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Abstract 

 
The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that 
subsidizes the users of climate-friendly technologies and encourages technology transfer. The 
CDM has provided financial support for a large share of Chinese wind projects since 2002. 
Using pooled cross-sectional data of 486 registered CDM wind projects in China from 2002 
to 2009, we examine the determinants of technological change in wind power from a learning 
perspective. We estimate the effects of different channels of learning—learning through R&D 
in wind turbine manufacturing, learning from previous experience of installation, and learning 
through the network interaction between project developer and turbine manufacturer—on 
technological change, measured as reductions in projected costs or as increased capacity 
factor across CDM wind projects. While we find that a manufacturer’s R&D and previous 
installation experience matter, interactions between wind turbine manufacturers and wind 
project developer lead to the largest cost reductions. Whereas existing literature suggests that 
wind power firms can learn from the experience of other wind farm developers, our results 
indicate that wind power firms mainly learn from their own experience and that knowledge 
spillovers mostly occur within certain partnerships between wind project developer and 
foreign turbine manufacturers in China’s wind power industry. 
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1. Introduction 

As the world’s largest energy consumer and carbon dioxide (CO2) emitter, China’s energy 

consumption and carbon emissions are a focus of global climate change and energy security talks.  

Because China has abundant wind resources with great development potential, increasing the share 

of wind in China’s energy mix is a promising solution (Wang, 2010).  China’s wind industry has 

developed rapidly during the past ten years.  After experiencing annual growth rates of wind 

installed capacity over 100% from 2003 to 2009, China became the worlds’ largest wind power 

country in terms of cumulative installed capacity in 2010 (GWEC, 2012).  As a result of this 

massive wind capacity expansion, China has also developed a domestic wind power equipment 

supply chain. China’s three largest domestic wind turbine manufacturers were ranked among the 

top ten wind turbine manufacturers in the world by 2010 (Wang et al., 2012). This immense 

progress is driven by a variety of policy instruments that the Chinese government has implemented 

to incentivize investment in wind energy, including domestic policies and international support.  

Perhaps the most notable international support program for the development of renewable 

energy in China is the Clean Development Mechanism (CDM).  The CDM is an international 

carbon trade mechanism under the Kyoto Protocol that assists developed countries to fulfill their 

committed emission reductions through financing projects that can reduce carbon emissions in 

developing countries. A secondary goal of the CDM is to help developing countries achieve 

sustainable development. The transfer of climate-friendly technologies from developed countries 

to recipient countries can help with the goal of achieving sustainable development, particularly if 

the technologies transferred lead to knowledge spillovers that reduce the future costs of emissions 

reductions within the country (Popp, 2011).  In this paper, we use data on CDM wind projects in 

China to assess the impact of technology transfer and learning on renewable energy costs in the 
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country.  We ask whether expected project costs fall after other similar projects in the country.  

Moreover, we consider whether costs fall throughout the country or just locally.  More localized 

effects suggest spillovers, whereas project costs falling throughout the country (and perhaps across 

the world as well) suggest other types of technological changes at work, such as the development 

of more efficient turbines by leading global manufacturers.  In addition, we also test the effects of 

different learning channels, such as R&D in wind turbine manufacturing, previous installation 

experience, and collaboration between turbine manufacturers and project developers, on 

technological change.   

           Our study contributes to both the CDM and technological learning literature. Existing 

studies examining CDM’s efficacy on transfer of renewable energy technologies and the 

subsequent diffusion of these technologies in developing countries are mostly qualitative and 

descriptive.  These papers argue that the CDM has promoted the development of renewable energy 

in developing countries, but the impacts vary across technologies and countries (Lewis, 2010; 

Schneider, 2008; Schneider et al., 2010; Wang, 2010).  While some empirical studies analyze the 

determinants of technology transfer via CDM projects (Seres, 2007& 2009; Dechezlepretre, 

2008& 2009; Hascic & Johhnstone, 2011; Schindm, 2011), empirical evidence on the effectiveness 

of technology transfer and the diffusion of the technologies—the technological progress induced 

by CDM projects—is inadequate. Using CDM wind projects in China as our sample, we attempt 

to fill this intellectual gap by providing empirical evidence on technological progress in China’s 

CDM wind projects, and on the learning channels that have led to this technological progress.  

Our paper adds to the learning literature by incorporating collaboration theories to explain 

the learning process and providing evidence for a learning-by-interacting effect. The detailed data 

in CDM project design documents (PDD) allows us to study the relationship among various actors 
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in the development of China’s wind industry, including project developers and turbine 

manufacturers. Built on the existing literature that tests learning-by-doing and learning-by-

searching effects (Junginger et al., 2005; Taylor et al., 2006; Nemet, 2006 & 2012; Soderholm & 

Klassen, 2007; Soderholm & Sundqvist, 2007; Qiu and Anadon, 2012; Patridge, 2013), we show 

that the collaborations between project developers and turbine manufacturers are important sources 

of learning that takes place in the Chinese wind industry. In addition, our paper provides one of 

the first empirical studies of learning in the Chinese wind industry.  

Our research has policy implications for international climate policy makers and the 

Chinese government. Studying one of the world’s largest wind power producers in which most of 

the wind projects are supported by CDM, our research sheds light on how CDM, as a demand-side 

policy subsidizing the adoption of wind technologies, can be used to facilitate technological 

change in wind power. Although the evidence of knowledge spillovers is not apparent, the 

learning-by-doing effect itself still provides justification for demand-side subsidies to price 

negative externalities and stimulate demand in order to provide opportunities for learning-by-

doing. Moreover, the evidence of learning-by-interacting effect between foreign turbine 

manufacturers and local wind farm developers indicates that the financial support from CDM could 

also result in technological progress in developing countries through increasing the opportunities 

of technology transfer. By focusing on the roles of various actors in the wind industry, our research 

increases the understanding of the learning process in China’s wind industry and helps the Chinese 

government better target policies to facilitate different channels of learning, especially learning 

through the collaboration between wind farm developers and turbine manufacturers. 

We proceed with a review of previous work on policy tools and technological change in 

China’s wind power, including a discussion of the important roles of CDM in the development of 
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China’s wind industry, and the standardized CDM project process. Section 3 provides the 

theoretical framework for learning process in wind projects and presents our hypotheses. Section 

4 discusses the data and empirical models that we use to test the effects of different channels of 

learning. Section 5 and section 6 analyze the empirical results and summarizes our main 

conclusions respectively. 

2. The CDM and the Development of China’s Wind Industry 

2.1 Policy instruments and technological change in China’s wind industry 

There are two market failures in the innovation and adoption of renewable energy 

technologies – the non-priced environmental damages caused by fossil fuel energy and the under-

investment in new technologies due to knowledge spillovers. For the wind industry, wind power 

is currently less cost-competitive than electricity generated from coal and natural gas because the 

negative externalities of fossil fuel power are not included in energy prices. Moreover, private 

firms do not consider the potential social benefits from knowledge spillovers when investing in 

wind technology, leading to underinvestment.   

Due to these market failures, policy tools are often used to induce technological change in 

wind energy. The Chinese government has implemented a bundle of domestic policies to facilitate 

wind power deployment and to promote domestic wind technology advancement, such as the 

national wind concession program, mandating that a share of electricity be generated from 

renewable energy, tax relief for wind farms, a power surcharge for renewables, and R&D subsidies. 

Moreover, the Chinese government has also actively engaged in international collaboration to 

foster international technology transfer and redirect domestic investment in wind technology 

(Zhang et al., 2009; Lewis, 2010).  As shown in Table 1, these policy instruments can be further 

classified as supply-side policies that subsidize the wind technology R&D activities and demand-
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side policies that subsidize the demand for wind technologies. CDM is an international financial 

support that subsidies the users of wind technologies.  

[Table 1] 

Previous studies on the relationship between policy instruments and the technological 

achievement in China’s wind industry are mainly qualitative and descriptive. They systematically 

reviewed policies that support wind industry, and then described the technological change in terms 

of the upgrading of wind turbine size, increased innovation and patenting activities of domestic 

turbine manufacturers, and cost reduction in turbine manufacturing and electricity generation 

(Zhang et al., 2009; Wang, 2010; Ru et al., 2012; Huang et al., 2012; Wang et al., 2012; Lewis, 

2013). Although some scholars studied how the policy support induced the technological progress 

in wind turbine manufacturing industry (Ru et al., 2012; Lewis, 2013), most descriptive and 

qualitative research did not analyze the link between policy instruments and the technological 

change.  

          Empirical research explaining technological change in China’s wind power is rare. Using 

wind projects from China’s national concession programs1 from 2003 to 2007, Qiu and Anadon 

(2012) applied the learning curve model to examine the factors influencing the price of wind power 

measured by the bidding price of each bidder participating in the national concession programs. 

They found that the joint-learning from technology adoption and wind projects installation 

experience, localization of wind turbine manufacturing, and wind farm economies of scale 

significantly affect the price of wind power. However, their sample only included 15 wind projects, 

                                                            
1Prior to 2009, any wind project in China with capacities over 50 MW would go through a national concession 
bidding process managed by the central government to select its developer. Potential developers were invited to join 
this public bidding process. The bidder who offered the “best price” under the terms provided by the bidding method 
would win the right to build the wind farm and sell the electricity at its bidding price to the grid. From 2003 to 2008, 
five rounds of national concession bidding programs produced 18 wind projects (Zhang et al., 2009; Wang et al., 
2012; Qiu et al., 2012). 
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which accounts for less than 50% of the total installed capacity nationwide during the observing 

period. In addition to its small sample, the bidding price they use may underestimate the production 

cost of wind power. Large players, such as big state-owned developers that are not driven by a 

profit-maximization objective, could commit to below cost prices in order to win the contract first 

(Yang et al, 2010; Wang, 2010). The estimated internal rate of return (IRR) in those proposals 

were often below the industrial benchmark (Li et al., 2008). 2   

In this paper, we use data from CDM wind projects in China to explain technological 

change in China’s wind power. This data provides a more representative sample and less distorted 

production cost of wind power, as described in more detail below. Moreover, our empirical 

analysis on CDM wind projects sheds light on how international support, such as CDM, leads to 

technological progress in wind power, which is often neglected in previous qualitative and 

descriptive research.  

2.2 CDM as a demand-side policy for wind technology 

As a demand-side policy that subsidizes the users of wind technology, CDM has, to a great 

extent, facilitated the adoption of wind technology in China since 2002. As shown in Figure 1, the 

annual incremental installed capacity from wind projects registered as CDM projects contributes 

to a large share of the annual incremental installed capacity in China. From 2003 to 2009, the total 

installed capacity from CDM wind projects account for 74.7% of the total installed capacity in 

China.  To incentivize investment in wind, the Chinese government encouraged and even acted as 

a broker to engage wind farm developers in CDM project application. During the project design 

stage, local government agencies in charge of approving wind farm development proposals would 

recommend CDM to some proposed projects with IRR below the industrial benchmark in order to 

                                                            
2 According to the State Power Corporation’s “Interim Rules on Economic Assessment of Electrical Engineering 
Retrofit Projects”, the benchmark IRR for a project in power industry is 8% of the total investment. 
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overcome their financial obstacles. At the national level, industrial associations such as the Chinese 

Renewable Energy Industries Association, which manage the industry on behalf of the 

government, hold workshops to help renewable energy project developers learn CDM rules and 

process (Lin et al., 2004). 

 [Figure 1] 

In addition to increasing wind power deployment, CDM has also improved wind project 

operation and management by helping China’s wind industry to learn about advanced wind 

technologies and scientific monitoring mechanisms. One approximate measurement for wind 

technology progress that has been used in many previous studies is the size of wind turbines (Ru 

et al., 2012; Wang et al., 2012). In our sample, the average size of the wind turbines used in CDM 

projects increased from 0.90 MW in 2002 to 1.45 MW in 2009.  As further evidence of the 

development of China’s domestic wind industry, note that, since 2006, the majority of installed 

capacity in CDM projects are turbines produced by Chinese wind turbine manufacturers.  

2.3 The standardized CDM project process and the validity of project documents 

All CDM wind projects are registered and managed in a highly standardized and 

transparent process according to the CDM legal framework under the Kyoto Protocol.  The key 

criteria for CDM project approval is whether a project demonstrates its “additionality”, which 

means that the proposed wind project could not be developed without the revenue from CDM 

carbon trading due to high financial risk or technical barriers. If a project cannot demonstrate the 

additionality by using methods provided by CDM rules, its application will be rejected. Once the 

CDM executive board (EB) approves a wind project for CDM registration, the project can get 

emission credits, known as certified emission reductions (CERs), based on its annual electricity 

generation.  The project developer can sell these CERs to emission credit buyers from developed 
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countries and use this revenue to subsidize its investment. On average, the economic incentive 

from CDM revenue is about 0.05 to 0.1 RMB/kWh, which approximately equals 10%-20% of the 

electricity price of wind power (Lewis, 2010 & 2013; Li, 2010; Zhang et al, 2009). 

 A typical CDM wind project cycle has six steps, as shown in Figure 2. First, a wind project 

developer prepares and submits a standardized PDD and supporting materials, including a financial 

analysis. The PDD and supporting materials must be validated by a third party auditing agency 

(i.e. the designated operational entity, or DOE) accredited by the EB according to check whether 

the proposed project meets the CDM requirements before it can register as a CDM project. During 

its operational phase, carbon emission reductions from the project activity are monitored  and 

verified by another third party agency according to methods specified in the validated PDD.  The 

EB issues CERs to the project developer based on the verification.  

[Figure 2] 

These independent and transparent auditing and monitoring procedures ensure the validity 

of the CDM PDDs. For all projects reaching the registration step, their PDD and supporting 

financial analysis are available on the CDM official website for public comments before 

registration. In addition, the validation and monitoring reports are also available on the CDM 

website to provide a record of the complete process.   

3. Theoretical Framework and Hypotheses 

The CDM has subsidized the majority of China’s wind projects and has facilitated the 

technological change of China’s wind industry during the past ten years. We use CDM wind 

projects in China to analyze the learning process in China’s wind industry and to examine the 

effects of different channels of learning on technological change. We measure technological 

change as the reduction of electricity production cost across different wind projects. The learning 
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process in our study refers to how knowledge related to wind power is acquired and diffused among 

different participants in the wind projects, including project developers and wind turbine 

manufacturers.  In China, power generation and power transmission are separated. Wind project 

developers are power companies in charge of power generation, which are either state-owned 

enterprises or private power companies.  Project developers purchase wind turbines from either 

domestic or foreign wind turbine manufacturers, who work closely with project developers.  

Following the technological learning and collaboration theories, we identify the following 

channels of learning that could lead reduced electricity production costs.  

3.1 Learning by doing (LBD) 

The traditional learning curve model explains increased productivity, typically measured 

through reduced production costs, as a function of learning from the accumulation of experience 

in production (Arrow, 1962). Experience curves have been widely used to model the cost reduction 

of renewable technologies, such as solar photovoltaics, wind turbine manufacturing, and wind 

power production (Grubler et al., 1999; Ibenholt, 2002; Junginger et al., 2005; Nemet, 2006 & 

2012; Qiu and Anadon, 2012; Patridge, 2013).  

In wind power, the unit cost of electricity production could be reduced through the 

accumulation of experience in wind turbine manufacturing and installation, and/or through the 

accumulation of experience in wind project development and operation. As the wind turbine 

manufacturer’s experience in turbine production and installation increases over time, the cost of 

manufacturing a wind turbine and installing a wind turbine may decrease. Similarly, experience of 

developing and operating wind projects helps project developers learn more about choosing a 

quality site, selecting a suitable wind turbine and operating the wind farm efficiently.  Such 

experience will result in lower costs for wind power.  Thus, the first two hypotheses we test are: 
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      H1: The more experience the CDM project developer has developing and operating wind 

projects, the lower the unit production costs of the current project will be.   

      H2: The greater the production and installation experience of a project’s wind turbine 

manufacturer, the lower the unit production costs of the current CDM project will be. 

3.2 Knowledge spillover effects 

Within the learning-by-doing literature, a subset of papers identify knowledge spillover 

effects.  These papers find that firms can learn from a competitor firm’s experience, but that 

internal experience has a larger effect (Thornton and Thompson, 2001). Once a new technology 

has been commercialized, its use is hard to hide from rival firms. Thus, wind power companies 

can also learn how to develop and operate a wind farm from the experience of other developer’s 

wind projects (Nemet, 2012; Qiu and Anadon, 2012).  To test both the existence and 

appropriability of learning-by-doing, Nemet (2012) uses a panel data of wind projects in 

California.  He estimates the learning effects on wind farm installation and operation from internal 

experience at both the project and firm level, and from external experience both within the state of 

California and in the global wind market. The results indicate that wind farm developers learn from 

their own projects and from the experience of other firms in both installation and operation.  Such 

external spillovers justify policies that subsidize the demand for wind technology. Similarly, Qiu 

and Anadon’s work (2012) on the wind industry in China also shows learning from industrial 

experience, but it is not clear that the Chinese wind developers learn from their own experience. 

As they point out, the details of all bids were made public every year, providing a source for other 

developers to learn. For CDM projects, the transparent project registration and monitoring process 

allows information sharing on project design and operation among project developers, which may 

particularly facilitate the knowledge spillovers across CDM projects.  Therefore, we also test: 
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      H3: Increased experience developing and operating wind projects by other firms in the 

industry also leads to lower unit production costs for the current CDM project.  

3.3 Learning by searching (LBS) 

Wind technology innovation through research, development and demonstration (RD&D), 

often referred to as “learning-by-searching” (LBS), can also lead to wind power cost reductions 

(Junginger et al, 2005; Kahouli-Brahmi, 2008; Qiu and Anadon, 2012). Examples of technological 

improvements through RD&D include larger turbines, lighter materials, more efficient turbine 

design and improved control systems, which could either reduce the cost of a wind turbine or 

increase the efficiency of converting wind energy to electricity.  Extending traditional one-factor 

learning curve models to include R&D, several recent studies use two-factor learning models to 

disentangle the impacts of R&D and cumulative experience on technological change in wind 

power (Soderholm & Klassen, 2007; Soderholm & Sundqvist, 2007; Qiu and Anadon, 2012). 

While the empirical studies of the European wind power sector suggest that R&D is the dominant 

factor, Qiu and Anadon’s research, which covers just a five year period, does not successfully 

separate the effect of LBS and LBD due to the multicollinearity between their LBD and LBS 

variables.  We use a manufacturer-specific stock of knowledge, described in section 4, to identify 

and test the learning-by-searching effect:  

      H4: The greater the knowledge stock that a wind turbine manufacturer has accumulated 

through its R&D, the lower the unit production cost of the CDM project using its turbines will 

be.  

3.4 Learning by interacting (LBI)  

The literature on technological learning also discusses another channel of learning – 

learning by interacting (LBI). Improving network interactions between research institutes, 
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manufacturers and end-users allows for better diffusion of knowledge (Grubler, 1998; Junginger 

et al, 2005).  Collaborative and long-term partnerships increase the likelihood of tacit knowledge 

transfer by increasing trust between the two parties and reducing information asymmetry 

(Schneider, 2008).  Similarly, interagency collaboration facilitates resource and knowledge 

sharing among network partners. In inter-firm networks, firms can have some degrees of access to 

the specialized knowledge of their partners while exploiting and enhancing the existing knowledge 

and capacities within themselves (Cohen and Levinthal 1990; Inkpen and Beamish 1997). The 

trust that network partners have between each other is found to be instrumental in reducing 

transaction costs, improving investments and stability in relations, and stimulating learning, 

knowledge sharing, and innovation (Koppenjan and Klijin, 2004). Previous cooperative ties 

between the network partners are positively associated with the development of inter-firm trust 

(Inkpen & Currall 2004). 

In a wind project, the project developer works with its turbine supplier in many stages, 

such as turbine installation, operation and maintenance. Thus, another important channel of 

technological learning in wind projects could be the joint learning between project developer and 

wind turbine manufacturer on installation and operation through their collaboration in one or 

multiple wind projects. According to the CDM PDDs we have examined, frequent communication 

and training activities regarding operation and maintenance between turbine suppliers and project 

developers contributes to the absorption and dissemination of wind technologies, particularly the 

advanced technologies embedded in the imported turbines. Therefore, we test the learning-by-

interacting effect separately: 

      H5: The more cooperation that the developer has with the same manufacturer prior to the 

current CDM project, the lower the unit production cost of this project will be.   
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4. Data and Descriptive Statistics 

To examine the effects that different learning channels have on electricity production costs 

across wind projects, we use pooled cross-sectional data of 510 registered CDM wind projects in 

China that started construction from 2002 to 2009. After we exclude the observations that have 

missing data for some variables, the sample that we use for empirical analysis has 486 projects. 

These projects were developed by 87 developers and used wind turbines from 23 turbine 

manufacturers. Therefore, many developers and turbine manufactures participated in more than 

one CDM wind project in China. A developer may have cooperated with the same wind turbine 

manufacturer in several projects.  

We combine several datasets for this study. The CDM project data, including information 

on project costs, project size, turbine size, annual electricity production, project developer, and 

turbine manufacturers, is collected from the validated CDM PDDs and their financial analyses.3 

Data on provincial level and manufacturer’s installed capacity comes from the Chinese Wind 

Energy Association’s annual reports. Although there are some wind projects not included in the 

CDM database, non-CDM installed capacity only accounts for a small share of the total installed 

capacity in China.4 The patent data for knowledge stock calculation is obtained from the Delphion 

database.   

4.1 Key variables  

4.11 Dependent variables 

We use several dependent variables to examine different aspects of technological change. 

To measure the overall technological change in wind power, we use the per unit electricity 

                                                            
3All the CDM documents are available at: http://cdm.unfccc.int/Projects/projsearch.html. 
4 We use installed capacity data from 2002 to 2008 to calculate the previous installation experience that a developer 
or a manufacturer has. The non-CDM installed capacity only accounts for 13% of the total installed capacity in 
China.  
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production cost of the wind farm as our primary dependent variable, enabling us to compare our 

results with the previous literature on technological learning in wind power. To further explore 

how different learning channels drive down the unit production cost, we decompose the overall 

learning effects into two subsystems of learning: wind farm construction and installation, and wind 

farm operation. We examine these two subsystems by looking at capital cost per kWh and the 

capacity factor of the wind farm correspondingly.  

1) Electricity production cost  

     The primary dependent variable is the projected unit cost of electricity production of project 

i that starts construction in year t (Unit_costit), also known as the levelized cost. We calculate the 

per unit production cost by dividing the project life cost by its life electricity production estimated 

in the project financial analysis, which captures the projected average cost of generating one unit 

(kWh) of electricity by the project. The unit cost is calculated as follows: 

ሺ࢚࢙࢕ࢉ_࢚࢏࢔ࢁሻ࢚࢏ ൌ 	෍
࢐࢒ࢇ࢚࢏࢖ࢇ࡯ ൅ 	࢐ܯ&ࡻ

ሺ૚ ൅ ࢘ሻ࢐
/	

࢔

࢐ୀ૚
෍

࢐࢚࢟࢏ࢉ࢏࢚࢘ࢉࢋ࢒ࡱ
ሺ૚ ൅ ࢘ሻ࢐

࢔

࢐ୀ૚

 

where Captitalj is the static construction investment in the jth year in project life, O&Mj is the 

annual operation and maintenance expenditures in year j, and Electricityj represents the annual 

electricity generated by the wind farm in year j.5 Both project costs and electricity production are 

discounted at a discount rate r = 8%, which is the industrial benchmark IRR on total investment.6 

The year that project i starts construction, represented by t, corresponds to the first year in its 

project life (i.e. j=1).  We adjust all cost variables to 2005 prices.   

                                                            
5 Although the annual electricity production data we collect from validated CDM project design documents are 
estimated generation, the electricity generation is monitored after the project starts its operation. According to the 
monitoring reports that we have examined, the estimated annual electricity production is very close to the actual 
electricity generation.  
6 According to the State Power Corporation’s “Interim Rules on Economic Assessment of Electrical Engineering 
Retrofit Projects”, the benchmark IRR for a project in power industry is 8% of the total investment. 
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While the cost data from CDM project design documents and financial analyses are 

expected costs, using the CDM data provides several advantages.  To prove additionality, proposed 

projects must not be financially viable without the revenue from selling emissions credits.  Thus, 

project developers have no incentive to understate costs, which would overestimate technological 

progress.  At the same time, since we only use projects that have been validated and registered, the 

proposed project costs have been evaluated by independent auditors.  Projected costs that are 

unreasonably high would lead to rejection of a proposed project.  For capital costs, the validating 

agencies usually crosscheck estimated capital costs with the actual costs specified in construction 

and equipment purchase contracts. According to the CDM validation guidelines and the validation 

reports we have examined, the estimated capital costs are very close to the real capital investment. 

Moreover, many project design documents used actual capital costs in their financial analyses.7 

For O&M costs, the auditing agencies compared the estimated costs with public statistics and other 

similar CDM wind projects. Based on the comparison, they must determine that the projected 

O&M cost data used in CDM project design document are reasonable before validating the project.  

 Thus, we believe that our cost measurement is more reasonable and credible than the 

national concession bidding prices used by Qiu and Anadon (2012). As discussed in section 2.1, 

bidding prices in the national concession program may be much lower than the actual price, which 

is often a strategy used by developers to win the project first without considering the long-term 

project profitability (Li et al., 2008; Yang et al, 2009; Wang, 2010).  Absent the availability of 

                                                            
7 To rule out the possibility that the project developers learn to produce more accurate cost estimation over time, we 
used stratified sampling to select 51 of our 510 projects by the year that a project started construction. For projects 
before 2006, the validation reports do not provide actual cost data, but they claim that they have cross-checked with 
the actual data and the estimation are consistent with the actual capital investment. For projects starting from 2006 to 
2009, the estimated costs are very close to the real capital costs for all years. Based on this validation, we believe 
that the possibility of better cost estimation is small. 
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actual cost data for Chinese wind farms, we believe that our validated CDM data provide the most 

accurate representation of electricity production costs for wind projects in China. 

2) Unit capital cost 

Wind farm capital investment costs have a major influence on the costs of electricity 

production (Junginger et al., 2005).  Investment costs include costs such as turbine foundations, 

land, grid connection, civil works, and turbine installation. We calculate the estimated unit capital 

cost in a similar way to total unit costs: 

ሺ࢒ࢇ࢚࢏࢖ࢇࢉ_࢚࢏࢔ࢁ	ሻ࢚࢏ ൌ 	෍
࢐࢒ࢇ࢚࢏࢖ࢇ࡯
ሺ૚ ൅ ࢘ሻ࢐

/	
࢔

࢐ୀ૚
෍

࢐࢚࢟࢏ࢉ࢏࢚࢘ࢉࢋ࢒ࡱ
ሺ૚ ൅ ࢘ሻ࢐

࢔

࢐ୀ૚

 

3) Capacity factor 

We use projected capacity factor to measure the operational performance of a wind farm. 

The capacity factor is the ratio of the actual electricity produced by a wind farm in a given period 

to its potential output if the wind farm was operated at full nameplate capacity for the entire period. 

We calculate the capacity factor of a CDM wind project using the following formula: 

ሺࡲ࡯ሻ࢚࢏ ൌ
	࢚࢟࢏ࢉ࢏࢘࢏࢚ࢉࢋ࢒ࡱ	࢒ࢇ࢛࢔࢔࡭

૛૝࢟ࢇࢊ/࢙࢘ࢎ ∗ ૜૟૞	࢙࢟ࢇࢊ ∗ ࢋࢠ࢏ࡿ	࢚ࢉ࢐ࢋ࢕࢘ࡼ
	 

The capacity factor of a wind farm is mostly determined by the availability of wind on the 

site. Given the wind quality in a particular region, we expect additional experience will help a 

developer pick a better site, select suitable wind turbines and make the best use of the wind 

resource at the site, all of which lead to increased capacity factor. In addition, the quality of wind 

turbines and the interactions between the developer and its turbine manufacturing partners may 

also help to improve performance.  

4.12 Manufacturer’s knowledge stock  
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To test the effect of learning by searching on electricity production cost, we create a 

manufacturer’s knowledge stock (LBSmft), using cumulative patent applications related to wind 

power from the manufacturer supplying wind turbines to project i. We lag the manufacturer’s 

knowledge stock to account for the time needed to convert an innovation to mass manufacturing. 

Since knowledge related to wind power may depreciate over time, we use a 15% depreciation rate 

to calculate the knowledge stock in our empirical model, which is a typical knowledge decay rate 

used in the R&D literature (Griliches, 1995; Popp, 2004). 8 The knowledge stock variable is 

calculated as follow:  

LBSmft=LBSt-1*(1-ρ) + NPt-1                (1) 

where LBSt-1 represents the existing knowledge stock from year t-1,  ρ is the depreciation rate, and 

NPt-1 represents the number of new patents that the manufacturer applied for in year t-1.  

We identify each turbine manufacturer’s patent applications in China relevant to wind 

energy, which include innovations pertaining to wind turbine manufacturing, installation, testing 

and monitoring, and maintenance. 9  We date these applications by the priority date, as this 

corresponds most closely to when the innovative activity actually took place.10 We use data 

collected for each manufacturer by year to calculate the cumulative knowledge stock. If a CDM 

project use wind turbines from two manufacturers, we calculate the weighted average knowledge 

stock using the shares of their installed capacity in this project as weights.  

                                                            
8 We also test the effects of knowledge stock calculated with a 10% depreciation rate. The results are not sensitive to 
the choice of discount rates. 
9 We identify the relevant patents by using the International Patent Classification (IPC), which is a classification 
system developed by the World Intellectual Property Organization and used by patent offices around the world to 
identify the technology represented in each patent.  IPC classification F03D represents wind energy patents. 
10 For a patent application, priority date is the earliest application date anywhere in the world. 
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4.13 Experience at different levels and spillovers 

We test the effects of wind project developing and operating experience for different 

participants and at different levels. At the micro level, we have a project developer’s experience 

(LBDdev) and the turbine manufacturer’s experience (LBDmft). At the aggregate level, we test the 

spillover effects of provincial level wind project experience (Spillprovince) and the experience from 

the whole industry (Spillindustry). The experience variables are measured by the cumulative installed 

capacities through year t-1 at developer level, manufacturer level, province level, and industrial 

level respectively. To test the spillover effects, the experience of project i’s developer and 

manufacturer is subtracted from the aggregate level experience, so that aggregate experience for 

each project i can be interpreted as the experience of the rest of the industry.  

Finally, we measure collaboration between a project developer and manufacturer (LBI)  by 

calculating the cumulative capacity of previous CDM projects using both the same developer and 

manufacturer. This can be thought of as the shared CDM experience between the developer and 

the manufacturer.  If a CDM project use wind turbines from two manufacturers, we calculate the 

weighted average cooperating CDM experience using the shares of their installed capacity in this 

project as weights.  

4.2 Control variables  

 To accurately assess the impact of learning on our dependent variables, we must also 

control for other project features that affect the unit production costs or productivity: 

 Wind turbine size (Turbine_sizei). Larger wind turbines access greater wind resources 

available at greater heights, allowing them to capture more energy so as to produce more power. 

If a CDM project has more than one type of wind turbine, we use average wind turbine size.  
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 Wind project scale (Project_sizei).  Wind projects with larger installed capacity will have 

economies of scale. As a result, the unit production cost will be reduced (Berry 2009, Qiu and 

Anadon, 2012; Partridge, 2013).  

 Wind resource quality. If the project site has better wind resources, it should have higher 

productivity. The wind resource quality is measured by dummy variables ࢃ૚ࢃ,࢏૛ࢃ,࢏૜࢏		W4i , 

representing the four wind resource categories specified by the 2009 Feed-in Tariffs for Wind 

Power in China (NDRC, 2009). W1i indicates that project i is located in the best wind quality region 

while W4i indicates the region with the least wind resources.  

 Characteristics of manufacturers and developers. If the wind turbine manufacturer is a 

foreign company, Foreignmft equals to 1. Although some foreign manufacturers have developed 

subsidiaries in China, we still treat them as foreign manufacturers because their patents belong to 

the parent companies.  

 We also control for the ownership of the project developer. We classify project developers 

into three groups based on their ownership and market power in electricity generation market: 

state-owned enterprises (SOE) regulated and supervised by central government, SOEs regulated 

and supervised by local government, and private enterprises (Li et al., 2012).  We expect that 

central SOE developers, on average, have the lowest production costs among the three categories 

because they dominate the electricity generation market and have more bargaining power when 

developing a wind project. By the end of 2011, the top nine central SOE developers contributed 

73.8% of China’s cumulative installed capacity (Li et al., 2012). From 2006 to 2010, SOEs 

developed 90% of wind projects in China (Li et al., 2010 & 2012).  

Table 2 summarizes the description of explanatory variables for different channels of 

learning and control variables.  
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[Table 2] 

4.3 Descriptive statistics  

Table 3 reports summary statistics for the major variables used in our empirical models.  

[Table 3] 

Figure 3 shows the trend of the average unit cost of CDM projects started from 2004 to 

2009.11 We also decompose the unit cost into the unit capital cost and unit O&M cost. All costs 

are calculated using 2005 prices. In Figure 3, we see that the unit production cost and its two 

components generally have downward trends from 2005 to 2009, which is consistent with the rapid 

technological progress in China’s wind power during this period. The unit project cost falls by 

12.1 % and the unit capital cost falls by 10.8 %.  Unit O&M cost drops most sharply, decreasing 

17.4 % from 2005 to 2009.12  

[Figure 3] 

While we observe that the average project unit cost and its components have downward 

trends from 2005 to 2009, project capacity factors, as shown in Figure 4, do not show a clear trend 

during this period. Since the capacity factor is mainly determined by the wind resource available, 

one possibility is that projects started earlier could pick sites with better wind resources, leaving 

limited choices for later projects.  

[Figure 4] 

5. Empirical Model and Results 

To explain what has led to the project cost reduction over time, we test the effects of 

different learning channels gradually in three steps using OLS regressions, with each step adding 

                                                            
11 Although the earliest CDM wind projects in China started in 2002, we cannot calculate their unit costs due to 
missing data in their project design documents.  
12 While the average project cost is lower in 2004, we only have one observation that has cost data among the 4 
projects that started in 2004 in our sample. Thus, these data may not be representative of all the projects in 2004. 
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additional detail on the level of learning from experience.  First, we test the effects of aggregate 

experience, using only province level experience and experience from the nation as a whole. In the 

second step, we separate both the developer’s and the manufacturer’s project experience from 

aggregate experience. In the last step, we test the effects of learning-by-interacting by further 

separating the shared CDM project experience between the developer and the manufacturer from 

their cumulative individual experience.  In all three steps, we examine the effect of learning-by-

searching from the manufacturer. 

In addition to testing the learning effects on overall electricity production costs, we further 

examine the two subsystems of learning – wind farm installation and operation – by using unit 

capital cost and capacity factor as dependent variables correspondingly. This allows us to see 

where the cost reduction occurs and how different learning channels influence the subsystems of 

electricity production. 

5.1 Aggregate level experience 

As the first step, we test the effects of provincial and industrial level experience using 

equation (2), which includes the manufacturer’s knowledge stock, provincial installation 

experience, and nation-wide installation experience. We subtract provincial experience from 

national level experience to separate spillovers from the province where a project is located from 

spillovers due to experience in other provinces.13                                                                                 

݈݊ሺܷ݊݅ݐݏ݋ܿ_ݐ௜௧ሻ ൌ ଴ߚ ൅ ௣௥௢௩௜௡௖௘݈݈݅݌ଶܵߚ	൅	௠௙௧ܵܤܮଵߚ ൅ ௜௡ௗ௨௦௧௥௬݈݈݅݌ሺܵ	ଷߚ െ ௣௥௢௩௜௡௖௘ሻ݈݈݅݌ܵ ൅ 	ସߚ ௜ܺ 	൅

݁ܿ݊݅ݒ݋ݎܲ ൅ ݎܻܽ݁ ൅   ሺ૛ሻ																																																																																																								௜ݑ

                                                            
13 While most learning models use a log-log format, so as to interpret the coefficients as learning rates, we do not 
use logs for our explanatory variables as we have many zeros when decomposing experience in the later models.  
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To control for the effects of other factors that influence electricity production cost, we also 

include all the control variables listed in Table 2, represented by Xi in equation (2).  We use 

province dummies to control for time-invariant heterogeneity across provinces, such as 

topographical and meteorological features, transmission infrastructure, and the investment 

environment. We further add year fixed effects to control for other omitted variables that change 

over time for all projects starting in the same year, such as national policies, input prices, global 

changes in technology, and other unobserved factors. 

[Table 4] 

Table 4 reports the estimates of learning-by-searching effects and the effects of aggregate 

level wind project developing and operating experience on unit production costs. We estimate 

three models adding different fixed effects. The learning-by-searching effect, captured by 

manufacturer’s knowledge stock, is significant across all three models. However, the magnitude 

of the LBS effect is very small. In the short run, one more patent from the manufacturer reduces 

unit costs by just 0.04%.  For the learning-by-doing effect, the aggregate level project developing 

experience variables have significant negative effects on unit production costs only in models (1) 

and (2), which omit year fixed effects. When we add year fixed effects in model (3), the aggregate 

province level experience becomes insignificant. We do not include industrial level experience 

when adding year fixed effects to the model, as the sum of provincial experience and industrial 

experience equals the total industry-wide capacity in a given year, and is thus correlated with the 

year fixed effects. 

While the evidence of learning from macro level project experience is not clear, the results 

for other control variables are as expected.  Both project size and wind resource quality 

significantly influence the project unit cost and the effects are consistent with existing literature. 
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Projects with larger size benefit from economies of scale, leading to a reduction of electricity 

production cost. Projects located in regions with lower wind resource quality have higher unit 

electricity generation cost than projects in regions with better wind quality.  

Characteristics of the turbine manufacturer and project developer also significantly affect 

electricity production cost. On average, the unit costs of projects using wind turbines supplied by 

foreign manufacturers are 4% to 5% higher than projects using wind turbines from domestic 

manufacturers, suggesting that turbines from foreign manufacturers have higher prices than 

domestic wind turbines even after controlling for a manufacturer’s knowledge stock embedded in 

the turbines. Indeed, previous research has found that the higher costs of purchasing foreign wind 

turbines is one reason that Chinese developers to apply for the CDM support (Wang, 2010). The 

unit production costs of projects developed by central SOE developers are estimated to be 

approximately 4% to 5% lower than the costs of private developers’ projects.  

5.2 Effect of developer’s internal experience and spillover effects 

In the second step, we consider each project developer and manufacturer’s individual 

experience. To do so, we must also subtract the developer’s experience, LBDdev, and the 

manufacturer’s experience, LBDmft, from the aggregate level experience, Spillindustry. The empirical 

model specification becomes: 

lnሺܷ݊݅ݐ݅ݐݏ݋ܿ_ݐሻ ൌ ଴ߚ ൅ ௗ௘௩ܦܤܮଷߚ	௠௙௧൅ܦܤܮଶߚ	൅	௠௙௧ܵܤܮଵߚ ൅ ݈݈݅݌ݏ_ݕݎݐݏݑ݀݊ܫ	ସߚ ൅ 

ହߚ					 ௜ܺ ൅ ݁ܿ݊݅ݒ݋ݎܲ ൅ ݎܻܽ݁ ൅                                                                  (3)	௜ݑ

where Industry_spill is the knowledge spillover from other projects in the industry.14  

Table 5 shows the regression results of equation (3).  Once again we estimate three model 

                                                            
14  In equation (3), Industry_spill = Spillindustry – LBDdev – LBDmft + LBI. LBI is the previous cooperating experience 
on joint projects between a developer and a manufacturer, which overlap between LBDmft and LBDdev. Thus, we add 
it back to avoid double subtraction from industrial experience.  
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specifications with different fixed effects. The LBS effect is significant across all the models and 

the magnitude is similar to what we have found in 5.1. As we separate the developer’s CDM project 

experience and manufacturer’s experience from the aggregate level experience, we observe that 

learning from the developer’s previous CDM project experience significantly reduces the project 

unit cost across all three models. With year fixed effects in model (3), the magnitude of the 

coefficient on developer’s experience shows that the unit cost of wind power in CDM projects 

nearly falls by 4% for each additional 1 GW of previous installed capacity in CDM projects by the 

developer.  Given that the average size of a CDM wind project is approximately 60 MW, a typical 

CDM project by the same developer leads to a 0.23% to 0.25% decrease in future unit costs. Most 

central SOE developers and some local SOE developers have around 10 new CDM projects in 

2009, so that it will only take one to two years for these developers to increase capacity by 1 GW. 

In contrast to developer experience, the manufacturer’s previous project experience does not have 

a significant effect on unit production costs.  

[Table 5] 

While we find some evidence of industry-level spillovers in section 5.1, the importance of 

these spillovers disappears when we separate learning effects into experience of the turbine 

manufacturer and experience of the project developer.  In contrast, previous studies that find 

evidence of wind power firms learning from the industrial experience (Nemet, 2012; Qiu and 

Anadon, 2012) do not separately control for the experience of different actors in the industry.  

5.3 Effects of collaborating experience and other channels of learning  

Finally, we examine the role of collaboration in CDM wind projects.  Here, we consider 

experience on joint projects between a developer and a manufacturer separately from both the 

developer and manufacturer’s experience on other projects.  The empirical model is:  
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ln	ሺܷ݊݅ݐݏ݋ܿ_ݐ௜௧ሻ ൌ 0ߚ ൅ ݁݊݋݈ܽ_ݐ݂݉ܦܤܮ2ߚ	൅	ݐ݂݉ܵܤܮ1ߚ ൅ ݁݊݋݈ܽ_ݒ݁݀ܦܤܮ3ߚ 	൅ ܫܤܮ	4ߚ ൅

݈݈݅݌ݏ_ݕݎݐݏݑ݀݊ܫ5ߚ ൅ 6ܺ݅ߚ ൅ ݁ܿ݊݅ݒ݋ݎܲ ൅ ݎܻܽ݁ ൅  (4)																								݅ݑ

where LBI represents the shared cumulative installed capacities in CDM projects between the 

developer and the manufacturer. We separate this shared experience from their own cumulative 

installed capacities. 15 In this way, we are able to examine the effect of learning-by-doing and 

learning-by-interacting separately. Industry_spill is the knowledge spillover from other projects 

in the industry as calculate in section 5.2.   

Table 6 reports the estimates of different learning effects. Model (1) only has province 

fixed effects and Model (2) adds year fixed effects. Model (3) further includes an interaction term 

between foreign manufacturer dummy and the previous cooperating experience between the 

developer and manufacturer in order to tests whether the collaboration with a foreign manufacturer 

makes a difference on production costs.  

[Table 6] 

Across all three specifications, we see that the LBS effects are significant and the 

magnitudes are similar to the results in Table 5.  For LBD effects, a developer’s experience alone 

matters, but the impact is smaller than found in the previous section, where a developer’s 

experience includes shared experience with the manufacturer.  

What reduces project costs the most is repeated collaboration experience between a 

developer and the same manufacturer, which suggests the learning-by-interacting effect. A 1 GW 

increase of collaborative installed capacity results in approximately a 4% decrease of the unit 

electricity production cost. This magnitude indicates that each additional CDM wind project that 

the developer and the manufacturer build together decreases unit costs by about 0.25%. In column 

                                                            
15 In equation (4), LBDmft_alone = LBDmft – LBI, and LBDdev_alone = LBDdev – LBI.  
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(3), the significance of the interaction term with foreign manufacturers suggests that collaborations 

between developers and foreign manufacturers generate the greatest cost savings.  An additional 1 

GW installed capacity by a developer with its foreign manufacturer partner drives down the unit 

production cost by approximately 15.7%,16 which is nearly three times greater than the effect of 

cooperating experience between a developer and a domestic manufacturer. Thus, each additional 

CDM wind project that a developer builds with the same foreign manufacturer will reduce the unit 

cost by almost 1%. The difference between cooperating experience with foreign manufacturers 

and domestic manufacturers on unit cost reduction suggests that tacit knowledge transfer between 

foreign manufacturers and project developers is important to maximize the benefits from the 

transfer of foreign technologies. 

5.4 Learning effects on unit capital cost and capacity factor 

Finally, we use capital cost per kWh and the project capacity factor as dependent variables 

to test the effects of different learning channels on wind farm installation and operation. As shown 

in Table A1 and A2 in the appendix, the impacts of manufacturer’s knowledge stock, manufacturer 

and the developer’s experience alone, and the spillover from the industrial level on unit capital 

cost and capacity factor are highly consistent with what we have found for unit production costs.  

However, collaborating experience between the manufacturer and project developer has 

different impacts on unit production cost, unit capital cost, and capacity factors. Table 7 compares 

models with different dependent variables. All models include both province fixed effects and year 

fixed effects.  For comparison, columns (1) and (2) repeat the results shown in columns (2) and 

(3) of Table 6. 

[Table 7] 

                                                            
16  The percentage change is exp (-0.0397 – 0.131) – 1 = -15.7%. 



27 
 

As shown in model (1) and model (3), learning by interacting effects, captured by repeated 

collaboration experience, lead to both production cost reduction and capital cost reduction. The 

magnitude of the effect for capital cost reduction is slightly larger than the effect on production 

reduction. However, cooperating experience does not have a significant effect on capacity factor 

in model (5). When we further test whether cooperating with a foreign manufacturer makes a 

difference by adding the interaction terms in model (2), (4) and (6), cooperation with a foreign 

manufacturer leads to a greater reduction for electricity production costs while it makes no 

difference on capital costs and capacity factor. 

The results above indicate that repeated partnerships between a developer and 

manufacturer mostly drive down the costs of construction and installation stage, but do not lead to 

better operational performance, as measured by capacity factor.  Instead, the developer’s own 

experience is sufficient to provide guidance on siting turbines to improve the electricity generated 

from each new site.  Since the unit capital costs on average account for approximately 80% of the 

unit electricity production cost of a wind project, we also observe that the cooperating experience 

matters most for the production cost reduction on the whole. When we further differentiate 

between cooperating experience with foreign manufacturers and domestic manufacturers, our 

results suggest that a repeated partnership with a foreign manufacturer facilitates knowledge 

diffusion between partners beyond the construction and installation stage, as the foreign 

manufacturer interaction is statistically significant in the model using overall costs as the 

dependent variable.  

6. Conclusions 

Using CDM wind projects started between 2002 and 2009 in China, this paper examines 

the effects of different channels of learning – learning through R&D in wind turbine 
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manufacturing, learning from firm’s previous experience of installation, learning from the 

experience of other firms, and learning through collaboration between wind turbine manufacturer 

and project developer—on technological change in China’s wind. We consider the impacts of these 

learning channels on the unit cost of electricity generation, as well as on wind farm installation 

costs and capacity factor.  

Our empirical analysis successfully separates the learning-by-searching effect from the 

joint learning effect of LBS and LBD used in previous research on China’s wind industry. 

However, the learning-by-searching effect is much smaller than what has been found for European 

wind power over a longer period of time (Soderholm & Klassen, 2007; Soderholm & Sundqvist, 

2007).  This is reasonable because our observation period is too short for patents to be fully 

commercialized and to have large impact on cost reduction. Another reason could be that turbines 

with advanced technology have higher prices while the electricity production is limited by the 

technological capacity of the developer or the transmission system.   

Our results also provide evidence of learning-by-doing for wind project developers in 

China.  While finding LBD effects is consistent with previous research, our paper is the first to 

separately identify the experience of manufacturers and project developers. Developers are more 

likely to benefit from their past internal experience in both wind farm installation and operation, 

which significantly drive down the overall electricity production costs. Unlike previous research, 

when we separate the experience of developers and manufacturers from the industrial experience, 

the experience of other manufacturers and developers are less important to the observed project. 

However, it does not contradict the findings in the work of Qiu and Anadon (2012) because their 

measurement for industrial learning also includes the experience and knowledge stock of the 

turbine manufacturer involved in an observed project while we partial out these effects. On the 
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whole, the learning-by-doing effect itself provides support for demand-side subsidies, such as 

CDM revenues, to price negative externalities and stimulate demand so as to provide opportunities 

for learning-by-doing and reduce future abatement costs.  

Most importantly, we find that what really matters for reducing electricity production costs 

is not just the experience of a particular project developer or turbine manufacturer, but the joint 

project experience between the developer and the same manufacturer through their repeated 

interaction. The repeated partnership between developers and turbine manufacturers leads to lower 

electricity production costs, particularly for capital costs. Our results provide justification for the 

trend of integrating turbine manufacturing with wind project developing in China’s wind industry. 

Both domestic manufacturers such as Goldwind and foreign manufacturers such as Gamesa have 

begun to either form subsidiaries to develop wind projects or partner with certain existing 

developers in order to get more involved in project development (Li, 2012). This finding also 

suggests that the wind energy association or local government could set up platforms or forums to 

connect developers and manufacturers in advance, particularly for small developers that newly 

enter the market.  

One goal of CDM is to enable technology transfer and the subsequent diffusion of climate-

friendly technologies in countries hosting CDM projects. Our results also provide evidence that, 

by encouraging cooperation between local project developers and turbine manufacturers, the CDM 

is successful in this goal.  However, more research is necessary to establish the mechanisms 

through which these partnerships cause costs to fall.  While it may be the case that the reduction 

of capital costs is a result of joint learning between the developers and manufacturers on wind farm 

installation, we cannot rule out that the cost savings are simply the result of economically 

reciprocal wind turbine purchase contracts between partners based on their repeated collaboration. 
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Distinguishing between these explanations requires further qualitative data to rule out the latter 

explanation or to separate the impacts of these two explanations.   

Finally, our strongest evidence for the learning-by-interacting effect occurs when a wind 

project developer repeatedly collaborates with a foreign manufacturer. In addition to the transfer 

of physical technology, the transfer of tacit knowledge through the partnership drives down the 

electricity production cost to a great extent. In the light of this finding, it may not be wise for 

Chinese government to prevent foreign manufacturers from entering and competing with other 

domestic manufacturers in the turbine manufacturing market.   
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Table 1: Matrix for China’s Wind Technology Policy Tools 
 

 Domestic  International  

Supply Side  - National basic research program (973 Program, 
1997) 

- National high-tech R&D program (863 Program, 
1986) 

-  National key technology R&D program (TKPs, 
1982)  

 

Demand Side        -     National wind  concession program (2003-2008) 
- Power surcharge for wind power (2006) 
- The wind power share target in the Medium and 

Long-Term Development Plan for Renewable 
Energy in China (2007) 

- Relief of VAT and import tax for wind turbines 
(2008)  

- NDRC Notice on policy to improve grid-connected 
power pricing for wind power generation (2009) 

The Clean Development  
Mechanism  (CDM)  
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Table 2:  Key Variables in the Empirical Model 
 

Variables Description 

 Manufacturer’s knowledge stock: Cumulative patents related to wind power that 	࢚ࢌ࢓ࡿ࡮ࡸ

the manufacturer has in year t-1. 

 	࢚ࢌ࢓ࡰ࡮ࡸ Experience from manufacturer: Manufacturer’s cumulative installed capacities 

in year t-1. (GW) 

 ࢜ࢋࢊࡰ࡮ࡸ Experience from project developer in CDM projects: Project developer’s 

cumulative installed capacities in CDM projects in year t-1.  (GW) 

 ࢜࢕࢘࢖࢒࢒࢏࢖ࡿ Experience from wind projects in a province: Cumulative installed capacities in 

province r in year t-1. (GW) 

 Experience from the whole industry: Cumulative installed capacities of the ࢚࢙࢛࢟࢘ࢊ࢔࢏࢒࢒࢏࢖ࡿ

whole industry in year t-1.  (GW) 

LBI Collaborative experience between project developer and manufacturer: 

Cumulative capacities installed by this developer and the same manufacturer in 

previous CDM projects in year t-1.  (GW) 

Control Variables  

 ࢏ࢋࢠ࢏࢙_ࢋ࢔࢏࢈࢛࢘ࢀ The average size of wind turbines of project (=project size/numbers of turbines). 

 ࢏ࢋࢠ࢏࢙_࢚ࢉࢋ࢐࢕࢘ࡼ The installed capacity of project i.  

  .W4i Wind resources in the site of project i		࢏૜ࢃ,࢏૛ࢃ,࢏૚ࢃ

Foreignmft Binary variable indicating whether the manufacturer in project i is a foreign firm. 

SOEdev Binary variable indicating whether the project developer in project i is a state-

owned enterprise regulated and supervised by the central government.  

LSOEdev Binary variable indicating whether the project developer in project i is a state-

owned enterprise regulated and supervised by the local government.  

Privatedev Binary variable indicating whether the project developer in project i is a private 

firm. 

 .Province dummies, control for regional time-invariant heterogeneity ࢋࢉ࢔࢏࢜࢕࢘ࡼ

 ࢘ࢇࢋࢅ Start year dummies, control for policies, input prices, and other omitted variables 

changing over time. 
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Table 3: Summary Statistics 
 

Sample Size: N=486 

Variables Mean Std.dev. Median Max Min 
      
Unit cost  (2005 RMB/kWh) 0.523 0.076 0.513 1.007 0.335 
Unit capital cost (2005 RMB/kWh) 0.425 0.066 0.418 0.780 0.256 
Unit O&M cost (2005 RMB/kWh) 0.098 0.028 0.094 0.227 0.011 
Capacity factor 0.252 0.028 0.252 0.339 0.144 
Manufacturer's knowledge stock 
(Decay rate = 0.15)  18.40 37.30 6.53 228.75 0 

Manufacturer's cumulative 
installed capacity (GW) 0.703 0.779 0.388 2.621 0 

Developer's cumulative installed 
capacity in CDM projects (GW) 0.747 0.970 0.380 3.338 0 

Cooperating installed capacity in 
CDM projects (GW) 0.129 0.218 0.030 0.938 0 

Province level cumulative 
installed capacity (GW) 0.806 1.028 0.452 3.679 0 

Industrial level cumulative 
installed capacity (GW) 6.652 2.391 5.554 12.156 0.222 

Average turbine size (MW) 1.350 0.375 1.5 3 0.6 
CDM project size (GW) 0.059 0.049 0.050 0.401 0.009 
Foreign manufacturer 0.160 0.367 0 1 0 
Central SOE developer 0.704 0.457 1 1 0 
Local SOE developer 0.113 0.317 0 1 0 
Private developer 0.183 0.387 0 1 0 
Wind category 1 0.198 0.399 0 1 0 
Wind category 2 0.292 0.455 0 1 0 
Wind category 3 0.123 0.329 0 1 0 
Wind category 4 0.387 0.488 0 1 0 
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Table 4: Effects of Aggregate Level Experience on Unit Production Cost  
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.Industrial level experience omitted 
in model (3) with year fixed effects because the sum of provincial experience and industrial experience equals 
to the total industry-wide capacity in a given year, which is correlated with the year dummies. 
 
 
 
 
 
 
 

  

 (1) (2) (3) 
Dependent Variables ln(unit_cost) ln(unit_cost) ln(unit_cost) 
    
Knowledge stock  -0.00036** -0.00043*** -0.00037** 
of manufacturer (0.00016) (0.00016) (0.00015) 
Province level experience -0.01289*** -0.00060 0.00457 
(GW) (0.00459) (0.00553) (0.00723) 
Industrial level experience -0.00198 -0.00767***  
(GW) (0.00289) (0.00296)  
Turbine size (MW) 0.00493 0.00296 0.01149 
 (0.01768) (0.01499) (0.01503) 
Project size (GW) -0.56645*** -0.36233*** -0.32164*** 
 (0.16180) (0.12352) (0.12414) 
Wind category 1 -0.17891*** -0.12902*** -0.13557*** 
 (0.01620) (0.02883) (0.02839) 
Wind category 2 -0.11512*** -0.09189*** -0.09914*** 
 (0.01391) (0.02714) (0.02696) 
Wind category 3 -0.07442*** -0.00964 -0.00948 
 (0.01733) (0.02484) (0.02184) 
Foreign manufacturer 0.04398** 0.05392*** 0.03793** 
 (0.01846) (0.01705) (0.01609) 
Central SOE developer -0.05103*** -0.04428*** -0.04186*** 
 (0.01150) (0.01022) (0.01008) 
Local SOE developer 0.02538 0.02357 0.02352 
 (0.02418) (0.02010) (0.01862) 
Province fixed effects No Yes Yes 
Year fixed effects No No Yes 
Constant -0.52935*** -0.14135* -0.12832 
 (0.02422) (0.08181) (0.09902) 
    
Observations 486 486 486 
R-squared 0.396 0.604 0.668 
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Table 5 Learning-by-doing Effect and Spillover Effect 
 

 (1) (2) (3) 
Dependent Variables ln(unit_cost) ln(unit_cost) ln(unit_cost) 
    
knowledge stock of  -0.00024* -0.00035** -0.00029** 
manufacturer (0.00014) (0.00014) (0.00013) 
Manufacturer’ experience  -0.00223 -0.00488 -0.01816 
(GW) (0.00601) (0.00489) (0.02285) 
Developer’s experience in  -0.03101*** -0.02718*** -0.03938* 
CDM projects (GW) (0.00501) (0.00456) (0.02017) 
Spillover from the  0.00161 -0.00001 -0.01605 
industry (GW) (0.00298) (0.00248) (0.02444) 
Turbine size (MW) 0.00341 0.00202 0.01068 
 (0.01754) (0.01464) (0.01481) 
Project size (GW) -0.57580*** -0.38520*** -0.34063*** 
 (0.15441) (0.12270) (0.12296) 
Wind category 1 -0.19221*** -0.13382*** -0.14092*** 
 (0.01299) (0.02839) (0.02805) 
Wind category 2 -0.11907*** -0.08570*** -0.09387*** 
 (0.01219) (0.02710) (0.02688) 
Wind category 3 -0.07856*** -0.01146 -0.01251 
 (0.01674) (0.02254) (0.01974) 
Foreign manufacturer 0.03483* 0.04602*** 0.03097* 
 (0.01821) (0.01692) (0.01607) 
Central SOE developer -0.02104* -0.01728 -0.01624 
 (0.01271) (0.01135) (0.01126) 
Local SOE developer 0.03484 0.03335* 0.03259* 
 (0.02453) (0.02009) (0.01885) 
Province fixed effects No Yes Yes 
Year fixed effects No No Yes 
Constant -0.52014*** -0.38794*** -0.45777*** 
 (0.02343) (0.09862) (0.10299) 
    
Observations 486 486 486 
R-squared 0.453 0.674 0.684 

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6: Effects of Collaborating Experience and Other Channels of Learning 
 

 (1) (2) (3) 
Dependent Variables ln(unit_cost) ln(unit_cost) ln(unit_cost) 
    
Knowledge stock of  -0.00035** -0.00029** -0.00025* 
manufacturer (0.00014) (0.00013) (0.00013) 
Manufacturer’s experience  -0.00309 -0.00211 -0.00216 
alone (GW) (0.00515) (0.00572) (0.00571) 
Developer’s experience in  -0.02418*** -0.02333*** -0.02230*** 
CDM projects alone (GW) (0.00611) (0.00658) (0.00655) 
Cooperating experience in  -0.04976** -0.04149** -0.03971** 
CDM (GW) (0.02037) (0.01874) (0.01876) 
Spillover from the  -0.00027   
industry (GW) (0.00252)   
Turbine size (MW) 0.00160 0.01068 0.00929 
 (0.01464) (0.01481) (0.01493) 
Project size  (GW) -0.38001*** -0.34063*** -0.33709*** 
 (0.12138) (0.12296) (0.12246) 
Wind category 1 -0.13526*** -0.14092*** -0.14541*** 
 (0.02881) (0.02805) (0.02850) 
Wind category 2 -0.08587*** -0.09387*** -0.09348*** 
 (0.02759) (0.02688) (0.02706) 
Wind category 3 -0.01283 -0.01251 -0.01419 
 (0.02243) (0.01974) (0.01983) 
Foreign manufacturer 0.04596*** 0.03097* 0.03969** 
 (0.01692) (0.01607) (0.01751) 
Central SOE developer -0.01655 -0.01624 -0.01554 
 (0.01142) (0.01126) (0.01128) 
Local SOE developer 0.03405* 0.03259* 0.03183* 
 (0.02011) (0.01885) (0.01890) 
Foreign manufacturer*   -0.13107** 
cooperating experience   (0.06000) 
Province fixed effects Yes Yes Yes 
Year fixed effects No Yes Yes 
Constant -0.18107** -0.13652 -0.13711 
 (0.08414) (0.09879) (0.09880) 
    
Observations 486 486 486 
R-squared 0.660 0.685 0.687 

 
Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Knowledge spillover from the industry 
is omitted in both model (2) and (3) with year fixed effects because the sum of all the four experience variables equals 
to the total industry-wide installed capacity in a given year, which is correlated with the year dummies. 
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Table 7: Effects of Collaborating Experience on Unit Capital Cost and Capacity Factor 
 

 (1) (2) (3) (4) (5) (6) 
Dependent Variables ln(unit cost) ln(unit cost) ln(unit capital 

cost) 
ln(unit capital 

cost) 
ln(capacity 

factor) 
ln(capacity  

factor) 
       
Knowledge stock of  -0.00029** -0.00025* -0.00031* -0.00027 0.00032** 0.00031** 
manufacturer (0.00013) (0.00013) (0.00018) (0.00017) (0.00013) (0.00013) 
Manufacturer’s experience  -0.00211 -0.00216 -0.00768 -0.00772 0.00409 0.00410 
alone (GW) (0.00572) (0.00571) (0.00704) (0.00703) (0.00561) (0.00561) 
Developer’s experience in  -0.02333*** -0.02230*** -0.03393*** -0.03304*** 0.01073* 0.01046* 
CDM projects alone (GW) (0.00658) (0.00655) (0.00800) (0.00798) (0.00573) (0.00574) 
Cooperating experience in  -0.04149** -0.03971** -0.05406** -0.05252** 0.00648 0.00601 
CDM (GW) (0.01874) (0.01876) (0.02299) (0.02314) (0.01987) (0.01999) 
Turbine size (MW) 0.01068 0.00929 0.03342* 0.03221* 0.05609*** 0.05646*** 
 (0.01481) (0.01493) (0.01817) (0.01825) (0.01113) (0.01120) 
Project size  (GW) -0.34063*** -0.33709*** -0.34582*** -0.34276** 0.13304* 0.13211* 
 (0.12296) (0.12246) (0.13293) (0.13291) (0.07367) (0.07360) 
Wind category 1 -0.14092*** -0.14541*** -0.21581*** -0.21969*** 0.13652*** 0.13770*** 
 (0.02805) (0.02850) (0.02739) (0.02766) (0.03066) (0.03059) 
Wind category 2 -0.09387*** -0.09348*** -0.16919*** -0.16885*** 0.09923*** 0.09913*** 
 (0.02688) (0.02706) (0.02500) (0.02479) (0.03028) (0.03016) 
Wind category 3 -0.01251 -0.01419 -0.02476 -0.02621 -0.00723 -0.00679 
 (0.01974) (0.01983) (0.01851) (0.01852) (0.01576) (0.01576) 
Foreign manufacturer 0.03097* 0.03969** 0.03535* 0.04288** 0.00442 0.00214 
 (0.01607) (0.01751) (0.01951) (0.02138) (0.01530) (0.01611) 
Central SOE developer -0.01624 -0.01554 -0.00684 -0.00624 0.00514 0.00495 
 (0.01126) (0.01128) (0.01453) (0.01453) (0.01040) (0.01041) 
Local SOE developer 0.03259* 0.03183* 0.05485** 0.05419** -0.02825 -0.02805 
 (0.01885) (0.01890) (0.02443) (0.02451) (0.01902) (0.01909) 
Foreign manufacturer*  -0.13107**  -0.11329  0.03435 
cooperating experience  (0.06000)  (0.08382)  (0.05582) 
Province fixed effects Yes Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes Yes 
Constant -0.13652 -0.13711 -0.45304*** -0.45354*** -1.64860*** -1.64845*** 
 (0.09879) (0.09880) (0.09859) (0.09857) (0.07751) (0.07754) 
Observations 486 486 486 486 486 486 
R-squared 0.685 0.687 0.607 0.608 0.601 0.601 

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Knowledge spillover from the industry 
is omitted in all the models because the sum of all the four experience variables equals to the total industry-wide 
installed capacity in a given year, which is correlated with the year dummies. 
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Figure 1: Share of Annual Incremental CDM Wind Installed Capacity in China’s Wind 
Power  
 

 
Notes: Annual total installed capacity data comes from the CWEA’s annual reports on China’s wind power. CDM 
installed capacity data is collected from the CDM Pipeline and CDM project design documents. Due to the CDM 
registration process, the incremental installed capacity from CDM projects in 2009 is incomplete. Thus, the CDM 
share shown for 2009 may be lower than the actual share. 
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Figure 2: A Standard CDM Project Cycle  
 

 
 

Figure 3: The Trends of Project Unit Costs from 2004 to 2009 
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Figure 4: Trend of Capacity Factors in Each Year 

 
Notes: The horizontal line in the middle of each box represents the median, while the box represents 
the range between the first and third quantiles. The upper and lower horizontal lines represent the 
most extreme values which within Q3+1.5(Q3-Q1) and Q1-1.5*(Q3-Q1). Dots represent outlier 
observations. 
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Appendix 
 
Table A1 Effects of Aggregate Level Experience on Unit Capital Cost and Capacity Factor 
 

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Industrial level experience omitted 
in all models because the sum of provincial experience and industrial experience equals to the total industry-
wide capacity in a given year, which is correlated with the year dummies. 
  

 (1) (2) (3) 
Dependent Variables ln(unit cost) ln(unit capital cost) ln(capacity factor) 
    
Knowledge stock  -0.00037** -0.00042** 0.00035*** 
of manufacturer (0.00015) (0.00021) (0.00013) 
Province level experience 0.00457 -0.00296 -0.00951 
(GW) (0.00723) (0.00888) (0.00625) 
Turbine size 0.01149 0.03683** 0.05582*** 
(MW) (0.01503) (0.01858) (0.01130) 
Project size -0.32164*** -0.33291** 0.11527 
(GW) (0.12414) (0.13833) (0.07268) 
Wind category 1 -0.13557*** -0.20836*** 0.13501*** 
 (0.02839) (0.02820) (0.03142) 
Wind category 2 -0.09914*** -0.17539*** 0.10257*** 
 (0.02696) (0.02607) (0.03108) 
Wind category 3 -0.00948 -0.02110 -0.00728 
 (0.02184) (0.02033) (0.01626) 
Foreign manufacturer 0.03793** 0.04489** 0.00130 
 (0.01609) (0.01961) (0.01504) 
Central SOE developer -0.04186*** -0.08436*** 0.01498* 
 (0.01008) (0.02092) (0.00891) 
Local SOE developer 0.02352 -0.04343* -0.02511 
 (0.01862) (0.02403) (0.01863) 
Province fixed effects Yes Yes Yes 
Year fixed effects Yes Yes Yes 
Constant -0.12832 -0.41078*** -1.65687*** 
 (0.09902) (0.09795) (0.07692) 
    
Observations 486 486 486 
R-squared 0.668 0.579 0.599 
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Table A2 Learning-by-doing and Spillover Effects on Unit Capital Cost and Capacity 
Factor 
 

 (1) (2) (3) 
Dependent Variables ln(unit cost) ln (unit capital cost) ln(capacity factor)
    
Knowledge stock of  -0.00029** -0.00031* 0.00031** 
manufacturer (0.00013) (0.00018) (0.00013) 
Manufacturer’ experience  -0.01816 -0.02013 0.00547 
(GW) (0.02285) (0.02752) (0.00540) 
Developer’s experience in  -0.03938* -0.04638* 0.01178** 
CDM projects (GW) (0.02017) (0.02475) (0.00539) 
Spillover from the  -0.01605 -0.01245 0.00221 
industry (GW) (0.02444) (0.02942) (0.00464) 
Turbine size (MW) 0.01068 0.03342* 0.05580*** 
 (0.01481) (0.01817) (0.01106) 
Project size (GW) -0.34063*** -0.34582*** 0.13640* 
 (0.12296) (0.13293) (0.07297) 
Wind category 1 -0.14092*** -0.21581*** 0.13736*** 
 (0.02805) (0.02739) (0.02929) 
Wind category 2 -0.09387*** -0.16919*** 0.09945*** 
 (0.02688) (0.02500) (0.02909) 
Wind category 3 -0.01251 -0.02476 -0.00532 
 (0.01974) (0.01851) (0.01526) 
Foreign manufacturer 0.03097* 0.03535* 0.00438 
 (0.01607) (0.01951) (0.01508) 
Central SOE developer -0.01624 -0.00684 0.00486 
 (0.01126) (0.01453) (0.01019) 
Local SOE developer 0.03259* 0.05485** -0.02713 
 (0.01885) (0.02443) (0.01889) 
Province fixed effects Yes Yes Yes 
Year fixed effects Yes Yes Yes 
Constant -0.45777*** -0.64313*** -1.62209*** 
 (0.10299) (0.10847) (0.07938) 
    
Observations 486 486 486 
R-squared 0.684 0.607 0.599 

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 
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