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1 Introduction

An increasing number of �rms tie compensation to their workers� perfor-

mance, but the way �rms arrange their incentive programs varies to a large

extent (see Lemieux et al., 2009 and Bloom and Van Reenen, 2010). Some

�rms rely on team incentives in which bonuses are tied to the joint output of

a team of workers. Other �rms rely on tournament schemes in which work-

ers compete against each other for bonuses or other rewards. Furthermore,

many �rms combine both tournaments and team incentive schemes.

An important reason for this variation in how �rms provide incentives to

their employees may be attributed to technological di¤erences. First, it is a

matter of observability. Some �rms only observe the aggregate output from

teams of workers, while other �rms may be able to get an exact measure of

each individual�s output. Second, it is a matter of technological or stochas-

tic dependence between the workers. Some workers�outputs are positively

correlated, such as sales agents who are exposed to the same business cycles.

In other situations, workers�outputs are negatively correlated, for instance

when specialists with di¤erent expertise meet di¤erent sets of demand from

customers or superiors.

In this paper we study how these issues a¤ect optimal incentive design.

In contrast to previous literature, we focus on repeated game relational

contracts. A relational contract includes variables that are hard to verify by

a third party, such as the quality of a service or the value of a performance.

As a result, the contract cannot be enforced by a court of law and needs to

be self-enforcing. We study how observability and technological/stochastic

dependence between workers a¤ect the conditions for implementing self-

enforcing relational contracts, and furthermore, what the optimal relational

contract looks like in di¤erent situations.

In particular, we analyze and compare optimal relational contracts between

a principal and a set of agents when (a) only aggregate output can be ob-

served, and (b) individual outputs can be observed. We �rst show that the

optimal contract under (a) is a team incentive scheme where each agent is

paid a maximal bonus for aggregate output above a threshold and a minimal

(no) bonus otherwise. This parallels Levin�s (2003) characterization for the
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single-agent case. We then show that the team�s e¢ ciency decreases with

its size (number of agents, n) when outputs are non-negatively correlated,

but that e¢ ciency may increase considerably with size if outputs are nega-

tively correlated. The latter e¤ect arises because including more agents in

the team leads to reduced variance for the team�s output, and hence a more

precise performance measure. This is bene�cial not because a more precise

measure reduces risk (since all agents are risk neutral by assumption), but

because it strengthens, for any given bonus level, the incentives for each

team member to provide e¤ort. For su¢ ciently small variance it turns out

that the standard �rst order approach (used by e.g. Levin, 2003) is not

valid, but we show that a threshold bonus is nevertheless optimal, and we

characterize its properties.1 The analysis demonstrates that the added e¤ort

incentives coming from negative correlation and hence more precise perfor-

mance measurement can be quite valuable. At a broader level, our results

indicate that diversity and heterogeneity among team members can yield

considerable e¢ ciency improvements (see Horwitz and Horwitz, 2007, for a

meta-analytic review documenting positive e¤ects from team diversity).

Another bene�t of having many agents in the team is demonstrated in a

setting where agents have ex post bargaining power over the values they

have created. In such a setting, a team of agents can also create values in

case the relational contract breaks down. Due to the well known free-rider

problem, this outside value decreases in the number of agents. However, the

weaker outside option strengthens the relational contract and thereby allows

for a higher bonus and thus cet. par higher e¤ort. In other words, the 1=n

free-rider problem might be a blessing in relational contracts.

In case (b), where individual output is observable, Levin (2002) has shown

that for independent outputs the optimal relational contract entails a stark

RPE scheme (relative performance evaluation); a form of a tournament,

where at most one agent is paid a (maximal) bonus. We point out that the

e¢ ciency of this tournament scheme increases with the number of agents,

and hence becomes progressively better compared to a team when the num-

ber of independent agents increases. Then we extend the analysis to corre-

lated variables, and show, for a parametric (normal) distribution, that the

1 In fact, the analysis reveals that in the single-agent case, MLRP alone ensures that a
threshold bonus is optimal.
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optimal contract is an RPE scheme with a threshold, where the threshold

depends on an agent�s relative performance, and where the conditions for an

agent to obtain the (single) bonus are then stricter for negatively compared

to positively correlated outputs. The e¢ ciency of this tournament contract

is shown to improve with higher correlation (both positive and negative).

We �nally point out that if the �rm can initially choose between organi-

zations (technologies) that allow for either (a) only aggregate output or

(b) individual outputs to be observed, and a subsequent reorganization is

costly, then the �rm may choose (a), i.e. organize production as a team.

Thus, even if alternatives (a) and (b) are equally costly to set up initially

(e.g. in terms of output measurement investments), the team alternative

may yield a higher subsequent surplus. This occurs because relational con-

tract constraints may be a¤ected in a way to favor the team alternative. We

show that although production e¢ ciency in both alternatives increases with

more negatively correlated outputs, the team alternative is more likely to

be superior under such conditions.

Related literature: The closest related paper is the above mentioned Levin

(2002). He considers a multilateral relational contract between a principal

and n agents, and shows among other things that the stark RPE (tourna-

ment) scheme is optimal. Unlike Levin, we also consider the case where

only aggregate output is observable. Moreover, we extend Levin�s charac-

terization to correlated outputs. Our paper is also related to the few papers

considering team incentives in relational contracts, like Kvaløy and Olsen

(2006, 2008), Rayo (2007) and Baldenius and Glover (2010). But in these

papers individual outputs are observable, and so they do not consider how

both observability and stochastic dependence between agents a¤ect the op-

timal contract.2

Previous literature on incentive provision to multiple agents has mainly fo-

cused on risk sharing issues and the scope for cooperation. The informa-

tiveness principle (Holmström, 1979, 1982) states that an incentive contract

should be based on all variables that provide information about the agents�

actions. Stochastic and/or technological dependencies between agents then

2Seminal contributions to the (formal) literature on relational contracting include Klein
and Le er (1981), Shapiro and Stiglitz (1984), Bull (1987) and MacLeod and Malcomson
(1989).

4



typically call for "peer-dependent" incentive schemes such as teams or tour-

naments. By tying compensation to an agent�s relative performance, the

principal can �lter out common noise and thereby expose them to less risk

(see Holmström, 1982; and Mookherjee, 1984).3 And by tying compensa-

tion to the joint performance of a team of agents, the principal can exploit

complementarities between the agents� e¤orts and foster cooperation, see

Holmström and Milgrom, 1990; Itoh (1991, 1992) and Macho-Stadler and

Perez-Castrillo, 1993).4Our paper shows that stochastic dependence between

agents is highly important for incentive design even in the absence of risk

considerations, and that team incentives may be optimal even without clas-

sical team e¤ects such as complementarities in production, peer pressure or

peer monitoring.

Our paper is also related to a recent literature on endogenous formation

of teams. While there is a large agency literature that studies optimal in-

centives for teams5, there are only a few papers that explore how and why

�rms may only hold a team of agents accountable for their joint output,

even if individual accountability is technologically feasible. Mukherjee and

Vasconcelos (2011) and Corts (2007) show that team production might help

mitigate multitask problems, while Bar-Isaac (2007) show that teams con-

sisting of juniors and seniors can restore the reputation concerns of seniors.

We show that �rms may use team production (team accountability) as a

commitment device. By deliberately choosing team assignment instead of

individual assignment, the �rm makes it more costly to breach the relational

contract. But we also show that there is a limit to how many agents the

�rm should hold accountable. The optimal team size depends both on the

agents�ex post bargaining power and on the type of dependence between

the agents.

Finally, our paper is related to a literature on asset ownership and bargaining

3See also Lazear and Rosen (1981), Nalebu¤ and Stiglitz (1983) and Green and Stokey
(1983) for analyses of RPE�s special form, rank-order tournaments.

4 In addition, team incentives can provide implicit incentives not to shirk (or exert low
e¤ort), since shirking may have social costs (as in Kandel and Lazear, 1992), or induce
other agents to shirk (as in Che and Yoo, 2001).

5Economists studying teams with unobservable individual ouputs, beginning with
Alchian and Demsetz (1972), have mainly focused on the free-rider problem, in partic-
ular under what conditions the �rst-best outcome will be achieved, or what parameters
a¤ect the relative e¢ ciency of teamwork. In�uential papers include Holmstrom (1982)
Rasmusen (1987), McAfee and McMillan (1991) and Legros and Matthews (1993).
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power in relational contracts, such as Baker, Gibbons and Murphy (2002),

Halonen (2002) and Kvaløy and Olsen (2012). A central point here is that

agents�bargaining power may negatively a¤ect the scope for relational con-

tracting. In particular Halonen (2002) shows that agents may consider joint

ownership of assets (similar to team production) in order to reduce outside

options and thereby strengthen the relational contract between them. How-

ever, Halonen does not consider a principal-multiagent incentive problem

like we do.

The rest of the paper is organized as follows. Section 2 presents the model

and analyses team incentives, given that only total output can be observed.

Section 3 deals with the case where individual outputs can be observed, and

Section 4 contains a comparative analysis of the two cases. The last section

concludes.

2 Model

We analyze an ongoing economic relationship between a principal and n

(symmetric) agents. All parties are risk neutral. Each period, each agent

i exerts e¤ort ei incurring a private cost c(ei). Costs are strictly increas-

ing and convex in e¤ort, i.e., c0(ei) > 0, c00(ei) > 0 and c(0) = c0(0) = 0.

Each agent�s e¤ort generates a stochastic output xi, with marginal density

f(xi; ei). Expected outputs are given by �x(ei) = E(xij ei) =
R
xif(xi; ei)dxi

and total surplus per agent is W (ei) = �x(ei) � c(ei). First best is then
achieved when �x0(eFBi ) � c0(eFBi ) = 0. Outputs are stochastically indepen-

dent (given e¤orts) across time.

The parties cannot contract on e¤ort provision. We assume that e¤ort ei is

hidden and only observed by agent i. With respect to output, we consider

two cases: Either individual outputs xi are observable (IO), or only total

output y = �xi is observable. In both cases, we assume that outputs are

non-veri�able by a third party. Hence, the parties cannot write a legally

enforceable contract on output provision, but have to rely on self-enforcing

relational contracts.
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2.1 Team: only total output observed

We �rst consider the case where individual output is unobservable, and hence

the parties can only contract on total output provision. Each period, the

principal and the agents then face the following contracting situation. First,

the principal o¤ers a contract saying that agent i receives a non-contingent

�xed salary �i plus a bonus �i(y), i = 1:::n conditional on total output

y = �xi from the n agents.6 Second, the agents simultaneously choose

e¤orts, and value realization y = �xi is revealed. Third, the parties observe

y and the �xed salary �i is paid. Then the parties choose whether or not to

honor the contingent bonus contract �i(y).

Conditional on e¤orts, agent i�s expected wage in the contract is then wi =

E(�i(y)j e1:::en)+�i, while the principal expects � = E(yj e1:::en)��wi =
�iE(xij ei)��wi. If the contract is expected to be honored, agent i chooses
e¤ort ei to maximize his payo¤, i.e.

ei = argmax
e0i

�
E(�i(y)j e0i; e�i)� c(e0i)

�
(IC)

If the contract is not honored, the parties instead bargain over the realized

values. Given a realization y, we assume that they agree on a spot price �y,

where � < 1 is the agents�share.7 The parameter � can be interpreted as an

index of the agents�total hold-up power.

In a one shot relationship, the parties have no incentives to honor the bonus

contract, and so they have to rely on spot contracting. The expected spot

price is then �E(yj e1:::en) = ���x(ei): Agent i thus chooses spot e¤ort esi
according to 1

n��x
0(esi ) � c0(esi ) = 0, and so the expected spot price can be

written S = ��y(esi ), while the principal�s expected spot pro�t is given by

�s = (1� �)�y(esi ).

Now consider the repeated game. Like Levin (2002) we consider a multi-

lateral punishment structure where any deviation by the principal triggers

6We thus assume stationary contracts, which have been shown to be optimal in settings
like this (Levin 2002, 2003).

7More speci�cally, we may assume that the spot price is determined by Nash bargaining.
If the agents are able to attain �y, � 2 [0; 1] in an alternative market, then in Nash
bargaining the agents will receive �y plus a share � of the surplus from trade, so the spot
price will be S = �y + �(y � �y) = �y where � = � + �(1� �):
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punishment from all agents. The principal honors the contract only if all

agents honored the contract in the previous period. The agents honor the

contract only if the principal honored the contract with all agents in the

previous period. Thus, if the principal reneges on the relational contract,

all agents insist on spot contracting forever after. And vice versa: if one (or

all) of the agents renege, the principal insists on spot contracting forever af-

ter.8 A natural explanation for this is that the agents interpret a unilateral

contract breach (i.e. the principal deviates from the contract with only one

or some of the agents) as evidence that the principal is not trustworthy (see

discussion in Bewley, 1999 Levin, 2002).

Now, (given that (IC) holds) the principal will honor the contract with all

agents i = 1; 2; :::; n if

��i�i(y) +
�

1� �� � ��y +
�

1� ��s (EP)

where � is a common discount factor. The LHS of the inequality shows

the principal�s expected present value from honoring the contract, which

involves paying out the promised bonuses and then receiving the expected

value from relational contracting in all future periods. The RHS shows the

expected present value from reneging, which involves spot trading of the

realized outputs, and then receiving the expected value associated with spot

trading in all future periods.

Agent i will honor the contract if

�i(y) +
�

1� � (wi � c(ei)) �
1

n
�y +

�

1� � (
1

n
S � c(esi )) (EA)

where similarly the LHS shows the agent�s expected present value from hon-

oring the contract, while the RHS shows the expected present value from

reneging.

Recall the de�nitionW (ei) = E(xij ei)�c(ei) as the total surplus associated
with agent i, and de�ne �modi�ed�bonuses as follows:

bi(y) = �i(y)�
1

n
�y: (1)

8See Miller and Watson (2013) on alternative strategies and "disagreement play" in
repeated games.
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Following established procedures (e.g. Levin 2002) we obtain the following:

Lemma 1 For given e¤orts e = (e1:::en) there is a wage scheme that satis-
�es (IC,EP,EA) and hence implements e, i¤ there are bonuses � and �xed

salaries � with bi(y) = �i(y)� 1
n�y � 0, such that (IC) and condition (EC)

below holds:

�ibi(y) �
�

1� ��i(W (ei)�W (e
s
i )): (EC)

To see su¢ ciency, set the �xed wages � such that each agent�s payo¤ in the

contract equals his spot payo¤, i.e. �i+E(�i(y)j e)�c(ei) = 1
nS�c(e

s
i ) � us.

Then EA holds since �i(y) � 1
n�y � 0. Moreover, the principal�s payo¤ in

the contract will be � = �i(W (ei)� us) = �i(W (ei)�W (esi ))+ �s, i.e. the
surplus generated by the contract plus her spot pro�ts. Then EC and (1)

imply that EP holds. Necessity follows by standard arguments.

Unless otherwise noted, we will follow the standard assumption in the liter-

ature and assume that the �rst order approach (FOA) is valid, and hence

that each agent�s optimal e¤ort choice is given by the �rst-order condition

(FOC):
@

@ei
E(�i(y)j e1:::en)� c0(ei) = 0

It is convenient to use the �modi�ed�(net) bonuses bi when analyzing the

contract. Since Ey = �j �x(ej), the FOC can then be written

@

@ei
E(bi(y)j e1:::en) +

1

n
��x0(ei) = c

0(ei) (2)

Given that FOA is valid, the agents�optimal choices are characterized by

the condition (2), which we will refer to as a �modi�ed�IC constraint. We

will further assume that the �monotone likelihood ratio property�(MLRP)

holds for aggregate output y in the following sense: its density is assumed

to be of the form g(y; l(e1:::en)) with lei(e1:::en) > 0, and such that
gl(y;l)
g(y;l) is

increasing in y.

The optimal contract now maximizes total surplus (�iW (ei) = �i(E(xij ei)�
c(ei))) subject to EC and the �modi�ed�IC constraint (2). Then we have

the following:

Proposition 1 The optimal symmetric scheme pays a maximal bonus to
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each agent for output above a threshold (y > y0) and no bonus otherwise.

The threshold is given by gl(y0;l(e))
g(y0;l(e))

= 0. For l(e1:::en) = �iei no asymmetric

scheme can be optimal.

The maximal symmetric bonus is by EC bi(y) = b(y) = �
1�� (W (ei)�W (e

s
i ))

when e¤orts ei are equal for all i. This result parallels that of Levin (2003)

for the single agent case. The threshold property comes from the fact that

incentives should be maximal (minimal) where the likelihood ratio is positive

(negative). Since this ratio is monotone increasing, there is a threshold y0
where it shifts from being negative to positive, and hence incentives should

optimally shift from being minimal to maximal at that point.

2.2 Team size and e¢ ciency

We will now study team size and e¢ ciency. To see how size (i.e. number of

agents in the team) a¤ects e¢ ciency, note from Proposition 1 that the IC

constraint (2) can now be written

c0(ei) = b

Z
y>y0

gi(y; e1:::en)dy +
1

n
��x0(ei)

where gi denotes partial derivative of the density wrt ei, and hence that

the optimal solution ei = e�i (the maximal e¤ort per agent that can be

implemented) is given by

c0(e�i )� 1
n��x

0(e�i )R
y>y0

gi(y; e�)dy
= b =

�

1� � (W (e
�
i )�W (esi (n))) (3)

The �rst equality shows the required bonus (per agent) to implement ef-

fort e�i (from the IC constraint). The second equality shows the feasible

(maximal) bonus. When n increases, a single agent�s marginal in�uence

on his expected bonus payment (i.e. b
R
y>y0

gi(y; e
�)dy) will be a¤ected. If

this marginal in�uence is reduced (as it typically will be for independent

outputs), a larger bonus is required to maintain e¤ort incentives (the �rst

equality). A higher bonus is also required because the �automatic incentive�

( 1n��x
0(ei)) is reduced when n increases. But a higher bonus is also feasible

(the second equality) because the outside spot value W (esi (n)) is decreasing
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in n. Which of these e¤ects dominates will determine whether e¤ort (per

agent) will increase or decrease when the number of agents increases.

It is of particular interest to analyse teams with stochastic dependencies

among the individual team members�contributions to total output. To make

this analytically tractable we will assume that outputs are (multi)normally

distributed and correlated. Given this assumption, and (by symmetry) each

xi being N(ei; s2), then total output y = �xi is also normal with expectation

Ey = �ei and variance

s2n = var(y) = �ivar(xi) + �i6=jcov(xi; xj) = ns
2 + s2�i6=jcorr(xi; xj)

It follows from the form of the normal density that the likelihood ratio

is linear and given by gi(y;e1:::en)
g(y;e1:::en)

= (y � �ei)=sn. As shown above, the

optimal bonus is maximal (minimal) for outcomes where the likelihood ratio

is positive (negative), and hence has a threshold y0 = �e�i in equilibrium.

Applying the normal distribution, it then follows (as shown below, see (7) )

that the marginal return to e¤ort for each agent in equilibrium is given by

b

Z
y>y0

gi(y; e
�)dy = b=(Msn), M =

p
2� (4)

Since by assumption now �x(ei) = Exi = ei, the IC condition (2) for each

agent�s (symmetric) equilibrium e¤ort is therefore c0(ei)� 1
n� =

b
sn

1
M . It then

follows from (3) that the maximal e¤ort per agent that can be sustained, is

now given by�
c0(e�i )�

1

n
�

�
snM = b =

�

1� � (W (e
�
i )�W (esi (n)) (5)

Consider now variation in team size. In line with the discussion above, a

higher n has here three speci�c e¤ects:

1. It reduces the outside spot value and thereby allows for a higher bonus,

and thus cet. par for higher e¤ort.

2. It reduces the �automatic incentive� 1n� and thereby cet. par the e¤ort.

3. It a¤ects the variance s2n of the performance measure (y = �xi)

If all agents�outputs are fully symmetric in the sense that all correlations
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as well as all variances are equal across agents, i.e. var(xi) = s2 and

corr(xi; xj) = � for all i; j, then the variance in total output will be

s2n = ns
2 + s2�i6=jcorr(xi; xj) = ns

2(1 + �(n� 1))

If � � 0 the variance will increase with n and the third e¤ect discussed above
is detrimental for e¢ ciency. Optimal n should therefore be smaller with

larger �. Moreover, the standard deviation of total output (sn) increases

rapidly with n when � � 0 (at least of order
p
n), while all other terms

in the relation (5) stay bounded, hence the e¤ort per agent that can be

sustained will then decrease rapidly with n. Large teams are therefore very

ine¢ cient if all agents�outputs are non-negatively correlated.

For negative correlations the situation is quite di¤erent. If � < 0 one can in

principle reduce the variance to (almost) zero by including su¢ ciently many

agents. The model then indicates that adding more and more agents to the

team is bene�cial, at least as long as 1+ �(n� 1) > 0 and the conditions for
FOA to be valid are ful�lled. (We show below that for this to be the case,

the variance of the performance measure, here s2n, cannot be too small.)

Note that assuming symmetric pairwise negative correlations among n sto-

chastic variables only makes sense if the sum has non-negative variance, and

hence 1 + �(n � 1) � 0.9 Given � < 0, there can thus only be a maxi-

mum number n of such variables (agents). And given n > 2, we must have

� > � 1
n�1 .

Note also that for given negative � > �1
2 , the variance is �rst increasing,

then decreasing in n (it is maximal for n = 1
2(1 �

1
�)). Hence the optimal

team size in this setting is either very small (n = 2) or �very large�(includes

all).

Proposition 2 For symmetric agents, e¢ ciency decreases rapidly with size
if outputs are non-negatively correlated. For symmetric agents with nega-

tively correlated outputs, e¢ ciency �rst decreases (for n > 2) and then in-

creases with increasing team size, hence e¢ ciency is maximal either for a

small or for a large team.
9 Indeed, 1 + �(n � 1) > 0 is the condition for the covariance matrix to be positive

de�nit, and hence for the multinormal model to be well speci�ed.
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The assumption of equal pairwise correlations among all involved agents is

admittedly somewhat special, but illustrates in a simple way the forces at

play when the team size varies. In reality there might be positive as well

as negative correlations among agents. A procedure to pick agents for least

variance would then be for each n, to pick those n that yield the small-

est variance. Then compare across n, weighting the three e¤ects discussed

above.

2.3 When is the �rst order approach (FOA) valid?

We will now examine under what conditions the FOA is valid for the model

analyzed in the previous section. Thus consider y normally distributed with

expectation Ey = �ei and a variance that will be denoted by s2 = var(y)

in this section (to simplify notation). As already noted, this distribution

satis�es MLRP. Each agent is o¤ered a �gross� bonus �(y) = b(y) + �y,

where � = �=n < 1=2, and b(y) is the net bonus with threshold at y0.

Given that the principal seeks to implement e¤ort e�i from each agent this

way, the optimal threshold is y0 = �e�i . Agent i�s expected payo¤, given

own e¤ort ei and e¤orts e�j = e
�
i from the other agents, is then

bPr(y > y0j ei) + �E(yj ei)� c(ei)

= bPr(y � �j 6=ie�j � ei > e�i � ei) + �ei + 0 � c(ei)

= b(1�H(e�i � ei)) + �ei + 0 � c(ei)

where H() is the CDF for an N(0; s2) distribution and 0 = ��j 6=ie�j . The

FOC for the agent�s choice is

bh(e�i � ei) + �� c0(ei) = 0 (6)

where h() is the density; h() = H 0(). The FOA is valid if the agent�s optimal

choice is e�i and is given by this �rst-order condition, i.e. if

bh(0) + �� c0(e�i ) = 0 (7)

and no other e¤ort ei 6= e�i yields a higher payo¤ for the agent. We note in
passing that h(0) = 1=

p
2�var(y), verifying the formula (4) above.
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Due to the shape of the normal density, the agent�s payo¤ is generally not

concave. The second derivative is �bh0(e�i �ei)�c00(ei), where h0(e�i �ei) < 0
for ei < e�i . The payo¤ is locally concave at ei = e

�
i (since h

0(0) = 0), hence

e�i is a local maximum, but there may be other local maxima (other solutions

to FOC) for ei < e�i . The situation is illustrated in Figure 1, which depicts

the agent�s marginal revenue (bh(e�i � ei) + �) and marginal cost for two
values of the variance s2 = var(y) (and for � = 0). If the variance is

su¢ ciently small there is a local maximum at some ei < e�i (satisfying the

FOC), and the �gure indicates (comparing areas under MC and MR) that

this local maximum dominates that at e�i .

(See Figure 1 in the appendix)

This indicates that the FOA is valid here only if the variance of the per-

formance measure (y) is not too small, and is con�rmed in the following

proposition.

Proposition 3 The �rst order approach is valid if the variance of output
s2 is su¢ ciently large, but not valid if s2 is su¢ ciently small.

Remark. For the case of iso-elastic costs (c(e) = kem, m � 2) one can show
that, for � = 0 FOA is valid if e

�
i
s < K = K0

p
m� 1, where K0 � 2:216.

For m = 2 FOA is valid if e
�
i��=2k
s < K0. These are conditions that ensure

a unique solution to the agent�s FOC, and are hence su¢ cient, but not

necessary conditions for FOA to be valid.

2.4 A threshold bonus is optimal

We saw in Section 2.2 that for negatively correlated agents, the variance in

the performance measure y could be made quite small by including many

agents in the team. And we saw that this was bene�cial for incentives

and consequently for e¢ ciency as long as the analysis building on FOA

was valid. But for su¢ ciently small variance FOA is not valid, so this

immediately raises the question of what a team can achieve under such

circumstances. In the following we will show that a threshold bonus is
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always optimal for the team model considered in this paper, and moreover

characterize its properties.

Mainly to simplify notation, we consider here the case � = 0, so that the

EC constraint for symmetric e¤orts is 0 � b(y) � �
1��W (ei). To provide

incentives, the bonus cannot be maximal for all outputs y, hence the ex-

pected bonus payment for an agent must be less than the maximal bonus,

i.e. E(b(y)j ei; e�i) < �
1��W (ei). On the other hand, the agent�s expected

payo¤ from exerting e¤ort must be non-negative; E(b(y)j ei; e�i) � c(ei) �
E(b(y)j ei = 0; e�i) � 0, so in any symmetric equilibrium we must have

c(ei) <
�
1��W (ei). It follows from this that the e¤ort e�u and associated

surplus W (e�u) de�ned by

c(e�u) =
�

1� �W (e
�
u) (8)

constitute upper bounds for, respectively, the e¤ort and surplus (per agent)

that can be achieved in a relational contract.10 Note also that this upper

bound can be achieved if there is no uncertainty, i.e. if (team) e¤ort can be

observed without noise; namely by paying the maximal bonus b = c(e�u) to

each agent conditional on total e¤ort being at least ne�u.

We will now show that the optimal bonus is a threshold bonus which induces

e¤ort that converges to the upper bound as the variance in the performance

measure goes to zero. The scheme is a simple modi�cation of the threshold

bonus scheme identi�ed in Proposition 1, and consists of a relaxation of

the threshold combined with an increase of the bonus relative to the latter

scheme.

To show this let, for any (symmetric) bonus b = b(y), agent i�s performance-

related payo¤ (utility) be denoted

u(b; e) = u(b; ei; e�i) =
R
b(y)f(y; e)dy � c(ei)

As a �rst step we show that if a non-threshold and a threshold bonus yield

the same payo¤ to the agent (for given e¤ort), the latter bonus yields the

strongest marginal incentives.

Lemma 2 If MLRP holds, we have:
10We assume that � is small enough so that e�u is below �rst best e¤ort.
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i) If ~b(y) is not a threshold bonus, then for a threshold scheme bh(y) with

u(~b; e) = u(bh; e) it holds: uei(bh; e) > uei(~b; e).

ii) If ~b(y) is not a threshold bonus, and e� is the associated equilibrium,

then there is a threshold scheme bh(y) with u(~b; e�) = u(bh; e�), uei(bh; e
�) >

uei(
~b; e�) = 0 and u(bh; ei; e��i) � u(bh; e�i ; e��i) for all ei < e�i .

Remark Note that in a single-agent case, statement (ii) in the lemma im-
plies that a threshold scheme must be optimal whenever MLRP holds. For

should some other scheme be optimal, then (ii) shows that there is a thresh-

old scheme that will induce higher e¤ort by the agent (ei > e�i ). This means

that the assumptions typically invoked to ensure validity of FOA, such as

convexity of the distribution function (CDF) in addition to MLRP (as in e.g.

Levin 2003), are really not necessary in the context of relational contracting

between two risk neutral individuals.11

Using this lemma, we can show that a threshold bonus will be optimal in

the team model with normally distributed output considered in this paper.

Proposition 4 For the team model with normally distributed output, the

optimal symmetric bonus is a threshold bonus.

When FOA is valid, the optimal threshold is the output at which the likeli-

hood ratio is zero, which is the output y0 = �e�i in the normally distributed

case. The problem with this scheme is that for su¢ ciently small s the agent�s

payo¤ is non concave. In particular, for c0() convex (c000 � 0), the payo¤ has
two local maxima12, at e�i and at e

0
i < e�i , respectively, and e

0
i then gives

the highest payo¤ for small s, so the agent will deviate from the supposed

equilibrium e¤ort e�i . The critical s is where the two local maxima yield

the same payo¤; i.e. b(1 � H(0; s)) � c(e�i ) = b(1 � H(e�i � e0i ; s)) � c(e0i ),
where we as above have Pr(y > y0j ei; e��i) = 1 � H(e�i � ei; s) and H(�; s)
is the CDF for an N(0; s2) variable. In addition they both satisfy FOC, so

bh(e�i � e0i ; s) = c0(e0i ) and bh(0; s) = c0(e�i ).
11This result is in some respects similar to results in Poblete and Spulber 2012, showing

that simpler assumptions than CDF and MLRP are su¢ cient for a debt-type contract to
be optimal in the static principal-agent model under risk neutrality and limited liability.
12 It follows from the shape of the density h() that for c0() convex (c000 � 0), the FOC

(6) for e¤ort can yield at most two local maxima.
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For s below this critical level, the agent�s payo¤ is higher at e0i . Now, this

can be recti�ed by setting a lower threshold y00 < y0 = ne
�
i , i.e. making it

easier to obtain the bonus, and at the same time increase the bonus level.

For y00 = y0 � � we have

Pr(y > y00j e��i; ei) = 1�H(e�i � ei � � ; s)

We can then choose � and the bonus b such that e�i satis�es FOC and yields

a payo¤ at least as high as the other local maximum e0i , i.e. such that we

have

b(1�H(�� ; s))� c(e�i ) � b(1�H(e�i � e0i � � ; s))� c(e0i ) (9)

and

bh(�� ; s)� c0(e�i ) = 0 = bh(e�i � e0i � � ; s)� c0(e0i ) (10)

The smaller � is, the smaller is the required bonus to satisfy FOC for e�i .

The minimal such � yields equality between the payo¤s. Now, this scheme

can at most allow a bonus

b � �

1� �W (e
�
i ) (11)

Hence, we see that the highest e¤ort ei that can be implemented by this

scheme is the e¤ort e�i de�ned by the conditions (9 - 11), where all hold with

equality. Our next result shows that this is indeed the optimal scheme for s

below the critical level where FOA ceases to be valid.

Proposition 5 Given convex marginal costs (c000 � 0), there is a critical

sc > 0 for the standard deviation of output such that for s � sc FOA is valid
and the optimal threshold y0 is the output at which the likelihood ratio is zero,

thus y0 = ne�i . For s < sc the optimal threshold is an output y
0
0 = ne

�
i �� (at

which the likelihood ratio is negative), and the optimal scheme is given by

(9 - 11) with all relations holding with equality. E¤ort e�i is strictly higher

when s is lower, and e�i ! e�u as s! 0.

It may be noted that for the set of variances s2 = var(y) su¢ ciently large to

make FOA valid, the largest e¤ort per agent that can be implemented must

satisfy 2c(e�i ) � �
1��W (e

�
i ), and hence be considerably smaller than the up-

per bound e�u de�ned in (8). This is so because the agent obtains the bonus
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(b) with probability 1
2 in equilibrium in the FOA scheme, hence we must

have b12 � c(e
�
i ) in that setting. This illustrates that a more precise perfor-

mance measure can yield considerable bene�ts in relational contracting. The

bene�ts are not associated with risk reduction (since all agents are risk neu-

tral by assumption), nor with sharper competition, since in the team setting

there is none. The bene�ts arise because a more precise measure strengthens

individual incentives for e¤ort, for a given bonus level. Since the bonuses

in the relational contract are discretionary and hence must be kept within

bounds, the added e¤ort incentives coming from a more precise performance

measure are valuable. And the value added may be considerable, as we have

seen.

Thus far in this subsection we have taken the output variance (s2 = var(y))

as an exogenous parameter. In Section 2.2 we pointed out that this variance

can be substantially reduced if a team can be put together, consisting of

several agents whose individual outputs are negatively correlated. As we

have now illustrated, this may be of considerable value for the participants

in the relational contract.

3 Individual outputs observed

Consider now the case where individual outputs are observable. The princi-

pal can then o¤er a bonus contract �i(x1:::xn), to each agent i = 1:::n,

conditional on all individual outputs. Now, if the contract is expected

to be honored, agent i�s expected wage is then, for given e¤orts, wi =

E(�i(x1:::xn)j e1:::en) + �i, while the principal expects ��x(ei) � �wi. The
agent then chooses e¤ort

ei = argmax
e0i

�
E(�i(x1:::xn)j e0i; e�i)� c(e0i)

�
(12)

As in the case where individual output is unobservable, we assume that if the

contract is not honored, the parties instead bargain over the realized values.

But now the principal agrees on a spot price �xi with each individual agent.

In a one shot relationship, the parties still have no incentives to honor the

bonus contract, and so they have to rely on spot contracting. Expected spot
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price is then S = ��x(esi ): Agent i thus chooses spot e¤ort e
s
i according to

��x0(esi ) � c0(esi ) = 0, while the principal�s expected spot pro�t is given by

�s = (1��)�x(esi ). Note here that spot e¤ort is higher than in the team case

since the marginal revenue from e¤ort ��x0(esi ) is not divided by n.

In a repeated relationship, we still assume that the principal honors the

contract only if all agents honored the contract in the previous period, and

that the agents honor the contract only if the principal honored the contract

with all agents in the previous period.

Now, (given that the IC condition (12) holds) the principal will honor the

contract with all agents i = 1; 2; :::; n if

��i�i(x1:::xn) +
�

1� �� � ��i�xi +
�

1� � [n�s] (13)

Agent i will honor the contract if

�i(x1:::xn) +
�

1� � (wi � c(ei)) � �xi +
�

1� � (S � c(e
s
i )) (14)

These enforcement constraints are stricter than in the team case where in-

dividual output is not observable. The reason is that the spot surplus is

higher, and so the long-term costs from deviating from the relational con-

tract are lower. This in turn may make it possible to implement higher e¤ort

under team incentives, as will be discussed later.

De�ne �modi�ed�(net) bonuses: bi(x1:::xn) = �i(x1:::xn) � �xi: It is then
straightforward to show (as in the previous case where only y = �ixi is

observed) that we have:

Lemma 3 For given e¤orts e = (e1:::en) there is a wage scheme that sat-
is�es (12),(14)-(13) and hence implements e, i¤ there are bonuses � and

�xed salaries � with bi(x1:::xn) = �i(x1:::xn)� �xi � 0, such that (12) and
condition (15) below hold:

�ibi(x1:::xn) �
�

1� � (�iW (ei)� nW (e
s
i )) (15)

Here W () denotes as before surplus per agent; W (ei) = E(xij ei) � c(ei).
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Assuming that FOA is valid, we can replace the IC constraint (12) with the

�rst-order condition:

@

@ei
(E(bi(x1:::xn)j e1:::en) + ��x0(ei) = c0(ei) (16)

The optimal contract then maximizes total surplus (�iW (ei)) subject to

(15) and (16). Unless otherwise noted, all results here assume that FOA

holds.

3.1 Independent outputs

Consider �rst independent outputs. This was analyzed by Levin (2002),

who showed that the optimal contract is RPE with a bonus paid to at most

one agent, namely the agent whose outcome yields the highest likelihood

ratio. Moreover, the bonus is paid to this agent only if the likelihood ratio

is positive. Given symmetric agents and strictly increasing likelihood ratios,

this means that the agent with the largest output wins the bonus, but pro-

vided that his output exceeds some threshold x0 (where the likelihood ratio
fei (xi;ei)

f(xi;ei)
is positive for xi > x0).

We will now use this result to analyze how the e¢ ciency of this scheme varies

with the number of agents (for independent outputs). The next section

considers correlated outputs.

With n agents, agent i�s probability of winning the bonus b, given own

output xi = x > x0, and given symmetric e¤orts ej from all others is now

Pr(maxj xj < x) = F (x; ej)
n�1. Hence the expected bonus payment to

agent i is b
R1
x0
F (xi; ej)

n�1f(xi; ei)dxi, and for symmetric e¤orts the IC

condition (16) takes the form:

b

Z 1

x0

F (xi; ei)
n�1fei(xi; ei)dxi + ��x

0(ei) = c
0(ei) (17)

In passing, it is worth noting that the integral here extends only over values

of xi where fei(xi; ei) > 0. In a standard tournament, where agent i would

obtain a bonus when he had the largest output, the integral would extend

over all values of xi. The payment scheme here, which we may call a modi�ed

tournament, thus provides stronger incentives (for a given bonus b) than a
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standard tournament scheme.

The optimal RPE bonus is maximal, i.e. b = �
1�� (�iW (ei)�nW (e

s
i )), where

W (ei) is total surplus (for agent i) and W (esi ) is the outside spot surplus

per agent. Hence, from (17) we have, in symmetric equilibrium

c0(ei)� ��x0(ei)R1
x0
F (x; ei)n�1fei(x; ei)dx

= b =
�

1� �n(W (ei)�W (e
s
i )) (18)

Consider now variations in the number of agents. Higher n increases the

competition to obtain the bonus (the probability of winning is reduced),

so the bonus must be increased to maintain e¤ort; this is captured by the

�rst equality in (18). The second equality shows how much the bonus can

be increased; namely by the increased total surplus. The question is then

whether the latter is su¢ cient to compensate for the reduced probability of

winning.

The answer is a¢ rmative, and the reason is essentially that while the surplus

on the RHS increases proportionally with n, the marginal probability (in the

denominator) on the LHS decreases less rapidly, so that n
R1
x0
F (x; ei)

n�1fei(x; ei)dx

increases with n. This allows a higher e¤ort (per agent) to be implemented,

so we have:

Proposition 6 For observable and independent individual outputs, e¤ort
per agent in the RPE scheme (the modi�ed tournament) increases with the

number of agents.

When individual output measures are available, and these outputs are in-

dependent, we thus see that e¢ ciency in the (modi�ed) tournament is im-

proved by including more agents. This is in sharp contrast to e¢ ciency in a

team for independent outputs: as we saw above the team e¢ ciency rapidly

decreases under such conditions.

3.2 Correlated outputs

Consider now correlated outputs. For tractability reasons we will then again

consider normal distributions, and as before limit attention to symmetric

21



agents. A convenient feature of the multinormal distribution is that likeli-

hood ratios are linear functions of the variables, and this simpli�es compar-

isons of such ratios for these variables.

So assume now x = (x1:::xn) multinormal with Exi = ei, var(xi) = s2 and

(identical) correlations corr(xi; xj) = �. From the form of the multinormal

distribution (see the appendix) the likelihood ratio for xi is then

fei(xj e1:::en)
f(xj e1:::en)

= k1(xi � ei) + k2�i6=j(xj � ej) (19)

with k1 =
1+(n�2)�

(1+(n�1)�)(1��)s2 > 0 and k2 =
��

(1+(n�1)�)(1��)s2 . Note that

k1 � k2 = 1
(1��)s2 > 0

As we show in the appendix, for symmetric agents the optimal symmetric

scheme pays a maximal bonus to the agent with the highest likelihood ratio,

provided this ratio is positive, and no bonus to the other agents. From

symmetry (including symmetric e¤orts in equilibrium; ei = e� all i) the

agent with the highest output has the highest likelihood ratio, and this

ratio is positive i¤13

xi > e
� +

�

(n� 2)�+ 1�j 6=i(xj � e
�) = E(xijx�i) (20)

This condition says that agent i�s performance must exceed his expected

performance, conditional on the performance of all other agents. Thus we

have:

Proposition 7 The optimal symmetric scheme pays a maximal bonus to
the agent (say i) with the highest output, provided this output satis�es xi >

E(xijx�i).

For n = 2 agents we now have that agent 1 gets the bonus if and only if he

has the highest output (x1 > x2) and x1�e� > �(x2�e�). This is illustrated
in Figures 2a and 2b for � = 1

2 (left) and � = �
1
2(right). Agent 1 is to get

the bonus for outcomes to the right of the broken line.

13 In this section it is convenient to let e� be a scalar and denote the symmetric equilib-
rium e¤ort level.
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(See Figures 2a and 2b in the appendix)

In both cases the agent with the highest output gets the bonus if both of

them have outputs that are above average (x1; x2 > Exi = e�) . If agent 2

has below average output (x2 < Exi = e�) the requirement for agent 1 to

get the bonus is less strict when there is positive correlation than when there

is negative correlation. In the latter case, agent 1 must have an output well

above average to obtain the bonus, and more so the worse is the output for

agent 2. Under negative (positive) correlation, a bad performance by agent

2 raises (lowers) the expected conditional performance of agent 1, and thus

raises (lowers) the requirement �the hurdle (threshold)� for agent1 to get

the bonus.14

Having characterized the optimal scheme, we will now consider its incentive

properties. To make the analysis tractable, we restrict attention to n = 2

agents. Consider then agent 1�s incentives in this scheme, with �reference

point�(equilibrium) e�1 = e
�
2. His probability of obtaining the bonus is

Pr(x1 > max[x2; e
�
1 + �(x2 � e�2)]j e1e�2) � Pr(B) =

Z
x2B

f(xj e1e�2) (21)

So the marginal gain from e¤ort is
R
B fe1(xj e1e

�
2) and in symmetric equilib-

rium e�1 = e
�
2 = e

� we will then have (given FOA valid)

b
R
B fei(xj e

�; e�) + � � c0(e�) = 0

An interesting question is then: For given e¤ort e� to be implemented, how

do marginal incentives vary with correlation � ? E.g. do these marginal

incentives become stronger when � increases, implying that a lower bonus

is required to implement the same e¤ort? We should bear in mind that

this is an RPE scheme and that such schemes generally work well both for

positive and negative correlations in other settings. Perhaps not surprisingly

a similar property turns out to be true here.

Proposition 8 For correlated variables and n = 2, the agent�s FOC for
14To illustrate these points, if � = :5, and agent 2 has output 10% below expected

(x2=e� = :9), agent 1 can only win if his output is no more than 5% below expected. But
if � = �:5, agent 1 must perform at least 5% better than expected in order to be eligible
for the bonus (if in addition he wins).
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(symmetric) equilibrium e¤ort is

b
1p
2�s

1

2

 
1p
1� �2

+
1p
1� �

1p
2

!
+ � = c0(e�) (22)

The marginal incentive in FOC (i.e. the expression on the LHS) is increas-

ing in � for � > �0 � �0:236 and decreasing in � for � < �0. Hence,

implementing a given e¤ort requires a lower (higher) bonus when the corre-

lation � increases for � > �0 (for � < �0).

This is illustrated in Figure 3, which depicts the marginal incentive as a

function of � for the RPE scheme and for a standard tournament (dashed

line).

(See Figure 3 in the appendix)

As a function of �, the marginal incentive (MI) for e¤ort is thus U-shaped in

the optimal scheme, which again is a modi�ed tournament. In comparison,

in a standard tournament the MI is monotone increasing in � (as shown

by the dotted line; this MI is given by d
de1
Pr(x1 > x2) =

1p
2�sd

, where

sd =
p
2(1� �)s is the standard deviation of x1 � x2, and the formula fol-

lows from the normal distribution). In comparison the modi�ed tournament

yields higher MI for e¤ort for every � (which allows a higher e¤ort to be

implemented with the same bonus), and the MI is high both for strongly

positive correlated and for strongly negative correlated outputs.

The latter property is caused by the speci�c criteria to obtain the bonus

in the modi�ed tournament, cfr the �gures depicted above. In a standard

tournament agent 1 wins and gets a bonus if x1 > x2, while in the modi�ed

tournament he gets a bonus only if x1 > x2 and x1�e� > �(x2�e�). So the
probability of obtaining the bonus is (all else equal) higher in a standard

tournament, but the marginal e¤ect of own e¤ort on the probability (the

marginal incentive MI), is higher in the modi�ed tournament.
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3.3 The validity of FOA

So far we have assumed FOA to be valid; this issue will now be exam-

ined more closely for the RPE scheme derived above. The question is then

whether, for given symmetric e¤orts e�1 = e�2 to be implemented by the

modi�ed tournament scheme, these e¤orts are indeed optimal choices for

the respective agents.

In the appendix we show that the marginal gain to e¤ort for agent 1 in the

modi�ed tournament scheme can be written as

b

s
�(
e1 � e�1
s

; �) + � � c0(e1)

where �(a; �) is a bell-shaped function de�ned there (see (35)). The FOC for

e1 = e
�
1 to be optimal (as stated in Proposition 8 above) can thus be written

as b
s�(0; �) +

1
2� � c

0(e�1) = 0, and the local second order condition takes

the form b
s�a(0; �)

1
s � c

00(e�1) � 0: Since �a(0; �) turns out to be positive,

these conditions imply that the standard deviation s cannot be too small.

This is thus a necessary requirement for FOA to be valid in this setting.

Moreover, we can also see that a �large�s is su¢ cient for FOC to have a

unique solution, and hence su¢ cient for FOA to be valid. More speci�cally

we have the following result.

Proposition 9 For given e¤ort e�i � eFBi , a necessary condition for FOA

to be valid is that

e�i
s
� m0

1� �=c0(e�i )
p
�(
p
2 +

p
1 + �)

where m0 is the (local) elasticity of the marginal cost function; m0 = e�i
c00(e�i )
c0(e�i )

.

Moreover, there is s0 > 0 such that FOA is valid for s > s0.

4 Teams or tournaments?

If individual outputs are observable, the principal may of course choose to

base any discretionary bonuses only on aggregate output. Hence, if the re-

lational contract constraints are una¤ected by such a choice, the principal
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cannot do better with a scheme of the latter type. The RPE scheme based

on individual outputs will then always be optimal. It follows that, if there is

a choice between two equally costly technologies allowing for observation of,

respectively, individual or aggregate output, the technology allowing indi-

vidual output to be observed will be chosen. A (modi�ed) tournament will

then dominate a team.

However, if a chosen technology is costly to modify later on, the picture is

no longer so clear. The reason is that relational contract constraints may

be a¤ected, in the sense that the respective outside options associated with

spot trading will be di¤erent under the two technologies. Due to the free

rider problem, spot trading is less e¢ cient when only team output can be

observed. Hence, if a team setup is chosen initially, then if the relational

contract should break down, either a costly reorganization to individual

output measurements and subsequent spot trading will take place, or (if

reorganization costs are su¢ ciently high) spot trading based on team output

will be the way the parties proceed. In any case the spot surplus will be

smaller if the team organization was chosen initially. This implies in turn

that the relational contract constraints are a¤ected by the initial choice, and

then it is no longer so clear that the team organization will be inferior. We

will now examine this issue.

In the following we will assume that a reorganization of the team is so costly

(relative to its bene�ts) that it will not take place if contract breakdown

and subsequent spot trading should occur. The issue to be considered is

then whether the surplus generated by the relational contract for the team

(analyzed in Section 2) may dominate the surplus under the relational RPE

contract based on individual outputs (analyzed in Section 3). Now, for each

contract there will be a critical magnitude of the discount factor, say �FB,

such that the contract generates the �rst-best surplus for � � �FB, but not
so for � < �FB. A relatively simple way to compare the contracts is to

compare their respective critical factors. The contract with the lower �FB

will, for a range of �0s exceeding the lower �FB strictly dominate the other.

For independent outputs, we know that the e¢ ciency of the RPE tourna-

ment scheme improves with increasing number of agents, while the team�s

e¢ ciency rapidly decreases with more agents. The team can thus only dom-
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inate if the number of agents is relatively small. In fact, for iso-elastic costs

and independent outputs, the optimal team size (with respect to e¢ ciency)

typically turns out to be quite small (n = 2 or n = 3, depending on the

magnitude of the elasticity and the magnitude of �). For quadratic costs

(elasticity 2) we have the following.

Proposition 10 For independent, normal outputs and quadratic e¤ort costs
we have: the optimal team size (in the sense of having the lowest critical

�FB) is n = 2 if � < �0 � 0:805 , and n = 3 if � > �0. Moreover, for n = 2
agents, the team dominates the RPE tournament (in the same sense) if and

only if � > �1 � 0:739.

Consider next correlated outputs. For negatively correlated outputs, we

know that the optimal team size may be large (Section 2.2), and that the

e¢ ciency of the team may be quite high. It thus seems reasonable to con-

jecture that, under such conditions, a team may dominate the RPE tourna-

ment even for n large. The analysis of this issue is hindered, however, by

the optimal RPE scheme being di¢ cult to analyze for correlated outputs

and arbitrary n > 2. So we must at this stage con�ne the analysis to a

comparison of the two schemes for n = 2 when outputs are correlated.

From the previous analysis we know that the RPE tournament has high

e¢ ciency both for strongly positive and strongly negative correlation. Since

the team�s e¢ ciency is decreasing in �, it is thus to be expected that the

tournament will tend to dominate for positive �. However, for negative �

both schemes become more e¢ cient with stronger (negative) correlation,

hence it is not so clear what will happen there. It turns out that the team�s

e¢ ciency improves relatively more for strongly negative �, as shown in the

following proposition.

Proposition 11 For correlated multinormal outputs, quadratic costs and
n = 2 we have: A team dominates the RPE tournament in the sense of

having a lower �FB i¤ � > �0(�), where �0(�) is increasing in � with �0(�)!
0 as �! �1, �0(�)! 1 as �! 1, and �0(0) � 0:739 . This holds irrespective
of the magnitude of s (the standard deviation for individual output), but for

each �, s must be su¢ ciently large so that FOA is valid.
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The function �0(�) is depicted in Figure 4. The RPE tournament has highest

critical �FB above the curve, and is hence dominated by the team there.

For high � the RPE tournament does comparatively better in the sense

that the parameter set for which it is dominated is smaller. For strong

negative correlations the opposite occurs: the team dominates there even

for comparatively small parameter �.

(See Figure 4 in the appendix)

5 Concluding remarks

Both team work and tournament incentives are common features of modern

organizations. According to Lawler (2001), 72 percent of Fortune 1000 com-

panies make use of work teams, de�ned as groups of employees with shared

goals or objectives, and in most �rms of a certain size workers (explicitly or

implicitly) compete for bonuses, wage raises or for better paid positions.

While the literature on tournaments has mainly been developed by econo-

mists, research on team work and team incentives has been multidisciplinary.

There is a large literature within management and organizational behavior

investigating team composition, team compensation, team leadership, and

so forth, but this literature is mainly empirical, and the theoretical literature

is conceptual rather than formal.

The economics literature on team organization is, in comparison, rather

small. Theory has mainly focused on how the well-known free-rider problem

can be solved or mitigated, while questions related to team size and team

composition have remained unanswered, or not even asked. Moreover, en-

dogenous formation of teams, in which �rms deliberately choose to hold a

team of workers accountable for their joint output, is not well understood.

Our paper contributes to the team literature by deriving testable theoret-

ical predictions on team incentives, team size, team composition and team

formation. We have done so by analyzing optimal self-enforcing (relational)

contracts between a principal and a set of agents where only aggregate out-

put can be observed. We have then considered how the e¢ ciency of the

contract is a¤ected by variations in the number of agents and in the correla-
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tions between the agents. Finally, we have compared with a situation where

individual output is observable.

First, we showed that the optimal team contract entails an incentive scheme

in which each agent is paid a maximal bonus for aggregate output above

a threshold and a minimal bonus otherwise. We then considered optimal

team size. To the extent this is studied in the formal literature, the standard

result is that more agents increases the free-rider problem and thus weakens

incentives and e¤ort. In our model, this is not necessarily the case. More

agents in a team have three e¤ects: First, it reduces the marginal incentive

e¤ect of a given bonus, which is the standard 1=n free-rider problem. Second,

it also reduces the team�s outside option. This strengthens the relational

contract and thus allows for higher-powered incentives and thus higher e¤ort.

This positive e¤ect of more agents is particularly strong if the agents�ex post

bargaining power is high. Finally, it a¤ects the variance of the performance

measure. For positive correlations between the agents�outputs, the variance

increases, while for negative correlations the variance is reduced. The latter

is bene�cial for the team because it increases the marginal incentives for

each team member to provide e¤ort.

Our model thus predicts that teamwork is more robust and more e¢ cient

when the team has high (ex post) bargaining power and when the team

members�outputs are negatively correlated. The former implies that team-

work is more e¢ cient (or prevalent) when the team is in a position to hold

up values and sell their products in an alternative market. This is typically

the case in human capital-intensive industries where groups of employees

can potentially walk away with ideas, clients, innovations, etc.

The latter - negative correlations - relates to questions concerning opti-

mal team composition. In the management literature a central question

is whether teams should be homogenous or heterogeneous with respect to

tasks (functional expertise, education, organizational tenure) as well as bio-

demographic characteristics (age, gender, ethnicity). One can conjecture

that negative correlations are more associated with heterogeneous teams

than homogenous teams, and also more associated with task-related diver-

sity than with bio-demographic diversity. There is no reason to believe that

e.g. men and women�s outputs are negatively correlated. However, workers
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with di¤erent functional expertise may be di¤erently exposed to common

shocks, or meet di¤erent sets of demands from customers or superiors. This

can give rise to negative output correlations.

Interestingly, a comprehensive meta-study by Horwitz and Horwitz (2007),

investigating 35 papers on the topic, �nds no relationship between bio-

demographic diversity and performance, but a strong positive relationship

between team performance and task-related diversity. An explanation is that

task-related diversity creates positive complementarity e¤ects. We point to

an alternative explanation, namely that diversity may create negative cor-

relations that reduce variance and thereby increase marginal incentives for

e¤ort. The team members �must step forward when others fail�. Diver-

sity and heterogeneity among team members can thus yield considerable

e¢ ciency improvements.15

We have also compared with a situation where individual output is observ-

able. For a parametric (normal) distribution, we have shown that the op-

timal contract is an RPE (relative performance evaluation) scheme; a form

of a tournament, where the conditions for an agent to obtain the (single)

bonus are stricter for negatively compared to positively correlated outputs.

The e¢ ciency of the RPE contract is shown to increase with the number of

agents, and to improve with higher correlation (both positive and negative).

Now, if the �rm can initially choose between organizations that allow for

(a) only aggregate output or (b) individual outputs to be observed, we show

that the �rm may choose (a), i.e. to organize production as a team. Thus,

even if alternatives (a) and (b) are equally costly to set up initially, the team

alternative may yield a higher subsequent surplus.

There are two reasons for this. One is that teams create worse outside

options. This is particularly the case under high ex post bargaining power.

When individual outputs are observable, high bargaining power creates quite

e¢ cient spot contracts, while under team production the free-rider problem

dampens the e¢ ciency of the spot contract. Hence, since worse outside

options strengthen the relational contract, higher bargaining power favors

the team alternative.
15Hamilton et al (2003) provide one of a very few empirical studies on teams within the

economics literature. They �nd that more heterogeneous teams (with respect to ability)
are more productive (average ability held constant).
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Second, negative correlations are even more bene�cial for the relational team

contract than for the relational RPE contract. That is, although e¢ ciency

in both alternatives increases with more negatively correlated outputs, the

team alternative is more likely to be superior under such conditions. Hence,

according to our model, team work is not only more robust and e¢ cient

under high bargaining power and negatively correlated outputs. The likeli-

hood for �rms to deliberately choose the team alternative, even if individual

output is observable, is also higher under these conditions.
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APPENDIX

Proof of Proposition 1. Maximizing total surplus (�iW (ei) � �i(E(xij ei)�
c(ei))) subject to EC and the �modi�ed�IC constraint (2) yields

�igl(y; l)lei(e1:::en)� �(y) � 0, bi(y) � 0,

where the inequalities hold with complementary slackness, and �i > 0,

�(y) � 0 are Lagrange multipliers.

For y > y0 we have gl(y; l) > 0 and hence �(y) > 0, implying that EC

is binding and at least one bonus is positive. In a symmetric solution the

bonuses will thus all be equal and maximal for y > y0. On the other hand,

for y < y0 we have gl(y; l) < 0 by MLRP and hence bi(y) = 0 for all i.

Finally suppose l(e1:::en) = �iei, and assume the solution is asymmetric;

say that ei < ej . Let b0 = (bi + bj)=2 and considerR
b0(y)gl(y; l(e1:::en))dy =

1
2

R
bi(y)gl(y; l(e1:::en))dy+

1
2

R
bj(y)gl(y; l(e1:::en))dy

= 1
2c
0(ei) +

1
2c
0(ej) � c0( ei+ej2 )

Hence the bonus b0(y) to each of i and j is feasible and would induce e¤ort at

least ei+ej2 = e0 from each. Thus a slightly lower bonus to each is feasible and

will induce e¤ort e0 from each. This yields higher value since the objective

is concave.

Proof of Proposition 3. It is obvious from the shape of h() that the FOC

for e¤ort has a single solution for s su¢ ciently large, and hence that FOA

is then valid. So consider s small.

If FOA is valid, the agent�s optimal payo¤ is b12+�e
�
i �c(e�i )+0. This must

be no less than the payo¤ for ei = esi , which strictly exceeds �e
s
i � c(esi )+0,

thus we have 0 < �esi � c(esi )� (�e�i � c(e�i )) < b12 �
�
1�� (W (e

�
i )�W (esi ))12 ,

where the �rst inequality follows from esi = argmax(�ei � c(ei)). There is
a critical �F > 0 such that these inequalities do not hold for e�i = e

FB
i and

� < �F , hence �rst best e¤ort can not be obtained for � < �F . Given such a

�, if FOA is valid for all s > 0, then b ! 0 as s ! 0 (since h(0) � 1
s ), and

hence, since EC binds, e�i ! esi . But this is a contradiction, since when FOA

is valid, e¤ort e�i should increase when s is reduced. This is so because if
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bonus bs implements e¤ort e�i for some s > 0, then bs implements (by FOC)

a higher e¤ort for s0 < s, yielding slack in EC, and hence room for a higher

bonus to increase e¤ort further. This shows that FOA cannot be valid for

all s > 0.

Proof of Lemma 2. For given e, admissible bonuses satisfy 0 � b(y) �
�
1��W (ei) � B. Let y0 be the hurdle (threshold) for bh(y). Then

0 = u(bh; e)� u(~b; e) =
Z y0

y
(�~b(y))f(y; e) +

Z �y

y0

(B � ~b(y))f(y; e) (23)

This yields

uei(bh; e)�uei(~b; e) =
R y0
y (�~b(y))

fei (y;e)

f(y;e) f(y; e)dy+
R �y
y0
(B�~b(y))fei (y;e)f(y;e) f(y; e)dy

>
fei (y1;e)

f(y1;e)

hR y0
y (�~b(y))f(y; e)dy +

R �y
y0
(B � ~b(y))f(y; e)dy

i
= 0

where the inequality follows from MLRP, and the last equality from u(~b; e) =

u(bh; e). This proves statement (i)

(ii) Note that, for given e = e� the RHS of (23) is decreasing in y0, and

hence there is a y0 satisfying the equation. Let bh(y) be the associated hurdle

scheme. To simplify notation, write u(~b; e) = ~u(e) and u(bh; e) = u(e). Then

from (i) we now have ~u(e�) = u(e�) and uei(e
�) > ~uei(e

�), where ~uei(e
�) = 0

since e� is an equilibrium for bonus ~b(y).

Now assume, to get a contradiction, that there is e0i < e
�
i with u(e

0
i; e

�
�i) >

u(e�i ; e
�
�i). Then for �(ei) = u(ei; e

�
�i)� ~u(ei; e��i) we have �(e0i) > �(e�i ) = 0

and �0(e�i ) = uei(e
�
i ; e

�
�i) > 0. Hence by continuty there must be some

e00i 2 (e0i; e
�
i ) such that �(e

00
i ) = 0 and �0(e00i ) � 0. At e00i we thus have

u(e00i ; e
�
�i) = ~u(e00i ; e

�
�i) and uei(e

00
i ; e

�
�i) � uei(e

00
i ; e

�
�i). But this contradicts

statement (i) in the lemma. This proves (ii) and thus the lemma.

Proof of Proposition 4. Suppose the optimal bonus ~b(y) is not a hurdle
(threshold) bonus, and let e� > 0 be the associated e¤orts. So uei(~b; e

�) = 0

by FOC. Let b = �
1��W (e

�
i ), and let bh be a symmetric hurdle scheme (with

0 � bh(y) � b), with the same utility as ~b; i.e. u(~b; e�) = u(bh; e�), and hence
uei(bh; e

�) > uei(
~b; e�) = 0 by Lemma 2. Let y0 be the threshold for bh. The

37



idea of the proof is to modify this threshold (to y0 � �0) such that e� gets
to be an equilibrium for the modi�ed threshold bonus

To show this, note that for a bonus with threshold y00 = y0 � � an agent�s
expected bonus payment is bPr(y > y00j e), and that for y � N(�ei; s

2)

the agent�s expected payo¤ (excluding the �xed salary) can be written, for

e�i = e��i as

u(� ; ei; e
�
�i) = b(1�H(y�0 � � � ei))� c(ei); y�0 = y0 � (n� 1)e�i ;

where H() is the CDF for N(0; s2). For � = 0 the threshold is that of bh
(i.e. y0) and we have by Lemma 2

u(0; ei; e
�
�i) � u(0; e�i ; e��i) for all ei < e

�
i ; (24)

and 0 < uei(0; e
�
i ; e

�
�i) = bh(y

�
0�e�i )�c0(e�i ), where h() = H 0() is the normal

density. Now de�ne �0 > 0 such that

uei(�0; e
�
i ; e

�
�i) = h(y

�
0 � �0 � e�i )� c0(e�i ) = 0 and y�0 � �0 � e�i < 0 (25)

This is feasible because by the shape of h(), if h(x) > C > 0, then there

is �0 > 0 such that h(x � �0) = C and x � �0 < 0. Note that this implies
h(y�0 � �0 � ei) < h(y�0 � �0 � e�i ) and thus uei(�0; ei; e��i) < 0 for ei > e�i .

No deviation to ei > e�i can therefore be pro�table.

Next, if 2(y�0 � �0) > e�i de�ne e0i 2 (0; e�i ) by

y�0 � �0 � e0i = �(y�0 � �0 � e�i ) > 0 (26)

and note that this implies (by the shape of h()):

h(y�0 � �0 � ei) > h(y�0 � �0 � e�i ) for ei 2 (e0i; e�i ) (27)

This in turn implies, since h(y�0 � �0 � e�i ) = c0(e�i ) > c0(ei) for ei < e�i , that
we have uei(�0; ei; e

�
�i) > uei(�0; e

�
i ; e

�
�i) = 0 and hence

u(�0; ei; e
�
�i) < u(�0; e

�
i ; e

�
�i) for ei 2 [e0i; e�i ) (28)

If 2(y�0 � �0) � e�i de�ne e
0
i = 0, and it is then straightforward to see that

(27) and hence (28) holds for that case as well. In that case the proof is then
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complete since (28) implies that no deviations to ei < e�i can be pro�table.

For the case e0i > 0, de�ne, for ei < e
0
i and � 2 [0; �0] the payo¤ di¤erence

�(� ; ei) = u(� ; e
�
i ; e

�
�i)� u(� ; ei; e��i)

By (24) we know that for � = 0 we have �(0; ei) � 0 for all ei � e0i < e�i .

Let now � 2 (0; �0), and consider
@�(�;ei)
@� = bh(y�0 � � � e�i )� bh(y�0 � � � ei)

For � < �0 and ei < e0i we have y
�
0 � � � ei > y�0 � �0� e0i > 0 (see (26)) and

hence h(y�0 � � � ei) < h(y�0 � �0 � e0i). Thus we have
@�(�;ei)
@�

1
b > h(y

�
0 � � � e�i )� h(y�0 � � � e0i)

= h(y�0 � �0 � e�i + (�0 � �))� h(y�0 � �0 � e0i + (�0 � �))

Note that by (26) the last di¤erence can be written as h(�x+ z)� h(x+ z)
with x; z > 0, and this di¤erence is thus positive (by the shape of h()). Since
@�(�;ei)
@� > 0 we then have, for ei � e0i:

�(�0; ei) = u(�0; e
�
i ; e

�
�i)� u(�0; ei; e��i) > u(0; e�i ; e��i)� u(0; ei; e��i)

It now follows from (24) that u(�0; e�i ; e
�
�i) > u(�0; ei; e

�
�i) for ei � e0i, This

completes the proof that e� is a (symmetric) equilibrium for the modi�ed

bonus with threshold y0 � �0.

Proof of Proposition 5. We have H(x; s) = �(xs ), and h(x; s) = �(
x
s )
1
s

where �() is the N(0,1) CDF and �() its density. The relations (9 - 11) can

then be written as

b(1� �(��
s
))� c(e�i ) � b(1� �(

e�i � e0i � �
s

))� c(e0i ) (29)

b�(
��
s
)
1

s
� c0(e�i ) = 0 = b�(

e�i � e0i � �
s

)
1

s
� c0(e0i ) (30)

b � �

1� �W (e
�
i ) (31)

For c000 � 0, so c0(ei) is convex, there can at most be two local maxima (e�i
and e0i ) for the agent�s payo¤. Note that for the minimal s = sc for which

the FOA is valid, all relations (9 - 11) hold with equality, and � = 0. Denote
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the associated e¤ort and bonus by e�i = e�c and b = bc, respectively. For

s < sc the optimal threshold must be some y00 6= ne�i , thus y
0
0 = ne�i � � ,

� 6= 0. We show below that � > 0, as assumed in the text, is optimal.

First we show that for an optimal � > 0 all constraints must bind. To see

this, de�ne � as the di¤erence in payo¤s between e�i and e
0
i , i.e. from (29);

� = b(�(
e�i � e0i � �

s
)� �(��

s
))� (c(e�i )� c(e0i )); (32)

and note that � is increasing in b and in � . This is so because (by the

envelope property) d�db = �(
e�i�e0i��

s )��(��s ) > 0 and
d�
d� s = c

0(e�i )�c0(e0i ) >
0. But then, if the EC constraint (31) does not bind, we can increase b

without violating the payo¤ constraint (29), since d�db > 0. The higher bonus

will induce higher e¤ort e�i (by FOC), hence EC must bind in optimum.

If the payo¤ constraint (29) does not bind, then by reducing � , keeping b

�xed, e¤ort e�i will increase (by FOC), and the EC constraint (31) will be

relaxed. The payo¤ constraint (29) must therefore also bind in optimum.

Now we show that � < 0 cannot be optimal. Suppose it is, i.e. that for some

s < sc a hurdle y00 = y0�� 0 with � 0 < 0 is optimal. The optimal bonus b and
e¤ort e�i must satisfy FOC. Note that the FOC for e

�
i will also be satis�ed

for � 00 = �� 0 > 0, because �(��s ) = �( �s ) Then, since d�
d� > 0, the payo¤

di¤erence � will be strictly higher for � = � 00 > 0 than for � 0 < 0. But then

e�i is a strict optimum for the agent (� > 0) for � = � 00 > 0, and in such a

case it is, as we have seen above, possible to implement an even higher e¤ort

by, say, increasing the bonus somewhat. A hurdle y00 = y0 � � 0 with � 0 < 0
can thus not be optimal.

We now show that e¤ort e�i is higher when s is lower. To this end �x

sa < sc, and let the optimal e¤ort, bonus and hurdle parameter be e�i = e
�
a,

b = ba and � = �a, respectively. Then � = 0 and EC (31) binds. We �rst

show that for s < sa e¤ort e�i = e�a can be implemented with b = ba, and

a suitable choice of � . Indeed, �x e�i = e�a and b = ba, and let �(s) and

e0i (s) be de�ned by the FOCs (30) for e
�
i and e

0
i , respectively. For s = sa

we have � = �a and all relations hold with equality. We show below (see

(33)) that the payo¤ di¤erence � = �(�(s); e0i (s)) satis�es
d�
ds < 0 (keeping

e�i = e�a and b = ba �xed). This implies that e�i = e�a can be implemented
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with b = ba and � = �(s) when s < sa, and that the associated payo¤

di¤erence is then strictly positive (� > 0). But in such a case we can, as

shown above, implement a strictly higher e¤ort e�i > e�a. This shows that

for s < sa optimal e¤ort is e�i > e
�
a, as was to be shown.

Finally we show that in the limit we have e�i ! e�u as s ! 0. For suppose

that (at least along a subsequence) e�i ! e�l < e�u as s ! 0. Note that we

then must have �
s ! 1 as s ! 0. For if not, then b ! 0 by FOC for e�i in

(30), which implies a negative payo¤at e�i . For the same reason we must also

have e
�
i�e0i��
s !1. Then we must have e0i ! e0l = 0 as s! 0, for otherwise

the payo¤ at e0i would converge to �c(e0l ) < 0. This is impossible, since the
payo¤ at e0i exceeds that at ei = 0, and hence must be non-negative.

Taking limits in the �rst relation (29) with equality, we then get lim b � 1�
c(e�l ) = 0, and hence from the last equation (for b) that c(e�l ) =

�
1��W (e

�
l ).

This cannot hold for e�l < e
�
u, hence we must have e

�
l = e

�
u.

It remains to prove d�ds < 0, where� is given by (32), � = �(s) and e
0
i = e

0
i (s)

are given by the FOCs in (30), and b and e�i are kept �xed (e
�
i = e

�
a; b = ba).

In fact, we will show that

d�

ds
= (c0(e�i )� c0(e0i ))(�

s

�
)� c0(e0i )

e�i � e0i
s

< 0 (33)

To this end, using the FOC (30) we �nd, for the payo¤ at e0i :

d
ds

�
b(1� �( e

�
i�e0i��
s ))� c(e0i )

�
= c0(e0i )

�
d�
ds +

e�i�e0i��
s

�
Similarly, for the payo¤ at e�i we �nd

d
ds

�
b(1� �(��s ))� c(e

�
i )
�
= c0(e�i )(

d�
ds �

�
s )

Hence

d�
ds = (c

0(e�i )� c0(e0i ))(d�ds �
�
s )� c

0(e0i )
e�i�e0i
s

From the FOCs (30) and the fact that �0(z) = �z�(z) we obtain by di¤er-
entiation (d�ds �

�
s ) = �

s
� . This proves (33), and thus completes the proof.
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Proof of Proposition 6. From (18) we have

c0(ei)� ��x0(ei)
n
R1
x0
F (x; ei)n�1fei(x; ei)dx

=
b(n)

n
=

�

1� � (W (ei)�W (es))

Consider

s(n) = n

Z 1

x0

F (x; ei)
n�1fe(x; ei)dx =

Z 1

x0

d

dx
(F (x; ei)

n)
fei(x; ei)

f(x; ei)
dx

Letting h(x) =
fei (x;ei)

f(x;ei)
here denote the likelihood ratio, we have, integrating

by parts

s(n) =

Z 1

x0

d

dx
(F (x; ei)

n � 1)h(x)dx = h(x0) +
Z 1

x0

(1� F (x; ei)n)h0(x)dx

where h(x0) = 0 by de�nition of x0. Given MLRP we have h0(x) > 0 and

hence we see that s(n) is increasing in n.

This implies that c
0(ei)���x0(ei)
s(n;ei)

shifts down with n, and hence that e¤ort per

agent (ei) increases.

Proof of Proposition 7. Maximizing total surplus (�iW (ei) = �i(E(xij ei)�
c(ei))) subject to (15) and (16) yields

�ifei(x; e)� �(x) � 0, bi(x) � 0,

where the inequlities hold with complementary slackness (and e; x are vec-

tors). If two agents are paid a positive bonus, then �ifei(x; e) = �(x) =

�jfej (x; e), so their weighted likelihood ratios must be equal; �i
fei (x;e)

f(x;e) =

�j
fej (x;e)

f(x;e) . But this can only occur for a set of measure zero, hence at most

one agent is paid a bonus (almost surely).

If fei(x; e) < 0 then bi(x) = 0. If fei(x; e) > 0 then �(x) > 0, and agent

i is paid the bonus (bi(x) > 0) if and only if he has the largest weighted

likelihood ratio. Also, the bonus is maximal since EC is binding.

In a symmetric solution the weights (multipliers) �i will be equal, and hence

the agent with the largest likelihood ratio will get the bonus, provided this

ratio is positive.
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Now consider variables with identical variances and identical correlations

(corr(xi; xj) = � all i 6= j.). The multinormal density has the form

C exp(�1
2(x� e)

0��1(x� e))

where � is the covariance matrix. Under our assumptions we have � = s2R,

where the correlation matrix R can be written as

R = (1� �)I + �J;

where each element of J is Jik = 1. Note that J2 = nJ . It is straightforward

to verify that

R�1 =
1

(1 + (n� 1)�)(1� �)Q, where Q = (1 + (n� 1)�)I � �J (34)

Note that the matrix Q has elements (1+(n�2)�) on the diagonal, and ��
o¤ the diagonal.

From the formula for R�1 and the de�nitions of k1; k2 in the text it follows

that the quadratic form in the multinormal density can be written

�1
2(x� e)

0��1(x� e) = �1
2

�
k1�iz

2
i + k2�i6=jzizj

�
; zi = xi � ei

Di¤erentiation of the density wrt ei then yields the formula (19) for the

likelihood ratio in the text.

From the formula (19) it follows that agent i0s likelihood ratio is positive

i¤ the inequality in (20) holds. We now verify the last equality in (20), i.e.

the validity of the expression for E(xijx�i). To this end note that for the
normal distribution the conditional expectation of, say x1 can be written

E(x1jx�1) = E(x1) + �12��122 (x�1 � Ex�1);

where �12 = s2(�; :::; �) is the (n � 1)�dimensional vecor of covariances
cov(x1; xj), j > 1, and �22 is the covariance matrix for x�1 = (x2:::xn)0. It

follows from (34) that s2��122 has the same form as R�1, with n replaced by

n�1. Hence �12��122 = (�:::�)R
�1
n�1, and each element of this (1�n) matrix

is, from (34):

((�:::�)R�1n�1)i =
�

(1+(n�2)�)(1��)((1 + (n� 3)�)� (n� 2)�) =
�

(1+(n�2)�)

This veri�es the last equality in (20).
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Proof of Proposition 8. We will show that for e�1 = e
�
2 the marginal gain

from e¤ort isR
B fe1(xj e1e

�
2) =

1
s�(

e1�e�1
s ; �)

where �(a; �) is de�ned by

�(a; �) =
1p
1� �2

1

2
�(

ap
1� �2

)+
1p
1� �

1p
2
�(

ap
2
p
1� �

)(1��( �a
p
1 + �

p
2
));

(35)

and where �(z) is the standard normal density and �(z) its CDF. The

agent�s FOC then takes the form b
s�(0; �)+�� c

0(e�1) = 0, which is precisely

the formula (22) stated in the proposition.

The normal density depends on (vector) x via a quadratic form in x � e�
hence it satis�es fei(x; e)dx = �fxi(x; e). Taking account of the de�nition
of the set B of outcomes (the set where agent 1 is paid a bonus) in (21) , we

thus haveR
B fe1(xj e1e

�
2) = �

�R e�2
�1 dx2

R1
e�1+�(x2�e�2)

dx1 +
R1
e�2
dx2

R1
x2
dx1

�
fx1(xj e1e�2)

= �
�R e�2
�1 dx2 [f(xj e1e

�
2)]

x1=1
x1=e�1+�(x2�e�2)

+
R1
e�2
dx2 [f(xj e1e�2)]

x1=1
x1=x2

�
where

f(xj e1e�2) = k exp
�
� (x1�e1)2+(x2�e�2)2�2�(x1�e1)(x2�e�2)

2(1��2)s2
�
; k = 1

2�s2
p
1��2

Straightforward computations then yieldZ
B
fe1(xj e1e�2) = k

1

2

p
2�s exp

�
� (e�1 � e1)2
2(1� �2)s2

�
+k

Z 1

0
exp

�
�z

2
2(1� �2) + (z2(1� �) + (e�2 � e1))2

2(1� �2)s2

�
dz2(36)

Further computations show that the last integral can be written as

k

Z 1

e�2�e1
s
p
1+�

p
2

e�
z2

2 dz
s
p
1 + �p
2

exp

�
� (e

�
2 � e1)2

4(1� �)s2

�
(37)

Setting e�2 = e
�
1 in (36)-(37), using �(z) =

1p
2�
e�z

2=2 and the de�nition of k

above then veri�es the formula (35). This completes the proof.
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Proof of Proposition 9. Given that the marginal gain to e¤ort for agent
1 in the modi�ed tournament scheme can be written as b

s�(
e1�e�1
s ; �) + � �

c0(e1), where �(a; �) is given by (35), the FOC for e1 = e�1 to be optimal

is b
s�(0; �) + � � c

0(e�1) = 0, and the local second order condition (SOC) is
b
s�a(0; �)

1
s � c

00(e�1) � 0. Since �0(0) = 0 we see from (35) that

�a(0; �) =
1p
1��2

1
2�(0)

2 = 1p
1��2

1
4�

Since �(0) = 1
2 and �(0) = 1=

p
2�, this in turn implies

�a(0;�)
�(0;�) =

1p
1��2

1
2
�(0)

1p
1��2

1
2
+ 1p

1��
1p
2
1
2

= �(0)

1+

p
1��2p
1��

1p
2

= 1=
p
�p

2+
p
1+�

From the FOC we have bs�(0; �) = c
0(e�1)� �, hence the SOC can be written

c00(e�1) � b
s�a(0; �)

1
s =

c0(e�1)��
�(0;�) �a(0; �)

1
s =

c0(e�1)��
s

1=
p
�p

2+
p
1+�

This can be rearranged to yield the formula stated in the proposition.

We will now show that for s su¢ ciently large, the FOC has a single solution

(e1 = e�1), which then must be a maximum, since the local SOC holds strictly

for s large. To get a contradiction, suppose that, for every s0 > 0 there is

s > s0 such that FOC has a solution e1 = e1(s) 6= e�1, i.e. such that

b
s�(

e1�e�1
s ; �) + � � c0(e1) = 0 = b

s�(0; �) + � � c
0(e�1);

implying

�(
e1�e�1
s ; �)=�(0; �) = c0(e1)��

c0(e�1)��

Then letting s!1 (if necessary along a subsequence) we see that e1(s)!
e�1. Hence a(s) =

e1(s)!e�1
s ! 0, and the last equation above yields

1
a(s)(

�(a(s);�)
�(0;�) � 1)1s =

c0(e1)�c0(e�1)
e1�e�1

1
c0(e�1)��

Letting now s ! 1, the LHS behaves like �a(0;�)
�(0;�)

1
s and hence converges to

zero, while the RHS converges to c00(e�1)
c0(e�1)��

. This yields a contradiction and

thus completes the proof.

Proof of Proposition 10. It follows from (5) that the critical discount

factor to implement �rst best e¤ort eFB is for a team with n independent
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agents given by

�
c0(eFB)� �=n

�
snM = (W (eFB)�Ws(n))�

FB=(1� �FB) (38)

Consider now quadratic costs: c(e) = k
2e
2, with associated surplus per agent

W (e) = e� k
2e
2. First-best e¤ort is then eFB = 1

k , with surplus W (e
FB) =

1
2k . Spot e¤ort is given by �=n = c

0(es) = kes, with spot surplus

Ws(n) =W (es) =
� �
nk

�
� k

2 (
�
nk )

2 = 1
2kn2

� (2n� �)

Substituting this into (38), taking account of c0(eFB) = 1 and sn = s
p
n we

�nd
�FB

1� �FB
=

(1� �=n)M
W (eFB)�Ws(n)

sn =
(1� �=n)

p
nM

1� � (2n� �) =n2 2ks (39)

The derivative of the last expression w.r.t. n is positive i¤ n > 3�. Hence,

if 3� � 2, i.e. � � 2
3 , then the critical discount rate �

FB is increasing for

n � 2, meaning that teams with n > 2 do worse than teams with n = 2

with respect to achieving FB.

The critical discount rate �FB is always increasing for n > 3 (since � <

1), hence teams with n > 3 will always do worse than teams with n = 3

regarding achieving FB.

Comparing the expressions in (39) for n = 2 and n = 3 we �nd that the

former is smaller i¤
p
6 2��69��18 < 1 i.e. � < �0 � 0:805. This proves the

�rst part of the proposition. The second part (comparison with the RPE

tournament) follows from the proof for Proposition 11 below.

Proof of Proposition 11. E¤ort in the modi�ed tournament is for given
bonus given by the FOC (22). The EC conditon requires b � �

1��n(W (ei)�
Ws), hence e¤ort is given by (when s =

p
v and n = 2)

�
1�� (W (ei)�Ws) =

b
2 =

c0(ei)��
1p
2�s

1
2

�
1p
1��2

+ 1p
1��

1p
2

�
2
� c0(ei)��

r(�)

p
�v

where r(�) is de�ned by the identity.

Consider next the relational team contract. The maximal e¤ort per agent

that can be sustained in the team is given by (5), where now M =
p
2�

and s22 = 2v(1 + �), and hence (5) is
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�
c0(ei)� 1

n�
�p
2�
p
2v(1 + �) = b = �

1�� (W (ei)�Ws(n))

Compare now critical �0s to implement FB. They are given by the following

conditions, for the tournament and the team, respectively

�
1�� =

c0(eFB)��
W (eFB)�Ws

p
v�

r(�)

�
1�� =

c0(eFB)��=2
W (eFB)�Ws(2)

p
2�
p
2v(1 + �)

For quadratic costs we have (as in the proof above) W (eFB) = 1
2k , and spot

surpluses in the team and the tournament given by, respectivelyW (es(2)) =
1
8k� (4� �) and Ws =

1
2k� (2� �).

Computing the ratio of the critical �0s to implement FB, we then �nd that

the tournament has the highest one i¤

1
2
2��
1��

p
2�
p
�+1p

1�� > 1; i:e: � >
2(
p
1��+

p
�+1�

p
2)

2
p
1��+

p
�+1�

p
2
� �0(�)

This completes the proof, since �0(�) has a positive derivative.
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Figure 3. Marginal incentives as function of �
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Figure 4. Illustration for Proposition 11
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