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Abstract 
 
Feed-in tariffs under the Renewable Energy Sources Act, the so-called Erneuerbare-Energien-
Gesetz (EEG), have triggered a massive expansion of electricity from renewable energy 
sources in Germany over the last decade. The increase in non-competitive renewable power 
generation though went hand in hand with a substantial rise in electricity prices with 
consumers paying for the renewable energy subsidies. The high cost burden has provoked an 
intense public debate on the benefits of renewable energy promotion. In this paper, we assess 
one popular justification for feed-in tariffs, i.e., induced innovation as a positive spillover 
externality. Based on regressions with a time-technology fixed effect negative binomial 
model, we find that innovation impacts of feed-in tariffs under the EEG are insignificant. 

JEL-Code: C230, H230, O380. 
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1. Introduction 

Subsidies for electricity production from renewable energy sources have been on the agenda 

of German energy policies since the early 1990s. A central justification for renewable energy 

promotion policy is climate protection, i.e., the reduction of anthropogenic greenhouse gas 

emissions emerging to a large extent from the combustion of fossil fuels. Germany aims at 

curbing greenhouse gas emissions compared to 1990 levels by 40% by the year 2020, and by 

80% to 90% by 2050. A major contribution to emission reduction should thereby stem from 

the “greening” of the power sector with a target share of renewable electricity production in 

total electricity consumption of 35% by 2020 and 80% by 2050. 

The primary policy instrument for pushing power generation from renewable energy sources 

in Germany are feed-in tariffs which guarantee purchases of green power at fixed prices over 

longer periods. Feed-in tariffs are differentiated by technology to outweigh technology-

specific cost disadvantages compared to conventional power generation based on fossil or 

nuclear fuels. Between 1991 and 1999, feed-in tariffs were prescribed through the Electricity 

Feed-in Law, the so-called Stromeinspeisungsgesetz (SEG). The SEG obligated grid operators 

to purchase green power at a minimum price calculated as a share of the average revenue for 

electricity in past years. In 2000, the SEG was replaced by the Renewable Energy Sources 

Act, the so-called Erneuerbare-Energien-Gesetz (EEG). Compared to the preceding SEG, the 

EEG increased feed-in-tariffs in particular for photovoltaic and included additional 

technologies such as geothermal energy into the promotion scheme. The EEG guarantees 

investors above-market fees for renewable energy for 20 years from the point of installation. 

An EEG surcharge – equal to the difference between feed-in tariffs paid by utilities for 

renewable energy and the revenue from energy fed into the grid – is added to the bills of 

electricity consumers. 

The subsidies granted under the SEG and EEG triggered a massive growth in renewable 

electricity production. The share of renewables increased from 3.1% in 1990 to 6.8% in 2000 

and to 22.9% in 2012. Within the various renewable technologies, wind power currently 

commands the highest share (33.8%) followed by biomass (30%), photovoltaic (20.6%) and 

hydropower (15.6%) (BMU 2013).  

Over the last years, the German feed-in tariff programs came increasingly under fire for being 

extremely costly and ineffective as an instrument for climate protection (Frondel et al. 2010). 

Between 2000 and 2013 the effective subsidies under the EEG increased from less than a 

billion euro to roughly 20 billion euro in 2013. As a consequence, the EEG surcharge on 
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households’ electric bills has reached 5.277 eurocent/kWh in 2013 with a further announced 

increase to 6.24 eurocent/kWh in 2014. The EEG surcharge thus accounts roughly for one 

fourth of the national average household electricity price. 

The EEG has been particularly criticized due to its ineffectiveness with respect to greenhouse 

gas emission abatement. As a matter of fact, greenhouse gas emissions for energy-intensive 

industries (including the power sector) in the EU are capped through an emissions trading 

system. Subsidies to renewable power production will simply reallocate emissions across 

these energy-intensive industries while the overall cost of the emission cap will rise due to 

excessive abatement from expansion of renewable energies and too little abatement from 

other mitigation opportunities such as fuel switching (Böhringer et al. 2009, 2014). 

Protagonists of renewable energy promotion therefore strive after additional reasons to justify 

green subsidies. One popular argument refers to external economies of scale due to 

technology spillovers. Incomplete appropriation of knowledge spillovers to competitors may 

result in substantial underinvestment in technological innovation by firms relative to the 

social optimum (Mitchell et al. 2011). Expansion of renewable power capacity and production 

could generate spillovers that are external to the individual firm and thus might justify 

subsidies to correct for market failures. In this vein, the EEG with its long-term take-and-pay 

provisions is hoped to encourage research and development (R&D) and to spur technological 

innovation. 

We scrutinize the innovation argument for renewable energy promotion. Our analysis 

investigates the impact of feed-in-tariffs on technological innovation measured by patent 

counts in renewables. To the best of our knowledge, this paper is the first to empirically 

establish the nexus between feed-in tariffs and innovation in renewables under the EEG policy 

framework in Germany.  

Our results based on regressions with a time-technology fixed effect negative binomial model 

cast doubts on the innovation hypothesis of the EEG. Innovation impacts of feed-in tariffs 

under the EEG are insignificant in the case of photovoltaic, wind and geothermal while the 

coefficients show even significant negative innovation impacts in the case of biomass and 

hydro technologies.  

The innovation impacts of renewable promotion policies have been investigated in various 

empirical studies. Johnstone et al. (2010) examine the effects of environmental policies on 

technological innovations in renewable energy using a panel data set across 25 countries and 
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across several sources of renewable energy.1 They provide evidence that the effectiveness of 

alternative policy measures depends on the specific energy source.2 Furthermore, they 

conclude that broader market-based regulation such as tradable green certificates are more 

likely to induce innovation in renewable technologies which are close to competitive while 

specific feed-in tariffs are needed to induce innovation in more costly energy technologies 

such as solar power. They also find that renewable-specific public R&D spending is a 

significant determinant of innovation in renewable energy overall, with its effects most 

noticeable for wind, solar and geothermal technologies. 

The cross-country study by Walz et al. (2011) focuses on wind power only, but accounts for 

international spillovers via trade. The study includes additional explanatory variables beyond 

public R&D spending to capture the implications of green policy legitimacy and stability. The 

results indicate that an overall favorable policy environment encourages patenting in wind 

power. Furthermore, there are significant trade effects – proxied by the volume of exports in 

wind power – on innovation. Peters et al. (2012) for photovoltaic as well as Dechezlepretre 

and Glachant (2013) for wind power show that domestic and foreign demand-pull policies 

(e.g. production tax credits) in OECD countries trigger innovation within national borders and 

also create country-level innovation spillovers.3 Both cross-country studies by Walz et al. 

(2011) and Peters et al. (2012) find that public R&D expenditures on specific renewable 

technologies have significant positive impact on innovation in renewable energy. As to 

Germany, Wangler (2012) identifies a positive correlation between renewable energy 

promotion and innovation at the aggregate technology level.  

However, all the above studies except Wangler (2012) focus on cross-country analysis 

without considering the innovative effects of specific renewable policies at the individual 

country level. Additionally, most of the empirical studies so far bundle all demand pull 

policies together and thus fall short of differentiating the specific innovative effects of the 

different demand pull policies.   

The remainder of our paper is organized as follows. In section 2, we lay out data sources and 

describe the econometric model settings underlying our econometric estimations. In section 3, 

we discuss results. In section 4, we draw policy conclusions.  

1 These include wind, solar, ocean, geothermal, biomass, and waste-to-energy. 
2 Price-based instruments such as tax measures and investment subsidies are found to be most effective in 
encouraging innovation in solar, biomass, and waste-to-energy. Quantity-based policy instruments such as 
standards or tradable certificates turn out to be most effective in spurring innovation in wind power. 
3 The two studies differ with regard to the marginal effect of domestic and foreign demand (policies) on patented 
innovation. Dechezlepretre and Glachant (2013) identify factors driving the international diffusion of inventions. 
They are able to show that local demand for wind power exerts a positive influence on technology inflows. 
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2. Empirical framework: data and model specifications 

Our empirical analysis is conducted by constructing two sets of longitudinal panels from 

1990-2009 and from 2000-2009. The first dataset integrates both SEG and EEG regulatory 

policies whereas the second dataset focuses on the EEG regulation only. We can distinguish 

five different renewable technologies: photovoltaic, wind, geothermal, biomass and hydro. 

Appendices 3 and 4 show the descriptive statistics and the correlation matrix of all variables 

used in the analysis.  

2.1. Measuring innovation activity 

Patent-based indicators are in wide-spread use for assessing the rate of technical change, 

measuring the competitive positions of firms, and evaluating scientific progress and 

knowledge spillovers (Danguy et al. 2010). One concern in using patent counts as an indicator 

for innovation output is that patents differ significantly in quality (value) and the propensity to 

patent also varies across sectors and countries. On the other hand, there are very few examples 

of economically significant inventions which have not been patented (Dernis and Guellec, 

2002; Dernis and Kahn, 2004) and patent data therefore is perceived as an appropriate 

indicator for innovation output or knowledge production (Schmookler, 1966; Griliches, 1990; 

Wakasugi and Koyata, 1997).  

We use patent counts to proxy innovation in renewable energy technologies. The data is 

compiled from the PATSTAT database (EPO 2013) and consists of patent applications with 

Germany as the priority country. Following Johnstone et al. (2010), Wu and Mathews (2012), 

and Wangler (2012) we identify renewable patent counts based on the International Patent 

Classification (IPC) code (see Appendix 1). We aggregate the patent counts into five 

renewable technology classes and use the priority date to capture the occurrence of innovation 

since it is closest to the actual date of invention. 

Figure 1 depicts renewable patent applications by type of technology from 1990 to 2009. For 

photovoltaic and wind, we observe a relatively smooth increase in patenting activities 

between 1990 and 2004; from 2005 onwards, there is a sharp increase in patenting for 

photovoltaic and wind. On the other hand, patent applications for biomass, geothermal and 

hydro remain relatively stable throughout the observation period. 
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Figure 1: Patent count for renewable technologies
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2.2. Determinants of innovation 

Our central explanatory policy variable for innovation in renewable technologies are feed-in 

tariffs. In the regression analysis for the EEG with the dataset ranging from 2000 to 2009 we 

employ the technology-specific feed-in tariffs in Euro Cent/kWh as the explanatory policy 

variable directly. For the integral analysis of the SEG and EEG regimes captured by the 

dataset ranging from 1990 to 2009 we use installed capacity as a proxy for the two different 

policy environments.4 Appendix 2 lists the feed-in tariffs under the EEG while technology-

specific installed capacities (measured in MW) are displayed in Figure 2. Data on EEG feed-

in tariffs are based on the official annual statements of accounts by the German grid operators 

(EEG, 2012) while installed capacity data stems from the German Federal Ministry for 

Environment, Nature Conservation and Nuclear Safety (BMU 2013). Figure 2 indicates that 

hydro is the most important renewable energy source until 1999 when wind takes prominence 

over all other renewable energy sources. Wind installed capacity increases drastically under 

the EEG from 2000 onwards, while the strong increase of biomass and photovoltaic does not 

come in before 2003. Hydro capacity remains fairly constant throughout the SEG and EEG 

periods. 

4 The EEG adopted much higher feed-in tariffs than the SEG. Contrary to the SEG where annual tariff rates are 
set to a fraction of the consumers’ electricity price paid in the preceding last-but-one year, the EEG fixes tariff 
rates exogenously over a 20 year horizon.  
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Figure 2: Installed capacity of renewable technologies
Year
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As laid out in the cross-country studies by Walz et al. (2011) as well as Peters et al. (2012) 

public R&D expenditures might be a significant driver of innovation in renewable 

technologies. We thus include public R&D as a control variable in our estimations. For the 

parameterization of public R&D we use government expenditures on energy R&D 

disaggregated by type of renewable technology (IEA, 2011, 2013).5 The technology-specific 

public R&D funding as shown in Figure 3 is measured in million EURO (2012 prices). Figure 

3 shows that reported public R&D funding for hydro is almost negligible throughout our 

observation period while R&D funding for wind, geothermal and biomass is relatively low 

compared to photovoltaic with the peak in photovoltaic R&D being in the early 1990s.  

5 The IEA database comprises all programs that focus on sourcing energy, transporting energy, using energy and 
enhancing energy efficiency. 
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Figure 3: Public R&D expenditure on renewable technologies
Year
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We also include overall industrial R&D expenditures in Germany (OECD, 2013) measured in 

million EURO (2012 prices) as a control variable. Additionally, electricity market variables 

may as well determine the extent of innovation in renewables. For example, increases in 

electricity prices should increase incentives for innovation in renewable power technologies. 

Likewise, a growing market for electricity which is mirrored by trends in electricity net 

consumption should also stimulate incentives to innovate in renewables. The data for the 

consumer price for electricity in Germany (indexed to the base year 2010), and total 

electricity net consumption (in Billion kWh) are obtained from the German Federal Statistical 

Office (GSO 2013) and the EIA´s International Energy Statistics Database (EIA 2013), 

respectively. In order to capture institutional changes in patenting propensity we also 

incorporate total patent counts from PATSTAT for all patent applications in Germany as a 

control variable.  

2.3. Model specification 

Patent count data is often characterized with zero and low positive integer values because 

most firms do not apply for patents regularly. This implies that conventional ordinary least 

square estimation which assumes that the dependent variable is continuous, normally 

distributed, and linearly related to the independent variables yields biased and inconsistent 

estimates. Due to the count data characteristics of our dependent variable (patent), we use 

count models (Maddala 1983; Hausman et al. 1984; Cameron and Trivedi 1998). A formal 

test of the null hypothesis of equidispersion indicates the presence of significant 

overdispersion. We therefore adopt a negative binomial model. Beside the overdispersion 
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property of our data, the negative binomial model is also generally found to be more efficient 

(Lawless 1987; Blundell et al. 1995). 

To test the relationship between patents in specific renewable technologies and feed-in tariffs 

(thereafter referred as FIT), we specify our basic negative binomial model as follows:6 

 , 1 , ,exp ( ) ( )i t i t j t i t i tPatent FIT Zβ β α λ ξ = + + + +   (1) 

where i = 1,..,5 indexes the five different renewable technologies (photovoltaic, wind, 

biomass, geothermal and hydro) and t = 1990,..,2009 indexes the observation year. Zt 

represents all other control variables, in our case: public R&D funding, total electricity net 

consumption, the consumer price index of electricity, total industrial private R&D 

expenditures and total patent counts. We include a time lag (t-1) to incorporate the lag 

between variables such as public R&D and innovative output while ( )iα  and ( )iλ  captures 

both technology and time fixed effects, respectively. While the inclusion of technology fixed 

effect control time-invariant technology-specific unobservable fixed effects, the time fixed 

effect control aggregate time trends in patenting dynamics and hence, captures unexpected 

variation or technological shock which may affect the innovation process. All other residual 

variation is captured in the error term ,( ).i tξ  

To segregate the aggregate FIT variable into technology-specific variables we define the 

model variant as follows:  

 , ,exp ( ) ( )i tech
i t i t j t i t i tPatent D FIT Zβ β α λ ξ = + + + +   (2) 

where ,
tech

i tFIT  represent technology–specific variables. This model specification allows us to 

determine the innovation effects of FIT by each renewable technology.  

Using our longer dataset (i.e., the data ranging from 1990 to 2009), we set up a further model 

for testing the effect of the different subsidy schemes under the SEG and the EEG. To this 

end, we generate period dummies which reflect the two policy environments from 1990- 1999 

(SEG) on the one hand and from 2000-2009 (EEG) on the other hand. The period dummies 

are interacted with installed capacity (CAP) which serves as our policy variable for the longer 

dataset: 

6 Note that we replace FIT data with data on installed capacity for the case of the longer dataset comprising both 
periods for SEG and EEG. 
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 , 1 , 2 , ,exp ( ) ( ) ( )SEG EEG
i t i t i t j t i t i tPatent D CAP D CAP Zβ β β α γ ξ = + + + + +    (3) 

Finally, we define a model variant applied to the longer dataset where we interact also the 

R&D variable with the period dummies in order to test the innovation effects of R&D under 

the SEG and EEG regimes.   

 

3. Empirical results  

Table 1 reports the estimated coefficients of the effects of FIT exclusively under the EEG 

framework (2000-2009). Model 1 and 2 shows the average innovation effects of FIT while 

model 3 and 4 lists the innovation impacts of technology-specific FIT. In Model 2 and 4, we 

include overall industrial private R&D expenditure as part of the control variables. 

Table 1: Negative binomial estimates of the innovation effects of EEG-FIT  
 Model 1 Model 2 Model 3 Model 4 
Feed-in tariff (FIT) 0.027934 0.028418   
 [0.017870] [0.018098]   
PhotoFIT   0.024021 0.024176 
   [0.017353] [0.017782] 
WindFIT   -0.063888 -0.064124 
   [0.043412] [0.043810] 
BioFIT   -0.369266 -0.369246 
   [0.075785]** [0.075818]** 
GeoFIT   -0.041552 -0.041805 
   [0.042185] [0.042644] 
HydroFIT   -0.675430 -0.675438 
   [0.123601]** [0.123670]** 
Public R&Dt-1 0.017683 0.015555 -0.012078 -0.012103 
 [0.016763] [0.017271] [0.008807] [0.008828] 
Private R&Dt-1  0.000017  0.000001 
  [0.000035]  [0.000020] 
∆Elec. Consumption 0.040143 0.040585 0.024338 0.024293 
 [0.015362]** [0.015399]** [0.006941]** [0.007027]** 
∆Total patent count -0.000173 -0.000225 -0.000061 -0.000063 
 [0.000126] [0.000168] [0.000057] [0.000087] 
CPI of electricityt-1 0.182145 0.185993 0.118213 0.118296 
 [0.049237]** [0.050163]** [0.020847]** [0.020956]** 
Log likelihood -142.25 -142.14 -121.84 -121.84 
Wald chi2 103.13 105.02 614.63 614.46 
Nr. of observations 45 45 45 45 
Nr. of groups 5 5 5 5 

Note: Robust standard errors in parentheses; + p<0.1; * p<0.05; ** p<0.01 

The estimated coefficients at the aggregate technology-level for FIT in Model 1 and 2 are 

positive but statistically insignificant. Thus, our regression results suggest that the feed-in 
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tariffs under the EEG have no significant positive impact on innovative activities in 

renewables. This result is at first glance surprising given that the FIT ensure above-market 

payments for a 20-year time horizon securing a market for possible innovation efforts. The 

results also suggest that domestic public R&D expenditure on renewable technologies does 

not trigger patenting activities. Given the high level of uncertainty, appropriability problems 

and financing difficulties that characterizes private R&D investments in high cost 

technologies, we would have expected public R&D funding in renewables to significantly 

influence renewable innovation. Perhaps the innovative role of public R&D funding is more 

evident at the early stages of technological development but not for the case of technologies 

that have seen significant advances as observed under the EEG. Our findings on the aggregate 

innovation impacts of the FIT and public R&D expenditure do not confirm the results put 

forward in the more recent empirical literature on renewable technologies (Wangler 2012; 

Peters et al. 2012). Our estimates presented for models 3 and 4 highlight the importance of 

investigating innovation impacts for specific technologies rather than the aggregate 

technology level. We find insignificant innovation effects in the case of photovoltaic, wind 

and geothermal while the coefficients show even a significant negative effect in the case of 

biomass and hydro.7 We therefore warrant caution against a naïve interpretation of the 

estimates of models 1 and 2 in Table 1 that are based on the average of all the five 

technologies.  

One economic explanation for the missing innovation impacts of FIT is the seemingly 

positive effects of EEG-FIT on incremental innovation but limited incentives for developing 

more radical technological innovations. The EEG in principle should encourage firms to 

increase production capacities which result in potential efficiency improvements through 

learning-by-doing and scale economies. The incremental innovative effect through learning-

by-doing and scale economies is however not captured in patent statistics which more 

generally reflect radical innovation. Moreover, the remuneration guaranteed by the EEG is 

calculated based on the average cost of the respective technology. Thus, for a potential 

innovator, the revenue from an (ex-post) cost-effective new technology is the same as the 

revenue generated through pre-existing technologies. As a consequence, it does not pay to 

embark on risk-involving investments in technological innovations. In effect, the EEG which 

primarily acts as a production subsidy for electricity provides greater incentive for 

exploitative investment rather than explorative investment by firms. The policy-induced 

7 Note that we obtain similar results by using installed capacity as the policy variable instead of FIT (see 
Appendix 5). 
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market growth with its accompanying high profit margins creates incentives for firms with 

relatively mature technologies to shift resources from intensive, risky explorative research 

activities towards exploitative activities. The increase in exploitative behavior of firms also 

raises market entry barriers for less mature technologies, while at the same time facilitating 

lock-in effects in favor of established renewable energy technologies (Peters et al., 2012). The 

overall outcome is the absence of radical innovative effects of the EEG-FIT.  

Market signals such as electricity prices and changes in electricity consumption appear to be 

important drivers of technological change in renewable technologies. We find statistically 

significant coefficients for electricity prices at the 1% level with a larger positive effect in all 

four regression models listed in Table 1. Expectations on future demand growth which is 

captured by changes in electricity consumption is also significant at the 1% level in all models 

(but with a relatively smaller positive effect). Industrial R&D expenditure in Model 2 and 4 is 

however, insignificant. The estimated coefficient of all patents with Germany as priority 

country is also insignificant across all four models suggesting that the changes or variation in 

patenting activities in renewables cannot be attributed to the general propensity to patent in 

Germany. 

In Table 28, we report results for the regression models that use the longer dataset thereby 

covering both the SEG and the EEG regimes. We test the specific effects of the feed-in tariffs 

under the SEG and EEG as specified in Equation (3). As mentioned before, there are 

substantial differences in the feed-in regulations between SEG and EEG. Under the SEG, the 

feed-in tariff rates in a particular year are specified as a fixed share of the average electricity 

price that final consumers paid two years ago. The EEG on the other hand grants fixed tariffs 

with some annual degression over 20 years. The tariff rates under the EEG are much more 

differentiated by specific technologies with a particularly strong increase of the rate for 

photovoltaic. Both subsidy schemes are geared towards increasing the technology base of 

renewable technologies; hence, we use installed capacities to proxy the feed-in tariff 

regulations across the different systems.  

The estimated coefficients in Models 5A and 5B which uses the longer dataset without 

controlling for differential subsidy regimes contradicts the results obtained in Models 1 and 2 

for the shorter dataset with EEG only (see Table 1). Model 6A and 6B differentiates installed 

capacities by regulatory regime and Model 7A-8B also differentiate installed capacities by 

technology type with public R&D differentiated into the regulatory regimes in Models 8A and 

8 Models 5B, 6B, 7B and 8B includes industry-wide private R&D expenditures as a control variable 
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8B. Interestingly, the estimated coefficient of capacity installation under the SEG in both 

Model 6A and Model 6B are statistically insignificant while it becomes significant in both 

models under the EEG. Thus, at the aggregate level, the changes in feed-in tariffs from SEG 

to EEG seems to have important implications for patenting activities which we do not observe 

in Table 1. However, just as the results for Model 3 and Model 4 in Table 1, our estimates 

(Model 7A-8B) reveal heterogeneity of effects across specific technologies. We find 

insignificant innovation impacts in the case of photovoltaic and geothermal while the 

coefficients show significant negative effect in the case of biomass and hydro. For wind, we 

observe significant positive innovation effects of feed-in tariffs. 

Thus, the significant aggregate impact of the feed-in tariffs reported in Models 5A and 5B 

may largely be driven by the relatively stable results for wind. As to public R&D funding, we 

find significant positive coefficients which may be mainly driven by the significant effect 

under the SEG regime (Model 8B) where public R&D funding fostered technological 

development at an early stage.  
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Table 2: Estimates with SEG/EEG and technology-specific dummies (with/without Private R&D) 

 Model 5A Model 5B Model 6A Model 6B Model 7A Model 7B Model 8A Model 8B 
Installed capacity 0.000075 0.000075       
 [0.000022]** [0.000022]**       
Installed capacityseg   -0.000076 -0.000076     
   [0.000121] [0.000121]     
Installed capacityeeg   0.000069 0.000069     
   [0.000023]** [0.000023]**     
PhotoCAP     0.000044 0.000044 -0.000001 0.000041 
     [0.000028] [0.000028] [0.000030] [0.000028] 
WindCAP     0.000049 0.000049 0.000021 0.000043 
     [0.000013]** [0.000013]** [0.000015] [0.000015]** 
BioCAP     -0.000576 -0.000576 -0.000646 -0.000626 
     [0.000096]** [0.000096]** [0.000105]** [0.000117]** 
GeoCAP     0.112365 0.112365 0.009773 0.084861 
     [0.050202]* [0.050202]* [0.056564] [0.059096] 
HydroCAP     -0.000982 -0.000982 0.001573 -0.000981 
     [0.000146]** [0.000146]** [0.000837]+ [0.000146]** 
Public R&Dt-1 0.028429 0.028429 0.027375 0.027375 0.016561 0.016561   
 [0.009194]** [0.009194]** [0.009281]** [0.009281]** [0.006123]** [0.006123]**   
Public R&Dseg

t-1       0.008060 0.018181 
       [0.006083] [0.006529]** 
Public R&Deeg

t-1       0.000079 0.011705 
       [0.007772] [0.008338] 
Private R&Dt-1  0.001308  0.001293  -0.000029  -0.000707 
  [0.003805]  [0.003857]  [0.001898]  [0.002060] 
∆Elec. Consumption 0.055982 -0.007025 0.055046 -0.007255 0.045946 0.047322 0.035853 0.076050 
 [0.019585]** [0.180097] [0.019804]** [0.182639] [0.009902]** [0.088308] [0.010466]** [0.094665] 
∆Total patent count -0.000166 0.000557 -0.000162 0.000553 -0.000146 -0.000162 -0.000126 -0.000530 
 [0.000135] [0.002139] [0.000137] [0.002169] [0.000062]* [0.001060] [0.000066]+ [0.001146] 
CPI of electricityt-1 0.147175 -0.667702 0.148482 -0.657250 0.135231 0.153020 0.147156 0.572095 
 [0.055893]** [2.355227] [0.056751]** [2.387715] [0.026976]** [1.174068] [0.029996]** [1.273846] 
Log likelihood -303.14 -303.14 -302.26 -302.26 -253.44 -253.44 -267.99 -253.05 
Wald chi2 173.81 173.81 167.80 167.80 991.75 991.75 914.69 972.01 
Nr. of observations 95 95 95 95 95 95 95 95 
Nr. of groups 5 5 5 5 5 5 5 5 

Note: Robust standard errors in parentheses; + p<0.1; * p<0.05; ** p<0.01 
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4. Conclusions 

Over the last decades policies to promote renewable energy have become increasingly popular 

in OECD countries. Policy makers embrace support schemes for renewable energy as a 

panacea to address the problem of climate change and spur innovation. A prime example is 

Germany with its feed-in tariffs to electricity produced from renewable energy sources. The 

feed-in tariffs were established under the Electricity Feed-in Law (Stromeinspeisungsgesetz – 

SEG) in 1991, followed by the Renewable Energy Sources Act (Erneuerbaren Energien 

Gesetz - EEG) since 2000. The main pillars of the feed-in regulation is the grid operator’s 

obligation to renewable energy sources (as opposed to electricity from conventional sources), 

and the payment of fixed tariffs. An unrestricted take-and-pay clause for fixed and high feed-

in tariffs led to a drastic expansion of renewable power production over the last decade. The 

cost of the feed-in tariff system amount to roughly 20 billion Euro in 2013 with the 

reallocation charge to be paid by electricity consumers rising to more than 6 cents/kWh in 

2014, i.e., roughly a fourth of the average household’s consumer price.  

The drastic cost increase of the EEG over the last years has triggered substantial criticism. 

Climate protection as a wide-spread argument for renewable energy promotion has no bite in 

the German case: Greenhouse gas emissions of the power sector together with other energy-

intensive industries are capped through an EU-wide emissions trading system. Explicit 

subsidies to renewable power production in Germany will thus simply reallocate emissions 

across energy-intensive industries in the EU. At the same time, feed-in tariffs increase the 

economy-wide cost of emission abatement thereby constituting an inefficient means of EU 

climate policy.  

Another popular justification for feed-in tariffs are innovation externalities. In this paper we 

have scrutinized the innovation argument based on empirical data of the German feed-in 

regulation over the last two decades. Our regression results do not lend support to the 

proposition that German feed-in tariffs under the EEG spur innovation. In particular, our 

results indicate that photovoltaic which has received very high feed-in tariffs under the EEG 

does not engender innovative output. Given the drastic cost of the German EEG and missing 

empirical evidence on positive innovation impacts we caution against the appraisal of the 

German feed-in tariff system on innovation grounds. 
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Appendix 
Appendix 1: IPC codes for renewable energy technologies* 

Technologies 
Class/sub-
classes 

SOLAR PHOTOVOLTAIC 
 Roof covering aspects of energy collecting devices E04D 13 

Processes or apparatus adapted for the manufacture or treatment of 
semiconductor or solid state devices or of parts thereof 

H01L 21 
 

Semiconductor devices sensitive to infra-red radiation, light, 
electromagnetic radiation of shorter wavelength or corpuscular radiation 
and adapted either for the conversion of the energy of such radiation 
into electrical energy or for the control of electrical energy by such 
radiation 

H01L 31 
 
 
 
 

Generators in which light radiation is directly converted into electrical 
energy 

H02N 6 
 

Single-crystal growth by pulling from a melt, e.g. Czochralski method C30B 15 
Production of homogeneous polycrystalline material with defined 
structure 

C30B 28 
 

Single crystals or homogeneous polycrystalline material with defined 
structure characterized by the material or by their shape  

C30B 29 
 

Coating by vacuum evaporation, by sputtering or by ion implantation of 
the coating forming material 

C23C 14 
 

Chemical coating by decomposition of gaseous compounds, without 
leaving reaction products of surface material in the coating, i.e. 
chemical vapor deposition (CVD) processes 

C23C 16 
 
 

Organic semiconducting electrolytes H01G 9/028 
Solid state devices using organic materials as the active part, or using a 
combination of organic materials with other materials as the active part 

H01L 51 
 

  

WIND  
Wind motors with rotation axis substantially in wind direction F03D 1 
Wind motors with rotation axis substantially at right angle to wind 
direction  

F03D 3 
 

Other wind motors  F03D 5 
Controlling wind motors F03D 7 
Adaptations of wind motors for special use F03D 9 
Details, component parts, or accessories not provided for in, or of 
interest, apart from the other groups of this subclass 

F03D 11 
 

Electric propulsion with power supply from force of nature, e.g. sun, 
wind  

B60L 8 
 

Effecting propulsion by wind motors driving water-engaging propulsive 
elements  

B63H 13 
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BIOMASS 
 Solid fuels based on materials of non-mineral origin – animal or 

vegetable  
C10L 5 
 

Engines operating on gaseous fuels from solid fuel – e.g. wood  F02B 43 
Liquid carbonaceous fuels – organic compounds  C10L 1 
Anion exchange – use of materials, cellulose or wood B01J4 1 
  

GEOTHERMAL  
Other production or use of heat, not derived from combustion – using 
natural or geothermal heat 

F24J 3 
 

Devices for producing mechanical power from geothermal energy  F03G 4 
Electric motors using thermal effects  H02N 10 
  

HYDRO  
Engines of impulse type, i.e. turbines with jets of high-velocity liquid 
impinging on bladed or like rotors, e.g. Pelton wheels 

F03B 1 
 

Machines or engines of reaction type; Parts or details peculiar thereto  F03B 3 
Water wheels  F03B 7 
Adaptations of machines or engines for special use; Combinations of 
machines or engines with driving or driven apparatus 

F03B 13 
 

Controlling  F03B 15 
Adaptations of machines or engines for special use; combinations of 
machines wave or tide energy 

F03B 13 
 

* Based on Johnstone et al. (2010), Wu and Mathews (2012) and Wangler (2012) 

 

 

Appendix 2: Average technology-specific EEG-FIT 

Year Photovoltaic Wind Biomass Geothermal Hydro 
2000 50.62 9.1 10.23 8.95 7.67 
2001 50.62 9.1 10.23 8.95 7.67 
2002 48.09 9 10.13 8.95 7.67 
2003 45.69 8.9 10.03 8.95 7.67 
2004 50.58 8.9 14 8.95 7.67 
2005 54.53 8.815 13.77 15 9.67 
2006 51.8 8.73 13.54 15 9.67 
2007 49.21 8.645 13.32 15 9.67 
2008 46.75 8.475 13.1 15 9.67 
2009 43.01 12.1 14.7 16 12.67 

Sources: BDEW (2001 through 2009), EEG (2000, 2004, 2009) 
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Appendix 3: Descriptive statistics of variables 

Variable Mean Std. deviation Min Max Unit  

Renewable patents 29.25 49.23 0 261 Counts 

Total patents  9037.70 4437.89 2246 14254 Counts 

Installed capacity 3248.58 5332.39 0 25703 MW 

Public R&D  23.79 29.06 0 120.85 Million US $  

Elect. Consumption 512.04 26.21 475.06 550.90 Billion KWh 

CPI of electricity 69.76 10.65 59.20 96.90 2010 indexed to 100 

Feed-in tariff  18.34 15.76 7.67 54.53 EUR cent/KWh 

 
 

Appendix 4: Correlation matrix among variables 

  
Renewable 

patents 
Total 

patents 
Installed 
capacity 

Public 
R&D 

Elect. 
Consumption 

CPI of 
electricity 

Feed-in 
tariff 

Renewable patents 1.0000 

      Total patents  0.3750 1.0000 

     Installed capacity 0.6018 0.3943 1.0000 

    Public R&D  0.4274 -0.0620 -0.0458 1.0000 

   Elect. Consumption 0.3541 0.8555 0.4038 -0.0418 1.0000 

  CPI of electricity 0.5482 0.6707 0.4845 0.0435 0.6767 1.0000 

 Feed-in tariff  0.4854 -0.0089 -0.2430 0.8997 0.0392 0.0490 1.0000 
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Appendix 5: Negative binomial estimates of the innovative effect of EEG using installed 
capacity to proxy FIT  

 CAP1 CAP2 Tech. CAP Tech. 
CAP/R&D 

Installed capacity 0.000019 0.000025   
 [0.000029] [0.000030]   
PhotoCAP   0.000028 0.000034 
   [0.000027] [0.000027] 
WindCAP   0.000016 0.000014 
   [0.000022] [0.000026] 
BioCAP   -0.000344 -0.000338 
   [0.000079]** [0.000099]** 
GeoCAP   0.010094 0.012821 
   [0.047396] [0.054121] 
HydroCAP   -0.001705 -0.001661 
   [0.000507]** [0.000708]* 
Public R&Dt-1 0.017108 0.013302 -0.005761 -0.012103 
 [0.015602] [0.016391] [0.007424] [0.008828] 
Private R&Dt-1  0.000023 -0.000004 -0.000004 
  [0.000036] [0.000019] [0.000020] 
∆Elec. Consumption 0.041642 0.042450 0.030260 0.036986 
 [0.015456]** [0.015565]** [0.006202]** [0.010936]** 
∆Total patent count -0.000197 -0.000254 -0.000067 0.000178 
 [0.000128] [0.000159] [0.000081] [0.000213] 
CPI of electricityt-1 0.173271 0.176241 0.113417 0.110306 
 [0.051139]** [0.052187]** [0.020452]** [0.019649]** 
Photo R&Dt-1    -0.003252 
    [0.009706] 
Wind R&Dt-1    -0.006885 
    [0.008045] 
Bio R&Dt-1    -0.004683 
    [0.010608] 
Geo R&Dt-1    -0.005001 
    [0.013098] 
Hydro R&Dt-1    -0.051219 
    [0.033624] 
Log likelihood -143.14 -142.93 -115.45 -114.31 
Wald chi2 112.65 112.98 667.13 689.76 
Nr. of observations 45 45 45 45 
Nr. of groups 5 5 5 5 

Note: Robust standard errors in parentheses; + p<0.1; * p<0.05; ** p<0.01 
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