
 

Compliance Dynamics Generated by 
Social Interaction Rules 

 
 
 

Vilen Lipatov 
 
 

CESIFO WORKING PAPER NO. 4767 
CATEGORY 13: BEHAVIOURAL ECONOMICS 

APRIL 2014 
 

 
 
 
 
 
 

An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.org/wp T 

http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.de/


CESifo Working Paper No. 4767 
 
 
 

Compliance Dynamics Generated by 
Social Interaction Rules 

 
 

Abstract 
 
We study compliance dynamics generated by a large set of behavioral rules describing social 
interaction in a population of agents facing an enforcement authority. When the authority 
adjusts the auditing probability every period, cycling in cheating-auditing occurs: Intensive 
monitoring induces compliance, but with high compliance there is incentive for lax 
monitoring; with less monitoring, compliance starts decreasing, and then there is an incentive 
to intensify monitoring. Thus, the real life phenomenon of compliance fluctuations is ex-
plained by the nature of social interaction process rather than by exogenous parameter shifts. 
For the authority committed to a fixed auditing probability, we derive a sufficient condition 
for fines to be effective means of deterrence. Our analysis can be applied, among others, to 
crime, tax evasion, safety regulations, employment and environmental protection. 
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1 Introduction

Compliance problems are pervasive in the life of mankind. Once a law is established,
the temptation to break it is there as well. That is why compliance lies at the heart
of the discipline of law and economics. Correspondingly, there is a very large body
of literature that addresses the problem of compliance both from the perspective of
the law and from the perspective of economics (and the intersection of these starting
perhaps from Becker 1968).
Within this literature, there is a growing body of research that takes into account

behavioral aspects1 of the compliance problem. In particular, social interactions
feature prominently in such models (see van der Weele 2012 for a survey of relevant
literature in economics of crime).
Most of the attention in this �eld was paid to indirect (or global) social inter-

actions, i.e. social norms, intrinsic motivation, reputation. To complement these
�ndings, we focus on direct (local) social interaction. Its analysis is exempli�ed by
seminal articles of Sah (1991), who rolls out a general framework for analyzing crime
dynamics with rational but uninformed agents, and of Glaeser at al (1996), who
explain large cross-city variance of crime rate by imitation of the behavior of neigh-
bors. In a series of controlled experiments, Cooper and Rege (2011) �nd direct social
interactions to be the likely cause of peer group e¤ects.
We theoretically contribute to the literature on direct social interactions by charac-

terizing aggregate dynamics of compliance in large populations facing an enforcement
authority, when each agent follows a behavioral rule rather than solves a complex
maximization problem. A behavioral rule speci�es the action in the current period
conditioned on the own action in the previous period(s) and any information available
about the others in the interaction group. Thus, instead of deriving behavior from
preferences2, we take (potentially observable) behavioral rules at individual level as
given and derive population dynamics that they produce.
Our agents do not explicitly form any beliefs about auditing probability or pop-

ulation share of compliance � they simply follow their rule. Using survey data in
the context of environmental regulation, Earnhart and Friesen (2013) reject the hy-
pothesis that deterrence behavior is explained by standard rational models. To the
contrary, they �nd evidence of strong in�uence of behavioral factors that they call
�experiential deterrence�and that are re�ected in our sample behavioral rules. At
the same time, each behavioral rule could be rationalized by some preference rela-
tion and some belief updating procedure that does not necessarily follow Bayes�rule.
There are both normative and positive reasons for considering non-Bayesian updating
(Epstein et al 2010). The former is the cost of information processing that makes the
simpler heuristic rules preferable over the complicated Bayesian ones; the latter is
overwhelming experimental evidence suggesting that people do not use Bayesian rule
in information processing (see e.g. Camerer 1995, Rabin 1998 for a survey; Grether

1See Bowles (1998) for a general account of endogenous preferences; Bar-Gill and Fershtman
(2005) for the analysis of how public policy may shape preferences.

2There is a growing literature that incorporates behavioral aspects in compliance problems. For
a survey on public economics experiments see e.g. Alm (2010).
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1980 for an early paper).
Our strategy is to identify a class of behavioral rules that generate similar popula-

tion dynamics and then to characterize this dynamics. For this purpose, we consider
only deterministic behavioral rules (stochastic rules naturally smoothen the evolu-
tion of behavior without changing our main �ndings) and we model social interaction
as random matching. Random matching is extensively used in evolutionary game
theory, general equilibrium theory, monetary and labor economics (see references in
Du¢ e and Sun 2007); Kandori (1992) is one of the earlier papers that use random
matching to analyze social interaction and �community enforcement�. While putting
more structure on the matching process, e.g. considering networks of agents as in
e.g. Ballester et al. (2010), would certainly add realism to our model, it would
also complicate it substantially. As considering behavioral rules is a novel approach
to modeling compliance, we opt for a simplest formulation that allows to take into
account direct social interaction.
The crucial ingredients in our setup are a single monitoring (controlling) authority

and a large population of interacting agents that have an option to comply. These
can be criminals vs. police, corrupted o¢ cials vs. anti-corruption body, �rms not
complying with quality or safety regulations vs. corresponding monitoring authorities,
polluting producers vs. environmental authority, tra¢ c violators vs. road police, free
riders vs. controllers in public transportation, etc.
The main result of the model is the cycling dynamics of auditing and compliance

generated by a class of rules that we call stabilizing. With myopic monitoring agency,
both the share of noncompliant agents and the auditing intensity exhibit �uctuations
giving rise to (stable) cycles. The system is cycling around a steady state, in which the
share of cheaters is determined by the costs and bene�ts of the monitoring authority,
whereas the auditing intensity is determined by the properties of the behavioral rule
in question. In Appendix A9 we show that this result is robust to allow for infrequent
rematching and multiperiod memory.
The intuition behind our cycling result is very simple and very robust. Since with

a behavioral rule it takes time to react to a given strategy of monitoring authority,
there will be a period of a decrease (increase) in compliance after auditing intensity
reaches su¢ ciently low (high) level. The myopic behavior on the side of the authority
leads, on the other hand, to adjustment of auditing intensity upwards (downwards)
when the compliance level is low (high). For a large class of behavioral rules, we
provide a simple su¢ cient condition for population dynamics to spiral to or away
from steady state in continuous time.
According to an urban legend, a somewhat similar dynamics emerges in the num-

ber of students enrolled in classes - when there are few high quality students the
average grade is high, attracting many lower-quality students next year when the
average grade will be low so in the following year only highly motivated students will
enroll, and so on.3 One can think of low quality students as noncompliant agents and
the teacher as monitoring authority that sends a signal about the success probability
in the course to future generations of students. In a more directly related to compli-

3I am grateful to Marco Ottaviani for this observation.
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ance context, public enforcement agencies usually have �action weeks� (or months,
etc.) in which e.g. tra¢ c violators or passengers without tickets are monitored more
intensively. The existence of such periodicity may hint at the dynamic of our type
whereby the authority is waiting for a certain threshold in the number of violations
to trigger the �action time�.4 Still another story consistent with our results comes
from the recent European experience, whereby some countries (e.g. Greece) did not
comply with �scal rules because they were largely unmonitored by European author-
ities. Once these countries found themselves on the brink of a sovereign default, the
monitoring got tightened and the widespread hope in Europe is that the compliance
with EU rules in the problematic countries is rising.5 A similar story arises from the
recent banking crisis experience: The banks were taking too much risk as a conse-
quence of, among other factors, very loose monitoring in the banking sector. After
the crisis, the monitoring activities increased substantially (e.g. creation of Single
Supervisory Mechanism in Europe) and there is a lot of indirect evidence of banks
becoming more compliant to prudent behavior.

4Consider, for instance, the following citation from the Road Safety Canada report: �Periodic
Selective Tra¢ c Enforcement Programs (STEPs) combine heightened police enforcement and public
awareness campaigns and have been important in increasing belt use across the country. During
the Canada Road Safety Week leading up to the May long weekend and Operation Impact during
the Thanksgiving weekend in October, seat belt use is a major focus for enforcement campaigns by
police services across the country.�Available at https://www.tc.gc.ca/eng/motorvehiclesafety/tp-
tp15145-1201.htm#s313, accessed on 19.02.2014

5Thanks to Aitor Erce for pointing out this regularity.
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Figure 1. Environmental compliance/enforcement
dynamics, 1998-2008. The data on EPA budget is from the

Agency�s website, http://www2.epa.gov/planandbudget/budget;
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Figure 2. Crime/enforcement dynamics, 1982-1999.
The data on violent crime rate is from Uniform Crime Reporting

statistics, the police budget per capita is in deviations from linear

trend, the raw data is from the US Bureau of Justice,

http://www.bjs.gov/index.cfm?ty=tp&tid=5, accessed on 21.2014.

Consider the dynamics on �gure 1. On the horizontal axis, we mark the US Envi-
ronmental Protection Agency (EPA) budget as a proxy for our monitoring probability
variable. On the vertical axis, we mark the ratio of judicial cases (civil or criminal)
to inspections as a proxy of our non-compliance variable. The resulting dynamics are
remarkably in line with our �ndings and, in particular, with the phase diagram on
�gure 3 presented in the section 2.3: Both noncompliance and enforcement grow �rst;
then noncompliance goes down while enforcement still grows; then enforcement goes
down, while noncomplience continues to decrease; �nally, noncompliance increases
while enforcement still decreases. A similar picture may be seen on �gure 2, where
we proxy non-compliance variable with violent crime rate in the US. We proxy the
monitoring probability by the detrended per capita budget of the police (all levels).
For the year 1992-95 this slightly deviates from our phase diagram, but otherwise
it re�ects the cyclical nature of the phenomenon as well. Clearly, these graphs do
not empirically validate our results, as there is a multitude of other factors a¤ecting
compliance; the observed �uctuations are merely motivating for our analytical work.
With an authority committed to a constant over time auditing intensity, there

is convergence to a steady state if the behavioral rule is stabilizing. We provide a
simple su¢ cient condition for the �ne to be an e¤ective deterrent in such a steady
state. Interestingly, the �deterrence hypothesis�may fail in our setup because of the
peculiarity of social interaction even if we assume that in the steady state higher au-
diting results in higher compliance. We thus introduce yet another reason (the social
interaction e¤ect) why the �nes may be ine¤ective, complementing the explanations
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discussed in the literature so far (intrinsic motivation, signaling, competition - for
details see van der Weele 2012). Further, we illustrate the applicability of our results
with (i) a low information rule that only utilizes information about detection, and
(ii) rules inspired by the literature on technology di¤usion, namely contagion, social
in�uence and social learning.
Our approach seems promising in a sense that it allows for simple characteriza-

tion of complex behavior without complicated derivations of group-dependent utility
functions6. Note that in order to formulate a behavioral rule we only need to observe
the actual behavior. In contrast, rationalizing a rule would require structural esti-
mation, which is in most cases prohibitive due to simultaneity and re�ection biases,
as outlined in Manski (2000). Instead, we may simply observe the rule and derive
the aggregate behavior from it. This might allow us to make more accurate inference
about the welfare e¤ects of various policies in the context where it was not feasible
so far.
An approach similar in spirit to ours is agent based modeling (e.g. Bloomquist

2006). The crucial di¤erence is that we qualitatively characterize general properties
of the dynamics generated by a class of rules, whereas agent base modeling exten-
sively uses simulations to get quantitative results for a particular behavioral rule. An
interesting related paper analyzing compliance dynamics in context of tax evasion is
Davis et al (2003). They use a dual approach: In the analytical model, they assume
particular forms of di¤erential equations describing the aggregate dynamics; in the
agent-based model, they generate the aggregate dynamics from individual behavior
using simulations. This dual approach clearly illustrates the gap in the literature that
we aim at �lling: We derive the aggregate dynamics from individual behavior in a
tractable analytical framework.
Agent-based modeling is often criticized on the ground that the scope of its results

is not clear. Indeed, if the analysis is carried out for a particular behavioral rule, it is
not obvious that the same results, or even in any way similar results, can be obtained
for another rule, perhaps some rule that is in action in reality. We provide a solution
to this problem: we show that if the rule picked up by an agent-based model falls into
the class of rules identi�ed here, the aggregate dynamics generated is qualitatively
similar to the dynamics that would be generated by another rule from this class.
The rest of the paper is organized in the following way. Section 2 presents our

framework of direct social interaction in compliance and states the general results
about dynamics and comparative statics. Section 3 illustrates our results with a
particular behavioral rule that we call �low information rule�. Section 4 further
illustrates the general result by applying our approach to the behavioral rules inspired
by technology adoption literature. Limitations of the model and possible extensions
are discussed in the concluding section.

6Benabou and Tirole (2011) convincingly argue that even taking account of �social preferences�
does not su¢ ce for explanation of actual behavior. They therefore develop a theory of moral behavior
based on self-inference, which can be applied to the compliance problems. We follow a di¤erent,
constructive approach: Instead of asking the question of what explains given behavior, we take
potentially observable individual behavior as given and then derive the patterns of aggregate behavior
from it.
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2 The model

2.1 Repeated social interaction

�[Many sociological] studies force us to start to kind of rethink our mental model
of how we behave,�said Duncan Watts, a Columbia University sociologist. �Public
policy in general treats people as if they are sort of atomized individuals and puts
policies in place to try to get them to stop smoking, eat right, start exercising or
make better decisions about retirement, et cetera. What we see in this research is
that we are missing a lot of what is happening if we think only that way.�7

We bring in social interaction to a simplest repeated (discrete time) setup with
minimal behavioral assumptions. The problem can be formulated as follows. In period
0 the shares of non-compliant q0 2 (0; 1) and audited p0 2 (0; 1) agents in homogenous
population (continuum of measure one) are given exogenously. Between period 0 and
period 1 the agents are randomly matched in groups of n and receive information
speci�ed by a given behavioral rule, potentially learning who got a better payo¤. In
period 1 the authority performs auditing that either maximizes its expected payo¤ in
this period (no commitment) or maximizes its long-run payo¤ (commitment). The
agents choose comply or not comply according to the behavioral rule. The �game�
is then repeated in�nitely, whereby the agents are rematched in every period (in
Appendix A9 we consider possibility of no rematching).
In the present formulation the agents are not divided into groups or audit classes.

Each may choose non-compliance, however, the authority has to prove the fact of
non-compliance, even if it knows that non-compliance takes place. Such setup is
especially appealing in application to corruption or free riding: a bureaucrat has to
be caught receiving a bribe in order to be penalized, even if it is a common knowledge
that she/he is corrupt; a passenger without a ticket will not be charged a �ne unless
she meets a controller.
Note that we cannot take a ready aggregate dynamics for the population because

of the asymmetric nature of the players: in the no commitment case the authority
is using myopic best response; the agents follow a behavioral rule. Without such
asymmetry, our game resembles emulation dynamics as it is de�ned by Fudenberg and
Levine (1998), which is known to converge to replicator dynamics under a number of
assumptions including only two interacting agents. Our aggregate dynamics does not
converge to replicator dynamics and has to be derived for each interaction rule.

2.2 The setup and general results

If the change in compliance depends on the state of the system in the previous period
in a constant fashion, the evolution of the share of noncomplying agents can be
generally represented as

qt+1 = qt + f(qt; pt); (1)

7Citation from �Social networks more powerful than thought?�by Rob Stein, washingtonpost.com,
May 26, 2008
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where t is time period. The function f(q; p) : [0; 1] 2 ! [�1; 1] is determined by how a
researcher models the compliance process. In our framework, this function is shaped
by a behavioral rule. We de�ne a behavioral rule for n people meeting between
periods as a mapping from a set of outcomes yesterday X = {compliant audited,
compliant not audited, caught non-compliant, not caught non-compliant}n into the
set of actions today Y = {comply, not comply}. We only consider deterministic rules,
so this mapping is a function.
In Appendix A9 it is shown that under a behavioral rule the function f is a

polynomial of the order at most n in each of the arguments, and hence continuous.8

We shall call the behavioral rules that imply fq(q; p) < 0 everywhere on the domain
stabilizing, as the larger the share of noncompliance, the smaller the period-to-period
increase in noncompliance (or the larger the decrease). Correspondingly, the rules
with fq(q; p) > 0 everywhere will be called destabilizing. The rules with fq(q; p) = 0
will be called monotonic, as they imply monotonic dynamics for any feasible p; q. We
do not study the rules that switch the sign of fq(q; p).
De�ne q̂ (p) : [0; 1] ! [0; 1] as a function that maps a set of possible auditing

probabilities into a set of long-run outcomes of non-compliance shares, lim
t!1

qt, when-

ever it exists given q0 2 (0; 1). De�ne also �q (p) : P ! (0; 1) as a function that
maps the set of auditing probabilities P into the set of interior steady state values
of non-compliance shares. In other words, �q (p) is an interior solution to the steady
state condition: f(�q (p) ; p) = 0. For both q̂ (p) ; �q (p) to be single-valued, we need to
restrict our attention to the rules that produce a unique interior steady state. This
will be true for almost all 2-person rules, all 3-person imitation rules (the crucial
feature of imitation rules is that the agents may not choose actions that they have
not observed in the previous period(s)), and many other rules with arbitrary number
of interacting people (examples of such rules may be found in Sections 3 and 4; for
further examples see Lipatov 2003).
The following assumptions seem reasonable and will be kept for the rest of the

paper:

Assumption 1. �q0 (p) < 0.

Steady state noncompliance is decreasing in detection, as otherwise the punish-
ment is not perceived as such by a behavioral rule. We do not want to consider the
rules that imply that our agents enjoy the �nes9.

8Our interpretation of behavioral rule as interactions within a group is not unique (we could
think of an agent simply learning some information from n� 1 other randomly drawn agents), but
it gets particular appeal as we add possibility of no rematching in the Appendix A9. I am thankful
to Sebastian Krautheim for this observation.

9There is a large literature in both criminology (Akers 1990, Doob and Webster 2003) and eco-
nomics (Frey and Jegen 2001) explaining why the �deterrence hypothesis�might not hold. Van der
Weele (2012) gives three possible reasons for the potential failure of this hypothesis: (i) expressive
law and informal sanctions; (ii) signaling �tougher�type, (iii) promoting competition in illegal activ-
ities. The �rst reason is intimately related to the intrinsic versus extrinsic motivation discussed in
e.g. Gneezy and Rusticcini (2000), whereby higher detection probability may crowd out voluntary
or social-norm-induced compliance. We abstract from all such considerations in our model in order
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Lemma 1. Under Assumption 1, for stabilizing rules fp(q; p) < 0 everywhere on the
domain; for destabilizing rules fp(q; p) > 0.

Proof. The proof is presented in Appendix A1.

The following proposition describes the period-to period evolution of the share of
noncomplying agents.

Proposition 1. Consider the dynamics of the share of non-complying agents q for a
behavioral rule that satis�es the Assumption 1. For a stabilizing rule,
if pt 2 [0; �q�1 (1)], then qt+1 > qt;
if pt 2 [�q�1 (0) ; 1], then qt+1 < qt;
if pt 2 (�q�1 (1) ; �q�1 (0)), then qt < �q (pt) =) qt+1 > qt, qt > �q (pt) =) qt+1 < qt.
For a destabilizing rule the inequalities are reversed.

Proof. We shall prove the statement for the stabilizing rules, as it is completely
analogous for the destabilizing ones. From (1) qt+1 > qt () f(qt; pt) > 0. For
an interior solution ( pt 2 (�q�1 (1) ; �q�1 (0))) we have qt < �q (pt) =) f(qt; pt) >
f(�q (pt) ; pt) = 0, since by Lemma 1 fq(q; p) < 0 (the rule is stabilizing). Cor-
respondingly, qt > �q (pt) =) f(qt; pt) < 0 () qt+1 < qt. For a corner solution
q̂ (p) 2 f0; 1g. As fq(q; p) < 0, either f(0; p) < 0 and qt+1 < qt, or f(1; p) > 0
and qt+1 > qt. Fix q 2 (0; 1). For pj�q�1 (1) � p < �q (q) ; f(q; p) > 0. By
continuity 9" > 0jf(q; p � ") > 0. Now suppose 9p < �q�1 (1) ; qjf(q; p) < 0.
Then 9p0 < �q�1 (1) ; q0jf(q0; p0) = 0 that contradicts corner solution. Thus,
f(q; p) > 0. The proof for pt 2 [�q�1 (0) ; 1] follows the same lines.

We can see that for stabilizing rules with small (large) values of auditing prob-
ability the non-compliance is increasing (decreasing). Unexpectedly, in the interval
of auditing probability values that result in an interior solution, the change in the
proportion of noncomplying agents is negatively related to their number. This �anti-
scale� e¤ect is explained by the high enough detection probability, for which the
caught noncomplying agents contribute more to the increase in the proportion of the
compliant agents, than the compliant agents themselves.
Intuitively, Proposition 1 illustrates that stabilizing rules generate dynamics that

conforms to the common wisdom of e¤ective enforcement: If auditing is high, com-
pliance increases in time, and visa versa. Interestingly, for destabilizing rules this
intuition does not work, even though assumption 1 postulates the conventional rela-
tion (high enforcement - high compliance) in steady state. Paradoxically, the most
sensible policy for the monitoring authority facing a destabilizing rule is to �x p = 0
and let the noncompliance monotonically fall over time.
The following remark will allow us to get a better feeling about the dynamics

generated by the rules:

to focus on the e¤ect of direct social interactions. Interestingly, this does not preclude the possible
failure of �deterrence hypothesis�in our setup, as shown in section 2.3.
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Remark 1. I¤ a behavioral rule is stabilizing and 9�q (p) ; jf (q; p)j < jq � �q (p)j 8q,
then for a �xed detection probability p the share of non-compliant agents q
monotonically converges to �q (p).

Remark 2. If a behavioral rule is stabilizing and 9�q (p) ; jf (q; p)j > jf (q + f (q; p) ; p)j 8q,
then for a �xed detection probability p the share of non-compliant agents q con-
verges to �q (p).

The latter remark is a familiar contraction mapping; both remarks say that if
the dynamics do not jump too vividly from period to period, it has to exhibit some
convergence.
As for the monitoring/enforcement authority, it maximizes its expected payo¤ for

any given learning rule in the population by choosing an auditing intensity. Further
we consider two cases for the behavior of the authority. If it is unable to announce
its auditing probability and keep it forever, our dynamics have two dimensions: an
already derived one for q and another one for p. We start, however, with a simpler
case, when the auditors can credibly commit to a certain constant in time strategy
(probability), and hence the dynamics are collapsing to one dimension.

2.3 Results: Commitment

Assume that the authority commits to a certain auditing probability p once and
forever (this corresponds to the principle-agent framework in static games). This
setup may seem unrealistic, but we have at least three reasons to consider it. Firstly,
there is a well established tradition in the tax compliance literature (Andreoni et
al 1998) that deals with committed tax authority. Secondly, if the authority could
choose whether to commit or not, it would commit, as this allows for a weakly higher
payo¤. Thirdly, commitment models in the literature are usually criticized due to
the standard result of full compliance of audited taxpayers. Such criticism does not
apply in our framework, so our analysis of commitment case seems justi�ed.10

Under commitment, the authority chooses p to maximize its steady state payo¤

(1� q̂(p))V + pq̂(p)F � cp: (2)

Here V > 0 is the value of compliance for the authority, F > 0 is the value from
detection and punishment, and c > 0 is marginal auditing cost, assumed constant
(not dependent on p) for simplicity. The value of noncompliance is normalized to zero.
What exactly we mean by value in this setup depends on the application and objective
of the monitoring authority. For instance, suppose that the objective is maximizing
social welfare and the application is environmental protection (say, �rms are audited
for the amount of emissions). Then the value of compliance is the social welfare
attainable under lawful amount of pollution. The value of detection/punishment is
the value of compliance plus the social bene�t of public funds obtained from �nes

10In the Apendix A10 we show that the results of this subsection still hold in steady state of the
setting where the monitoring authority is maximizing the payo¤ over the whole dynamic path rather
then the steady state payo¤ only.
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minus any social costs that a �ne might impose, perhaps in the form of reduced trust
in the society. The value of noncompliance is the social welfare attainable under
unlimited pollution.
Further, we assume linear monitoring costs; values of compliance, noncompliance

and detection are independent of pervasiveness of noncompliance and auditing prob-
ability. We do it for simplicity as we want to focus on the e¤ect of social interactions.
The �rst order condition for an interior solution is

(p��q0(p�) + �q(p�))F = �q0(p�)V + c: (3)

Here the di¤erence between the two steady state non-compliance functions is illus-
trated. Whereas q̂(p) describes the steady state for any admissible value of auditing
probability, �q(p) only characterizes interior steady state, and thus excludes all the
values of p that result in full compliance or full disobedience. The condition (3) is a
familiar equality of marginal expected bene�t (left hand side) and marginal expected
cost (right hand side) of auditing an additional agent. The second order condition is
then

d := (p��q00(p�) + 2�q0(p�))F � �q00(p�)V < 0:
To sharpen presentation, we will further limit our attention to the case of no relation
between the values of V and F , i.e. when the following assumption is satis�ed:

Assumption 2. The value of compliance V and the value of punishment F are
independent, V 0 (F ) = 0.

The comparative statics for the interior solution11 gives

dp�

dc
=

1

d
< 0; (4)

dp�

dF
= �p

��q0 + �q

d
; (5)

where we use �q and �q0 to stand for the value of these functions at p� for the ease of
exposition.
Higher auditing costs have unambiguously negative e¤ect on steady state audit-

ing probability and hence positive e¤ect on steady state non-compliance (recall that
�q0(p�) < 0 by Assumption 1). The e¤ect of the �ne12 is ambiguous and depends on
the detection-probability-elasticity of steady state noncompliance, " (p) := � �q0(p)

�q(p)
p. If

" (p�) < 1, the �deterrence hypothesis� is con�rmed for independent values of pun-
ishment (�ne) and compliance, that is higher �ne increases compliance. However, if
" (p�) > 1, then increasing the �ne may lead to a drop in compliance. The intuition
is analogous to that in how a price change a¤ects revenues depending on the demand

11Note that these conditions do not hold on the border.
12Strictly speaking, it is not granted that the e¤ect of the �ne has the same direction as the e¤ect

of the value of detection and punishment. However, for revenue maximizing authority it is true.
It is also true for social welfare maximizing authority, if the increase in the bene�t of public funds
provided by the �ne is larger than the increase in the social costs of this �ne.

11



elasticity. Indeed, from (2) the e¤ect of a change in the value from detection and
punishment on the objective function of the authority is, by envelope theorem, the
share of agents caught cheating in steady state, p�q̂(p�). This share is increasing in
auditing probability i¤ " (p�) < 1. Increase in F exerts upward pressure on pq̂(p) (de-
tection and punishment is more attractive), and this is transferred into an increase in
p�, or, equivalently, decrease in �q (p�) i¤ the steady state noncompliance is inelastic.
To sum up, the following proposition characterizes the e¤ect of a change in en-

forcement.

Proposition 2. With a committed monitoring/enforcement authority and assump-
tions 1, 2 satis�ed, dp

�

dF
> 0 if and only if " (p�) < 1.

Proof The proposition follows directly from (5) under assumptions 1, 2.

The proposition actually re�nes the requirement for a behavioral rule to result
in the �normal�behavior. Abstracting from any potential relation between the value
of compliance and the value of �ne, it states that the detection-probability-elasticity
of steady state noncompliance should be smaller than one, " (p�) < 1, in order for
the rule to support the e¤ectiveness of the �nes. Correspondingly, if " (p�) = 1,
changing severance of punishment has no e¤ect on compliance; if " (p�) > 1, stricter
enforcement is detrimental for compliance.
Though the failure of �deterrence hypothesis�has recently been discussed in the

literature extensively (see van der Weele 2012), our discussion indicates a novel chan-
nel through which enforcement may be rendered ine¤ective, namely social interaction
of agents following simple behavioral rules.
Finally, a note on dynamics, though one-dimensional, is in order for the committed

authority case. From Proposition 1 and a �xed detection probability the following
corollary is immediate:

Corollary 1. For a stabilizing rule, the population dynamics is characterized by
convergence to a steady state in case of committed authority.

This result is reminiscent of Sah�s (1991) �nding of the existence of locally stable
steady states in a setting where rational agents learn about the probability to be
punished for criminal behavior despite the fact that �past crime breeds future crime�.

2.4 Results: Myopic authority

No commitment and myopic behavior may be good assumptions for the compliance
setting for at least three reasons. Firstly, the resources for monitoring activity are
allocated by self-interested politicians who usually have short-term populist goals.
Second, monitoring authorities often have neither capacity nor information to look
far in the future; hence, they exhibit myopic behavior. Third, even if the decision
maker has a long-term goal in mind, the actual decisions are not usually based on a
formal model, but contain a lot of �expert judgment� that is not free from human
biases, including myopia.
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A myopic authority decides on the optimal auditing rule in every period, assuming
that the distribution of the agents (compliant vs. noncomplying) has not changed
from the last period: Eqt+1 = qt (�ctitious play). A justi�cation of such assump-
tion may be that the authority does not know the behavioral rule and hence cannot
compute f (pt; qt) to make a more accurate prediction about the share of cheaters in
the next period. Alternatively, we could assume Eqt+1 = qt + f(pt; qt) = qt+1, but
that does not change anything below as long as the authority only makes one period
decisions (by the time authority decides on pt+1, qt+1 is �xed by the previous decisions
and the behavioral rule). Thus, the crucial for this setting is myopy of the authority
and not its belief about the future state.
The expected payo¤ of the authority is determined by (2), where q̂ (p) is sub-

stituted by qt. Maximizing the expected payo¤, we get the following best response
strategy:

BR (qt) =

�
0; if qt < �;
1; if qt > �:13

(6)

where � is the level of compliance that induces switch of best response from zero
to one or back:

� =
c

F
: (7)

As the authority is very unlikely to jump from not auditing anybody to auditing
everybody and back, we explicitly augment the choice of the enforcement agency
with an inertia variable14:

pt+1 = �BR(qt) + (1� �)pt; (8)

where � determines the speed of adjustment; BR is the best response function, which
is de�ned above as the payo¤ maximizing p given the belief about the distribution
of the agents. With � ! 1; we are back to the case of jumping of the auditing
probability from 0 to 1; with � ! 0; the probability of audit stays very close to an
initial level forever15.
Combining equations (6) and (8) allows us to summarize the period-to-period

dynamics of detection probability in the following lemma:

Lemma 2. If the enforcement authority plays a myopic best response with inertia
on a population of imperfectly compliant agents, then pt+1 > pt, if qt < �;
pt+1 < pt, if qt > �.

14the inertia assumption is common in the literature on learning and evolution - see e.g. Fudenberg
and Levine (1998, p. 31). Convex cost of auditing would have a similar smoothing e¤ect (see
Appendix A.3).
15We can also consider � to be adaptive to the audit bene�t-cost ratio: � = ��

�
q
�

�
.The ratio is

increasing in q, so if �� (:) is an increasing function, inertia gets less pronounced at higher values of
non-compliance. If �� (:) is a decreasing function, the opposite is true. In either case, the dynamic
patterns do not change much from the case of � being a constant and can still be characterized by
the same phase diagram.
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Intuitively, the myopic best response in our setup transforms into a simple rule
for the authority: if the compliance is below some threshold, increase the auditing; if
the compliance is below this threshold, decrease the auditing.
An interior steady state is described by the following pair:

qss = �; pss = �q�1 (�) : (9)

In Appendix A11 we show that such a steady state is unstable. Instead, our sys-
tem generates steady cycles that are stable, if the behavioral rule is stabilizing and
fq > �2. The dynamics of the system for any behavioral rule under consideration
(stabilizing or destabilizing) is captured by the phase diagram (�gure 3).

Figure 3. Phase diagram.

We can see that an interior steady state is the intersection of the horizontal con-
stant auditing line q = �1 and downward sloping constant compliance line q = �q (p).
These lines split the auditing-compliance simplex into 4 parts, which we can char-
acterize with the help of Proposition 1 and Lemma 2. For a stabilizing rule, we
have

� the south-west: non-compliance is increasing and auditing is decreasing.

� the north-west: non-compliance is increasing and auditing is increasing.
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� the north-east: non-compliance is decreasing and auditing is increasing.

� the south-east: non-compliance is decreasing and auditing is decreasing.

Intuitively, convergence a là remark 2 cannot be achieved in continuous time, if
the detection probability is changing discretely. When the dynamics come too close
to the steady state, a discrete shift pushes it away. For example, on the unit square
with p and q dimensions, consider a point (p; �) such that p is su¢ ciently close to pss.
From this point, the dynamic will jump to one of the points (p; ���). But from
this point, there is a discrete jump in auditing probability, which will overshoot pss.
As a result, we can observe stable or unstable cycles.
To avoid the technical details presented in Appendix 11, we further focus on a

continuous time approximation of our discrete time model. The following proposition
shows that in continuous time the system converges to a steady state for a wide class
of the behavioral rules.

Proposition 3. Consider a behavioral (learning) rule characterized by the transition
function qt+1 = qt + f(qt; pt) with jfi(qt; pt)j < 1; i = q; p. With myopic
authority, the interior steady state is stable in continuous time, if the learning
rule is stabilizing, fq(q; p) < 0.

Proof. The proof is presented in Appendix A2.

Comparative static results for the steady state follow trivially from (9):

dqss

dc
> 0;

dqss

dF
< 0:

Correspondingly, under Assumption 1,

dpss

dc
< 0;

dpss

dF
> 0:

Thus, the auditing probability in steady state is decreasing in costs of auditing and
increasing in the value of punishment.
Interestingly, the myopic authority does not seem to leave space for the noncon-

ventional e¤ect of tightening enforcement - indeed, dq
ss

dF
is unambiguously negative for

any parameter values. Note though that the system may be far from steady state,
and an increase in F may either have very little e¤ect on period-to-period compli-
ance dynamics, or even result in a lower compliance in the next period. This is best
illustrated on the phase diagram above.
To summarize our �ndings about the dynamics, we present the following corollary

of Proposition 1 and Lemma 2:

Corollary 2. Consider a stabilizing behavioral rule that does not �jump�too much
in the sense of remark 2. The population dynamics is characterized by stable
clockwise cycles around a steady state in case of no commitment.
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Our result about cycles is remarkably in line with Cressman et al. (1998), who
applied evolutionary dynamics to a game between asymmetric populations (criminals
and home-owners). In their setup, the analogy with predator-prey dynamics is direct.
We show that their result extends to many other situations, in which enforcement side
cannot be modeled as a population, but rather as a (unable to commit) monitoring
authority.
What horizon an enforcement authority has is a matter of a particular application.

While many government agencies may have a natural inclination to short-term plan-
ning because of political cycle, non-governmental not-for-pro�t organizations, central
banks and international bodies may have more long-term concerns.

3 Example: low information rule

3.1 Description

Suppose m + 1 people meet (and m is substantially larger than 2). Consider the
following rule. For a not caught agent: if more than k� caught agents are observed,
play comply in the next round, if less or equal - play not comply; for a caught agent:
play comply. The intuition behind the rule is straightforward: an agent gets scared
and chooses honesty, if she is caught, or if she observes more than k� of other caught
agents.
This is a behavioral rule that requires minimal information about the individual

behavior, and namely only whether he/she was caught not complying. We can assume
that the availability of this information is assured by the monitoring authority for the
purpose of deterring the others. This is bene�cial for the monitor, if agents get scared
observing somebody punished16. Since this rule does not require the knowledge of
any characteristics of meeting agents, it can cover groups of substantial size, e.g.
colleagues at a single �rm or even the members of the same profession. Then the ease
of information dissipation will be re�ected in the group size in our model, and we can
see how it in�uences compliance and auditing.
The probability to observe less or k� caught individuals is de�ned by cumulative

binomial distribution function

Pr(k � k�) =
k�X
i=0

b(i;m; pq);

b(i;m; pq) : =

�
m

i

�
(pq)i (1� pq)m�i :

Then cheating is evolving according to17

qt+1 = (1� qtpt) Pr(k � k�): (10)

16For the empirical motivation of this assumption, see Rincke and Traxler (2011) in the context
of compliance with TV license fees in Austria; Galbiati and Zanella (2012) in the context of tax
evasion in Italy. Both studies �nd that audits generate substantial social multipliers.
17The existence result for independent random matching is provided by Du¢ e and Sun (2007).
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Though the rule is stabilizing (we show that formally in Appendix A4), the prob-
lem with its dynamics is that once the system comes close to extreme values of q (0
or 1), it is jumping between �almost all cheating�and �almost all honest�states in
every period. This problem obviously stems from an �epidemic�nature of the speci-
�ed principle: once there are very many cheaters, almost everybody meets a caught
cheater, and then all those switch to playing comply. But once almost everybody is
playing comply, almost nobody meets a caught cheater, and then almost everybody is
playing not comply. Proposition 3 still applies, as continuous time naturally smoothes
the jumping described above.
The usual method to make the dynamics smoother is to introduce some kind of

inertia into the system, just like it was already done from the side of the monitoring
authority. So, let us say that with probability � every unpunished agent changes
his/her action according to already speci�ed rule, and, correspondingly, with prob-
ability 1 � � plays the same action as in the previous period. As before, punished
agents switch to compliance with probability 1, and thus do not exhibit any inertia.
Then in every period (1 � �)(1 � p)q + �q(1 � p) Pr(k � k�) cheaters remain

cheaters plus �(1 � q) Pr(k � k�) compliant people switch to non-compliance. The
dynamics is described by

qt+1 = qt(1� pt)(1� �) + �(1� qtpt) Pr(k � k�): (11)

For small enough values of � it converges to a steady state (cycle in discrete time)
rather than jumps between two extreme values. For simplicity we further consider the
case when observing one caught individual is enough to deter from evasion (k� = 0).
The dynamics is then

qt+1 = qt(1� pt)(1� �) + �(1� qtpt)m+1 (12)

3.2 Properties

As stated by corollary 2, with myopic authority we again observe cycles around the
steady state. The position of steady-state noncompliance curves is determined by
two factors: inertia in decision making � and a number of people to meet m. Notice,
however, that even for p ! 1 cheating is not eliminated completely. Indeed, for
pt = 1, qt+1 = �(1 � qt)m+1; so that q = 0 only for � = 0; which is impossible. This
seemingly strange result stems from the poor information the individuals possess: if
nobody is cheating, nobody is caught, so in the next period � of individuals will cheat.

Proposition 4. For low information rule with myopic monitoring authority, the
steady state auditing is decreasing in m and �, dp

ss

dm
< 0, dp

ss

d�
< 0.

The proof is presented in Appendix A5. Intuitively, the larger the interaction
groups are (m), the more precisely the number of occurrences in them re�ects the
population auditing, the less is actual steady state auditing that is required to main-
tain compliance rate of c=F . The size of interaction group can be also thought of as
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the speed of information dissipation: the faster information is spread in the popula-
tion, the less e¤ort is needed from the monitoring authority.
The smaller inertia (�) also reduces the e¤ort of the authority in the steady state.

Again, smaller inertia means that new information is faster transferred into action,
so that monitoring becomes a more e¢ cient deterrent.
With committed forward-looking authority, noncompliance may decrease or in-

crease over time depending on whether qt > q̂ (p�) or the opposite, according to the
Proposition 1. dp

�

d�
has an arbitrary sign. Increasing the number of people met brings

about less auditing following the same intuition as in no commitment case. There is
however an important limit to the applicability of this intuition to the commitment
case. Namely, it may not work if the tax authority cares about punishment per se
too much relative to compliance, i.e. if the value of compliance for the authority V is
smaller than the expected value of punishment p�F . Formally, we have the following
proposition:

Proposition 4a. For low information rule with committed monitoring authority, the
steady state monitoring is decreasing in m, dp

�

dm
< 0, if V > p�F and p� is not

too large.

The precise meaning of �not too large�is provided in the proof of proposition 4a,
presented in Appendix A5.

3.3 Rationalizability

In the following we show that low information rule can be generated by utility
maximization. Consider a rational model similar to that of Sah (1991), but tak-
ing into account some psychological features like limited memory, eigenbias and
fear. Denote the payo¤ from compliance Vc, the payo¤ from non-compliance if not
caught Vn and the payo¤ from non-compliance if caught Vj, Vn > Vc > Vj. Then
u := (Vn � Vc) = (Vn � Vj) is the �relative payo¤ to noncompliance�. Analogously to
Benabou and Tirole (2011) (of course, the context and the interpretation are com-
pletely di¤erent), de�ne v as the agent�s perception about pq, the probability to be
punished given that she is not compliant,

v =

�
vH with probability �
vL with probability 1� � ; (13)

with vH > vL. Absent fear and limited memory, the agent will choose compliance i¤
u � Ev.
Denote the actual choice to comply or not in period t by at, which takes the

value 0 if non-compliant and value 1 if compliant. With probability � unpunished
agent remembers her belief �; with complementary probability 1� � she forgets her
belief and simply plays the same action as in the previous period, at+1 = at. The
punished agent is scared for the next period and has a large (psychical) disutility of
non-compliance, so that the only rational choice for her is to comply, at+1 = 1. A not
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punished agent who remembers her belief updates it conditioning on the last observed
action of her own and those of her social interaction circle.
The trivial updating procedure rationalizing our rule is then �t+1 = 1 if k � k�

and �t+1 = �t otherwise, but any procedure of the type �t+1 = � (�t; k), where
� : [0; 1] � N ! [0; 1] is an increasing function of both arguments will do. Then,
if we choose u in a way that u < Ev for � = 1 and u > Ev for any � : � < �� for
some �� � 0, we are almost done. To complete the characterization, set �0 < ��, an
expected-payo¤-maximizing agent with evolution of beliefs described above chooses
compliance either if she was caught or if she observed at least k� caught agents, in
case she retains her memory. With the memory loss, she chooses compliance if and
only if she chose it in the previous period. Thus, the payo¤s and beliefs speci�ed
rationalize the low information behavioral rule.
Alternatively, if we want to stick to Bayesian updating, assume that agents who

remember do so about their prior belief � only, but not about their posterior belief.
Then in each period their posterior subjective probability to be punished depends on
the number of observed punished people k in the following way:

v =

(
vH with probability �b(k;m;vH)

�b(k;m;vH)+(1��)b(k;m;vL)
vL with probability (1��)b(k;m;vL)

�b(k;m;vH)+(1��)b(k;m;vL)
:

Clearly then

Ev =
vH�b(k;m; vH) + vL (1� �) b(k;m; vL)
�b(k;m; vH) + (1� �) b(k;m; vL)

: (14)

In Appendix A6 we show that this is motonically increasing in k from vmin � 0 to
vmax � 1. Hence, for any 0 < k� � m we can specify u, vL and vH in such a way that
u < Ev(k�) and u > Ev(k� � 1): Thus our payo¤s and beliefs, updated every time
from the same prior in Bayesian fashion, rationalize the low informational rule.

4 Relation to technology adoption theories

Among others, availability of concealment technology may serve as a reason for non-
compliance. Indeed, in some contexts (tax avoidance being a leading example18)
blunt non-compliance may be detected immediately. To have a considerable chance
of non-detection, the agents need access to concealment expertise. In such cases,
our behavioral rule may have a lot in common with the technology adoption process,
whereby agents adopt the non-compliance strategy for some reason.
Young (2009) analyzes population dynamics generated by three classes of innova-

tion di¤usion theories: contagion, social in�uence and social learning. In this section
we specify behavioral rules motivated by each of these theories. Due to speci�city
of compliance problem, we have to allow that there may be switches and reversal in
the strategy to be adopted19. We show then that population dynamics generated by
these rules in our context exhibits the patterns predicted by our model.
18See Lipatov (2012) for the analysis of situations in which concealment technology is provided

by a distinct entity.
19The notion that the strategy to adopt may be changing over time (and indeed reversed) is not
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4.1 Contagion

The idea of contagion comes from the literature on epidemics: people adopt a new
strategy simply by coming in contact with those who followed this strategy. In our
context, we have to make an assumption on which strategy is contagious. One way
to do it is to say that if the auditing probability is above some threshold, compli-
ance is imitated; otherwise non-compliance is contagious. Then only compliant and
noncomplying are relevant types, and the following table summarizes the shares of
groups with k compliant agents in the population together with their choices for the
next period:

types met share contagion if p < �p contagion if p > �p
all compliant (1� q)n compliant compliant

k compliant
�
n
k

�
(1� q)k qn�k �k become noncompliant � (n� k) become compliant

all noncompliant qn noncompliant noncompliant

The period-to period dynamics is then

qt+1 =

� Pn�1
k=0

�
n
k

�
(1� q)k qn�k �k+n�k

n
; if p < �p;

1�
Pn

k=1

�
n
k

�
(1� q)k qn�k �(n�k)+k

n
; if p > �p:

(15)

In the Appendix A7 we show that this implies

fq (q; p) =

�
�� (1� ntn�1) ; if p < �p;

�
�
n (1� t)n�1 � 1

�
; if p > �p:

(16)

Despite the fact that this contagion rule is converging to stabilizing only in the
limit of large n (for �nite n, fq (q; p) < 0 only for q 2

�
n�

1
n�1 ; 1� n�

1
n�1

�
), the dy-

namics generated has the same patterns as outlined by Propositions 1, 3 for stabilizing
rules. Namely, just like in Proposition 1,

� if pt 2 [0; �p], then qt+1 > qt;

� if pt 2 [�p; 1], then qt+1 < qt.

Proposition 3 also applies as long as qSS 2
�
n�

1
n�1 ; 1� n�

1
n�1

�
, because stabil-

ity property of the rule is used in its proof only locally, around steady state. The
intuition about discrete time dynamics is also intact: for low auditing probability
non-compliance is contagious, so the share of noncomplying agents monotonically in-
creases. Once this share reaches �, auditing probability starts increasing, and once
the auditing hits �p, compliance becomes contagious, so the share of non-compliant
agents starts shrinking. Thus, we observe cycles described by Corollary 2.

new to the literature on adoption. For a recent example, see Buera et al (2011), where governments
learn whether market-oriented or interventionist strategy is preferable.
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A variation of this could be that whereas non-compliance needs special knowledge
and therefore is slow to disseminate, the compliant behavior may spread instanta-
neously20. Then corresponding part of the law of motion is simply

qt+1 = q
n; if p > �p:

Thus, all the properties described above are preserved, only compliance is now faster
to react to su¢ ciently high auditing probability.

4.2 Social in�uence

The idea behind social in�uence is that of popularity. The decision to adopt non-
compliance is then based not on how good or desirable it has proven to be, but rather
on how many peers have adopted it. There exist a threshold k� � 0 (called the social
threshold) such that the agents adopt (with probability �) as soon as k� or more
agents in the group have already adopted. This is similar to our low information rule,
only applied not to the event of punishment, but to the compliance/noncompliance
decision. Whereas in some applications (e.g. crime) it is reasonable to assume that
the information about punishment, but not about undetected non-compliance, is
available, in other applications (e.g. violation of tra¢ c rules) it is reasonable to
assume that punishment is not observed in the group, but compliance choice is known.
We again have compliant/non-compliant as relevant types and

types met share in�uence if p < �p in�uence if p > �p
all compliant (1� q)n compliant compliant

k < k�; (n� k < k�)
�
n
k

�
(1� q)k qn�k no change no change

k > k�; (n� k > k�) -"- �k become noncompliant � (n� k) become compliant
all noncompliant qn noncompliant noncompliant

The period-to period dynamics is then

qt+1 =

� Pk��1
k=0

�
n
k

�
(1� q)k qn�k n�k

n
+
Pn�1

k=k�

�
n
k

�
(1� q)k qn�k �k+n�k

n
; if p < �p;

1�
Pn

k=n�k�+1
�
n
k

�
(1� q)k qn�k k

n
�
Pn�k�

k=1

�
n
k

�
(1� q)k qn�k �(n�k)+k

n
; if p > �p:

Clearly, for k� = 1 we are back to the contagion rule. There is no qualitative change
in the dynamics. Since we simply change the weights on some of base Bernstein
polynomials, di¤erent thresholds span a family of rules ranging from contagion to
status quo. The latter is another extreme, whereby social threshold is all agents in a
group, k� = n:

f (q; p) =

� Pn�1
k=0 Bk;n (t)

n�k
n
� 1 + t; if p < �p;

t�
Pn

k=1Bk;n (t)
k
n
; if p > �p:

20Harris and Lopez-Valcarcel (2008) provide empirical evidence from cigarette smoking that the
social in�uence may be asymmetric. In their study, a smoking sibling raises the probability to
smoke signi�cantly more than a non-smoking sibling lowers it. Mocan and Bali (2010) �nd evidence
of asymmetric response of crime to changes in the unemployment rate.
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In other words, f (q; p) = 0. With higher k�, f (q; p) becomes smaller by absolute
value at every point in the domain up to the limit in which it is zero. Thus, with the
social in�uence rule, we will see slower convergence and smaller cycles than with the
contagion rule, otherwise the pattern remains the same.

4.3 Social learning

Social learning refers to a vast family of models that assume that the decision to
adopt follows from rational evaluation of evidence about costs and bene�ts of the
adoption. The assumptions of such models vary a lot, but there is considerable em-
pirical evidence that learning from the experience of others does occur21. Following
the logic of social leaning models, we assume that the decision to switch to compli-
ance/noncompliance is made judging by its expected payo¤.
In a little abuse of notation, denote compliance payo¤ Vc; non-compliance payo¤

in case not detected Vn; non-compliance payo¤ in case detected zero (normalized),
0 < Vc < Vn. In case the detection probability p were known, the uncomplicated
(without self-image or other-regarding concern) agents would simply choose compli-
ance whenever Vc > (1� p)Vn. If the probability is unknown, an agent forms a belief v
about it as described by (13) with vH > vL and expectation being �v = �vH+(1� �) vL.
Then, an agent chooses compliance whenever Vc > (1� �v)Vn.
The belief may be formed in many ways, using any information available about the

members of the group. One simple case, which is in a sense the opposite to contagion
and social in�uence, is when the information about compliance/non-compliance is not
used, and only information about monitoring is available. Namely, each agent knows
the proportion of the monitored agents in his group and uses it as a belief about the
probability of auditing. This is not interesting �all dynamics depend on p only.
Instead, consider a rule according to which everybody forgets their previous beliefs:

those who were non-compliant think that they believed that v = vL with probability
1 and those who were compliant think that they believed v = vL with probability 1.
To update this belief, an agent uses the number of audits in her group. The updating
procedure can be speci�ed so that for su¢ ciently small number or a su¢ ciently large
number of audits everybody is convinced to switch to non-compliance or compliance,
correspondingly. For some number of audits in a group, the update may result in a
status quo.
The number of non-compliant in a group is independent of the number of audited

in this group because of random auditing assumption. Thus, the population shares of
these groups may be formulated as in the following table (l is the number of audited

21For the references to both theoretical and empirical literature on social learning see Young
(2009), p. 1909. A curious recent piece of evidence directly relevant to compliance is learning to use
steroids in baseball, analyzed in Gould and Kaplan (2011). They also �nd that the learning e¤ect
disappears after the introduction of drug testing.
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agents in the group):

types met share not comply
all not audited (1� p)n all

l � l1
�
n
k

�
(1� q)k qn�k

�
n
l

�
(1� p)n�l pl all

l1< l < l2 -"- n�k
n

l � l2 -"- none
all audited pn none

Here, l1 is the maximal number of audited agents in a group that induces a pre-
viously compliant agent to switch to non-compliance; l2 is the minimal number of
audited agents in a group that induces a previously noncomplying agent to switch to
compliance. The following example of a simple belief updating procedure can rational-
ize such behavior: the previously compliant update their belief to � = (1 + l=n) =2;
the previously non-compliant update their belief to � = l= (2n) (simple average of
prior and the share of audited agents in the group).
In Appendix A8 we provide explicit expressions for the thresholds l1 and l2. We

also show that the derivative we are interested in is

fq (q; p) =

l2�1X
l=l1+1

�
n

l

�
(1� p)n�l pl � 1: (17)

Thus, our social learning rule is stabilizing. If also assumption 1 is satis�ed, then all
our propositions and corollaries apply in this case. In the appendix we show that the
thresholds can be chosen in a way to satisfy assumption 1.

5 Conclusion

The model presented in the paper is designed to capture a number of features of reality,
which were underrepresented in the literature on compliance. These features are
social interaction, poor knowledge of auditing probability, asymmetry in the behavior
of two parties under consideration (population of agents vs. single authority), and
intertemporal nature of the compliance decision. The interaction in the model is
within groups to which individuals are assigned by random matching. Once in the
group, a speci�c type of the individual (her compliance and detection history) and the
types of other group members determine which action will be taken in the next period.
Thus, agents follow some behavioral rule without solving complicated maximization
problems.
The model allows us to identify a class of behavioral rules that result in cycling

compliance-auditing dynamics, if the authority is not able to commit. When com-
mitment to a �xed auditing probability is an option, we identify the class of rules
for which compliance converges to an interior steady state. In such a steady state,
�nes may not be an e¤ective deterrence simply because of social interaction, and not
necessarily for other reasons discussed in the literature so far.
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Our model is a �rst step towards providing theoretical background for agent-based
modeling and solid microfoundations for assumptions on aggregate population dy-
namics. Clearly, further research is needed to incorporate heterogeneous population,
various auditing classes and non-random group formation in our model. Aliprantis et
al (2007) consider a heterogeneous population in the framework with random pairwise
matching (into groups of size n = 2). To the best of our knowledge, no results are
available so far for groups of larger size.
In general, the social interaction approach to compliance with simple behavioral

rules reopens a whole bunch of policy issues. Are the recommendations of equilibrium
theory valid, if the system does not converge to equilibrium? Are some changes in the
existing policy worth undertaking, if we take into consideration not only di¤erence
in bene�ts between initial and �nal states, but also the costs of transition? Can
the decision rules of the authorities and the learning mechanisms governing agents�
behavior be manipulated in the way to achieve maximal social welfare?
As a building block for more general models, the behavioral approach can be

employed in the studies on how the government can ensure a higher degree of trust
in society (and more compliance as a result), how it can provide optimal (from the
point of view of social welfare) level of public goods, how it can bring about faster
growth of an economy. We leave these ambitious and exciting questions as an avenue
for further research.
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Appendix

A1. Proof of Lemma 1

By implicit function theorem, fp(�q (p) ; p) = ��q0 (p) fq(�q (p) ; p). Under Assumption
1 for stabilizing rules then fp(�q (p) ; p) < 0. Suppose 9qjfp(q; p) > 0. By continuity
(a derivative of a polynomial is again a polynomial and hence continuous), 9q0 2
(q; �q (p)) jfp(q0; p) = 0, which contradicts the uniqueness of the steady state. This
proves the lemma for p 2 (�q�1 (1) ; �q�1 (0)). For p 2 [0; �q�1 (1)] 22, by continuity in
both arguments 9�; " > 0j fp(1 � �; �q�1 (1) � ") < 0. Suppose 9p; qjfp(q; p) > 0,
then again by continuity 9q0 2 (q; 1� �) ; p0 2 (p; �q�1 (1)� ") jfp(q0; p0) = 0. But
this would mean that q0; p0 constitute a steady state, that contradicts the corner
solution. The proof for p 2 [�q�1 (0) ; 1] is completely analogous. For destabilizing
rules fp(�q (p) ; p) > 0 and the rest of the proof follows the same logic.

A2. Proof of Proposition 3

To investigate stability of the steady state analytically, we have to make two ap-
proximations. First, consider the system in continuous time: this makes sense, if we
imagine that both the monitoring authority and individuals update their compliance
and auditing decisions every day, rather than �xing it once for a whole year. We can
rewrite our system of equations as

q�+� = q� +�f(q� ; p� );

p�+� = p� +�g(q� ; p� );

and letting � be very small ( 1
365
, if we think of daily updating), in the limit we obtain

_q = f(q; p);

_p = g(q; p);

22In case
�
0; �q�1 (1)

�
is not an empty set.

27



where f(q; p) is de�ned by the learning rule and g(q; p) = � (BR(q)� p).

The stability matrix of this system is

 
@ _q
@q

@ _q
@p

@ _p
@q

@ _p
@p

!
=

�
a11 a12
a21 a22

�
=

�
fq(q; p) fp(q; p)
�BR0(q) ��

�
.

The problem with this formulation is that the best response function is not con-
tinuous at the point of steady state, so we cannot compute BR0(qss): To go around it,
we can make the second approximation: instead of the discontinuous best response
we take a continuous function ABR(q) = �

�
�c(q)�c
�

�
; which approaches BR(q) =�

0; if �c < c
1; if �c > c

with � ! 0: Conventionally, � is cumulative distribution function of

a standard normal random variable. Then ABR0(q) = �
�
�c(q)�c
�

�
�c0(q)
�
: Recalling the

expression for �c(q) and evaluating at steady state (�c(qss) = c), we get

ABR0(qss) = � (0)
F

�
) a21 �

�Fp
2��2

:

Note that we can make a21 (since it is positive) arbitrary large by making � small
enough and thus getting better approximation of initial best response function.
Now we are ready to address the question of stability of the steady state. If the

real parts of both eigenvalues of the stability matrix are negative, the steady state is
stable (see, for example, Hirsch and Smale (1974). The eigenvalues of our system are

�1;2 =
1

2

�
a11 + a22 �

q
(a11 � a22)2 + 4a12a21

�
:

Note that by Lemma 1 in steady state a12
a11

> 0. Then, quite intuitively, the
stabilizing learning rules (fq(q; p) < 0) will lead to convergence. Indeed, for such
rules a11 + a22 < 0 and (a11 � a22)2 + 4a12a21 < 0. Hence, both eigenvalues have
negative real parts23 - our steady state is stable in continuous time. For the rules
that are destabilizing (fq(q; p) > 0), we shall have no convergence. Indeed, in this
case one eigenvalue is positive, the other is negative - the linearized system is a saddle.
Note that our results hold for any � 2 (0; 1).

A3. Convex auditing function

With a convex auditing function C (:) the myopic best response of the monitoring
authority is no longer jumping, but is a smooth function of q:

BR (q) = C 0�1 (qF ) :

qF = C 0 (p)

Fdq = C 00 (p) dp

23We do not make any statements about the corner solutions at this point.
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and all our insights are preserved, if the slope of the steady auditing line dq=dpBR =
C 00 (:) =F does not exceed (in absolute terms) the slope of steady compliance line, i.e.
if the auditing is not too convex.
Note that with convex auditing function the case of no inertia (� = 1) in tax au-

thority decision also generates the dynamics qualitatively similar to the one analyzed

in this paper. In particular, the stability matrix becomes
�
fq(q; p) fp(q; p)
BR0(q) �1

�
, so

as long as BR (q) is steep enough (again, the auditing function is not too convex),
the results of proposition 3 are preserved.

A4. Low information rule is stabilizing

We use the fact that cumulative binomial distribution function can be expressed as

Pr(k � k�) = (m� k�)
�
m

k�

�Z 1�pq

0

tm�k
��1 (1� t)k

�
dt

so that
@

@q
Pr(k � k�) = �p (m� k�)

�
m

k�

�
(1� pq)m�k

��1 (pq)k
�
:

Then,
f(q; p) = (1� qp) Pr(k � k�)� q;

and

fq(q; p) = �pPr(k � k�) + (1� qp)
@

@q
Pr(k � k�)� 1;

where all the three terms are negative for any admissible values of variables. Thus,
we have shown that fq(q; p) < 0 everywhere in the domain, or, equivalently, that the
rule is stabilizing.

A5. Comparative statics for the low information rule

No commitment (Proposition 4)

For the steady state, using the fact that qss = �,

� = �(1� pss)(1� �) + �(1� �pss)m+1;

so that
Bd� + Pdpss +Mdm = 0;

where

B : = (1� �pss)m+1 � �(1� pss);
M : = �(1� �pss)m+1 ln(1� �pss) < 0;
P : = �� ((m+ 1) �(1� �pss)m + 1� �) < 0:
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We can also see that B < 0 for large m, which are the interest of this model. We can
conclude that

dpss

dm
= �M

P
< 0;

dpss

d�
= �B

P
< 0:

Commitment (Proposition 4a)

Totally di¤erentiating the FOC for interior optimum (3) with respect to m, we get

d � dp� = ((V � Fp�) �q0m(p�;m)� F �qm(p�;m)) dm;

where d < 0 is the second derivative of objective function with respect to p, de-
�ned in the text. Further, implicitly di¤erentiating the steady state relation between
compliance and auditing

q = q(1� p)(1� �) + �(1� qp)m+1;

we get (we further drop stars for ease of notation)

dq

dm
= �qm(p

�;m) =
�(1� qp)m+1 ln(1� qp)

p (m+ 1) �(1� qp)m + p+ � � p� < 0:

Similarly, we can implicitly di¤erentiate the steady state relation with respect to
auditing probability to get

dq

dp
= q0 =

(m+ 1) �(1� qp)m + 1� �
p� � p� � � p (m+ 1) �(1� qp)m q < 0:

Finally, we can di¤erentiate this derivative with respect tom taking into account that
q is a function of m as well:

q0m = �
�2q(1� qp)m

(p� � p� � � px)2
(1 + (m+ 1) ln(1� qp))

+
x+ 1� �

p� � p� � � pxqm;

where
x := (m+ 1) �(1� qp)m:

Simplifying this further, we can show that the condition q0m > 0 is equivalent to
the condition

� ((x+ 1� �) (1� qp)x+m+ 1) ln(1� qp)� �x > 0;
which implicitly de�nes the maximal level of p� that would satisfy the proposition 4a.
With �q0m > 0 and �qm < 0, the condition V > Fp

� is then su¢ cient for dp
�

dm
< 0.
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A6. Rationalization

From (14) we can see that for k = 0 Ev takes value

vmin :=
vH�(1� vH)m + vL (1� �) (1� vL)m
�(1� vH)m + (1� �) (1� vL)m

and for k = m it takes value

vmax :=
vH�(vH)

m + vL (1� �) (vL)m
�(vH)m + (1� �) (vL)m

:

In particular, if vH = 1 and vL = 0, we have vmin = 0 and vmax = 1.
To see that Ev is increasing in k, note that a su¢ cient condition for that is that

(1� �) b(k;m; vL)
�b(k;m; vH)

is decreasing in k (in this case posterior probability assign to vH is increasing in k and
posterior probability assigned to vL is decreasing in k). A necessary and su¢ cient
condition for this is that �

vH
vL

�k �
1� vH
1� vL

�m�k
is increasing in k. And indeed it does so for vH > vL.

A7. Contagion

From (15) we have

f (q; p) =

� Pn�1
k=0

�
n
k

�
(1� q)k qn�k �k+n�k

n
� q; if p < �p;

1�
Pn

k=1

�
n
k

�
(1� q)k qn�k �(n�k)+k

n
� q; if p > �p:

We know that for Bernstein polynomials

d

dt
Bk;n (t) = n (Bk�1;n�1 (t)�Bk;n�1 (t))

Redenoting t = 1� q, we have then

f (q; p) =

� Pn�1
k=1 Bk;n (t)

�k+n�k
n

+B0;n (t)� 1 + t; if p < �p;
t�
Pn�1

k=1 Bk;n (t)
�(n�k)+k

n
�Bn;n (t) ; if p > �p:

As dq = �dt, we have

fq (q; p) =

� Pn�1
k=1 (Bk;n�1 (t)�Bk�1;n�1 (t)) (�k + n� k)� 1 + nqn�1; if p < �p;Pn�1

k=1 (Bk�1;n�1 (t)�Bk;n�1 (t)) (� (n� k)+k) + n (1� q)
n�1 � 1; if p > �p:
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Using the facts that
nX
k=0

Bk;n (t) = 1;

nX
k=0

kBk;n (t) = nt;

we get

n

n�1X
k=1

Bk;n�1 (t) = n
�
1� (1� t)n�1

�
;

(�� 1)
n�1X
k=1

kBk;n�1 (t) = (�� 1) (n� 1) t;

and (denoting l = k � 1),

n�1X
k=1

nBk�1;n�1 (t) = n
�
1� tn�1

�
;

(�� 1)
n�1X
k=1

kBk�1;n�1 (t) = (�� 1)
�
(n� 1) t+ 1� ntn�1

�
:

Plugging this into the expression for the derivative, we get

fq (q; p) =

8>><>>:
n
�
1� (1� t)n�1

�
+ (�� 1) (n� 1) t� n (1� tn�1)

� (�� 1) ((n� 1) t+ 1� ntn�1)� 1 + nqn�1; if p < �p;

�n (1� tn�1) + (1� �) ((n� 1) t+ 1� ntn�1)
��n

�
1� (1� t)n�1

�
� (1� �) (n� 1) t� 1 + n (1� q)n�1 ; if p > �p:

After collecting the terms, we arrive at (16).

A8. Social learning

Clearly, l1 is the largest integer l that satis�es inequality

Vc <

�
1� 1

2

�
1 +

l

n

�
vH �

1

2

�
1� l

n

�
vL

�
Vn;

or explicitly

l < 2n
1� Vc

Vn
� vL

vH � vL
� n:

l2 is the smallest integer l that satis�es inequality

Vc >

�
1� l

2n
vH �

�
1� l

2n

�
vL

�
Vn;

or explicitly

l > 2n
1� Vc

Vn
� vL

vH � vL
:
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The population dynamics can be then characterized by

qt+1 = (1� p)n +
nX
k=0

�
n

k

�
(1� q)k qn�k

l1X
l=1

�
n

l

�
(1� p)n�l pl

+

nX
k=0

�
n

k

�
(1� q)k qn�k

l2�1X
l=l1+1

�
n

l

�
(1� p)n�l pln� k

n
:

Using the properties of Bernstein polynomials, this can be simpli�ed to

qt+1 = (1� p)n +
l1X
l=1

�
n

l

�
(1� p)n�l pl + q

l2�1X
l=l1+1

�
n

l

�
(1� p)n�l pl:

Subtracting q and taking the derivative brings about (17).
In order to satisfy assumption 1, a stabilizing behavioral rule must also possess

the property fp (q; p) < 0. Rewriting f (q; p) in terms of Bernstein polynomials, we
have

f (q; p) = (1� p)n +
l1X
l=1

Bl;n (p) + q

l2�1X
l=l1+1

Bl;n (p)� q

Taking the derivative wrt to p, we have

1

n
fp (q; p) = � (1� p)n�1+

l1X
l=1

(Bl�1;n�1 (p)�Bl;n�1 (p))+q
l2�1X
l=l1+1

(Bl�1;n�1 (p)�Bl;n�1 (p)) :

For l1 = 1 and l2 = 324 we have then

1

n
fp (q; p) = � (1� p)n�1 +B0;n�1 (p)�B1;n�1 (p) + q (B1;n�1 (p)�B2;n�1 (p))

= �B1;n�1 (p) + q (B1;n�1 (p)�B2;n�1 (p)) � �qB2;n�1 (p) < 0:

so assumption 1 holds.

A9. Arbitrary rule with n people in a match

Consider a general deterministic n persons rule without eigen bias (the rule is invariant
to the distribution of types in a match). All individuals that belong to the same
match exhibit the same behavior. Assume also that we have m di¤erent observable
types of individuals (observable is in the sense that the compliance decision can be
conditioned upon them; in the example considered we have m = 2). Call the number

of combinations of the types in a match M :=

��
m
n

��
. It can be shown that

2M distinct rules of this sort can be formulated, with the dynamics represented by
qt+1 =

PM
i=1 IiQt (i). Here Q (i) is the probability that the combination i of the types

24 l1 = 1; l2 = 2 is a degenerate case whereby dynamics depend on p only.
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occurs, and the particular rule speci�es a sequence (Ii)Mi=1 ; Ii 2 f0; 1g. For a rule not
to be degenerate (jumping to a corner immediately), we must have

9i; Ii 6= 0;9j; Ij 6= 1:

Let us concentrate on the endogenous types, that is audited honest, not audited
honest, audited non-compliant and non-audited non-compliant. A period-to-period
dynamics resulting from any rule can be generally written as

qt+1 =
nX
j=0

jX
k=0

Ij;knj;k (1� q)n�j qj (1� p)j�k pk;

f (q; p) =
nX
j=0

jX
k=0

Ij;knj;k (1� q)n�j qj (1� p)j�k pk � q;

where nj;k is a �xed coe¢ cient characterizing number of permutations for the same
combination of types.
As can be seen, the function f (q; p) is a polynomial of order at most n in each of

the arguments. Adding exogenous types (like rich-poor, self-employed - employees)
does not change this result, as they enter the function in a similar fashion with simplex
coe¢ cients.
Furthermore, if we add a possibility of no rematching for t0 periods (that is, our

interaction groups remain closed over this time, which is reasonable if we think about
families or very close friends), the dynamics can still be represented as

qt+t0 =

t0X
l=0

nt0;l

 
nX
j=0

jX
k=0

Ij;knj;k (1� q)n�j qj (1� p)j�k pk
!
(1� p)t0�l pl;

which is also a polynomial . That is why, our results also hold in the setting with stable
over time interaction groups, provided the appropriate assumptions are satis�ed.
Finally, a longer memory feature is somewhat cumbersome to represent in the

general form, as instead of only m types in a match, we have to consider mr types,
where r is the length of memory in periods. Apart from that, period-to-period dy-
namics will involve values of variables from r periods. That is why we only refer here
to 2-period memory with our endogenous types:

qt+1 =

nX
j=0

jX
k=0

nX
h=0

hX
l=0

Ij;k;h;lnj;k;h;l (1� qt)n�j qjt (1� pt)
j�k pkt �

� (1� qt�1)n�h qht�1 (1� pt�1)
h�l plt�1:

This is still a polynomial.

34



A10. Commitment with full dynamic optimization

A variation of committed authority is the one that maximizes not the steady state
payo¤, but the payo¤over the full dynamic path. Such a problem can be then written
as

max
fptg

1X
t=1

�t ((1� qt)V + ptqtF � cpt)

s:t: : qt = qt�1 + f(qt�1; pt�1);

where 0 < � < 1 is a discount factor. The �rst order condition for an interior solution
can be rewritten as

�t (qtF � c) = �t+1fp(qt; pt) (V � pt+1F ) ;

which is a familiar equality of marginal gain from extra auditing today (in terms
of increase in the share of punished agents net of auditing costs) and marginal loss
tomorrow (in terms of the change in the share of cheaters). Note that by Lemma
1 for stabilizing rules fp < 0, which for given state qt > c=F (noncompliance is
higher than in myopic steady state) puts an upward pressure on future monitoring
pt+1 (pt+1 > V=F is needed to satisfy the FOC). For destabilizing rules fp > 0,
correspondingly, high noncompliance calls for low monitoring. Note also that the
second order condition requires fpp (V � pt+1F ) < 0, so depending on the relative
magnitude of auditing, the transition function shaped by the behavioral rule must be
concave or convex in auditing for the interior solution to exist.
A steady state condition in this setting would be a pair (p; q) such that

�q (p)F � c = �fp(�q (p) ; p) (V � pF ) ;

which is analogous to (3) up to the discount factor and the term fp(p; �q (p)) instead
of �q0(p�). Intuitively, the authority in the text maximizes steady state payo¤ only
and does not care about transition. Here, though from some time on the system is
in steady state (or very close to it), the authority has maximized its payo¤ along the
whole path, so it takes into account what happened before as given. The SOC is

dd := �q00 (p)F � �(fpp + fpq�q0 (p)) (V � pF ) + �fp(�q (p) ; p)F < 0:

Looking at comparative statics, we obtain

dp

dc
=

1

dd
< 0;

dp

dF
=

��q (p) + �pfp(p; �q (p))
dd

;

with interpretation similar to the main text, except for that now the sign of dp=dF is
determined by how sensitive the transition function f is to a change in p rather than
elasticity of steady state cheating. Our result that the �deterrence hypothesis�may
or may not hold remains intact.
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A11. Steady Cycles

Inexistence of steady state

Consider the steady state identi�ed in (9):

qss = �; pss = �q�1 (�) : (18)

By de�nition, we have
f
�
�; �q�1 (�)

�
= 0:

We show that this cannot be stable in discrete time even for stabilizing rules. Consider
a mutation " > 0 to the share of noncompliant population and set the time to zero.
Then q0 = �+ " and p0 = �q�1 (�). According to the behavioral rule,

q1 = �+ "+ f(�+ "; �q
�1 (�));

and, since fq < 0 for stabilizing rules, we have q1 < q0 - a welcome tendency. However,
look at the monitoring probability:

p1 = �+ (1� �) p0 > p0:

Now, iterate again

q2 = �+ "+ f(�+ "; p0) + f (�+ (1� �) p0; �+ "+ f(�+ "; p0)) :

Since fq < 0 and fp < 0 for stabilizing rules by Lemma 1, we have q2 < q1. The
monitoring probability now depends on the relative value of q1:

p2 =

�
�+ (1� �) (�+ (1� �) p0) > p1; q1 > �;
(1� �) (�+ (1� �) p0) < p1; q1 < �:

Observe that monitoring probability is a function of � and p0 and in period t can be
represented as

t�1X
j=0

(1� �)j �BR (qj) + (1� �)t p0;

where BR(qj) is a zero-one variable. Clearly, limt!1 pt = p0 by coincidence only.
Thus, we have shown that auditing probability never comes back to its steady state
value pss, or, equivalently, the steady state is not stable. Further, since the steady
state considered is unique by construction, a stable steady state does not exist in our
discrete time model.

Existence of steady cycles

To establish existence of steady state cycles, we �rst need to show that there exists
an integer k > 0 such that (pt; qt) = (pt+k; qt+k). Since limt!1 pt = limt!1 pt+k (in a
little abuse of the term �limit�), we need to have

pt+k =
k�1X
j=0

(1� �)j �BR (qj) + (1� �)k pt = pt:
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This gives us the following expression for the auditing probability that is a member
of a steady cycle:

ps =

Pk�1
j=0 (1� �)

j �BR (qt+j)

1� (1� �)k
:

Clearly, for the dynamics to be a cycle and not an arbitrary path returning to the
same point, we also need (pt+i; qt+i) = (pt+k+i; qt+k+i)8i 2 [1; k � 1]. The analogous
condition is then

ps+i =

Pk+i�1
j=i (1� �)j�i �BR (qt+j+i)

1� (1� �)k+i
:

The path of best responses is a sequence of zeros and ones that is determined by
whether the current level of cheating is below or above its steady state level �. This,
given a starting point, is in turn determined by the behavioral rule. Note that for
interior solution ps < 1 we need

0 <
k�1X
j=0

(1� �)j �BR (qt+j) < 1� (1� �)k :

For k = 1 this is never satis�ed. For k = 2 the admissible sequence of best responses
is (0,1) and (1,0). Correspondingly, we have two values for ps:

ps =
�

1� (1� �)2
;

ps+1 =
(1� �)�
1� (1� �)2

;

or visa versa which could �t the bill and work as a steady cycle for an appropriate
behavioral rule. An appropriate behavioral rule in this case is the one that generates
qt = qt+2 = q

s and qt+1 = qt+3 = qs+1 such that qs < � and qs+1 > � implying

f (qs; ps) = qs+1 � qs > 0;
f
�
qs+1; ps+1

�
= qs � qs+1 < 0:

This way, we have constructed a steady cycle made of two points for a class of be-
havioral rules (the class is described by qs < � < qs+1; f (qs; ps) = �f (qs+1; ps+1) =
qs+1 � qs). But this is clearly inconsistent with the phase diagram (�gure 1) that
we have derived under assumptions made in the text. To see this, note that because
qs < � < qs+1, the point (ps; qs) should lie in the south-west region, and then, ac-
cording to the phase diagram, the point (ps+1; qs+1) lies in the north-west region. But
then (ps; qs) should lie in the north-east region, which is a contradiction.
We see that a cycle consistent with the phase diagram should include at least 4

points to represent 4 di¤erent regions. Starting, for instance, from the south-west
region, we have the following sequence of best responses: (0,1,1,0). Hence, the steady
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cycle probabilities are

ps = � (1� �) 2� �
1� (1� �)4

;

ps+1 = � (1� �)2 2� �
1� (1� �)4

;

ps+2 = �
(1� �)3 + 1
1� (1� �)4

;

ps+3 = �
2� �

1� (1� �)4
;

with ps+1 < ps < ps+2 < ps+3. To complete the characterization, we need to specify
the class of behavioral rules in the following way: qt = qt+4 = qs; qt+1 = qt+5 = qs+1;
qt+2 = qt+6 = qs+2; qt+3 = qt+7 = qs+3; such that qs < �; qs+1 > �; qs+2 > �;
qs+3 < �; implying

f (qs; ps) = qs+1 � qs > 0;
f
�
qs+1; ps+1

�
= qs+2 � qs+1;

f
�
qs+2; ps+2

�
= qs+3 � qs+2 < 0;

f
�
qs+3; ps+3

�
= qs � qs+3:

Furthermore, we need qs < q̂ (ps); qs+1 < q̂ (ps+1); qs+2 > q̂ (ps+2); qs+3 > q̂ (ps+3).
This completes characterization of a steady cycle consistent with the phase diagram.
Intuitively, the auditing probabilities in a cycle of a given length are determined

by the inertia variable � completely. With small �, we will need more points to
include in the cycle for a given behavioral rule, because more iterations are needed
to switch the best response from 0 to 1 and back.

Cycle stability

Once we have shown that we can construct a steady cycle of k points, we can ask a
question whether such cycle is stable. Consider our 4-cycle and perturb the share of
non-compliant agents with " > 0 to get q0 = qs + ", p0 = ps. Because " is small, it
does not change the best response of the authority, and thus p1 = ps+1, q1 = qs+ "+
f (qs + "; ps) < qs+1+" for stabilizing rules. Again, because " is small and fq <1, so
q1� qs+1 = qs+ "+ f (qs + "; ps)� qs� f (qs; ps) � " (1 + fq) is also small, so we have
p2 = p

s+2, q2 = qs+ "+ f (qs + "; ps) + f (qs + "+ f (qs + "; ps) ; ps+1) < qs+2+ ". By
the same reasoning as before we can show that q3 < qs+3 + " and q4 < qs + " and so
on. Then, we are ready to conclude that the cycle is stable, if we also show that qi >
qs+i�". Because qi = qs+i�1+"+f (qs+i�1 + "; ps+i�1) if we introduce the perturbation
at the ith point in the cycle, we need to have qs+i�1+ "+ f (qs+i�1 + "; ps) > qs+i� "
or, letting "! 0, fq > �2. If this condition is satis�ed and the rule is stabilizing, we
have a stable cycle.
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