monitoring schedule.

Proposition 3 The optimal level of monitoring at each ability level follows from:

k′(πn) + ∆n − gnP (·) ≥
Wn

1−Wn
+Dn

An
nPn(·) ∀n, (39)

where ∆n ≡ G(uUn )−G(uPn )
λ is the welfare difference between a penalized and an unpenalized indi-

vidual expressed in money units. If πn > 0, the equation holds with equality.

Proof. Substitute eq. (27) into eq. (29), rearrange terms, employ the definitions for Bn and Cn,

and use the fact that ηn ≥ 0. Finally, substitute eq. (33) for BnCn to obtain the expression. By

eq. (31) ηn only equals zero if πn > 0 and therefore the equation holds with equality if πn > 0.

The first term on the left-hand side in condition (39) is the marginal cost of raising the

monitoring intensity. The second and third terms on the left-hand side jointly represent the

welfare effect of a compensated increase in the monitoring probability. That is, the welfare

effect of an increase in the monitoring probability, while keeping expected utility at skill level n

unchanged. The second term represents the uncompensated, direct welfare loss of an increase in

the monitoring probability. If the monitoring probability increases, there will be more penalized

and less unpenalized individuals. Therefore, the loss is equal to the welfare difference between

penalized and unpenalized individuals. The third term represents the welfare gain associated

with the compensation to keep expected utility unchanged if the monitoring probability is

increased. The compensation at ability level n requires a transfer of P and its associated

welfare effect is thus given by gnP . In Lemma 2 we derive how the compensated welfare effect

of monitoring changes with the monitoring probability for given levels of utility in monitored

and unmonitored states.

Lemma 2 The compensated welfare effect of the monitoring probability is decreasing in πn,

positive if πn = 0 and negative if πn = 1 for given levels of utility in penalized and unpenalized

states.

Proof. By a first-order Taylor expansion around uUn we can write ∆n as:

∆n =
G(uUn )−G(uPn )

λ
=
G′(uUn )(uUn − uPn ) +R(P )

λ
=
G′(uUn )P

λ
+R(P ). (40)

where R(P ) is a second-order remainder term. Similarly, a first-order Taylor expansion around

uP yields:

∆n =
G′(uPn )P

λ
− R̂(P ), (41)

where R̂(P ) is again a second-order remainder term. By concavity of G both remainder terms

are positive for P > 0: R(P ), R̂(P ) > 0. Now multiply eq. (40) with (1− πn) and eq. (41) with

πn and add them to find:

∆n − gnP = (1− πn)R(P )− πnR̂(P ). (42)
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The right-hand side gives the compensated welfare effect of the monitoring probability, which

is decreasing in πn, always positive if πn = 0, and always negative if πn = 1, ceteris paribus.

The right-hand side of eq. (39) represents the marginal benefits of monitoring. The benefits

of monitoring increase in −Pn. This term can be interpreted as the power of the penalty

function. The penalty function is more powerful if penalties increase strongly in ability. In

addition, the marginal benefits of monitoring increase if labor-supply distortions are larger, i.e.

if the labor wedge Wn
1−Wn

is larger or if the efficiency cost of taxation is larger, as captured by

1/An. The benefits of monitoring also increase in within-ability inequality Dn. Intuitively, as

more monitoring leads to higher labor effort, the expected penalty decreases. Hence, monitoring

helps to reduce within-ability inequality.

From Proposition 3 it follows that the government does not engage in monitoring if and only

if (evaluated at a no-monitoring equilibrium with πn = 0):

k′(0) + ∆n − gnP (·) ≥
Wn

1−Wn
+Dn

An
nPn(·), ∀n. (43)

That is, if the marginal cost of monitoring are higher than the marginal benefits for all types.

By evaluating eq. (33) at πn = 0 it easily follows that the optimal allocation is the allocation

derived in Mirrlees (1971). Mirrlees (1971) is thus a special case of our model where monitoring

is prohibitively expensive, such that the government never optimally monitors.

4.3 Boundary results

In the next Proposition we derive the optimal wedge and monitoring probability at the bottom

and the top of the ability distribution.9

Proposition 4 If the income distribution is bounded at the top, n <∞, the optimal wedge and

monitoring probabilities at the extremes are:

Wn =Wn = πn = πn = 0. (44)

If the penalties are zero at the first-best levels of earnings, marginal tax rates are also zero at

the endpoints:

T ′(zn) = T ′(zn) = 0. (45)

Proof. From eq. (33) it follows that
(
Wn

1−Wn
+Dn

)
/An = BnCn. The transversality conditions

(32) imply BnCn = BnCn = 0. At the extremes, the optimal monitoring condition (39),

therefore simplifies to: ∆n − gnP + k′(πn) ≥ 0. Evaluate this expression at π = 0:

∆n − gnP + k′(0) = R(P ) + k′(0) ≥ 0. (46)

where R(P ) > 0 is a second-order remainder term, and the second step follows from Lemma 2.

The condition is always satisfied at πn = 0. Hence, πn = 0 is optimal at the extremes. The

optimal wedges in eq. (33) at the extremes are zero, because the product BnCn is zero by the

9Due to the absence of income effects in labor supply, bunching at zero labor earnings is not an issue in
deriving the boundary results, see also Seade (1977).
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transversality conditions, and Dn is zero, since πn = 0. If the penalties are zero when labor

supply is at a first-best level, then P (·) = 0 at the endpoints, since labor effort is undistorted

if the wedges are zero. Using πn = P (·) = 0 in eq. (5) then demonstrates that Wn = Wn =

T ′(zn) = T ′(zn) = 0.

Proposition 4 establishes that the zero wedge result at the bottom and top result of the

model without monitoring carries over to the model with monitoring (Sadka, 1976; Seade, 1977).

Intuitively, the wedge at n redistributes income from individuals above n to the government, and,

hence indirectly to individuals below n. There are no individuals above n and no individuals

below n. Therefore, there are no benefits associated to a positive wedge at these points of

the ability distribution. However, the wedge does distort the labor-supply decision. Hence, the

optimal wedge must be zero. Because the wedge is zero, there is no efficiency gain of monitoring.

As a result, the optimal monitoring probability is also zero.

However, marginal tax rates at the endpoints do not necessarily need to be zero. This

critically depends on the penalty function. In particular, if the marginal monitoring probability

is non-zero at the end-points (π′(zn) 6= 0) and the expected penalty is positive, marginal tax

rates at the endpoints have to be non-zero in order to compensate for the distortion caused by

the change in monitoring intensity. In particular, marginal tax rates at the endpoints should

be positive (negative) if π′(zn)P (·) < 0 (> 0). However, if penalties are zero if earnings at

the end-points correspond to the first-best levels of earnings, then marginal tax rates at the

end-points are zero as well.

5 Simulations

In this section we use numerical simulations to establish the shape of the optimal tax and

monitoring schedules. The simulations require four main ingredients: the ability distribution,

the individual preferences, the social preferences and the monitoring technology. First, we

use the skill distribution from Mankiw et al. (2009). The hourly wage is used as a proxy for

earnings ability. We follow Mankiw et al. (2009) by assuming that wage rates follow a log-

normal distribution, which is extended with a Pareto distribution for the top tail of the wage

distribution. In addition, we assume that there is an exogenous fraction of 5 percent disabled

individuals having zero earning ability (n = 0), which is also based on Mankiw et al. (2009).

The earnings distribution is estimated from March 2007 CPS data. This resulted in a mean

log-ability of m = 2.76 and a standard deviation of log ability of s = 0.56. The Pareto tail starts

at the top 1 percent of the earnings distribution and features a Pareto parameter of α = 2. The

latter is in accordance with estimates of Saez (2001).

Second, a description of individual preferences is needed. For the purpose of our simulations

it is convenient if optimal labor effort is restricted between zero and one. In addition, we follow

the literature in assuming a constant elasticity of taxable income (see, e.g., Saez, 2001). The

following utility function abides both features:

u(cn, ln) = cn −
n

1 + 1/ε
l1+1/ε
n , ε > 0. (47)

ε is the (un)compensated elasticity of taxable income. This utility function has been used in
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Brewer et al. (2010).10 We follow the empirical literature estimating the elasticity of taxable

income (see, e.g., Saez et al., 2012) and set ε = 0.25.

The third ingredient is the social welfare function. We assume an Atkinson social-welfare

function featuring a constant elasticity of relative inequality aversion β:

G(un) =
u1−β
n

1− β
, β ≥ 0, β 6= 1, (48)

G(un) = ln(un), β = 1.

The utilitarian objective is obtained by assuming β = 0. A Rawlsian social welfare function

results if β → ∞. The baseline assumes a moderately redistributive government with β =

0.99 ≈ 1. In the robustness analysis we also consider less redistributive governments (β = 0.5)

and more redistributive governments (β = 1.5).

Finally, we need to make specific assumptions on the monitoring technology and the penalty

function. Unfortunately, no empirical evidence is available that guides us to calibrate these func-

tions. However, our theoretical model provides some restrictions on the choice of the functions.

Also, we perform robustness checks on the parameter choices we have made for these functions.

In our theoretical model, the cost of monitoring needs to be increasing and convex in the

monitoring intensity π. We assume that the cost of monitoring is quadratic:

k(πn) =
κ

2
π2
n, κ > 0, (49)

where κ is a cost parameter indicating the marginal cost of a higher monitoring probability.

In the baseline we assume κ = 1. In the robustness analysis we vary κ between 0.25 and

4. We provide economic justification for these parameter values by showing in the robustness

analysis that the change in the monitoring probability induced by the different values of κ is

relatively large. In addition, we show that in our calibration total monitoring cost is a small,

but significant fraction of total income earned in the economy.

In our baseline simulations, we assume that the reference level of labor effort l∗n equals:

l∗n = 1, ∀n > n, (50)

l∗n = 0, n = n = 0.

Therefore, all working individuals, i.e. those with positive earning ability (n > n), should exert

first-best labor effort to avoid being penalized. Individuals that cannot work (n = n = 0) are

not required to work. Desired labor earnings z∗n are thus a linear function of desired labor effort

l∗n:

z∗n = n, ∀n. (51)

In the robustness analysis we analyze the case where required work effort is only half of the

first-best effort level, i.e. l∗n = 0.5 for n > n. We will demonstrate that such changes result in

significant changes in the optimal monitoring intensity.

10We slightly deviate from the model in the previous sections by introducing heterogeneity in the preference
for labor. This does not affect our results qualitatively, but it does simplify the numerical simulations.
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Table 1: Calibration for simulations

Description Base value High value Low value

m Mean log ability 2.76 N/A N/A
s Standard deviation log ability 0.56 N/A N/A
α Pareto parameter 2.00 N/A N/A
d Fraction of disabled individuals 0.05 N/A N/A
ε Compensated elasticity 0.25 N/A N/A
r Government revenue as fraction of GDP 0.10 N/A N/A
κ Cost of monitoring 1.00 0.25 4.00
p Penalty parameter 3.00 5.00 1.00
l∗ Reference labor effort 1.00 N/A 0.50
β Relative inequality aversion 1.00 1.50 0.50

We assume that the penalty function is quadratic in labor effort ln and is given by:

P =
p

2
(min{0, ln − l∗n})

2, p > 0, (52)

where p is a parameter determining the severity of the penalty. The penalty is a function of the

reference level of labor effort l∗n. Each individual that faces a positive labor wedge supplies less

than the socially desired level of effort, and is therefore subject to a penalty when monitored,

and increasingly so if their labor effort deviates more from the reference level of work effort.

Consequently, monitoring will be effective in boosting labor effort at all income levels. In the

baseline we set p = 3. In the robustness checks we employ values of p = 1 and p = 5.

The government-revenue requirement is exogenous and set to 10 percent of labor earnings

in the baseline specification without monitoring, following Tuomala (1984) and Zoutman et al.

(2013). The choices for all the parameters can be found in Table 1.

In the table, the first column on the right-hand side gives the base value of the parameter.

In addition, we perform robustness checks with high and low parameter values for the welfare

function, all parameters of the penalty function and all parameters of the monitoring technology

to analyze the sensitivity of our results.

The numerical procedure we use to solve for the optimal allocation is a so-called shooting

method. We solve the differential equations (14) and (30) numerically for given initial values

θn, un, and λ. Subsequently, we “shoot” for initial values until we meet boundary conditions

(13) and (32). The wedge, tax, and monitoring schedule can be found using eq. (38). A more

detailed explanation of the numerical procedure can be found in the Appendix.

5.1 Results

Figure 2 gives the optimal wedge, tax and monitoring schedules as a function of yearly income in

US dollars. The fat solid line represents the optimal tax schedule with monitoring. The dashed

line is the optimal tax schedule without monitoring. The circled line is the optimal total labor

wedge with monitoring. And, the thin solid line is the optimal monitoring schedule. Recall that

the optimal tax schedule coincides with the optimal labor wedge if there is no monitoring.

As can be seen, the optimal labor wedge follows a U-shape both with and without monitoring.

20



Figure 2: The optimal wedge, tax and monitoring schedules in the baseline scenario. Baseline
parameter values of the model can be found in Table 1.

Marginal wedges are extremely large at the bottom of the labor market, relatively small for

middle-income levels and somewhat higher at the top. The shape of these schedules is largely

explained by the Bn and Cn terms in eq. (33). The Bn-term is strictly increasing with income

as the welfare loss of taxing away one unit of income unit from individuals above zn is strictly

decreasing in zn, see our previous discussion. The Cn-term follows a U-shape. At the bottom

of the earnings distribution, the density of tax payers is small, and hence, efficiency costs of

marginal taxes are low. In addition, the redistributional benefits of a higher marginal tax rate

are large as it is paid by almost the entire population. Towards middle-income levels, the

efficiency cost increases as the population density increases, whereas the redistributive benefits

decrease as fewer individuals are paying a higher tax rate. After modal income marginal tax

distortions decline more rapidly than distributional benefits of marginal taxes, hence marginal

taxes increase. These results are entirely in line with previous simulations performed in e.g.

Saez (2001), Brewer et al. (2010), and Zoutman et al. (2013).

Recall from the previous section, that the effect of monitoring on the labor wedge was the-

oretically ambiguous. However, in our simulations we see that the efficiency gain of monitoring

in reducing labor distortions outweighs the distributional cost of raising within-skill group in-

equality. The optimal monitoring schedule also follows a U-shape. In eq. (39) the labor wedge

determines the shape of the monitoring schedule, as the other elements of the monitoring sched-

ule do not exhibit a very strong dependence on income. The monitoring intensity decreases very

steeply at the bottom of the income distribution. This gives individuals a strong incentive to

increase their labor effort. At middle-income levels the monitoring intensity is relatively low.

The monitoring intensity increases slightly towards top-income levels. However, the effect of

monitoring on the labor wedge and the tax schedule is very small at higher income levels.

The optimal tax schedule exhibits extremely large tax rates at the bottom of the earnings
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distribution. Indeed, the government can levy tax rates above 100 percent at the lowest income

earners. The sharp decrease in the monitoring intensity works as an implicit subsidy on work

effort and partially offsets the high explicit tax on labor supply. The poverty trap found in many

countries (see, e.g., Spadaro, 2005, Brewer et al., 2010 and OECD, 2011) can thus be optimal in

the presence of monitoring. Indeed, there may not be a poverty trap if the monitoring schedule

provides sufficient incentives, even if the tax-benefit system itself does not provide incentives to

supply labor.

Note that the optimal wedge and monitoring probability at the top do not equal zero, as

was derived in Proposition 4 for a bounded income distribution. Mirrlees (1971), Diamond

(1998), and Saez (2001) show theoretically that the optimal wedge converges to a constant if

the right tail of the ability distribution is Pareto distributed. In the Pareto tail of the earnings

distribution, the ratio of marginal distributional benefits and marginal efficiency costs of taxes

becomes constant, and the tax wedge converges to a constant. Our simulations confirm that

this result holds as well in the model with monitoring. In addition, we find that the optimal

monitoring probability also converges to a positive constant.

5.2 Sensitivity analysis

In this subsection we present the sensitivity analysis of the results obtained in the previous

subsection. We especially explore the sensitivity of our simulation outcomes with respect to the

monitoring technology and penalty function, on which little empirical evidence is available.

Figure 3 summarizes the simulations when the cost of monitoring is decreased (κ = 0.25)

or increased (κ = 4). As expected, the monitoring schedule moves up if the monitoring cost

decreases and down if the cost increases. However, the optimal tax schedule largely remains

unaffected. From the optimal tax expression in eq. (38) we can infer that monitoring increases

the optimal tax rate if the allocation remains unchanged. However, the allocation changes,

since an increase in the monitoring probability increases revenue from taxation for any given

tax rate. Therefore, the redistributive benefit of a marginal tax decreases at the same time. In

our simulations, these two effects roughly cancel out and the optimal tax rates remain largely

unaffected.

Figure 4 gives the optimal tax and monitoring schedules when the penalty parameter is

decreased (p = 1) or increased (p = 5). As can be seen, for very low levels of income, both an

increase and a decrease in the penalty parameter lead to a decrease in the monitoring intensity.

This may seem prima facie a counter-intuitive outcome, but can be explained. An increase in

the penalty parameter raises the effectiveness of monitoring, but it also increases within-skill

level inequality. For low levels of income, the first effect dominates when penalties decrease,

whereas the second effect dominates when penalties increase. However, beyond about 10,000

dollars of income, within-ability inequality becomes less relevant, and therefore, monitoring

intensities always increase when the penalty parameter rises.

From the optimal tax formula in eq. (38) it follows that an increase in the penalty parameter

affects the optimal tax rate through six channels. First, an increase in the marginal penalty

raises the marginal tax rate for a given wedge. Second, an increase in the penalty itself may

increase or decrease the optimal marginal tax rate for a given wedge depending on the sign
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Figure 3: Optimal tax and monitoring schedules for high (κ = 4) and low (κ = 0.25) marginal
cost of monitoring. All other parameters take baseline values, see Table 1.

Figure 4: Optimal tax and monitoring schedules for strong (p = 5) and weak (p = 1) penalties.
All other parameters take baseline values, see Table 1.
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of π′(zn). Third, an increase in the convexity of the penalty function decreases the efficiency

cost of a wedge. Fourth, the penalty affects the monitoring probability, although the effect

is ambiguous. Fifth, an increase in the penalty increases within skill-level inequality, which

decreases the optimal wedge. Finally, the allocation itself is affected, but it is a priori unclear

whether higher penalties lead to more or less redistribution. The simulation outcomes confirm

these theoretical ambiguities. The net effect is positive for very low income levels, negative for

medium-income levels, and negligible for higher income-levels.

Figure 5 illustrates the effect of a decrease in the reference level of labor effort (l∗n = 0.5).

As can be seen, the monitoring probability very quickly drops to zero, because all individuals

find it in their best interest to work at least the reference amount of labor hours without moni-

toring. Surprisingly, the tax schedule remains virtually unaffected. This outcome demonstrates

monitoring effort is most important at the bottom of the earnings distribution, where the labor

wedge is highest. Still, marginal tax rates can be substantially above 100 percent at the bottom

of the earnings distribution.

Finally, in Figure 6 we simulated the optimal tax and monitoring schedules for a higher

degree of inequality aversion (β = 1.5) and a lower degree (β = 0.5) of inequality aversion. As

can be seen, the optimal tax rate increases in inequality aversion as should be expected, although

the difference at the bottom of the income distribution is small. Intuitively, monitoring decreases

the distortion of a higher tax rate, but it also creates within skill-group inequality. The poorest

individuals in society are the low-income individuals who are penalized. Hence, within-ability

inequality is particularly costly if the government is strongly inequality-averse. For low levels of

income, both an increase and a decrease of inequality aversion decrease the optimal monitoring

intensity. At higher levels of income, within-skill group inequality aversion is less important,

and the monitoring intensity unambiguously increases with inequality aversion as labor wedges

are set higher when redistributive desires are stronger.

5.3 Allocations and welfare

Clearly, monitoring is part of the optimal redistributive tax-benefit system. But, how important

is monitoring for the optimal allocation and welfare? Table 2 reports the average monitoring

cost, k̄/z̄, the average penalty P̄ /z̄, the penalty for the lowest working individual, P (n)/z̄,

the transfer paid out to individuals having zero earnings, −T (0)/z̄, and the change in average

earnings, ∆z̄/z̄. All table entries are in percentages of average earnings.

From the first column we can infer that the average monitoring cost k̄/z̄ is a relatively small

percentage of average labor earnings: about 0.5 percent of average earnings in the baseline. An

increase in the marginal cost of monitoring raises total monitoring costs very little, since the

increase in marginal cost is accompanied by a decrease in the optimal monitoring intensity at

the optimum. A change in the reference level of labor effort reduces the total monitoring cost to

almost zero, because monitoring is only used at the bottom if the labor requirement is low. In

addition, the cost of monitoring is sensitive to the severity of the penalty as monitoring outlays

rise (fall) with a stronger (weaker) penalty. A government having access to a stronger penalty

technology will on average rely more heavily on monitoring to provide work incentives. Mon-

itoring costs also increase with inequality aversion, since a more inequality-averse government
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Figure 5: Optimal tax and monitoring schedules for a lower reference level of work effort (l∗n =
0.5). All other parameters take baseline values, see Table 1.

Figure 6: The tax and monitoring schedule for higher (β = 1.5) and a lower (β = 0.5) degree
of of inequality aversion. All other parameters take baseline values, see Table 1.
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relies on average more heavily on monitoring to alleviate the equity-efficiency trade-off.

Table 2: Change in allocation due to monitoring. (All numbers
are in percentages of average earnings)

k̄
z̄

P̄
z̄

P (n)
z̄

−T (0)
z̄

∆z̄
z̄

No Monitoring 0.00 0.00 0.00 29.46 0

Base scenario 0.49 0.35 7.83 33.65 1.35

Low monitoring cost 0.40 0.34 7.55 34.20 1.50

High monitoring cost 0.61 0.36 8.08 33.13 1.18

Low reference effort 0.03 0.02 5.63 34.85 1.07

Low penalty 0.24 0.14 3.53 29.67 0.43

High penalty 0.63 0.49 10.02 37.01 2.04

Low inequality aversion 0.32 0.23 8.20 30.25 5.55

High inequality aversion 0.61 0.42 7.62 35.23 −0.90

Note: z̄ is per capita labor income in the specified calibration, k̄ is the
per capita monitoring cost, P̄ is the average penalty over the monitored
population, P (n) is the penalty at the lowest skill level, −T (0) is the
transfer and ∆z̄ is the change in average labor earnings as compared
to the model without monitoring.

The second column represents the average penalty given to monitored individuals as a

percentage of average labor earnings P̄ /z̄. As can be seen, penalties are relatively small. In the

baseline, the average penalty equals 0.35 percent of average earnings. Penalties increase with

the monitoring cost, because monitoring decreases with its marginal cost, and as a consequence,

individuals work less and receive more severe penalties. The effects are very small, however.

In addition, the average penalty falls strongly when the reference level of labor effort is lower.

Similarly, the penalties increase (decrease) if the penalty parameter increases (decreases), as

expected. The penalty also increases (decreases) with stronger (weaker) inequality aversion

because a more (less) inequality-averse government sets higher (lower) wedges. The third column

represents the average penalty at the bottom of the income distribution P (n)/z̄. Penalties at

the bottom are relatively large, because the wedge at the bottom is large. Comparative-static

effects of the penalty at the bottom are roughly similar to the comparative statics of the average

penalty.

The fourth column represents the transfer as a fraction of earnings, −T (0)/z̄, and the

fifth column is the change in average labor earnings as compared to optimal taxation without

monitoring, ∆z̄/z̄. In almost all simulations, both the transfer and average labor earnings

increase, indicating an improvement in both equity and efficiency of the tax-transfer system.

This effect is surprisingly unsensitive to a change in the monitoring cost and to a change in the

reference level of labor effort. These outcomes can be explained by the fact that monitoring is

most effective at the bottom of the skill distribution. At this point in the earnings distribution,

monitoring costs are relatively unimportant as the density of monitored individuals is low. A

lower labor requirement is also unimportant, since individuals are working far less than any work

requirement at the bottom end of the income scale. Results are more sensitive to the size of the
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penalty, because monitoring becomes less effective if the punishment technology is less effective.

However, even if penalties are relatively low, the increase in both average labor earnings and the

transfer is substantial. Finally, a change in the inequality aversion changes the emphasis given

to either equity (T (0)) or efficiency (average labor earnings). In our scenario with low inequality

aversion both increase. However, in the scenario with high inequality aversion average labor

earnings decreases slightly.

Table 3: Welfare effects of monitoring.

Marginal dead weight loss Welfare gain

No Monitoring 0.204 –

Base 0.203 1.421

Low monitoring cost 0.203 1.592

High monitoring cost 0.204 1.073

Low reference effort 0.203 0.969

Low penalty 0.204 0.267

High penalty 0.203 1.835

Low inequality aversion 0.170 1.015

High inequality aversion 0.214 1.76

Note: The marginal deadweight loss refers to the income-weighted average of
the marginal deadweight loss of all households as a consequence of increasing
the labor wedge on labor with one percent. Welfare gains are obtained by
calculating the compensating variation as a percentage of average earnings in
the specified simulation.

Finally, Table 3 reports the welfare effects of monitoring. The first column represents the

income-weighted average of the marginal deadweight loss of increasing the marginal tax rate by

one percent. As can be seen, monitoring decreases the marginal deadweight loss by about 0.5

percent in our baseline simulation from 0.204 to 0.203. This result is robust in our sensitivity

analyses.

The last column reports the monetized welfare gain of monitoring. We compute the com-

pensating variation by calculating the amount of resources that have to be injected into an

economy without monitoring in order to attain the same social welfare as the economy with

optimal monitoring. In our base scenario, the welfare gain is about 1.4 percent of average labor

earnings, i.e. 1.4 percent of total output. The welfare gain increases if the cost of monitoring

are lower and if penalties are higher. Interestingly, the welfare gain is almost unaffected by a

lower reference level of labor effort. The reason is that reference labor effort is still generating

positive penalties at the bottom of the earnings distribution, where the benefits of monitoring

are highest. Also, an increase in inequality aversion increases the welfare gain of monitoring,

because the efficiency gain of monitoring is increasing in the optimal labor wedges, which are

larger when the government is more inequality averse. We find quantitatively substantial social

welfare gains in all scenarios.
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6 Conclusions

In this paper we demonstrate that redistributive governments should optimally employ an effort-

monitoring technology in order to redistribute income at the lowest efficiency cost. Monitoring

of labor effort alleviates the equity-efficiency trade-off and raises equity, efficiency, or both.

The reason is that distortions from redistribution derive from the informational problem that

earning ability is private information. By using a monitoring technology this informational

asymmetry is reduced. A first-best outcome cannot be reached, however, because monitoring

is costly. Mirrlees (1971) is a special case of our model when monitoring is infinitely costly.

We demonstrated that monitoring works as an implicit subsidy on work effort, which par-

tially offsets the explicit tax on work effort. We derived conditions on the desirability of moni-

toring and demonstrated that the optimal non-linear monitoring schedule generally follows the

optimal labor wedge. Monitoring is more desirable when redistributive taxation creates larger

distortions in labor supply. Moreover, optimal labor taxes can optimally be above 100 percent

when monitoring is allowed for. At the endpoints of the earnings distribution labor wedges –

including taxes and the implicit subsidy on work due to monitoring – are zero in the absence

of bunching and with a finite skill level.

Simulations confirmed that the optimal monitoring intensity features a U-shaped pattern

with income; very high at the lower end of the earnings distribution, declining towards the

middle-income groups, increasing again towards the high-income groups, and becoming constant

at the top-income groups. Our simulations demonstrated that marginal tax rates will be higher

if the government monitors labor effort, while the labor wedges – including the explicit tax and

implicit subsidy of monitoring – decreases. Indeed, monitoring is very effective to alleviate the

equity efficiency trade-off.

In practice, monitoring is not infinitely costly as in Mirrlees (1971). By allowing for a mon-

itoring technology we can explain our why work-dependent tax credits for low-income earners,

that are employed in the UK, Ireland and New Zealand, are part of an optimal redistributive

tax policy. Our findings also show that sanctions for welfare recipients, bonuses for low-income

workers, and extensive monitoring of effort or working ability of low-earning individuals are

especially desirable in more generous welfare states. Moreover, we can also explain why (large)

penalties on low labor effort (or high bonuses on large labor effort) are more desirable when the

government desires to redistribute more income. Finally, we explain why marginal tax rates

larger than 100 percent at the lower end of the earnings distribution, as commonly observed in

many countries, can be optimal in the presence of monitoring of work effort.
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A Simulation algorithm

The algorithm we use to solve for the optimal allocation consists of two steps. First, we find

the optimal allocation using a shooting method. Second, we calculate the implied wedge, tax,

and monitoring schedules.11

A.1 Finding the optimal allocation

We find the optimal allocation through four nested loops:

1. The outer loop solves the resource constraint (13) for λ. A higher value of λ implies

a higher shadow value of resources, and thus, a lower resource deficit, and vice versa.

Therefore, we can satisfy the resource constraint arbitrarily by altering the value of λ.

11All Matlab programs used in the computations are available from the authors upon request.
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2. The second loop solves the transversality condition at the top (32) for a given utility level

at the bottom un, and λ. The most important determinant in un is the transfer implied

by T (0). Therefore, one can think of this procedure as finding the intercept of the tax

function T (0). If the intercept is too low, the distortion at the top has to be positive to

finance the transfer, and vice versa if the intercept is set too high. As a consequence, by

varying the transfer T (0) we can satisfy the transversality condition arbitrarily closely.

3. The third loop solves the differential equations (14) and (30) for given un, λ, and θn using

a Runge-Kutta method to integrate over n.

4. The inner loop maximizes the Hamiltonian (26) with respect to πn and zn for a given

state un and costate variable θn at each n.

The above algorithm is known as a shooting method because it shoots for the initial values

of the differential equations that satisfy the boundary condition.

A.2 Finding the optimal wedge, tax, and monitoring schedules

The above algorithm gives us a numerical approximation of the allocation {un, θn, zn, πn} at

each n. π′(zn) can be approximated by taking the first difference:

π′(zn) ≈ ∆πn
∆zn

. (53)

With π′(zn) we have all the information we need to find the optimal tax schedule using eq. (38).
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