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Abstract

We propose a new methodology exploring Markov perfect equilibrium strategies in
differential games with regime switching. Specifically, we develop a general game with two
players having two kinds of strategies. Players choose an action that influences the evolution
of a state variable, and decide on the switching time from one regime to another. Compared to
the optimal control problem with regime switching, necessary optimality conditions are
modified for the first-mover. When choosing her optimal switching strategy, this player
considers the impact of her choice on the other player’s actions and payoffs. In order to
determine the equilibrium timing of regime changes, the notion of wrong timing is introduced
and necessary conditions for a particular timing to be wrong are derived. We then apply this
new methodology to an exhaustible resource extraction game. Sufficient conditions for the
existence of an interior solution are compared to those characterizing a wrong timing. The
impact of feedback strategies for the equilibrium adoption time depends on the balance
between two conflicting effects: the first mover incurs an indirect cost due to the future
switching of her rival (incentive to delay the switch). But she is able to affect the other
player’s switching decision (incentive to switch more rapidly). In a particular case without
direct switching cost, the interplay between the two ensures that the first-mover adopts the
new technology in finite time. Interestingly, this result differs from what is obtained in a non-
game theoretic framework, i.e. immediate adoption.
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1 Introduction

Several decision making problems in economics concern the timing of switching
between alternative and consecutive regimes. Regimes may refer to technological
and/or institutional states of the world. For instance, a firm with an initial level
of technology may find it optimal to either adopt a new technology or to stick
with the old one (Boucekkine, Saglam and Vallée, 2004). Another example is
the decision to phase out existing capital controls in a given economy (Makris,
2001). In all non-trivial problems, the switching decision involves a trade-off,
since adopting a new regime brings with it immediate costs as well as potential
future benefits. Given these considerations, multi-stage optimization is generally
used for the analysis of regime switching (Tomiyama, 1985), which endogenously
determines switching times.

In this article, we consider regime switching strategies in differential games.
The game theoretic literature involving regime switching choice is sparse. Early
papers on dynamic games of regime change do not involve a stock variable. In
these models, the only relevant state of the system is the identity of the players
which have adopted the new technology. An example is Reinganum (1981)’s
model of technological adoption decisions of two ex ante identical firms. She
assumed that firms adopt pre-commitment (open-loop) strategies. That is, it
is as if a firm enters a binding commitment on its date of technology switch,
knowing the adoption date of the other firm. Reinganum’s primary finding is
that, with two ex-ante identical firms using open-loop strategies, the equilibrium
features diffusion: One firm will innovate first and the other will innovate at a
later date. The first mover earns higher profits. Fudenberg and Tirole (1985)
revisited Reinganum’s study by using the concept of pre-emption equilibrium.
Focusing on Markov perfect equilibrium as the solution concept, they noted that
the second-mover may try to preempt its rival and become the first-mover. At
the preemption equilibrium, the first mover advantage vanishes.!

A second strand of literature pertains to the strategic interaction of agents
in relation to the dynamics of a given stock. For instance, Tornell (1997) pre-
sented a model relating economic growth and institutional change. Infinitely-
lived agents solve a differential game over the choice of property-rights regimes,
e.g. common or private property, defined over a capital stock. It was shown that
a potential equilibrium of the game involves multiple switching between regimes.
However, only the symmetric equilibrium was considered, such that the players
always choose to switch at the same instant. Consequently, the question of the
timing between switching points was not addressed. In addition, even though
Tornell explicitly defined the Markov perfect equilibrium for the class of differ-
ential games with regime switching, a rigorous modelling of these strategies, for
switching time, is missing in his analysis. A more recent example is the analysis
by Boucekkine, Krawczyk and Vall (2011). They analyzed the trade-off between
environmental quality and economic performance using a two-player differential
game. Assuming that pollution results from the sum of consumption levels and

1See Long (2010) for a survey of this literature.



there is no decay, they proved the existence of an open-loop Nash equilibrium.
They found that each player chooses the technology without considering the
choice made by the other player. There was no interior switching instant. At
the open-loop Nash equilibrium, either a player adopts technology immediately,
or he sticks to the old one.

To our knowledge, there seems to be no existing study which formally de-
fines Markov perfect equilibrium in differential games with regime switching
strategies. This is where the first theoretical contribution of this paper lies.
We develop a general differential game with two players having two kinds of
strategies. First, players have to choose at each point in time an action that
influences the evolution of a state variable. Second, they may decide on the tim-
ing of switching between alternative and consecutive regimes that differ both in
terms of the payoff function and the state equation. For simplicity, we assume
that each player can affect a regime change only once. Focusing on Markov
perfect equilibrium, we define the switching or timing strategy as a function of
the state of the system, which is described by the level of the stock variable,
and the regime that is in current operation. The relevant level of the stock on
which the strategy is based is the one corresponding to the instant when the
switching problem arises.

For any of the two possible general timings, we characterize the necessary
optimality conditions for switching times, both for interior and corner solutions.
One interesting finding is that, compared to the standard optimal control prob-
lem with regime switching, necessary optimality conditions are modified only for
the player who finds it optimal to move first. Indeed, when choosing the opti-
mal date and level of the state variable for switching, this player must take into
account that (i) her decision will influence the other player’s switching strategy
and (i) the other player’s switch will impact on her own welfare. Therefore,
player’s strategy must take these factors into consideration. Depending on the
particular economic problem at hand, the interaction through switching times
may be an incentive to either postpone or expedite regime switching. Another
important issue is how to determine the optimal timing at the Markov per-
fect equilibrium. This issue is solved by providing necessary conditions for a
particular timing to be wrong.?

The second contribution of this paper is the application of this new game
theoretic material to study a model of the tragedy of the commons in the present
of switching strategies. A game of exhaustible resource extraction is considered.
By incurring a lumpy cost, players can make use of a more efficient extraction
technology. Not only do players choose their consumption levels, they also decide
whether to adopt the new technology and when. To date, there are only a few
papers that have studied the relationship between natural resource exploitation
and the timing of technology adoption. Using a finite horizon two-stage optimal
control problem, Amit (1986) explored the case of a petroleum producer who
considers switching from primary to secondary recovery process. He observed
that a technological switch occurs if the desired extraction rate is larger than

2By wrong we mean that at least one player would prefer the alternative timing.



can be obtained by the natural drive, or when the desired final output is more
than can be obtained using the primary process. In a more recent paper, Valente
(2011) analyzed a two-phase endogenous growth model which concerns a switch
from an exhaustible resource input into a backstop technology. He showed
that adoption of new technology implies a sudden fall in consumption, but an
increase in the growth rate. Finally, Boucekkine, Pommeret, and Prieur (2013)
explored a general control problem with both technological and ecological regime
(induced by the crossing of a critical threshold) switches. They applied it to
address the issue of optimal resource extraction under ecological irreversibility,
and with the possibility to adopt backstop technology. It was observed that
the opportunity to switch to a backstop technology may lead to an irreversible
ecological regime.

Overall, while the above-mentioned studies have explored resource manage-
ment and regime switching, they only do so using single-agent optimization
programs. None have conducted an analysis using a differential game approach.
Indeed, our section 4 tries to fill this gap in the resource extraction literature. It
is assumed that heterogenous players start with a less efficient extraction tech-
nology and have to decide: (i) whether to switch to a more efficient technology,
and (%) when, given that switching involves a direct cost that depends on both
the switching date and the level of the state variable.

Our main findings can be summarized as follows. We first eliminate candi-
date equilibriums by identifying a meaningful necessary condition for a proposed
timing to be erroneous. This condition involves on the one hand the difference
of players’ switching costs, and on the other hand the difference in technolog-
ical gains from switching. Indeed, it is possible that both players find a given
timing wrong. This happens when the player who is supposed to be the first
to adopt has a relative disadvantage in adoption costs that is not compensated
by any relative technological advantage. This notably encompasses the obvious
situation in which the first mover incurs the higher switching cost and, at the
same time, is the one who benefits the less from adoption at any level of the
resource stock. When this condition is not met, we deduce that the proposed
timing is not wrong. We then provide sufficient conditions for the existence of
an interior solution where both players adopt the new technology in finite time
and investigate the impact of feedback strategies regarding switching time on
the first-mover switching strategy (compared to the single-agent case). We em-
phasize the interplay between two opposite effects. First, in our application, the
switch made by the second mover is costly for the first mover because it implies
a drop in her consumption of the resource. The switching cost of the latter is
thus augmented by this term, which gives her an incentive, other things equal,
to delay the switch. On the other hand, however, it turns out that the length
of time between the two switches is increasing in the level of the stock at the
time of the first switch. From the point of view of the first mover, who controls
this level, switching at a relatively abundant stock of resource is a means to
postpone the switch of the other. Because of discounting, delaying the switch
of the other player will allow the first-mover to incur a lower cost. This is an in-
centive to switch at an earlier date. In the particular case where the first player



does not bear a direct switching cost, we show that she finds it worthwhile to
adopt the new technology at finite date, but not immediately at the beginning
of the game. This result differs from what one would obtain in the absence of
interaction between players, i.e. immediate adoption.

The plan of the paper is as follows. Section 2 describes the main assumptions
of the general differential game with regime switching. Section 3 analyzes the
optimality conditions that characterize a Markov perfect equilibrium. Section 4
applies these theoretical findings to a game of exhaustible resource extraction.
Section 5 concludes.

2 The general problem

We consider a two-player differential game in which the instantaneous payoff of
each player and the differential equation describing the stock dynamics depend
on what regime the system is in. There are a finite number of regimes, indexed
by s, and we assume that under certain conditions, the players are able to take
action (at some cost) to affect a change of regime. Let S be the set of regimes.
For simplicity, we assume that each player can make a regime switch only once.
This implies that regime changes are irreversible, i.e. switching back is not
allowed. In this case, there are four possible regimes and the set S is simply

S ={11,12,21,22}

We assume that the system is initially in regime 11. Player 1 can take
a “regime switching — or regime change — action” to switch the system from
regime 11 to regime 21, if player 2 has not taken her regime change action
before him.? Once the system is in regime 21, only player 2 can take a regime
switching action, and this leads the system to regime 22. From regime 11,
player 2 can switch to regime 12 (if player 1 has not made his regime change
before her). From regime 12, only player 1 can make a regime change, and this
switches the system to regime 22. If the system is in regime 11 and players 1
and 2 take regime change action simultaneously, the regime will be switched to
22. Finally, the system may remain in 11 forever if neither agent takes a regime
change action. Let S; be the subset of S in which player ¢ can make a regime
change. Then S; = {11,12} and S; = {11,21}.

The state variable z could be in any space R, 1 < m < M. To simplify the
exposition, we set m = 1. At each instant, each player chooses an action u;, with
u; € R", 1 <n < N < oo, that affects the evolution of x. The instantaneous
payoff to player i at time ¢ when the system is in regime s is

Fis(ui<t)7 u*i(t)’ w(t))

If player ¢, i = 1,2, takes a regime change action at time ¢; € R, he/she incurs
a lumpy cost Q;(x(¢;),t;). Then, if for example 0 < ¢; < t2 < o0, the total

3The first number in any regime index indicates player 1’s moves. The second refers to
player 2.



payoff for player 1 is

t1 to
/ Fl (uy, ug, x)e Ptdt + F2 (ug, ug, x)e Pldt
0 t1

+/ F122(U1,U2,{E)€7ptdt—Ql(x(tl),tl)

to

with p the discount rate.
The differential equation describing the evolution of the state variable z in
regime s is
z = f*(u1,ue, )

In the subsequent analysis, we use Markov perfect equilibrium (MPE) as the
solution concept. As illustrated by the decomposition above, if the equilibrium
timing is such that 0 £ t; < t9 < oo, there are three sub-games to be con-
sidered, each being associated with a particular regime. Indeed, for the timing
considered, the sequence of regimes is: 11, 21 and 22. A natural way to pro-
ceed, for determining a MPE of this game, is to solve the problem recursively,
starting from the regime arising after the final regime switching, here 22. This
is a natural extension of the method originally developed by Tomiyama (1985)
and Amit (1986) to solve their two-stage optimal control problems.

The next assumption ensures that our problem, seen as a sequence of three
sub-games, is well-behaved.

Assumption 1 o The functions Ff(.) and f°(.), for any s € S, belong to
the class C*.

e The sub-game obtained by restricting the general problem to any regime s,
satisfies the Arrow-Kurz’s sufficiency conditions.

These conditions will allow us to use some envelope properties that require
the differentiability of the value function. (See Boucekkine, Pommeret and
Prieur, 2013, for a detailed discussion).

Let us now define what is a MPE strategy in our model. Each player has
two types of controls, the set of controls being given by C; = {u;,t;}. A MPE
strategy consists of an action policy and a switching rule describing the actions
undertaken by each player at every possible state of the system, (r,s) € Ry xS.4

The action strategy of player i is a mapping ®; from the state space Ry x S
to the set R™.

The switching rule can be defined as follows: Suppose player 1 thinks that
if player 2 finds herself in regime 21 at date ¢, with z(¢) (which implies that
he switched at an earlier date ¢; < t), she will make a switch at a date ty > ¢.
Then player 1 should think that the interval of time between the current period
and the switching date, to — t, is a function of the state of the system. More

4We restrict attention to those strategies that are not time-dependent. This requires that
the function ;(z(t;),t;) takes the form e=Ptiw;(z(t;)).



generally, we define the time-to-go strategy (before switching) of player i, given
that s € S;, as a mapping 6; from Ry x S to Ry U {oo}. For instance, from
the state (z,21), 02(x,21) is the length of time that must elapse before player 2
takes her regime switching action. If 65(x,21) = co for all z, it means she does
not want to switch at all from regime 21.

Then we say that

Definition 1 o A strategy vector of player i (as guessed by player —i) is
a pair ; = (9;,0;), i =1,2.

o A strategy profile is a pair of strategy vectors, (11,12).

o A strategy profile (V¥5,13) is called a Markov-perfect Nash equilib-
rium, if given that player © uses the strategy vector 7, the payoff of
player j, starting from any state (x,s) € Ry x S, is maximized by using
the strategy vector ¥, where i,j = 1,2.

The next section presents the set of necessary optimality conditions that
characterize a MPE of our differential game with regime switching strategies.

3 Necessary Conditions for switching strategies

We first analyze and interpret optimality conditions for an interior solution,
which allows us to emphasize the impact of the interaction through switching
strategies on the solution. Next, we will pay attention to corner solutions and
introduce the concept of wrong timing.

3.1 Interior solution

In the following analysis, player i’s present value Hamiltonian and co-state vari-
able in any regime s are denoted respectively by H; and A;. The results are
presented for a particular timing: 0 < t; < t3 < 00.5 Moreover, note that in the
theorem below, attention is paid only to the necessary optimality conditions re-
lated to the switching problems. That is, we consider a path (uj(t), us(t), x*(t))
that satisfies the other standard Pontryagin conditions (see the Appendix A).

Theorem 1 Let x} be player i’s switching point, i.e. the value of the state
variable such that x*(tf) = x fori=1,2. The necessary optimality conditions
for the ezistence of a MPE featuring the timing 0 < t] < t5 < oo are:

e For player 2:

k(4% [o19) 5ot * (4%
H3' () — 224B) — 32 (1)

L2 . 1
AU (1) + Pt — 22 (15). W

5Necessary optimality conditions for the other general timing, 0 < to < t; < 0o, can easily
be derived by symmetry.



o For player 1.5

* (4% Q1 (z7,t] * gk K (4% * (4%
HI (1) — 2250 — g2 (1) — [HP™(t5) — HP>* (13)]

* * 8Sll *7t* * * * * * * * *
M (8y) + 2RO g (g 20)[HE (1) — HP2* (85)] + A2 (87),

(2)

Proof. See the Appendix A. =

To understand these switching conditions for an interior solution, let us
focus on the difference between the optimality conditions of the first-mover
(player 1) and the second-mover (player 2) for the particular timing considered.
Player 2’s conditions (1) are similar to the ones derived in multi-stage optimal
control literature. The first condition states that it is optimal to switch from
the penultimate to the final regime when the marginal gain of delaying the

switch, given by the difference H21*(.) — H3%*(.), is equal to the marginal cost

of switching, %. The second condition equalizes the marginal benefit
from an extra unit of the state variable x5 with the corresponding marginal
cost. It basically says that the value of the co-state, when approached from
the intermediate regime, plus the incremental switching cost must just equal
the value of the co-state, approached from the final regime. Hence, as long as
a player finds it optimal to be the second mover, her optimality conditions are
similar to the standard switching conditions of an optimal control problem.

The novel part of Theorem 1 stems from the problem faced by the player
who opts to adopt first. Indeed, player 1’s optimality conditions are modified
(compared to the single agent framework). The first condition in (2) implies that
player 1 takes into account how his situation changes as a consequence of a switch
of player 2. Player 1 decides on his optimal switching time by equalizing the
marginal gain of delaying the switch, which is given by the difference H{'*(.) —
H?*(.) to the marginal switching cost, %ﬁ’m — [H?Y™(t5) — H?*(t3)]. The
extra-term [H21*(t5) — H?2*(¢3)] is the marginal impact of player 2’s switch on
player 1. So, player 1 anticipates the impact of player 2’s switch on his payoff.
Depending on the nature of the problem, the additional term can either be
positive or negative. The second optimality condition is also modified. The cost
of a marginal increase in x1 now includes an extra-term: 03'(x3,21)[HZ1*(t5) —
H?2*(t3)]. This term reflects the fact that player 1 takes into account the
impact of the choice of his switching level 7 on player 2’s timing strategy. Put
differently, player 1 knows that modifying z7 is a means to delay or accelerate
player 2’s regime switching. In sum, the modified switching conditions of player
1 illustrate the existence of a two-way interaction through switching strategies.

A couple of comments are in order here:

e First, when deriving the conditions of Theorem 1, we implicitly assume
that players follow their MPE strategies for the action policy, i.e. that the triplet
(uf(t), ub(t), z*(t)) is the path followed by each player’s action policy and the
state variable at a MPE. This boils down to considering that optimal switching
conditions are conditional on the optimal action policies. Then, the question

6The “prime”in 6, refers to the derivative w.r.t to the state variable .



is: Is the switching rule robust to deviations in the action policy? Consider the
problem of player 1, once he is already in regime 21. Player 1’s problem is to
choose the time path {u;} that maximizes

t1+92(11,21)
e PLE (ug, @y (2, 21), x)dt + V22 (29,11 + O2(22,21))

ty

with V22*(.) the continuation payoff (resulting from the play of the MPE actions
in the final regime) and subject to,

T = f21(u17 (I)Q(xv 21)71:)

Q?(tl) =, .Q?(tl + 92(.’131,21)) = X2

where he takes as given x1,xs, ®2(x,21) and 6(x1,21). If he deviates from
the equilibrium from time ¢; to some time t; + €, with € > 0, what would be
his optimization problem at time t; + €? The point is that he should expect
that player 2 still continues to use the strategy (®2(x,21),05(z,21)), with the
switching point x5, because he knows that ®;(x,21) will be played by him from
time t; + € onward. The deviation will be reflected in the value of the state
variable at t1 + €, x(t1 + €) # x*(¢t1 + €). This will in turn affect the length of
time before the next switch by Player 2, 02(x(t1 + €),21).

e Second, in condition (2), the term 603'(z1,21) may look like a kind of
Stackelberg-leadership consideration: Player 1 knows the function 63'(z,21),
and hence he knows that when he chooses z; he is indirectly influencing ¢5. But
this is not really Stackelberg leadership in a global sense. The situation is just
like any standard game tree with sequential moves. If a player moves first, he
knows how the second mover will move at each of the subgame that follows, and
therefore he will take that into account in choosing which subgame he is going
to induce.

3.2 Corner solutions

We now turn to the necessary conditions for the corner solutions, still for the
same timing.”

Theorem 2 1. Suppose player 1’s switching problem has an interior solution
(t1,27).
o A necessary condition for player 2 to choose a corner solution with
immediate switching, i.e. t5 =t5 (instead of t5 > t7) is

O (23, t3)

HEY (1) - =22

< HP(85) if t7 =15 < 00 (3)

"For the sake of brevity, we don’t review all the cases. Conditions for having t; = to are
briefly discussed at the end of this section.



o A necessary condition for player 2 to choose a corner solution of the
never switching type t5 = oo is

_ 892(I§7 t;)

H3M (1) - =22

> H2**(t3) for all th > t} (4)

2. Suppose player 2’s switching problem has an interior solution (%, x%).

o A necessary condition for player 1 to choose a corner solution with
immediate switching 0 =t s

_ an(‘T;t)lk)

H 1) - =

< HPU () — [HP (63) — HP (63)] f 0=1] <13
()

o A necessary condition for player 1 to choose a corner solution of the
never switching type t7 = t5 is

_ an(vat)lk)

H 1) - =

> HP' (1) — [HP (63) — HP ()] f 0 <t} =13
(6)

Proof. See the appendix A. =

When examining the corner solutions, a distinction should be made between
different cases. The situations ¢] = 0 and t5 = oo have been studied in literature,
for open-loop strategies (Boucekkine, Krawczyk and Vallée, 2011). If t; = 0, it
must be because player 1 wants to escape from regime 11 as soon as possible.
This is the case if a delay in switching yields a marginal gain that is not greater
than the marginal loss of foregoing for an instant the benefit of the new regime.
Similarly, if player 2 were to adopt a never switching strategy then it would
mean that for all t5 > t7, the marginal gain from delaying a switch away from
regime 21 is greater than the marginal cost.

Of further interest is the interpretation of players’“corner”solution ¢t = ¢3.
The switching conditions are of the same meaning as before. Consider for in-
stance player 1’s problem. The inequality in (6) is the optimality condition for
player 1: if he chooses the corner t7 = 3, it must be true that at ¢5 a delay in
switching yields a marginal gain that is at least as high as the marginal loss of
foregoing for an instant the benefit of new regime. To analyze player 1’s choice
of switching time ¢;, we have proceeded as if that player were subject to the
constraint t; < t5, with ¢35 having been determined. Then, using the tools origi-
nally developed by Tomiyama (1985) and Amit (1986), the corresponding finite
horizon switching problem was solved. However, because the current analysis
pertains to a differential game, Condition (6) cannot simply be interpreted as a
necessary condition for having a corner solution ¢ = t5. Rather, this condition
is necessary for the timing 0 < ¢; < t3 £ 0o to be wrong. Indeed, under (6),
Player 1 would prefer switching at a later date than ¢5. This is feasible because
t3 is not fixed.®

8The same reasoning applies to the case where player 2 finds the timing non-optimal.
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In other words, till now we have derived optimality conditions for each player,
under a particular given timing. But the timing is not fixed and an important
task is to determine what will be the timing at the equilibrium, or under which
conditions a particular timing will occur. The analysis of these wrong timing
situations is of crucial importance to address this non-trivial issue. Indeed,
it should allow us to gain information about the optimal timing by pointing
out the conditions under which one player will optimally accept to make the
first switch, while the other will choose to be the second-mover. This would
allow the elimination of some MPE candidates. In our problem, there are a
priori fifteen possible timings corresponding to the set of possible combinations
between t; and t5. But, it is highly unlikely that heterogeneous players decide
on the same switching time. So, in the case of heterogeneous players, the timing
0 < t; =ty < oo should not give MPE candidates.? Logically, one expects that
several cases are mutually exclusive. Analyzing the wrong timing conditions,
(5)-(6) and the ones obtained when analyzing the other timing, should be a
means to understand, once the benefit and cost functions are specified, which
timing, between 0 < ¢ <ty S oo and 0 < ¢y < t; < o0, is consistent with MPE
requirement. Therefore, in any particular application, an analysis of wrong
timing situations should then be conducted in order to reduce the set of potential
candidates for MPEs, before having a look at other interior or corner solutions.

The next section is devoted to an application of the theory to an exhaustible
resource problem. Our purpose is to illustrate how the reasoning above works
in a simple example from which we can extract (partial) analytical results.

4 Application: A resource extraction game

We consider a differential game of extraction of a non-renewable resource. In
the related literature,'© it is generally argued that the presence of rivalry among
multiple agents tends to result to inefficient outcomes, e.g. overextraction of
natural resources. Another common feature of the frameworks developed in this
literature is the assumption that players cannot adopt new technology that will
improve their extraction efficiency. It is usually assumed that consumption is a
fixed fraction of the extraction level. In this section, we relax this assumption
and consider the possibility of technological adoption among players. That is,
players not only choose their consumption. They also decide when to adopt

9However, it’s quite easy to derive the optimality conditions is this case. Suppose that it
is optimal for the two players to switch at the same date t* = t; = t2 € (0,00), for the same
level of the state z* = 27 = 23, then the following conditions must hold, for ¢ = 1, 2:
11 09 (z™,t*) _ pr22
H; *(t*)—T*Hi *(t*) s
9Q; (™) _
A%l*(t*) + éﬁb ) — )\122*(?5*).
Finally, conditions corresponding to the cases t;1 = toa = 0 or t; = tg = oo, that are more
relevant to our analysis, are basically the same as in the single-agent framework. They are
presented in Appendix A.
10For extensive surveys on dynamic games in resource economics, refer to Long (2010, 2011).
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the more efficient extraction technology. This puts forth another innovative
contribution of this paper.!!

Our resource extraction game comprises I = 2 players. Let u;(t) denote
the consumption level of player i, i = 1,2, at time ¢t > 0. Meanwhile, let e;(t)
be player i’s extraction rate from the resource at time ¢ > 0. Extraction is
converted into consumption according to the following technology: ~;u;(t) =
ei(t), where v, 1is a positive number that reflects a player’s degree of efficiency
in transforming the extracted natural resource into a consumption good.

Two production technologies, described only by the parameter ~;, are avail-
able to player ¢ from ¢t = 0. Because players’ technological menus may differ, one
needs to introduce a specific index for the player’s actual technology. It is as-
sumed that player 1 starts with technology I = 1 and has to decide: (i) whether
she switches to technology I = 2, and () when. The state of technology of
the other player, 2, is labelled as k£ and a technological regime is represented by
s = lk, with [,k = 1,2. For each player i, the ranking between the parameters
satisfies: 7} > 72, which means that the second new technology is more efficient
than the old one. A possible indicator of technological gain for player i from
adoption is the ratio jTj € (0,1), such that the smaller is the ratio, the higher
is the gain. L

Let z(t) be the stock of the exhaustible resource, with the initial stock xg
given. As in section 2, t; and t, are the switching times. Suppose 0 < t; < i3,
then the evolution of the stock is given by the following differential equation:

—yiur — yaug if t € [0,¢1)
=4 —7iur —yqug if t € [t1,t2)
—Yiuy — Y3ug if t € [ta, 00)

At the switching time, if any, player ¢ incurs a cost that is defined in terms of
the level of the state variable at which the adoption occurs, z(t;) = z;. Let w;(z;)
be this cost, with w}(.) > 0. The direct switching cost is discounted at rate p. As
seen from the initial period, if a switch occurs at t;, the discounted cost amounts
to e~ Pliw;(x;) (this is our Q(z;,¢;) of Section 2). It takes the following form:
wi(x;) = xi + Bizi, xi > 0 and B; > 0. x; is the fixed cost related to technology
investment. These may include initial outlay for machinery, etc. On the other
hand, ; represents the sensitivity of adoption cost to the level of the exhaustible
resource at the instant of switch. Our assumption implies that the cost of
adopting new technology is increasing in x;. This assumption conveys the idea
that the lower the level of the (remaining) stock of resource, the lower the cost
of adopting the new technology. It could reflect the fact that scientific progress
on installation of resource-saving technology is continually made as the scarcity
becomes more acute. Finally, each player’s gross utility function depends on her
consumption only and takes the logarithmic form: F(u;, u_;, ) = In(u;).

11 As mentioned in the Introduction section, technology adoption issues have been studied in
the multi-stage optimal control literature but there are very few references in dynamic game
theory.
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In the next subsections, attention is paid first to the corner solutions, which
allows us to address the issue of the equilibrium timing. Then an analysis of
the interior solution — for the correct timing — is conducted with the aim to
discuss the features of the equilibrium with regime switching. From now on, the
timing considered is 0 < t; < t3. Results for the other timing are obtained by
symmetry.

4.1 Equilibrium timing

The first part of the subsequent analysis examines the conditions under which
the timing under scrutiny is wrong, i.e. at least one player would choose the
opposite timing. This will be followed by identifying necessary conditions for
corner solutions. Once these tasks are done, we can solve for interior solutions.

4.1.1 Wrong timing

A player may find the timing 0 < ¢; < t9 < co non-optimal. For instance,
guessing that player 1 will switch at ¢1(< 00), player 2 may prefer switching at
a date no later than t;. In general, it can be shown that!?

Proposition 1 If player i, i = 1,2, finds the above timing non-optimal then it
must hold that

3 "

a1 (2) < (o) 41 (1)), )
Y2 71

where x_; is the switching point of the other player that corresponds to this

hypothetical scenario.

Proof. See the appendix B.3. m

As mentioned in Section 3, following Theorem 2, condition (8) character-
izes a situation that is more than a simple corner solution. As an illustration,
let’s consider player 2’s situation. Let (¢}, x7) be the interior solution of player
1’s switching problem when he anticipates that player 2 will stick to his timing
strategy, with 0 < ¢t < oo given. In order to obtain (8), we have determined un-
der which conditions it is “optimal” for player 2, who maximizes the discounted
value between ¢] and oo, to switch immediately. This means that the necessary
conditions are similar to the usual conditions of the multi-stage optimal control
theory for immediate switching. However, this particular situation cannot be
interpreted as a corner solution precisely because the framework under scrutiny
is a differential game. This implies that in fact ¢ (the beginning of the plan-
ning period for player 2) is not given. So, we should interpret this degenerate
corner solution as a situation where it is not optimal for player 2 to adopt after
player 1. Player 1, who is supposed to be the first mover, may find the timing

12Even though the analysis of wrong timing comes logically before considering any other
solution, it should be noted that in the Appendix B, the proof of proposition 1 cannot be read
independently of the other parts. This is also true for the proofs devoted to corner solutions.
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non-optimal as well. What is worth noting is that the necessary condition for a
wrong timing is the same for the two players.!® Therefore, as long as condition
(8) holds for at least one of the player, the correct timing, at the MPE, if a
MPE exists, should be 0 < t5 <t < oo.

Next, we can exploit the result that necessary conditions for a wrong timing
are similar to establish that:

Corollary 1 A sufficient condition for the equilibrium timing to be 0 < ¢y <
ty < 00 is:

2 2
plwr (z) — wa(z)] < — {ln (711) —In (é)} for all xz € [0, z] 9)
71 72

If condition (9) holds, then the timing t5 < t; cannot occur in equilibrium.
This condition can easily be interpreted in economic terms. First note that
—1In (1—?), for i« = 1,2, is a measure of the gain from switching. Then, this
condition basically states that for player 1, the relative advantage of adoption
(RHS), measured in terms of the differential of gains, is greater than the relative
disadvantage in terms of adoption costs (LHS). Put differently, player 1 has
a relative disadvantage in adoption costs that is compensated by a relative
technological advantage. Of course, this inequality is satisfied when player 1
incurs a lower direct switching cost and, at the same time, derives a higher
benefit of adoption. But, it might also hold in intermediate situations where
player 1’s adoption cost is higher provided that the differential in technological
gains is largely favorable to player 1.

From now on, let’s assume that (9) holds. In the next section, we briefly
review the corner solutions associated with the timing 0 < ¢ < t5 < oco.

4.1.2 Corner solutions

First, we emphasize the conditions under which the MPE may feature a corner
solution. Next, we tackle the issue of the occurrence of a simultaneous switch.

Proposition 2 o Assume player 1’s switching problem has an interior solu-
tion t;. A necessary condition for player 2 to choose the “never switching
strategy,” so that 0 < 17 < t5 = oo is that

pr(0) + In (3) > 0. (10)

o Assume player 2’s switching problem has an interior solution t5. A neces-
sary condition for player 1 to switch immediately at the beginning, so that
0=1] <th <oois

"

pw1(xo) + In (1> < e 2202 1n(1 — Bypah). (11)
"N

13There is no single condition however because the reference point in (8), that is given by
the switching point of the other player, matters.
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e For a combination of immediate and never switching 0 =t <t} = oo to
arise at the MPE, it is necessary that (10) and the condition below hold:

2
pwi(xo) + In <V11> <0. (12)
7
Proof. See respectively Appendix B.1.2, B.2.2 and B.4. =

Necessary conditions for being at a corner solution have very simple in-
terpretations. For instance, according to condition (10), a player never finds
it worthwhile to adopt the new technology when the fixed cost of adoption,
weighted by the rate of time preference, is larger than the gain from switching.
In the same vein, a player is willing to adopt the new technology immediately
when the switching cost at the initial resource level is lower than the gain from
adoption. In the latter case, the particular tradeoff is influenced by the other
player’s switching decision to switch in finite time (11) or keep the old technol-
ogy forever (12).

Beyond corner solutions, there are three remaining cases: (a) Players might
wish to adopt their new technology at the same date and for the same stock
of resource. Or, (b) they might both prefer switching instantaneously; or (c)
on the contrary adopting never switching strategies. If there is heterogeneity in
switching costs, case (a) cannot be an equilibrium outcome. The conditions for
having the two other possibilities can easily be derived from proposition 2 (see
the Appendix B.4).

Finally, it is useful to establish that:

Corollary 2 The following (double) inequality

2
pw;(0) < —In (:;ﬁ) < pwi(zo) fori=1,2, (13)

i
18 sufficient for not to be in a corner solution.

Thus, if the switching cost is low enough (compared to the gain from switch-
ing) when the resource gets close to exhaustion, then it is worthwhile to adopt
the new technology in finite time. Moreover, this cost at the beginning of the
game should be high for making players unwilling to adopt immediately.

With this information in mind, we now turn to the analysis of the interior
solution.

4.2 Impact of the interaction through switching strategies
on the equilibrium

At the interior solution (0 < ¢; < to < 00), our differential game can be divided

into three subgames. We proceed backward by examining first the solution to

the last period problem, i.e. to the subgame arising after player 2’s regime
switch. This is a standard infinite horizon differential game. Recalling that we
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restrict our attention to linear feedback strategies, we find that the consumption
strategies ®;(z,22) (i = 1,2) at the MPE satisfy'4

V0 (2,22) = 7303 (x, 22) = pu. (14)

From these strategies, we can easily compute players’ present values correspond-
ing to the last period problem, which are used as scrap value functions for the
preceding problem. Indeed, the next step is to examine the second period prob-
lem in which player 2 has now to take her regime switching action. The resolu-
tion consists in determining not only consumption strategies valid in regime 21
but also the switching time and switching point of player 2 at the MPE. Results

are summarized in the proposition below.!®
Proposition 3 e In regime 21, consumptions strategies are given by
2 *\2
V0% (w,21) = ya®3(2,21) =T + pr with T = L(x?)* (15)
1 — fBapxs
o The optimal switching point, x5, is defined by
73
pon(a) +1n (2 ) =1 - faps). (16)
2
Sufficient conditions for the existence of a unique x4 are:
2
—1In (li) > pws(0),
” (17)

2
pwa(x1) + 1n (3—21) > In(1 — Bapzy).
e The time-to-go (before switching) strategy is t5 — t1 = 05(x1,21) with

B 1 N . 1 O (21,21
03(r1,21) = fpln {(1 - Pﬁzxz);}k + Pﬁzxz} ~ 3 In LM] . (18)
2 7 2

where (t1,x1) can be any solution to the switching problem of player 1.

Proof. See the appendix B.1.1. =

Several comments are in order here. First, from equations (14) and (15), one
can observe that y3udl*(t5) = y3ud?*(t5) iff B = 0. Thus, if B > 0, players’
resource extraction experiences a jump at the switching date of player 2. This
results from the dependence of the direct switching cost on the level of the state
variable at the switching date.'® Second, the first sufficient condition (for the

14Players share the same extraction rate regardless of the regime. This is due to the sym-
metric structure of the extraction game. Of course the common extraction rate is regime-
dependent.

15For simplicity, we assume that: zg > (pf2) 1.

16 A similar pattern is observed by Valente (2011) and Prieur, Tidball and Withagen (2013),
in different frameworks.
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existence of a unique switching point, 23) in (17) is satisfied whenever we assume
that the condition (13) of Corollary 2 holds. This condition basically states that
player 2 will switch in finite time as long as the technology differential — gain
from switching — is large enough compared to the fixed cost of switching, when
the stock of resource approaches zero. Third, the time-to-go before switching
(18) is defined in terms of player 1’s switching point, z1, the discount rate and
some parameters characterizing regime 21, that players leave, and regime 22,
that players reach. Hence, player 1 is able to affect player 2’s switching strategy
and will take this influence into account in the first period problem. Note also
that the optimal switching date of player 2 is increasing in x;. The larger
the resource stock at which player 1 decides to switch, the later the adoption
of player 2. In other words, switching rapidly for player 1 tends to delay the
adoption time of player 2.

Adopting the same methodology as before (notably by computing player 1’s
present value from regime 21 on), we can finally have a look at the first period
problem. In regime 11, player 1 guesses that (i) player 2 has in mind an optimal
switching point x2 (not necessarily the same as x3 that we found above), and
that (i) player 2 has a time-to-go strategy 62(x1,21) (not necessarily 05 (x1,21)
defined by (18)). He also guesses that player 2’s consumption strategy in regime
11 takes the form ®s(x,11). Now we characterize the MPE in consumption
strategies in regime 11 and provide sufficient conditions for having a unique
solution to the first player’s switching problem. Note that at the MPE, player
1’s guesses have to be consistent with player 2’s actual strategies.

Proposition 4 e In regime 11 consumption strategies satisfy

L+ pail — ((z7; 25)]
C(a1;23) ’

YO (2,11) = 4o ®5(z,11) = A + pz, with A =

and

P03 (x7.21)

C(ay;zy) =1— — 5 In(1 — pBazs) — f1(I' + pz7),

where I' is given in Proposition 3.

o The optimal level of the stock for switching x7 solves

pwi(z]) + In (’h> = P03 (21,21 {pwz(xz) +1n <’72 )] + In[¢(7; 23)]

ot 72
(19)
e If the following conditions hold: ((x%;x3) > 1, ((zo;x3) € (0,1] and
pwr (o) + In % > e~ P02(w0,21) [pwg(x +1In (:% } (20)
pwi(z3) + In % < pwa(xs) +1n (%) )

then there exists a unique x} € (x5, xg).
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o With the pair (z7,x3) being determined above, the optimal switching time
T =607(xo,11) is

A *
07 (zo,11) = iln M = iln {@i(a}g,ll)] .
20 \aj+5 2p [ @} (21, 11)

Proof. See the Appendix B.22. =m

Recalling that v7®%(x3,21) = T + pxy (see 15), we observe that ((.) defined
above provides information on the direction (< 1) and magnitude of the jump
in the extraction rate at the switching time ¢;. The third item of Proposition
4 basically enumerates the sufficient conditions for the existence of an interior
solution to player 1’s switching problem. At first glance, these boundary con-
ditions may seem difficult to interpret. But, referring once again to Corollaries
1 and 2, it is clear that conditions in (20) are necessarily satisfied under the
sufficient conditions we discussed previously for not being in a wrong timing
and not having corner solutions.

In the remainder of this section, we further address the impact of MPE
strategies for switching times on the equilibrium. Indeed, given that (player 2)
switching strategy is based on the state of the system and player 1 is able to
affect this state, it is crucial to understand how player 1 adapts his strategy to
player 2’s switching decision. This also requires the solution to the following
related issue: what is the impact of player 2’s future switch on player 17 For
the sake of interpretation, player 1’s switching conditions are rewritten as:'”

i [S00] = o) + 500120 1n [ 2512
[t (en)] ' - (el ()] T = wileh) + 05 (af, 21)e P20 [ M
(21)
Compared to the single-agent problem, both conditions are modified. The
LHS of the first equation in (21) reflects the marginal gain from extending the
horizon of the first regime. If there exists 0 < ¢ < t5 then this marginal

gain must be equal to the marginal cost of switching at ¢;. Now, the marginal
switching cost (RHS) is augmented (in absolute magnitude) by the extra-term

e—r05(21,21) 1n[“;1*$ ;] Player 1 anticipates that his switching decision will be
followed by the switch (in finite time too) of the second player and that this
switch will be costly. Why is it so? Adopting a new technology translates into
a decrease in the extraction rate: ~yau3'*(t3) > ~vsu3**(¢3). Intuitively, with
the new technology, one needs less resource to produce a given amount of the

consumption good. The impact of player 2’s adoption on her own consumption
is unclear because it depends on the size of the productivity differential v2.

However, it is clear that player 1 is worse off after player 2’s switch because he
bears the decrease in extraction (as both players have the same extraction rate
in regime 22) and is not able to compensate this loss by an adaptation of his

17 At the MPE, the guess of player 1 must be consistent with the switching strategy actually
adopted by player 2.
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technology. So, it means that the marginal cost of switching is higher than it
would be in the absence of player 2. Other things equal (z1 constant), it implies
that the switch should occur at a later date, i.e. player 1, when interacting with
player 2, has an incentive to postpone adoption.

The second equation in (21) equalizes the marginal benefit from an extra unit
of the state variable x; (LHS) with the corresponding marginal cost (RHS).
The marginal cost is lower in the game than in the control problem because

03 (23, 21)e—r02(=1,21) ln[zgiggg] < 0. Indeed, other things equal (¢; constant),
by increasing z1, player 1 induces player 2 (because player 1 controls x; on which
is based player 2’s decision) to delay the instant of her switch that is, the instant
when player 1 will incur the additional indirect (marginal) cost. The impact of
player 2’s switch will then be felt less acutely because of discounting. This in
turn implies that player 1’s adoption should occur at a higher x7. This second
effect makes it worthwhile for player 1 to adopt at an earlier date (because the
trajectory of 2 is monotone non increasing).

In summary, as a result of the interaction with player 2, player 1 will delay
the adoption of the new technology (first-order effect corresponding to the first
condition in (21)). It does not mean however that he will not adopt before
player 2. According to the second condition in (21), the sooner the adoption
of player 1, the lower the negative impact of player 2’s adoption on his welfare
(second-order effect).

To conclude this analysis, let us highlight a striking result that can be ob-
tained by focusing on the special case where wq(x1) = 0 (the switching cost is
independent of the stock of resource). In this case, player 1 does not bear any
(direct) cost when he switches. Then, we know that the solution of the optimal
control problem (single-agent problem) is t7 = 0: One adopts instantaneously
because the new technology is more efficient than the old one. But, it is clear
that if the equations in (21) have a solution,'® then conclusions will be very
different in the switching game. Player 1 incurs a indirect (marginal) cost when
player 2 adopts. Then, it is optimal for player 1 to switch at a date t7 such that
0 < t] < t5 because it allows him to compensate for the loss by increasing ex-
traction (which implies that consumption increases too) at the switching time,
i.e. one must have viull*(t7) < 42u?'*(¢1). Interestingly enough, the interac-
tion through switching time offsets the previous effect of adoption (identified
for player 2): switching to the new, more efficient, technology translates into an
increase in the extraction rate.

5 Conclusion

In this paper, we have developed a general two-player differential game with
regime switching strategies. The interaction between players is assumed to
be governed by two kinds of strategies. At each point in time, they have to

18 This can be guaranteed by deriving the existence conditions for this special case from the
analysis of Appendix B.2.2.

19



choose an action that influences the evolution of a state variable. In addition,
they may decide on the switching time between alternative and consecutive
regimes. At a feedback Nash equilibrium, the switching strategy is defined as a
function of the state of the system. Compared to the standard optimal control
problem with regime switching, necessarily optimality conditions are modified
only for the first-mover. When choosing the optimal date and the level of state
variable for switching, this player must take into account that (i) his decision
will influence the other player’s switching strategy, and () the other player’s
switch will affect his welfare. Furthermore, we have exhibited the necessary
conditions characterizing the timing at the Markov perfect equilibria. Wrong
timing situations were also analyzed.

In the second part of this paper, we applied this new theoretical framework
to solve a game of exhaustible resource extraction with technological regime
switching. It was assumed that, at a given cost, players have the option to
adopt a more efficient extraction technology. We then obtained sufficient condi-
tions guaranteeing that both players switch in finite time. Moreover, we inves-
tigated the impact of feedback strategies for switching time on the first-mover
technology adoption strategy. There is an interplay between two conflicting ef-
fects. First, the switch of the second mover is costly for the first-mover because
it implies a drop in his consumption. Thus, the first-mover may opt to delay
adoption. Meanwhile, because of discounting, delaying the switch of the other
play will allow the first-mover to incur a lower indirect cost. This is an incentive
for the first-mover to adopt at an earlier date.

Overall, the methodology presented in this paper may pave the way to handle
a wider class of problems in economics. Potential extensions include the anal-
ysis of technology adoption in a climate change game, the consideration of the
interaction between the elites and the citizens in a game of institutional regime
changes (Acemoglu and Robinson, 2006, 2008), and the like. These issues will
be addressed in the authors’ future research endeavors.
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Appendix
A Proof of Theorems 1&2

Let the triplet (uj(¢),u3(t), z*(t)) be the path followed by each player’s strat-
egy and the stock variable at a Markov perfect equilibrium (MPE), for every
t € [0,+00). A restriction of this path to [t;_1,¢;], which corresponds to a par-
ticular regime say s, j = 1,2 with ¢y = 0, continues to characterize the solution
of the subgame with z*(t;) = z}, t;_1 and t; fixed and with the maximization
of f:j_l F?(uy,ug, z)ePtdt as player i’s objective, i = 1,2. In addition, a re-
striction of (uf(t), us(t),x*(t)) to [t2, +00) is a MPE of the infinite horizon game
with z*(ty) = x3, to fixed and with the maximization of j;zo F?2(uy,ug, x)e Ptdt
as player i’s objective.

The proof uses standard calculus of variations techniques in a sequence of
three subgames as explained in the main text. The problem is solved recursively,
starting from the game arising after the last switch. The proof focuses on the
timing 0 < ¢; < t3 < oo, i.e. on the case where player 1 is the first to switch,
followed by player 2.19

In each subgame, player’s optimization problems are solved using the Pon-
tryagin method.?® This implies that when solving player i’s problem, in any
regime, we have to introduce a guess about the other player’s strategy, u_;(t) =
®_;(x(t),s). Moreover, attention is mainly paid to the problem faced by the
player who undertakes the switching decision. When required, we also present
the optimality conditions of the other player.

e Last regime 22, for t > to: Player i solves:

max/ F?2(u;, ®_;(x,22),z)e " ldt, (22)
Ujg t2
subject to,

z = f22(u¢,¢)_i(x,22),x). (23)

where to and the initial condition z(t2) = x9 are fixed. z(t2) will be made free
(end-point) in the next stage. The present value Hamiltonian of the problem,
H?%) is given by H2? = F?2(u;, ®_;(7,22),x)e " + \22 {22 (u;, ®_;(z,22), ),
where A\?? is player i co-state variable associated with z in regime 22. This
problem does not deserve further attention since it yields straightforward first-
order necessary conditions. Let us denote by superscript * the paths identified
by these conditions (abstracting from the issues of existence and uniqueness).

Let V?2*(2,t2) be the value function, we have the usual envelope conditions:

22
a‘(‘;; = 7Hi22(t2)7 (24)
B = A2(ty) for i = 1,2.

19The necessary optimality conditions for the other timing 0 < t2 < ¢; < 0o can be obtained
by symmetry.

20We may alternatively adopt the HJB approach and obtain the same results that will take
the form of the well-known continuity and smooth-pasting conditions.
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e Second regime 21, for t € [t1,t2]: In this regime, player 2 (the one who
decides on the switching time) solves:

to
max/ F;l(uQ, D4 (z, 21),m)e*ptdt — Qo(xa,ta) + ‘/222*(1'2,t2)

uz,t2 t

subject to,

T = f21(UQ, @1(33, 21), CL‘),
where t; and the initial condition z(t1) = x; are fixed. But, z(t2) = x5 is a free
end-point and ¢, is a control variable. After some calculations, one obtains:

to .
‘/'221 = / (H221 + )\gll')dt — P\%l(tg)l'g — )\gl(tl)l'l} — QQ((EQ, tz) + VQQ*((EQ, tg).
t1
To find the necessary optimality conditions, we derive the first-order varia-
tions of V21 with respect to the state and control variables’ paths, for fixed t1,
x(t1) = z1 and free t3 and xo. This yields, after rearranging terms:2!

SV2 = f[(agm + 21 Hy' - @ (w 21)+)\21)§x+ de Sus)dt

t1

o0 , o0 , vz
+(H221(t2)— 2(,(;;22 t2) + 8t2 )5252—()\%1(252)—1— 2(%2 ta) 8;:2 )(53;‘2.

(25)

A trajectory is optimal if any small departure from it decreases the value

function, that is 6V21 < 0 for any dx(t), t € (t1,ta), for any dua(t), t € [t1,t2],

and for any dto and dxo. This gives the following necessary conditions for an
interior maximizer, t1 < ty < o0:

8u2
21 92 (z2,t2) "oy 21 00 (za ta)  OVEZ
Hy' (o) — =252 + 55— =0, A (o) + =552 — 52— =0.

{ 6H§1 B 0’ agx + 3 2 (I)/ (‘,I: 21) )‘%1 = 03

(26)
The first two equations are the standard Pontryagin conditions, the last two are
optimality conditions with respect to the switching time, to, and the free state
value, zo. Together with conditions in (24) obtained from the third sub-problem,
one gets conditions (1) of Theorem 1, that is:

H%l*(tz) _ 8925’;;7?) — H222*(t§)
N1 (1) + FEEte) — 02 (15).

3:172

(27)

Optimality conditions for corner solutions can easily be deduced from the
analysis above:

Suppose t; = t5, with ¢; the switching time of player 1 taken as given. Then
the only possible variations of t3 are such that dta > 0. From (24) and (25),
dVZ1 < 0 only if (condition 3 of Theorem 2)

0 (235, 13)
Otoy

21The derivative of the action strategy, ®;(.) is necessarily taken w.r.t the state variable .

H21*( *) < H22*( *) (28)
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Similarly, for the last case, t5 = oo, to occur, it must hold that:

(3, t5)
Oto

Let us now have a look at player 1’s problem. By definition, player 2’s
switching strategy is defined in terms of the state of the system at any ¢ > ¢;.
Given that her switching problem starts at t; for a given x1, the time-to-go
strategy (before switching) at this date is: t2 — ¢ = 62(x1,21). Player 1’s does
not take any switching decision in this regime but he has to make a guess about
player 2’s switching decision.?? Following the same steps as before, player 1’s
value function in regime 21, V2!, can be written as

H%“(t;) — > H222*(t3) (for any t5 > t1) (29)

t1+02($1,21) .
/ (H121+)\%11')dt—{>\?1 [tl + 92(%1, 21)]‘%2 - A%l(tl)l'l }+V122*[£L'2, t1+02(1'1, 21)],

ty
and one can obtain the Pontryagin conditions:

OHZ  9H?'  9H .

=0 ®h(x,21) + AP = 0. 30
Buy ' om + Jus 5(7,21) + A (30)
For the last step of the proof, we need to compute the partial derivatives of

the value function with respect to t; and x1, which yields:

WL — Gy (e, 20) [HP () — HE(t2)] + A2 (1)

ox
B
O — H(ty) — HP (1) — HE(t2).

(31)

These are some envelope conditions.

e First regime 11, for t € [0,¢1]: In the initial regime, player 1 has now to
choose whether he switches and when. The optimization program is:

t1
max Fl (ug, ®o(2, 11), 2)dt — Qy (21, 1) + VT (21, 1)
Uit Jo

subject to,
T = fll(ul, q)Q(JJ, 11),.’1’,‘),

where x¢ is given and x(t1) = x1 and ¢; are free.
Using the same techniques, the value function is:

t1 3
‘/111 = / (Hlll + A%lx)dt — [A}l(tl)xl - )\%1(0)1'0] — Ql(l'l) + V121*(£L'1,t1).
0

Computing the first-order variation of Vj'! with respect to the state and
control variables’ paths, for free t; and x1, one obtains:

t1 11 11 : 11
OVt = [1(%5 + G @ (w, 11) + Ao + Gigundt

0
6 21 % a 21 %
+H(HI (1) — TRt 4 T )6ty — (M (1) + 2Rt — B )oay.

(32)

22 At the MPE, this guess will be consistent with the actual switching strategy of player 2.
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Again, we say that a trajectory is optimal if any small departure from it
decreases the value function, that is §Vi'* < 0 for any dz(¢), t € (0,t1), for any
duy(t), t € [0,11], and for any dt; and dx1. Hence, the necessary conditions for
an interior maximizer, 0 < t; < to are:

oL g, Oy 1) i =
1 21*
() - 2 O i) 4 e o
(33)
The (last) two switching conditions can be rewritten, using (31), as
Hll* * _ 0 (21,t)) :H21* * H21* * H22*

1
* (g% o0 x*,t* * * * (4%
A () + P a5 1) B 1) — (1) + A%l (t).
they correspond to conditions (2) of Theorem 1. Thus, conditions in (27) and
(34) give the necessary conditions for the optimal timing to be 0 < #; < t3 < 0.

Regarding the necessary conditions for corner solutions, we have:
Suppose 0 = t7, then the only possible variations of ¢} are such that d¢; > 0.
For 6V111 < 0 it must be true that

O < B (1) — [ (03) — B ()] 0= £ < 15 (39)

Hll*( )

In the opposite situation, tj = to, the variations t; are non positive: §t; < 0.
For 5‘/111 < 0, we must have

ORCLTD o 52 (1) — (3 (03) — B G3)] 645 = 13, (30)
oty

Hll*( *)
These conditions are similar to the ones stated in Amit (1986), Theorem 1 p.
537, for corner solutions.

There exist other less interesting cases that we discuss briefly here. Another
eventuality is that both players find it optimal to switch at the same instant
t; =ty =t € RY, and for the same resource stock, 1 = 23 = x. In that case,
the set of necessary conditions reduce to:23

Hll* t* o9 (x* t*) H22* t*
)= an(att) ) (37)
Finally, there may exist double corner solutions: ¢t = 0 and ¢ = oco. The
optimality conditions can easily be derived from what we already have. In
particular, for the case t* = 0 to occur, it must hold that H}*(t*) — W

H2%*(+*) if 0 = t* < oo and for any i = 1,2.

23This is of course a knife-edge situation, which is highly unlikely at least when one assumes
a sufficient degree of heterogeneity among players.
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B Application

We restrict attention to linear feedback strategies: ®;(z,s) = aj + bix. In any
regime s, player i’s present value Hamiltonian is given by:

HY = In(uf)e™"" — A; (vju + 7} (af + b))
The FOCs are:
(uf) "l Pt = ix;
A5 =5 (38)
T = —'yf» s — 'y;?(aj + bjx)
and have to be combined with the appropriate transversality condition, which

depends on whether the regime is terminal, or not. Whatever the regime, it can
easily be checked that players’ extraction strategies satisfy:

yhuf = 'yfuj & a;j = aj and b} = bj. (39)
When regime s is terminal, we obtain: i ®%(z,s) = 74 ®3(z,s) = pr. If s = 22
is the terminal regime (both players have switched), then the value function is

—pt2
‘/;22*(:17271;2) _ €

[In(z2) +1In(p) — In(v7) — 2] = e™ 20> (22),  (40)

22x%

where v7%*(z2) is the continuation payoff, in current value.

B.1 Player 2’s switching problem
B.1.1 Interior solution (proof of Proposition 3)

Switching conditions: Assume player 1 has switched at some t; € (0, 00),
for a switching point z;. For an interior solution (tg,z3), conditions (1) of
Theorem 1 are (derivative of the value function w.r.t. z3)

P2
Y3 (1 — Bapas)’

and (derivative of the value function w.r.t. t3)

In(u3'(t2)) — A3 (t2)e"? [vauz' (t2) + yiui' (t2)] + pwa(wa) — pv3>* (2, t2) = 0.

u3' (t2) = (41)

(42)
Using (39) and (41), the consumption strategies satisfy:
2 2
20 (2,21) = 1D (w,21) = L2 (43)
1 — Bapxo
From (38)-(41) and (43), (42) simplifies to
2
pin(e) +1n (2 ) = (1 = Gapaa), (44)
2

which defines the optimal level for switching, z5. Conditions (41) and (44) are
the necessary conditions for an interior solution.
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Characterization of the solution: The LHS of (44) is defined for all x5 €
[O, (pﬁg)_l), increasing in xo and varying from zero to oo as x goes from zero

to (pB2)~!. The RHS is strictly positive at x5 = 0 iff In (%) > pw2(0). Since
2
B2 > 0, the RHS is strictly decreasing in x. Thus, if ;1 > (pf2)~! and
A2
pwa(0) + In (ﬁ) <0 (45)
2

then, there exists a unique solution z3 in [0, (pB2)~'). Otherwise (z1 < (pB2)™'),
another boundary condition is

2
pwa(x1) + 1n <3{i> > In(1 — pPazy).
2

Replacing consumptions with the expressions given by (43) in the state equa-
tion, and solving the resulting differential equation (with the boundary condition
x(t1) = x1) yield the expression of the state variable for any ¢ € [t1,3):

*\2 *\2
le*(t) _ {331 + pBa(3) *} e—2p(t—t1) _ pBa(3) .
1 — Bapas 1 — Bapxs
Evaluating this equation at t5 and solving for 6, = t5 — ¢1, one obtains

[cbi(th)

X 1 N N 1
05(x1,21) = o7 In {(1 — pﬂng)m—i + pﬂng] =—1In @i(25.20) 21)} , (46)
2 1\42y

2p

which gives the time-to-go (before switching) strategy of player 2 for any switch-
ing point (and more generally, any level of the state variable) z1.

B.1.2 Never switching condition (proof of Proposition 2, first item)

Still assuming that there exists t; € (0,00), the condition for a never switching
solution (t5 = 0o) is given by:

Infu3! (t2)] + pwz(2) > Infu3®(t2)), (47)

for all to € (¢}, 00)U{oo}. This corresponds to condition (4) of Theorem 2. When
to — oo (and o — 0 because the stock of resource is exhausted asymptotically),
we use the feature that regime 21 becomes the final regime and ~2u2'(t) =
Yaudl(t) = px, and take the limit of (47) to obtain

2
In (ﬁ) + pws(0) > 0. (48)
5
This necessary condition for a never switching solution is also sufficient to have
2
In (21> + pwa(x9) > In(1 — Papxsy) for all t; < ty < 0.
V2

The analysis of the last case (wrong timing: ¢; = t5) is postponed to Ap-
pendix B.3 because it requires player 1’s switching problem be examined first.
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B.2 Player 1’s switching problem
B.2.1 Interior solution (proof of Proposition 4)

Switching conditions: Suppose that player 2’s regime switching takes place
at some tg € (0,00). Using (40) and (43), the value function of player 1 (in
current value), from regime 21 on, for any z; and any guess (x2,63(x1,21)),

is:24

1
o (@ o, 20)) = - {Inf@i (1, 20)] 24 720 In (1= plaa) |
(49)
This yields the continuation payoff as seen from regime 11, the one in which
player 1 takes his regime switching decision. Let ((x1; %) be defined as follows:
e—P2(x1,21)

C(z1;22) =1~ 5

In(1 = pBawa) — Bi (L' + pa1). (50)

Then the switching conditions (2) of Theorem 1 are, for our example

I'+ pzy

tutt(t) = ————, 51
YU (t1) C(an; 22) (51)

with T defined in (43), and (using the relationship in 39 and 38):
In [U%l(tl)] -2+ pwl(m) — pvfl*[mﬁg(m, 21)] =0. (52)

Solving for the MPE in consumption strategies in regime 11, one finds

[+ prq[1 — ((1; 72)]
C(z1;72) '

Substituting ui!(t;) with the expression in (51), using (44) and yiu3'(t;) =
I + pz1, the optimality condition (52) can be rewritten as:

1@ (2,11) = Y3 ®5(x,11) = A + pz with A =

pwi(x1) +1n (:ﬁ) = ¢~ P02(z1,21) |:pOJ2($2) +1n (ﬁ)} + In[¢(z1;22)].  (53)

At the MPE, player 1’s guess must be consistent with player 2’s actual
strategy, which implies that xo and 6y are given by x5 and 63, defined by (44)
and (46). Thus, player 1’s optimality conditions for switching (51) and (53)
have to be evaluated at this particular point and for this particular strategy.

Characterization of the solution: ((x1;23) is defined over (a3, z¢) with
¢'(z1;23) < 0. Let us assume that ((z;23) > 0, which requires xy be high
enough. The LHS of (53) increases with x; on the interval [x5, xo] whereas the

24Note that the third term is exactly the difference between the present value Hamiltonians
evaluated at to, H?2(t2) — H?(t2), discounted from t;.
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RHS is non monotone because the time-to-go (before switching), 03, is increasing
in z1. Therefore, imposing ((x5;x5) > 1, with
1—p(BL+B2)x;  In(1—pPras)

1 — pfaas 2 ’

(55 25) =
C(zo;23) <1, and
pwi(zo) + In > pwa(zo) + In

)

2R,
LR

pwi(x3) +1n < pwa(zh) + In

3

guarantees the existence of a unique x} € (z3, 7o) that satisfies (53).2°

Using all the material above, the resource stock is given by: x'l(t) =

(xo + %) e 2rt — %. Evaluating this expression at ¢], one obtains:

A
1 To+
t;:@;(xo,n):ln( g).

Remark. There is no reason for player 1’s switching point to be the same
when t5 < co than when ¢35 = oo. Indeed, when t3 = oo, it can easily be shown

that x7 solves: In (3—?) + pwi(x1) = In(1 — B1px1).

B.2.2 Immediate switching (proof of Proposition 2, second item)

Still assuming that player 2’s switching problem has a solution ¢35 (with z3 that
solves 44), if player 1 finds it optimal to switch instantaneously then, according
to Theorem 2 condition (5) must hold. In our application, it is given by:

Infui! (¢)] + pwi (27) < nfud’ (6)] + e @2V (1 — Bapas)  (54)

if 0 =t} < t5. A the particular date 0 = ¢{ (implying that x} = xg), exploiting
the fact that regime 11 vanishes in regime 21, which implies that yiui!(0) =
yau2(0) = T + pwo, condition (54) reduces to:

2
pw1 () + In (30 < e P02 In(1 — Bypat) (55)
1

B.3 Wrong timing (proof of Proposition 1)
B.3.1 For player 2

The wrong timing situation, for player 2, corresponds to the limit case where
¥ = t35. Condition (3) of Theorem 2 reduces to:

Infus’ (t3)] < In[u3®(t3)] — pwa(a3) if ] = 13 (56)

25Note that ¢(x%;x%) > 1 holds under specific assumptions. Assuming that 82 > 24y, it is
pretty easy to show that 3'z5 € (0, (pB2)~1) such that C(x5;x5) > 1 for all x5 < &5. From
now on, we will assume that this technical condition holds.
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with u3%(t5) = pa3s. Next, we use the relationship (39) which, combined with the
fact that regime 21 actually vanishes into regime 11, i.e. ¢} = t3, implies that:
yaudt(t1) = ydudl(t?). From the resolution of player 1’s switching problem in

this hypothetical case, we first obtain viuil(t;) = i(lﬁ?sz;) C(x;l;x;)' Thus,
(56) simplifies to:
1 (22) + palit) < In(1 = Gapat) + (0o 1) (57)
2

Moreover, player 1’s second switching condition is pw;(x}) + In (j{—lf) =1In(1 -
1
pB2xy) + In[(xF; x7)], which implies that (57) can be rewritten as:

m<%>+mwuﬂ<pmmg+m<ﬁ>. (58)

’72 71

B.3.2 For player 1

Assume now that player 2’s switching problem has an interior solution, (¢3, z3).
Applying the condition of Theorem 2 to our example, the timing is wrong for
player 1 only if:

fui! (#)] + pwr (27) > It (4])] + e 2120 In(1 = Bypaf)  (59)

if t7 = t5. Making use of x7 = 23 (and 05 (x3,21) = 0), yiull(ts) = yaudt(ts) =
T + pz3, condition (59) is equivalent to: pwq(z3) + ln( ) > In(1 — Bapa3),

H»—A‘HN)_‘H

which, from (44), can be rewritten as:

pmwg+m<%>zpm@p+m<ﬁ> (60)

71

B.4 Remaining cases

e Immediate and never switching: 0 = ¢t; < t; = co. From Appendix
B.1.2, we know that (48) is a necessary condition for player 2 to be at the
corner ty = oco. In this case, player 1 compares the (marginal) value he would
obtain under the permanent regime 11 with the corresponding value he would
get by switching directly to 21. Given that viu;(0) = pxo for [ = 1,2, the
condition for an immediate switching is: pwi(xo) + In ( ) <0.

e Simultaneous interior switches: 0 < t; =ty = t < co. From (38)
and (39), we have A\] = AJ in any regime s. It is clear that the last switching
condition in (37) cannot be simultaneously satisfied for the two players whenever
wh(x) # wh(x) for all z (recall that w)(z)e Pt = 8%"’73(;”5) fori=1,2).

e Simultaneous instantaneous switches: t; = to = 0: In this case, it
must be true that pw;(zg) + In ( ) <0 fori=1,2.

e Never switching for both players: t; = t; = co. In the same vein,
here condition (48) must hold for the two players.
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