
 

Birthweight and Academic Achievement 
in Childhood 

 
 
 

Pinka Chatterji 
Dohyung Kim 
Kajal Lahiri 

 
 

CESIFO WORKING PAPER NO. 4786 
CATEGORY 5: ECONOMICS OF EDUCATION 

MAY 2014 
 

 
 
 

An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.org/wp T 

http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.de/


CESifo Working Paper No. 4786 
 
 

Birthweight and Academic Achievement 
in Childhood 

 
Abstract 

 
Research has shown that birthweight has a lasting impact on later-life outcomes such as 
educational attainment and earnings. This paper examines the role of health at birth in 
determining academic achievement in childhood, which may provide the link between 
birthweight and adult outcomes. Using three waves of the PSID-CDS data over 1997-2009, 
we build on the literature by employing fetal growth rate as a proxy for nutritional intake in 
utero and propose a nested error-component two-stage least squares (NEC2SLS) estimator 
that draws on internal instruments from alternative dimensions of the multi-level panel data 
set. In particular, this alternative estimator allows us to exploit the information on children 
with no siblings in the sample, which comprises over 40 percent of the observations in our 
sample, as well as to obtain coefficient estimates for the time-invariant variables such as race 
and maternal education. This would not be feasible with the usual mother fixed effects 
estimation. We obtain modest but significant effects of fetal growth rate on math and reading 
scores, with the effects concentrated in the low birthweight range. Infant health measures 
appear to explain little of the well-documented racial disparity in test scores. 
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1 Introduction

The extensive literature linking health at birth to long-term outcomes shows that higher-

birthweight infants achieve higher levels of educational attainment and earnings, and are

healthier as adults as well, compared to those with lower birthweights.1 Studies using

twin samples or natural experiments provide compelling evidence that infant health plays a

causally important role in determining adult outcomes.2 Much less is known, however, about

the mechanism through which low birthweight translates into worse outcomes in adulthood.

Two distinct hypotheses have been advanced in the literature to explain the association

between birthweight and adult outcomes. The leading explanation has drawn on the Barker

hypothesis which associates low birthweight with adult chronic diseases.3 In this explanation,

low birthweight has indirect consequences on adult productivity through adult health. In

an alternative hypothesis, intra-uterine malnutrition impairs the cognitive development of

children, which may persist into their adulthoods (Morgane et al., 1993; Almond et al.,

2011). This explanation is consistent with evidence that the e�ect of health at birth seems

to emerge before any adult chronic conditions can develop due to compromised fetal growth.

Several studies in economics examine the test score gap between children born at low

versus normal birthweight. Many studies use �xed e�ects estimation using samples that

include twins or siblings to address the potential mother-level omitted variable bias, but

the estimated e�ects are often statistically insigni�cant after controlling for mother �xed

e�ects.4 This may be explained by inadequate statistical power, as the size of sibling or twin

samples is typically small and the �xed e�ects estimation only exacerbates the problem by

exploiting only the variation within mothers. Moreover, in samples of singletons, researchers

often use birthweight only as a measure of health at birth, failing to account for gestational

1See Barker (1995); Currie and Hyson (1999); Case et al. (2005). For a survey on this growing body of
the literature, see Almond and Currie (2011); Currie (2011). For a recent survey for developing countries,
see Currie and Vogl (2013).

2See Behrman and Rosenzweig (2004); Black et al. (2007); Royer (2009); Figlio et al. (2013) for twin
studies. For natural experiments, see Almond and Mazumder (2011); Almond et al. (2011); Van Ewijk
(2011); Lindeboom et al. (2010); Neelsen and Stratmann (2011).

3Barker (1995, 1998) hypothesized that the intrauterine environment is crucial for adult health in that
fetal insults can cause adult chronic diseases such as heart disease or diabetes.

4One notable exception is Figlio et al. (2013) who �nd a signi�cant and positive e�ect of birthweight on
test scores among recent cohorts of U.S. twins.
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age, a factor that may have separate e�ects on child academic achievement. In this case,

it is di�cult to interpret the estimated coe�cient on birthweight in the context of the fetal

nutrition argument because low birthweight can re�ect either a slow rate of fetal growth due

to uterine malnutrition or a preterm birth or both.

In this paper, we investigate the role of health at birth in determining child academic

achievement and its implications for the black-white test score gap in childhood. In addition

to birthweight, we use the fetal growth rate as a measure of net nutritional intake in utero in

order to test the intra-uterine nutrition hypothesis more directly. Based on a general model

that includes unobserved child heterogeneity as well as unobserved mother heterogeneity, we

propose the nested error component two-stage least squares (hereafter NEC2SLS) estimator

which uses internal instruments from alternative dimensions of the multi-level panel data.

Unlike the usual mother �xed e�ects (hereafter MFE) estimation, this alternative estimation

method enables us to exploit information from single-child families which comprise more

than 40 percent of observations in the entire sample, as well as obtain consistent estimates

of parameters under identi�cation assumptions that are weaker than those required for GLS

estimation. Furthermore, our approach allows us to identify coe�cients for mother-speci�c,

time-invariant covariates such as race and maternal education, which would not be feasible

with the usual �xed e�ects estimator.

Using the NEC2SLS estimator, we �nd positive and statistically signi�cant e�ects of

birthweight on math and reading test scores of children. We �nd, however, that the estimated

e�ects are concentrated over the low birthweight range (less than 2.5kg) and are modest in

magnitude. In particular, it is compromised fetal growth, rather than preterm birth, that

leads to lower test scores. In addition, the results indicate that maternal education is an

important factor in mediating the e�ects of the fetal growth rate. Interestingly, we �nd that

the estimated racial gap in test scores changes little after controlling for birthweight or the

fetal growth rate.

The rest of the paper is organized as follows: In the next section, we provide a brief

overview of the related literature. In sections 3 and 4, we describe the data set and develop
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the nested error component model. In section 5, we discuss the inadequacies of NECGLS

and MFE estimators in this class of models, and suggest an alternative NEC2SLS estimator

together with a simple algorithm. In section 6, we present the empirical results. In section

7, we allow mother's education to be endogenous. Finally, conclusions are summarized in

section 8.

2 Literature

The interest in birthweight and IQ dates back at least a century.5 Observational studies gen-

erally �nd a positive association between birthweight and IQ (Sørensen et al., 1997; Breslau

et al., 2001; Hack et al., 2002), but a spurious association has been suspected since unob-

served family background or genetic factors may be responsible for both infant health and

child cognitive outcomes. For example, in a pioneering study using the 1950-1954 British

cohorts, Record et al. (1969) �nd a strong association between birthweight and verbal test

scores, but this association cannot be found within sibling pairs.

Within-twin studies can provide compelling evidence on the causal role of fetal nutri-

tion in determining cognitive development of children, but the results are generally mixed.

Boomsma et al. (2001) report that the e�ect of birthweight on child IQ can be found among

dizygotic twin pairs, but not among monozygotic twin pairs, suggesting that genetics may be

a mediating factor, while Petersen et al. (2009) �nd a signi�cant e�ect of birthweight among

Danish male twins regardless of zygosity, but not among female twins. In a study using a

sample of Danish twins, Christensen et al. (2006) �nd signi�cant e�ects of birthweight on

test scores although the magnitude is small. More recently, Figlio et al. (2013) use data on

twins from a large registry in Florida and �nd an e�ect of birthweight on test scores which

is remarkably stable across school grades as well as across socioeconomic backgrounds.

Several studies from economics use sibling samples of recent cohorts to address problems

associated with confounding by unobserved factors such as family background or genetic

makeup. Using Canadian registry data, Oreopoulos et al. (2008) �nd infant health has

5see Asher (1946) for an early history.
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positive and signi�cant e�ects on short-term health outcomes and adult outcomes, but not

for language arts scores, after controlling for twin or sibling �xed e�ects. Other within-sibling

studies based on U.S. cohorts also �nd that the estimates become insigni�cant when MFE

estimation is used. In a paper that examines comprehensive life-cycle outcomes, Johnson

and Schoeni (2011) use MFE estimation and report a substantial gap in test scores between

male siblings having normal birth weight and those born at 1.5kg. However, their estimates

are statistically insigni�cant at conventional signi�cance levels, and the model contains a

birthweight spline that allows a jump at the low birthweight cuto�, which may be implausible.

Fletcher (2011) also �nds some evidence of a positive association between birthweight and

test scores, but the association is statistically insigni�cant in family �xed-e�ects estimation.

Moreover, since these studies do not control for gestational age in regressions, it is di�cult

to interpret what the estimated e�ects of birthweight actually capture.

We build on the literature by addressing these limitations. First, we draw on the same

data source as in Johnson and Schoeni (2011), but add the recent 2009 wave of the Child

Development Supplement of the Panel Study of Income Dynamics (PSID-CDS) to the sample

and present some evidence on a potential misspeci�cation in the birthweight spline function.6

Second, we employ the fetal growth rate as a measure of the nutritional intake in utero while

many studies use birthweight only without accounting for the gestational age. Third, we

begin with a general model that includes child and mother heterogeneity and propose an

alternative estimation method that exploits information more e�ciently than the usual MFE

estimation. Finally, we investigate the implications of birthweight e�ects on achievement test

scores for the racial disparity in test scores, an analysis that would not be feasible with the

conventional MFE estimation.

6The Panel Study of Income Dynamics (PSID) is a public use dataset. It is produced and distributed by
the Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI. Details
about the PSID and the PSID-CDS are available at http://psidonline.isr.umich.edu/.
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3 Data

We use the 1997, 2002-03, and 2009 waves of Child Development Supplement of the Panel

Study of Income Dynamics (PSID-CDS). The CDS provides assessments of academic achieve-

ment of children who are born between 1984 and 1997 in PSID households as well as rich

socioeconomic and demographic data. In 1997, the �rst wave of the CDS interviewed 2,394

families on 3,563 children aged twelve or younger, and these children were reinterviewed in

2002-03 and 2009 if they were eighteen years or younger at the time of the interview. Hence,

the data set includes multiple observations, at most three, for each child.

We restrict our sample to children whose primary caregiver is the biological mother and

the head or wife of a PSID household to access information on maternal and family charac-

teristics from the main PSID �les. Table 1 gives the summary statistics on the variables used.

Our �nal sample used in the analysis includes 2,673 children and over 4,000 observations,

depending on the test scores being analyzed. Over 40 percent of the observations come from

single-child families.7

3.1 Health at birth

The PSID-CDS contains detailed information on health at birth. In particular, the primary

caregiver, who is the biological mother in our sample, reports at the time of the �rst CDS

interview the birthweight of children along with the gestational age. The birthweight is

reported in pounds and ounces, which we convert into kilograms to allow comparability with

other studies.8 The gestational age is reported in days before or after the due date, which we

convert into weeks and fractions thereof. Table 1 shows that the sample mean of birthweight

is 3,326g, which matches closely to 3,369g reported in Almond et al. (2005) based on the

U.S. natality �les for the singletons born in 1989. The average gestational age of 39.48 weeks

in the full sample also matches closely to 39.3 weeks from the same source. These �gures

7We de�ne a single-child family as a family which has a single child in the CDS survey in a given survey
wave. Information from these families is swept out when MFE estimation is used.

8We exclude three children from the analysis whose reported birthweight is over 6kg. The analysis is not
sensitive to this exclusion.
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suggest that the recall bias in the PSID-CDS may be minimal.

Birthweight is the most widely used measure of health at birth. We use log of birthweight,

which provides the best �t and accounts for potential nonlinearity in the e�ect of birthweight.9

In an alternative speci�cation, we use a birthweight spline function to estimate the di�erence

in the magnitude of the birthweight e�ect over the birthweight distribution.10

Conceptually, birthweight is determined simultaneously by the average growth rate in

utero and gestational age. When a twin sample is used, the gestational age is controlled for

by twin �xed e�ects estimation. However, when singleton samples are used, the estimated

birthweight e�ect may capture the e�ect of gestational age in addition to the e�ect of the in-

trauterine growth rate.11 In order to distinguish between the two e�ects, we include measures

of both the intrauterine growth rate and gestational age in the same equation. These are,

respectively, the fetal growth rate (de�ned as birthweight divided by gestational age) and a

preterm birth indicator (de�ned as one if the gestational age is less than 37 weeks and zero

otherwise). This speci�cation will be useful to test the fetal nutrition hypothesis because the

fetal growth rate can better proxy nutritional status in utero as compared with birthweight

(Behrman and Rosenzweig, 2004). Moreover, we can investigate the e�ect of preterm birth,

which in itself can be a measure of infant health.12

Figure 1A displays a clear positive correlation between birthweight and gestational age

in our sample, implying that birthweight is partly determined by gestational age. Figure 1B

shows that the fetal growth rate is still positively correlated with gestational age although it

is a measure that has already accounted for gestational age. These empirical regularities also

are found in the general population as can be seen in the line plots in Figure 1C-1F which

are obtained based on all U.S. singleton births over 1989-1997 in the United States.

9Other studies also �nd log of birthweight provides the best �t for di�erent outcomes. For example, Black
et al. (2005) and Figlio et al. (2013).

10See Almond et al. (2005); Behrman and Rosenzweig (2004); Currie and Moretti (2007); Royer (2009) for
nonlinear e�ects of birthweight on various outcomes. Among the studies that examine cognitive abilities,
Boardman et al. (2002) use a sample of U.S. children from the NLSY and �nd larger cognitive de�cits at the
left-hand tail of birthweight distribution. Similarly, Figlio et al. (2013) �nd nonlinear e�ects of birthweight
on test scores among the sample of U.S. twins born in Florida.

11The literature in epidemiology almost always controls for gestational age when singleton samples are
used even if gestational age is not the variable of interest.

12There is a line of research in epidemiology that focuses solely on the consequences of preterm birth, see
Bhutta et al. (2002), for example. However, the causes of preterm birth remain largely unknown.
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Indeed, one limitation of using the average growth rate in utero is that the momentary

growth rate may change over gestational age. The observed momentary fetal growth rate

steadily increases till about 40 weeks of gestation and tapers o� thereafter as can be seen

in Figure 1D and 1F. For this reason, Torche and Echevarría (2011) suggest standardizing

the fetal growth rate using the sample mean and standard deviation of the fetal growth rate

for each gestational age. This standardized fetal growth rate is orthogonal to gestational

age by construction and measures deviation from the average growth rate given gestational

age.13 Unfortunately, this adjustment is not feasible using our sample because data points

are too sparse for small gestational ages.14 However, this de�nitional issue is not critical

in our analysis because the vast majority of the observations in our sample come from the

children whose gestational ages are greater than 30 weeks, for which the change in the rate of

fetal growth is modest, as can be seen in Figure 1D or 1F. The sample correlation coe�cient

between the fetal growth rate and gestational age sharply drops from 0.36 to 0.12 as we

restrict our sample to term births. Moreover, the inclusion of a preterm birth indicator in

the regression will account for the potential confounding arising from a separate e�ect of

preterm birth. Therefore, following Barker (1966) and Behrman and Rosenzweig (2004), we

focus on estimates using the fetal growth rate after controlling for a preterm birth indicator.

3.2 Academic achievement

To measure children's academic achievement, we use the scores on the Woodcock-Johnson

Psycho-Educational Battery-Revised (WJ-R) academic achievement tests, which are a well-

established measure of several dimensions of academic achievement including the degree of

13In the medical literature, an indicator for small-for-gestational age is often used in place of a low birth-
weight indicator since the fetal growth rate depends on gestational age.

14In results not shown in the paper, we attempted to standardize fetal growth rate measure. Instead of
using sample means and sample standard deviations, we standardized fetal growth rate using the sample
means and standard deviations obtained from over 36 million U.S. births from the Vital Statistics Birth Files
over 1989-1997 birth cohorts, which closely match to those in our sample. Since fetal growth pro�le may
vary genetically by race and sex, we further standardized the fetal growth rate by race and sex in addition
to gestational age. We have estimated our model with this measure together with a preterm birth indicator.
The estimates were very similar and can be obtained from the authors.
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mastery in reading and mathematics (Woodcock and Johnson, 1989).15 Scores on three

subtests are available for all three waves of the CDS: the Applied Problems, the Letter-Word

Identi�cation, and the Passage Comprehension test. The Applied Problems test measures

skills in math reasoning and the task involves analyzing and solving practical mathematical

problems. The Letter-Word Identi�cation test measures basic reading skills and the task

requires identifying and pronouncing isolated letters and words. These tests are administered

to all children aged three and above. The Passage Comprehension test measures vocabulary

as well as skills in reading comprehension and the task requires reading a short passage silently

and then supplying a key missing word. This subtest is administered to older children (aged

six and above) since it requires reading ability.16 For math scores, we examine the Applied

Problems test primarily because the Calculation test is available only in the �rst wave of

the CDS. For reading scores, we chose the Passage Comprehension over the Letter Word,

which is no more than a simple test of letter identi�cation and word pronunciation.17 We

present results for reading scores, but our preferred outcome measure is the mathematics

score, which is consistently shown to be a stronger predictor of subsequent earnings in the

literature (Murnane et al., 1995).

The WJ-R is administered at home to children who answer the questionnaires using a

response book under the supervision of trained interviewers. A raw score is the summation

of the total number of correct responses, each correct response receiving 1 point. Because

the children are assessed at di�erent ages, we use the standard scores given in the CDS that

are age-adjusted in reference to the national distribution of raw scores among the children

of the same monthly age. These age-equivalent scores are normalized to have mean 100 and

standard deviation 15. Table 1 shows that the mean and standard deviation of test scores in

15The WJ-R test often has been used in the education and developmental psychology literatures, as well as
in the economics literature. For example, the WJ-R test score was used as a measure of academic skills in the
well-known randomized experiment, the Carolina Abecedarian project (Campbell et al., 2002). In economics,
in addition to Johnson and Schoeni's study of birthweight and achievement test sores, sub-scales of the WJ-R
have been used to study other topics such as language assimilation among children of immigrants (Akresh
and Akresh, 2011), e�ects of home ownership on children's academic achievement (Mohanty and Raut, 2009),
and e�ects of parental risk aversion on children's academic achievement (Brown et al., 2012).

16For more information on the WJ-R academic achievement tests, see Mather (1991).
17Broad Reading or Broad Math scores are often used in the literature, each of which is a composite of two

separate tests. The CDS provides Broad Reading scores for all the CDS waves and the estimates are very
similar to those for a single test score.
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our sample are close to those for the national sample, indicating that the score distributions

in our sample are fairly representative. For Applied Problems, we have total of 4,609 scores

including at most three repeated observations for each child. The highest score attained by

any child is 171 and the median is 103 with the lowest being 2. For Passage Comprehension,

we have total of 4,016 scores including repeated observations. The highest score is 187 and

the median is 101. Ten children scored 0, the lower bound, and the age for these children

ranged from 71 to 78 months at the time of test.

3.3 Other covariates

One advantage of using the CDS is that rich and reliable information on family and maternal

characteristics can be obtained by matching the CDS �les to the PSID main �les. In the

regression, we include demographic characteristics such as sex, race, and child age measured in

months (non-Latino white and female as the reference groups). The child age at assessment is

exogenous by construction because we use the standard test scores that are aged-adjusted. To

control for family characteristics that may a�ect birthweight as well as academic achievement

in childhood, we include log of permanent family income, which is measured by six-year

average of family incomes in terms of 2007-constant dollars. We also control for a binary

indicator for the mother being single at the time of the child's birth, and indicators for

maternal age at child's birth being less than 20 and over 35. We include in all regressions a

set of indicators for birth order, which has been shown to a�ect cognitive abilities of children

(Black et al., 2005; Sulloway, 2007).

Finally, we include in the regressions: the number of years of maternal education; and

the quality of the child's home learning environment, measured by the Home Observation

for Measurement of the Environment-Short Form (HOME-SF) (Caldwell and Bradley, 1984).

Both maternal education and the home environment have been shown to be correlated with

each other, and important for children's academic achievement (Phillips et al., 1998; Carneiro

et al., 2013). For example, Phillips et al. (1998) show that mother's education and home

environment are signi�cant predictors of test score for �ve- and six-year olds. The HOME-
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SF is a continuous measure of cognitive stimulation and emotional support given to children,

and it is based on both caregiver reports and interviewer observations.18 The HOME-SF

includes a large number of items which vary by the age of child. Many of the items are

intended to capture the mother's parenting practices and how she interacts with, provides

stimulation for, and disciplines her child. These items are dichotomized and summed to form

a total raw score, with higher scores indicating a better quality home environment. This

raw score is included in the models to capture the quality of the home environment. This

measure has been extensively used as a determinant of development in early childhood.19

4 Model

4.1 One-way error component model

We begin with the model considered in Johnson and Schoeni (2011). Their speci�cation can

be written as

yijt = α + wijβ + δDij + γLDij(BWij − 1.5) + γN(1 −Dij)(BWij − 1.5) +mi + eijt (1)

where yijt denotes test scores assessed at the survey wave t of child j of mother i, Dij a

binary indicator of low birthweight (less than 2.5kg), BWij the birthweight, wij a vector of

child and family characteristics, mi the unobserved mother heterogeneity, and eijt the error

terms.

Two features of equation (1) should be noted. First, this model is essentially a MFE model

where unobserved maternal heterogeneity mi is included, but unobserved child heterogeneity

is not speci�ed. The identi�cation assumption that mi may be correlated with any of the

regressors is fairly weak, but MFE estimation will be inconsistent if any of the regressors

is correlated with unobserved child heterogeneity. This is testable with a panel data set

and time-varying covariates, but the test would not be possible in their model which has no

18See PSID-CDS User Guide for CDS-II (2010). http://psidonline.isr.umich.edu/CDS/cdsii_userGd.pdf
19See Elardo and Bradley (1981) for a survey on the literature.

10



time-varying regressors. We formally test for correlated child e�ect as we extend the model

by including unobserved child heterogeneity in the next subsection.

Second, the model accommodates potential nonlinearity in the e�ect of birthweight on

outcomes by specifying two di�erent slopes for birthweight γLand γN with a knot at the low

birthweight cuto�. In particular, the estimate for δ will give the test-score gap, which is

generated by the greater slope over the low birthweight range as compared with the normal

birthweight range, evaluated at a particular point (1.5kg) in birthweight distribution. One

unintended consequence of this speci�cation is that it allows a jump at the 2.5kg knot as is

depicted in Panel A of Figure 2, which may be implausible.20 We will use log of birthweight

in a baseline speci�cation since it provides the best �t, but will also consider a continuous

piecewise linear speci�cation in birthweight. More speci�cally, we use the conventional low

birthweight cuto� as a knot for spline, but the results are qualitatively similar when some

variations in the values of the knots are allowed for. The semi-parametric estimates shown

in Panel B of Figure 2 suggest that the conventional low birthweight cuto� (dotted line) is

fairly reasonable.21

4.2 Two-way nested error component model

A two-way nested error component model, which contains both child and mother heterogene-

ity, has been often used in the education production literature (Todd and Wolpin, 2003; Kim

and Frees, 2006) and in other contexts (Baltagi et al., 2001). In particular, Boardman et al.

(2002) estimate this model by maximum likelihood assuming uncorrelated e�ects to �nd a

signi�cant test score gap among low-birthweight children. The model can be written as

yijt = xijtβ + wijγ + ziδ + uijt (2)

20This implicit modeling assumption can be tested by adding a binary indicator of low birthweight in the
usual continuous piecewise regression. We replicated Table 3 in (Johnson and Schoeni, 2011) and tested the
assumption. We �nd the estimated jump is statistically insigni�cant and the magnitude is unreasonably large.
Moreover, the estimated slopes of birthweight spline were negative for some outcome measures implying that
higher birthweight imposes a cognitive penalty (rather than advantages), which is counter-intuitive.

21The estimates are obtained after controlling for all the covariates included our baseline model.
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where test score yijt is a function of birthweight and a set of child and family characteristics.

xijt denote the vector of time-varying child and family characteristics, wij the vector of

time-invariant, child-speci�c characteristics including log of birthweight, and zi the vector of

time-invariant, mother-speci�c characteristics. We write the disturbance term uijt as

uijt = mi + cij + eijt (3)

where mi denote the heterogeneity of mother i, cij denote the heterogeneity of child j nested

in mother i, and eijt denote the global error term. Equation (3) corresponds naturally to the

multi-level nested grouping in our data set. Notice that equation (2) is more general than

the MFE model (1) in that the child heterogeneity is included in addition to the maternal

heterogeneity. Note, the MFE estimation on the model (3) can be inconsistent if the child

heterogeneity is correlated with any of xijt or wij (Kim and Frees, 2006).

5 Estimation

We begin with decomposing equation (2) into three constituent regressions, which will be

useful in the discussion that follows. The within-child regression can be written as

(yijt − ȳij.) = (xijt − x̄ij.)β + (eijt − ēij.) (4)

where ȳi.. ≡ 1
Ti

∑Ti

t=1 yijt, and x̄ij.and ēij. are de�ned similarly. From the within-child regres-

sion, which is equivalent to the CFE estimation, ordinary least squares (OLS) identi�esβ

in the presence of correlated child or mother e�ects. The within-mother or within-sibling

regression can be written as

(yijt − ȳi..) = (xijt − x̄i..)β + (wij − w̄i.)γ + (cij − c̄i.) + (eijt − ēi..) (5)

where ȳij. ≡ 1
TiNi

∑Ti

t=1

∑Ni
j=1yijt, w̄i. ≡ 1

Ni

∑Ni

j=1wij, and x̄i..and ēi.. are de�ned similarly.

From the within-mother regression, which is equivalent to MFE estimation, (β,γ) are iden-
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ti�ed by OLS provided that the child heterogeneity cij is uncorrelated with (xijt,wij). The

between-mother regression can be written as

ȳi.. = x̄i..β + w̄i.γ + ziδ +mi + c̄i. + ēi.. (6)

from which (β,γ,δ) are identi�ed by OLS regression provided that the child and mother

heterogeneity are uncorrelated with all the regressors.22

5.1 Nested error component GLS (NECGLS)

We discuss the NECGLS estimation which will serve as a building block for the NEC2SLS

estimator. Under the assumptions that the error components mi, cij, and eijt are identically

and independently distributed with mean zero and variance σ2
m, σ

2
c , and σ

2
e , and each error

component is uncorrelated with the regressors, the NECGLS is consistent and e�cient. For

the NECGLS estimation, following Fuller and Battese (1973), we �rst transform the equation

(2) as

ỹijt = x̃ijtβ + w̃ijγ + z̃iδ + ũijt (7)

where for i = 1, . . . ,M, j = 1, . . . , Ni, t = 1, . . . , Ti,

x̃ijt ≡ xijt − α1ix̄ij. − α2ix̄i.., (8)

α1i ≡ 1 −
[

σ2
e

σ2
e + Tiσ2

c

] 1
2

, (9)

α2i ≡
[

σ2
e

σ2
e + Tiσ2

c

] 1
2

−
[

σ2
e

σ2
e + Tiσ2

c +NiTiσ2
m

] 1
2

, (10)

x̄ij. ≡ 1
Ti

∑Ti

t=1 xijt. Equations (8)-(10) represent the Fuller and Battese transformation for

two-way nested error component model. The transformation makes the error term have a

scalar covariance matrix and allows us to obtain the NECGLS estimates by the OLS regression

of the transformed equation (7). Given the assumptions required for a consistent NECGLS

estimation, a number of ways to estimate variance components σ2
m, σ

2
c , and σ

2
e are suggested

22Between-child regression can be de�ned, but is redundant in our context given equations (4)-(6).
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in the literature (see Baltagi et al., 2001). We estimate the variance components using a

method suggested in Fuller and Battese (1973). Intuitively, σ2
e and σ2

c can be estimated

consistently from equations (4) and (5). Then, consistent estimate for σ2
m can be obtained

by subtracting σ̂2
e and σ̂2

c from the estimated overall variance σ̂2
u that can be consistently

estimated from equation (6).

Note that the NECGLS estimates will be inconsistent if any explanatory variable is cor-

related with any error component in matching dimension of the multi-level data. The CFE

estimation is robust to either the correlated maternal heterogeneity mi or the correlated

child heterogeneity cij, but it is not an option for our purpose because only the estimates

for β will be obtained while the coe�cients of interest lie in γ and δ. The MFE estimation

has been widely used in the literature under the implicit assumption that only the maternal

heterogeneity mi is correlated with the covariates. However, in our model, even the MFE

estimation can be inconsistent in the presence of correlated child heterogeneity cij.

5.2 Nested error component 2SLS (NEC2SLS)

Unlike MFE, our estimation strategy is to allow only a subset of the regressors to be en-

dogenous, which will be tested using the Hausman (1978) test. In a two-way nested error

component model, there can be three di�erent variants of the Hausman test depending on the

two alternative hypotheses (Kim and Frees, 2006). Based on the results from three Hausman

tests that will be presented in the next section, we will maintain that some of the covariates

are correlated with the maternal heterogeneity mi, but not with the child heterogeneity cij,

and the others are uncorrelated with either the child or mother heterogeneity. However,

our estimation strategy does allow some of the covariates to be correlated with the child

heterogeneity cij in general.

To perform 2SLS estimation on the Fuller-Battese transformed equation (7), we follow the

approach suggested in Breusch, Mizon, and Schmidt (1989) and Kinal and Lahiri (1993). Note

that time-varying variable xijt can be decomposed into three components since we can always

write as xijt = (xijt − x̄ij.) + (x̄ij. − x̄i..) + x̄i... Likewise, for regressors wij which do not vary
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over time, but vary across siblings, the decomposition can be written as wij = (wij−w̄i.)+w̄i..

In matrix form, we can write the decomposition of xijt as X = Q1X + Q2X + PX where

Q1, Q2, and P are de�ned in such a way (see Baltagi et al., 2001) that Q1X denotes the

deviation from the child mean, Q2X denotes the child deviation from the mother mean, and

PX denotes the mother mean. Similarly, we can write the decomposition of wij in matrix

form as W = Q2W +PW . Then, the NECGLS estimates can be obtained by performing the

2SLS estimation of equation (7) where the list of instruments is

A = (Q1X, Q2X, PX, Q2W, PW, Z)

where Z is a matrix representation of zi in equation (2). The above set of instruments gives

the GLS estimates since the set A includes all the regressors, that are decomposed into their

Q1, Q2, and P components.

Now we partition X = (X1, X2) where X1 are uncorrelated with cij and mi, but X2

are allowed to be correlated with cij or mi. Similarly, we partition W = (W1,W2) where

W1 are uncorrelated with cij and mi, but W2 may be correlated with cij or mi. Under the

identi�cation assumption that X1 andW1 are uncorrelated with cij, the consistent NEC2SLS

estimator is the 2SLS estimator where the list of instruments is

B = (Q1X, Q2X1, PX1, Q2W1, PW1, Z).

Note that, compared with the full instrument set A, the instruments Q2X2,PX2, Q2W2, and

PW2 are excluded in the set B because of their assumed correlation with cij. Alternatively,

under the assumption that X2 and W2 are correlated with only with mi, which we will

adopt eventually, the consistent NEC2SLS estimator is the 2SLS estimator where the list of

instruments is

C = (Q1X, Q2X, PX1, Q2W, PW1, Z).

Note that, compared with the set B, in the set C we bring back the instruments Q2X2 and

Q2W2 because these are now assumed to be uncorrelated with mi. In the next section, we
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will discuss how we partition X and W based on the Hausman tests, and determine which

variables are correlated with cij or mi.

Note that the NEC2SLS estimator that uses either the instrument set B or C is consistent

under the identi�cation assumptions weaker than those required for the GLS estimation since

some regressors (X2,W2) are allowed to be correlated with either cij or mi. In particular,

by excluding the components in the set C that are correlated with the child heterogeneity,

the NEC2SLS estimation by using the instrument set B can potentially address the concern

with correlated child heterogeneity, which will not be feasible in the MFE estimation.

On the other hand, the NEC2SLS estimator that uses the set of instruments C requires

stricter identi�cation assumptions than the MFE estimation where all regressors are allowed

to be correlated with the maternal heterogeneity mi. However, by relaxing some of the MFE

assumptions, we can exploit information on the single-child families and between-mother

variation in the data. The latter allows us to recover the coe�cient estimates for the time-

invariant mother-speci�c covariates such as maternal education and race, which is not feasible

in the MFE estimation. Often these variables are of special interest to policy makers.

Intuitively, we can see how the model parameters are identi�ed without any external

instruments from the three regressions de�ned in equations (4)-(6). When child heterogeneity

is uncorrelated but maternal heterogeneity is correlated with X1 and W1, consistent but

ine�cient estimates for β can be obtained from the OLS regression of equation (4) while

consistent estimates for β and γ can be obtained from the OLS regression of equation (5).

Hence, β are overidenti�ed in this case. For consistent estimates for δ, we can consider the

OLS regression of the model

ȳi.. − x̄i..β̂ − w̄i.γ̂ = ziδ +mi + c̄i. + ēi.. (11)

where consistent β̂ and γ̂ are obtained from within-mother regression (5) and zi are assumed

exogenous. Thus, given the panel data model with nested error components, all parameters

are naturally identi�ed using internal instruments provided ziare exogenous. Note that we

obtain consistent estimates for σ2
u from the OLS regression of equation (11) since the origi-
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nal variance components estimates σ2
u obtained from between-mother regression (6) will be

inconsistent once we allow for (X2,W2) to be correlated with mi.

From the decomposition xijt = (xijt − x̄ij.) + (x̄ij. − x̄i..) + x̄i.., the total sum of squares of

a variable xijt can be decomposed as

M∑
i=1

Ni∑
j=1

Ti∑
t=1

(xijt − x̄)2 =
M∑
i=1

Ni∑
j=1

Ti∑
t=1

(xijt − x̄ij.)
2 +

M∑
i=1

Ni∑
j=1

Ti(x̄ij. − x̄i..)
2 +

M∑
i=1

NiTi(x̄i.. − x̄)2

where x̄ ≡ 1
M

∑M
i=1

1
NiTi

∑Ni

j=1

∑Ti

t=1and the three sums of squares on the right-hand side

correspond to the sum of squares from the three hierarchical levels: within child, within

mother, and between mothers. Table 2 shows the decomposed total sum of squares for

some of the key variables as a proportion of the total sum of squares. It shows that over 65

percent of the total variation in the test scores is explained by the between-mothers variation.

This is the case for the other key variables too, which highlights that a substantial amount

of information in the data set will be lost if we use the MFE estimation where the entire

between-mother variation is inadvertently discarded.

6 Main Results

We begin by presenting the NECGLS estimates of equation (2) where the independent vari-

able of interest is log of birthweight. The estimates in Table 3 suggest that birthweight has

strong and positive e�ects on test scores. However, the chi-squared statistics from a pair

of Hausman tests, which are shown at the bottom of Table 3, suggest inconsistency of the

NECGLS estimates. For Applied Problems, the chi-squared statistics are large enough to

reject the null hypothesis of uncorrelated child and mother endowment at one percent level

of signi�cance while inconsistency appears to be less severe for Passage Comprehension. In

particular, the individual t statistics from the Hausman tests suggest that family income

and home environment are the major sources of endogeneity regardless of the alternative

hypotheses (i.e., either against CFE or MFE) and the academic achievement tests.

However, notice that we cannot pin down the unobserved heterogeneity that is correlated
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with family income and home environment based on the two Hausman tests in Table 3

because the rejection of the Hausman test between the NECGLS and the CFE estimation

only indicates the correlation in child and mother heterogeneity jointly. Also, the Hausman

test between NECGLS and MFE may not be valid if the child heterogeneity is correlated with

the regressors. Therefore, we perform the Hausman test of the correlated child heterogeneity

based on the CFE and MFE estimates. The test results are presented in Table 4. The

null hypothesis of uncorrelated child heterogeneity cannot be rejected at the 10 percent

signi�cance level for both Woodcock-Johnson achievement tests. Overall, the results from

three Hausman tests indicate that the major source of endogeneity in the NECGLS estimation

is the correlated maternal heterogeneity, which is consistent with the extensive use of the

MFE estimation in the literature. Therefore, we maintain the identifying assumption that

the unobserved child heterogeneity is uncorrelated and all regressors, except for the maternal

component of family income and home environment, are exogenous.

Under these identifying assumptions, we estimate equation (7) using 2SLS estimation

where the list of instruments is equivalent to the instrument set C in the previous section.

Given that mother heterogeneity is the only source of endogeneity, our three-level panel data

has two extra dimensions that can be utilized to obtain internal instruments: within-child

(or over-time) and within-sibling. Hence, the identifying information for each endogenous

regressor comes naturally from its own variations: within-child variation for family income

and within-sibling variation for home environment, as can be seen in Table 2. Notice that

this would not have been possible in a conventional two-dimensional panel model. Moreover,

because of the absence of time-invariant endogenous variables in our model, we do not need

the order condition derived by Hausman and Taylor (1981) that the number of time-varying

exogenous variables is no less than the number of endogenous time-invariant regressors.

Table 5 presents the estimates on our baseline model from the NEC2SLS estimation

described above. After addressing the endogeneity arising from the maternal component of

family income and home environment, we �nd a positive e�ect of birthweight on test scores

of similar magnitude as the NECGLS estimates. The magnitude of estimated birthweight
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e�ect is somewhat larger for Applied Problems. Notice that the chi-squared statistics for

the Hausman tests become small and insigni�cant as shown at the bottom of Table 5. The

estimated coe�cients for the other covariates are as expected in general. We �nd that children

born to young or single mothers perform worse on the achievement tests. Higher birth order

leads to worse outcomes on the tests, which is consistent with the literature on the birth-

order e�ects. After controlling for the endogeneity in family income and home environment,

these variables are no longer statistically signi�cant, but the e�ects of all mother-speci�c

variables including mother's education have become substantially bigger compared to the

NECGLS estimates for both test scores. Furthermore, we estimate a large black-white gap

in test scores and a highly signi�cant e�ect of maternal education. The parameters for all

these time-invariant, mother-speci�c regressors would not be feasible to estimate within the

MFE estimation framework.

Table 6 summarizes the coe�cient estimates on birthweight and the fetal growth rate when

alternative estimation methods are used. Panel A shows signi�cant e�ects of birthweight on

test scores across di�erent estimation methods. The estimated coe�cient of 5.394 implies

that a ten percent increase in birthweight is associated with a 0.036 standard deviation

increase in math scores. The magnitude is comparable to, but somewhat smaller than the

size reported in Figlio et al. (2013). We �nd in Panel B that these e�ects are concentrated

over the low birthweight range. The size of the estimated e�ects of birthweight appears

to be modest as increasing birthweight by one kilogram within the low birthweight range

translates into a 0.33 standard deviation increase in test scores. In Panel C, we consider

the fetal growth rate as a proxy for nutritional intake in utero to test the fetal nutrition

hypothesis. We �nd positive e�ect of the fetal growth rate on test scores although the

statistical signi�cance of the estimated e�ect of the fetal growth rate is marginal for Passage

Comprehension. The NEC2SLS estimates imply that a one standard deviation increase in the

fetal growth rate is associated with a 0.056 standard deviation increase in math scores and

a 0.034 standard deviation increase in reading scores.23 Very similar estimates are obtained

23For example, the e�ect of one standard deviation increase in the fetal growth rate on math scores is
calculated as 0.059Ö14.32/15=0.056 where 14.32 is a standard deviation of the fetal growth rate.
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when the standardized fetal growth rate together with preterm dummy were used in the

regression (see footnote 14).

The size of these estimates is larger than that in Torche and Echevarría (2011) and is

comparable to the estimated e�ect of mother's exposure to start of Ramadan in the �rst

month of pregnancy (Almond et al., 2011). We also estimate a negative e�ect of preterm

birth on test scores, but it is not statistically signi�cant and its size is small. Finally, we note

that these estimates are similar across di�erent estimation methods. Currie (2009) has noted

that the e�ects of early health on later outcomes tend to be very similar across di�erent

estimation methods. We reach a similar conclusion with newer data and a more e�cient

estimation method.

To see whether a better-educated mother can bu�er the negative consequences of low

birthweight, we estimate a model that contains an interaction term between the infant health

measures and mother's education. The estimated negative interaction terms in Table 7

suggest that mother's education bu�ers the negative consequences from compromised fetal

growth. This bu�er e�ect of mother's education is statistically signi�cant for the fetal growth

rate, but not for birthweight.

6.1 Implications for racial/ethnic disparity in test scores

In our analytical sample, we �nd substantial racial/ethnic disparity in test scores. For Applied

Problems, the average black-white di�erential is 13.7 (0.91 standard deviation in test score)

and the Latino-white gap is 12.2 (0.81 standard deviation). For Passage Comprehension, the

black-white test score gap is smaller (0.67 standard deviation) while the Latino-white gap is

substantially more (0.81 standard deviation).

In Table 8 we report the estimated racial/ethnic gap in test scores before and after con-

trolling for a set of covariates including birthweight. Column (1) in Table 8 reports the

estimated coe�cients for race/ethnicity dummies for Applied Problems without controlling

for maternal education and birthweight, but with all other controls such as child characteris-

tics and socio-economic status (SES) (cf. Table 3). The estimated coe�cients for the African
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American and the Latino are -10.2 and -9.2 respectively, which implies that socio-economic

characteristics explain about 25 percent of the raw disparity in the test scores for Applied

Problems. In column (2), when we introduce maternal education in the speci�cation, we

�nd that the estimated coe�cient for the African American dummy changes little (-9.7), but

that for the Latino is reduced by almost half (-5.37). This is because of a relatively lower

average level of education for the Latino mothers (10.2 years) compared with the white (13.7

years) and the African American mothers (12.5 years) in our sample. In column (3), we

add birthweight in the speci�cation and �nd, interestingly, that the estimated coe�cients

for race/ethnicity dummies stay almost the same. These results imply that infant health as

measured by birthweight does not constitute a pathway for the observed racial/ethnic dis-

parity in test scores. In columns (5) through (7) we report similar experiments for Passage

Comprehension, and the pattern of the results is seen to be very similar.

In columns (4) and (8), we introduce two additional regressors by interacting mother's

education with two racial dummies for the African American and the Latino. That way,

we allow gradients for mother's education to di�er across race/ethnicity. The estimated

coe�cient for the interaction term for the African American is found to be negative and highly

signi�cant for both test scores. For the Latino, the estimated coe�cients are qualitatively

similar but smaller in size. These results imply that, compared to racial/ethnic minorities,

the e�ciency with which maternal education translates into gains in children's test score

is higher among the non-Latino white families, but it is worse for the African American

compared to the Latino families. Also, the results imply that the racial/ethnic disparity in

test scores increases with mother's education. Although not included in the table, a similar

regularity is observed with respect to family income. Thus, apart from the white-Latino gap

in mother's education, a major reason for the observed racial/ethnic disparity in test scores

can be attributed to the fact that returns to mother's education in producing child test scores

is smaller among minority families compared to white families with comparable SES.
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7 Is Maternal Education Endogenous?

In this section, we address a potential concern about endogeneity arising from mother-speci�c,

time-invariant variables. Our strategy to identify the endogenous variables based on the

individual t statistics from the Hausman tests has a limitation that the t statistics are not

available for the mother-speci�c variables such as mother's education and race. Indeed,

Carneiro et al. (2013) provide some evidence that the mother's education is endogenous in

academic achievement production, noting that both mother's education and child's academic

achievement are determined by mother's ability. In principle, if mother's education (any of

the mother-speci�c variables) is endogenous, all the coe�cient estimates of the NEC2SLS

will be inconsistent. In this case, the endogeneity arising from the mother-speci�c regressors

should have been detected indirectly by the Hausman tests against the MFE estimation even

though t statistics are not available for those regressors. In order to be doubly sure, in this

section, we allow for mother's education to be endogenous to check the robustness of our

previous NEC2SLS estimates.

As before, we partition Z = (Z1, Z2) where Z2 is endogenous mother's education and

Z1 are all other mother-speci�c, time-invariant regressors. Notice that, with an endogenous

mother-speci�c, time-invariant regressor Z2, its own instrument no longer exists since Z2

varies over a single dimension. Now the situation is analogous to the Hausman and Taylor

(1981) framework requiring the necessary condition for identi�cation that the number of

time-varying exogenous variables be no less than the number of endogenous time-invariant

endogenous variables. Provided that this order condition is met, the consistent NEC2SLS

estimates are obtained by using the smaller set of instruments

D = (Q1X, Q2X, PX1, Q2W, PW1, Z1)

than the instrument set C since in the set D we exclude time-invariant, mother-speci�c

Z2 which is now endogenous. In our case, the order condition is clearly satis�ed since the

number of exogenous regressors having extra dimensions beyond between-mother is greater
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than one.24 Clearly, Q1X1, Q2X2, and Q2W1 provide a su�cient number of instruments for

Z2. One potential concern in this estimation strategy is that these internal instruments may

be weak. However, we �nd that many instruments are relatively strong in the �rst-stage

regression of endogenous mother's education. The F statistic is 15.42, which is greater than

10, the cuto� for weak instruments suggested by Stock and Yogo (2005). To obtain additional

identifying information, we also turn to the following covariance restrictions that have been

proposed by Lewbel (2012) and used in many applications. More speci�cally, we will assume

that

Cov(S, uijt) = 0, (12)

Cov(S, v) = 0, (13)

Cov(T, uijtv) = 0 (14)

where S = (X,W,Z1), T = (X1,W1, Z1) and v denotes the error term for reduced-form

equation for mother's education. Under these assumptions, (T − T̄ )v̂ give a set of valid in-

struments for mother's education (Lewbel, 2012). v can be obtained from the 2SLS regression

of mother's education Z2 on S where internal instruments are used for (X2,W2).

Table 9 provides comparison of the estimates under di�erent identi�cation assumptions.

The original NEC2SLS estimates in Table 6 are replicated in Columns (1) and (4) for compar-

ison and all estimates in the other columns in Table 9 are obtained when mother's education is

allowed to be endogenous. Columns (2) and (5) show that the estimates obtained using only

the internal instruments, without the covariance restrictions (12)-(14) imposed, are robust to

endogenous mother's education. Columns (3) and (6) report the estimates when those covari-

ance restrictions are imposed to increase the power of instruments. The Breusch-Pagan test

indicates the instruments created by the covariance restrictions are highly relevant. Again,

the NEC2SLS estimates remain robust under di�erent sets of instruments although the es-

24Note that the estimates from the OLS regression of equation (11) is inconsistent now that Z2 is correlated
with mother heterogeneity. However, we can consistently estimate δ by 2SLS estimation of equation (11) if
(X1,W1) provide a su�cient number of instruments for Z2. Note also, with mother's education endogenous,
we reestimate the variance component σ2

m using this IV procedure.
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timated e�ect of the fetal growth rate on Passage Comprehension is no longer statistically

signi�cant. The null hypotheses of uncorrelated maternal heterogeneity cannot be rejected

in the Hausman tests in all cases. Overall, Table 9 shows that the 2SLS estimates are not

sensitive to the identi�cation assumption on mother's education and it can safely be treated

as exogenous in our context.

8 Conclusion

In this paper, we investigate the association between birthweight and cognitive outcomes

in childhood by using the fetal growth rate as a measure of nutritional intake in utero. In

particular, we develop the Nested Error Components Two Stage Least Squares (NEC2SLS)

estimation method that can overcome many of the limitations associated with the use of

mother �xed e�ects (MFE) estimation. We also suggest a simple instrumental variable

algorithm that does not depend on instruments external to our multilevel model. Using

NEC2SLS, we �nd a positive and statistically signi�cant e�ect of the fetal growth rate on

academic achievement of children. Our �nding is consistent with those found in some recent

studies using relatively large samples (for example, Torche and Echevarría, 2011; Figlio

et al., 2013). The estimated e�ect of birthweight, however, is concentrated over the low

birthweight range and its magnitude is somewhat smaller than that in Figlio et al. (2013).

Overall, our results imply that cognitive gains in childhood from better nutritional intake in

utero may constitute a pathway through which birthweight determines adult outcomes, such

as education and earnings.

The NEC2SLS approach allows us to investigate the e�ects of birthweight as well as time-

invariant variables like mother's education and race/ethnicity on academic achievement in

childhood, avoiding a critical limitation of the �xed e�ect estimator. We �nd that mother's

education has an important mediating e�ect of low birthweight; allowing it to be endogenous

does not reduce its e�ect even when our optimal instrument set is supplemented with addi-

tional instruments coming from heteroskedastic covariance restrictions (Lewbel, 2012). We

also �nd that low birthweight does not contribute much to explain the racial disparities in

24



test scores.

Our study is not without limitations. First, the bene�ts over the MFE estimation are

obtained at the possible cost of imposing an assumption that only a subset of the regressors

is endogenous. However, using a battery of Hausman-type exogeneity tests, we found no

credible evidence against these identifying assumptions. Second, our model does not account

for potentially di�erent parental investment across siblings (Rosenzweig and Wolpin, 1988;

Behrman et al., 1994) even though the evidence has not been clear whether the di�erential

parental investment compensates or reinforces the lack of initial endowment of a particular

child (Datar et al., 2010; Hsin, 2012; Lynch and Brooks, 2013). If the parental investment is

compensating, then our estimates should be interpreted as lower bounds. Finally, we did not

examine the growth in child academic achievement at a particular age, while many studies

focus on the age pro�le of the e�ects of birthweight, gender or race on educational outcomes

(Fryer Jr and Levitt, 2004; Bond and Lang, 2013). Addressing these limitations will be left

for future research.
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Figure 1 – Birthweight by gestational age 

A. Observations in sample – birthweight 

 

Source: PSID-CDS, N = 4,609. 

C. Group mean by sex – birthweight 

 

Source: Vital Statistics Birth files 1989-97, N = 34,106,761. 

E. Group mean by race – birthweight 

 

Source: Vital Statistics Birth files 1989-97, N = 34,106,761. 

 

B. Observations in sample – fetal growth rate 

 

Source: PSID-CDS, N = 4,609. 

D. Group mean by sex – fetal growth rate 

 

Source: Vital Statistics Birth files 1989-97, N = 34,106,761. 

F. Group mean by race – fetal growth rate 

 

Source: Vital Statistics Birth files 1989-97, N = 34,106,761. 
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Figure 2 – Nonlinearity in Birthweight Effects 

Panel A. Schematic Representation of Birthweight Spline 

 

Panel B. Semiparametric Estimates of Birthweight Effects 

 

Source: 1997, 2002-3, 2009 waves of the PSID-CDS. 
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Table 1 – Summary Statistics 

Variables Dimension N Mean SD 

Test scores 
    

 
Applied Problems M C T 4,609 104.04 16.94 

 
Passage Comprehension M C T 4,106 102.67 16.63 

Time-varying characteristics 
    

 
Family income (2007-constant thousand dollars) M  .  T 5,734 54.11 58.24 

 
Mother working M  .  T 5,734 0.68 0.47 

 
Child age in months M C T 5,734 121.2 56.4 

Time-invariant child characteristics 
    

 
Birthweight (kilograms) M C  . 2,673 3.33 0.63 

 
Low birthweight (< 2.5kg) M C  . 2,673 0.09 0.28 

 
Gestational age (weeks) M C  . 2,673 39.48 2.19 

 
Fetal growth rate (grams per week) M C  . 2,673 83.96 14.33 

 
Female M C  . 2,673 0.49 0.50 

 
Maternal age at child birth M C  . 2,673 27.20 5.56 

 
Mother age at child birth < 20 M C  . 2,673 0.09 0.28 

 
Mother age at child birth > 35 M C  . 2,673 0.07 0.25 

 
Mother single at child birth M C  . 2,673 0.29 0.45 

 
1st born M C  . 2,673 0.39 0.49 

 
2nd born M C  . 2,673 0.35 0.48 

 
3rd born M C  . 2,673 0.17 0.37 

 
4th born M C  . 2,673 0.06 0.23 

 
5th or more M C  . 2,673 0.03 0.17 

 
Home environment M C  . 2,673 19.19 3.56 

Time-invariant maternal characteristics 
    

 
Nonlatino white M  .  . 1,807 0.50 0.50 

 
Nonlatino African American M  .  . 1,807 0.39 0.49 

 
Latino M  .  . 1,807 0.06 0.24 

 
Other race M  .  . 1,807 0.05 0.21 

  Mother's education (years) M  .  . 1,807 12.89 2.51 

Note: The entries are from 1997, 2002-3, 2009 PSID-CDS. The second column indicates which dimensions the 

variable varies across where M indicates mother, C indicates child, T indicates survey wave. For example, 

birthweight varies across mothers (M) and children (C), but does not vary over time. 
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Table 2 – Decomposition of Total Sum of Squares of the Key Variables 

Level of variation Within-child Within-sibling Between-mother Total 

Applied Problems 0.18 0.13 0.69 1.00 

Passage Comprehension 0.21 0.13 0.66 1.00 

Log of birthweight 0.00 0.16 0.84 1.00 

Gestational age 0.00 0.19 0.81 1.00 

Fetal growth rate 0.00 0.15 0.85 1.00 

Family income 0.12 0.00 0.87 1.00 

Home environment 0.00 0.16 0.84 1.00 
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Table 3 – Estimated Effects of Infant Health on Test Scores, NECGLS Estimates 

WJ Achievement tests Applied Problems   Passage Comprehension 

 
 NECGLS 

 
Hausman test 

 
 NECGLS 

 
Hausman test 

    
vs. CFE vs. MFE 

    
vs. CFE vs. MFE 

  bhat t stat.   t stat.   bhat t stat.   t stat. 

Family income 1.841 4.60 
 

-4.20 -3.40 
 

2.213 5.17 
 

-2.58 -2.38 

Mother working -0.258 -0.51 
 

-0.56 0.00 
 

-0.115 -0.21 
 

0.17 0.29 

Child age -0.030 -7.42 
 

2.70 2.26 
 

-0.084 -16.55 
 

1.69 1.41 

Log of birthweight 4.963 3.94 
  

-0.17 
 

3.447 2.70 
  

0.73 

Female -0.523 -1.08 
  

0.45 
 

2.496 4.99 
  

-0.67 

Maternal age at child birth < 20 -3.184 -3.29 
  

-0.79 
 

-2.357 -2.35 
  

-0.40 

Maternal age at child birth > 35 2.042 1.99 
  

0.35 
 

2.195 2.11 
  

-1.59 

Mother single at child birth -1.398 -1.82 
  

-0.50 
 

-1.927 -2.44 
  

-0.20 

2nd born -1.166 -2.23 
  

-1.47 
 

-1.274 -2.33 
  

-1.97 

3rd born -1.947 -2.65 
  

0.15 
 

-3.650 -4.85 
  

-1.03 

4th born -0.084 -0.07 
  

1.11 
 

-3.692 -3.23 
  

0.13 

5th or more born -5.385 -3.04 
  

-0.93 
 

-4.065 -2.26 
  

0.67 

Home environment 0.330 4.02 
  

-1.95 
 

0.356 4.24 
  

-2.73 

African American -8.066 -10.39 
    

-4.038 -5.11 
   

Latino -4.626 -3.20 
    

-5.320 -3.71 
   

Other -1.331 -0.77 
    

-1.904 -1.10 
   

Mother's education 1.108 7.34         0.808 5.21       

N 4609 
     

4106 
    

  
  : Observation level 

 
113.61 

     
124.74 

   
  
  : Child level 

 
16.62 

     
12.76 

   
  
  : Mother level 

 
88.43 

     
82.67 

   
Chi-squared statistic 

   
18.18 30.76 

    
6.65 18.90 

(p-value)       (0.000) (0.004)         (0.084) (0.126) 

 Note: The regressions are based on the 1997, 2002-3, 2009 PSID-CDS data sets.  



37 
 

                        Table 4 – The Hausman test of the Correlated Child Endowment 

WJ Achievement tests Applied Problems   Passage Comprehension 

  CFE MFE Diff. t stat.   CFE MFE Diff. t stat. 

Family income -0.244 -0.088 -0.156 0.94 
 

0.593 0.589 0.004 0.02 

Mother working -0.460 -0.206 -0.254 1.62 
 

-0.037 0.064 -0.101 0.45 

Child age -0.024 -0.023 0.000 0.40   -0.078 -0.079 0.000 0.13 

Chi-squared 
   

6.15 
    

0.21 

(p value)       (0.105)         (0.975) 

Note: All regressions include the following set of regressors that is suppressed in the table: log of birthweight, binary 

indicator for preterm birth, home environment, a set of indicators for mother being single at birth, mother's age at child's birth, 

birth order of children. Both covariance matrices are based on the common estimated disturbance variance from the MFE. 
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                   Table 5 – Estimated Effects of Infant Health on Test Scores, NEC2SLS Estimates 

WJ Achievement tests Applied Problems   Passage Comprehension 

 

 NEC2SLS Hausman test   NEC2SLS Hausman test 

  bhat t stat. t stat.   bhat t stat. t stat. 

Family income -0.110 -0.18 0.08 
 

0.692 0.93 -0.37 

Mother working 0.008 0.02 -0.46 
 

0.130 0.23 -0.12 

Child age -0.023 -5.37 0.02 
 

-0.077 -14.10 -0.36 

Log of birthweight 5.394 4.23 -0.11 
 

3.808 2.94 0.53 

Female -0.562 -1.15 0.71 
 

2.499 4.94 -0.60 

Maternal age at child birth < 20 -3.432 -3.51 -0.97 
 

-2.542 -2.51 -0.41 

Maternal age at child birth > 35 2.380 2.27 0.28 
 

2.395 2.25 -1.79 

Mother single at child birth -2.507 -3.06 0.70 
 

-2.715 -3.16 0.67 

2nd born -1.408 -2.63 -1.47 
 

-1.459 -2.61 -1.72 

3rd born -2.394 -3.18 -0.17 
 

-3.984 -5.18 -0.94 

4th born -0.386 -0.34 0.88 
 

-3.911 -3.38 0.35 

5th or more born -5.781 -3.23 -1.04 
 

-4.329 -2.38 0.79 

Home environment 0.115 0.91 -0.85 
 

0.140 1.05 -1.83 

African American -9.267 -11.06 
  

-5.075 -5.81 
 

Latino -5.300 -3.57 
  

-5.897 -4.00 
 

Other -1.672 -0.96 
  

-2.280 -1.29 
 

Mother's education 1.375 8.27     1.027 5.82   

N 4609 
   

4106 
  

  
  : Observation level 

 
113.88 

   
125.20 

 
  
  : Child level 

 
16.27 

   
12.63 

 
  
  : Mother level 

 
93.63 

   
88.17 

 
Chi-squared statistic 

  
16.84 

   
10.90 

(p-value)     (0.207)       (0.619) 

        Note: The regressions are based on the 1997, 2002-3, 2009 PSID-CDS data sets.  
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              Table 6 – Comparison Between NECGLS, MFE, and NEC2SLS Estimates 

WJ Achievement tests Applied Problems   Passage Comprehension 

   NECGLS NEC2SLS MFE    NECGLS NEC2SLS MFE 

Panel A: Birthweight 
       

Log of birthweight 4.963*** 5.394*** 5.205** 
 

3.447*** 3.808*** 4.816** 

  (1.258) (1.276) (2.440)   (1.279) (1.297) (2.309) 

Panel B: Birthweight spline 
       

Birth weight (<2.5kg) 5.275*** 5.404*** 5.820** 
 

4.411*** 4.534*** 5.369** 

 
(1.513) (1.518) (2.369) 

 
(1.540) (1.545) (2.558) 

Birth weight (>=2.5kg) 0.683 0.777* 0.261 
 

0.263 0.341 0.374 

  (0.555) (0.557) (0.933)   (0.567) (0.569) (1.021) 

Panel C: Nutritional intake in utero 
       

Fetal growth rate 0.056*** 0.059*** 0.031 
 

0.034 0.036* 0.028 

 
(0.021) (0.021) (0.036) 

 
(0.022) (0.022) (0.039) 

Preterm birth -1.170 -1.279 -2.229 
 

-1.502 -1.664 -2.665 

  (1.035) (1.044) (1.550)   (1.072) (1.080) (1.735) 

N 4609 4609 3004   4106 4609 2664 

Note: Standard errors are in parentheses. All regressions include the same set of covariates as in Table 3.  * p<0.10, ** p<0.05, *** p<0.01. 
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                                Table 7 – Interaction Effects with Mother’s education 

WJ Achievement tests Applied Problems   Passage Comprehension 

  (1) (2)   (3) (4) 

Panel A: Birthweight 
     

Log of birthweight 5.394*** 11.632* 
 

3.808*** 10.198 

 
(1.276) (6.940) 

 
(1.297) (7.098) 

Log of birthweight * Mother's education 
 

-0.501 
  

-0.558 

    (0.541)     (0.553) 

Panel B: Nutritional intake in utero 
     

Fetal growth rate 0.059*** 0.289*** 
 

0.036* 0.222** 

 
(0.021) (0.104) 

 
(0.022) (0.108) 

Fetal growth rate * Mother's education 
 

-0.018** 
  

-0.015** 

  
(0.008) 

  
(0.008) 

Preterm birth -1.286 -1.200 
 

-1.660 -1.588 

  (1.040) (1.040)   (1.075) (1.076) 

N 4609 4609 
 

4106 4106 

Note: Standard errors are in parentheses. All regressions include the same set of covariates in Table 3. * p<0.10, ** 

p<0.05, *** p<0.01. 
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   Table 8 – Role of Fetal Growth Rate in Determining Racial Disparity in Test Scores, NEC2SLS estimates 

WJ Achievement tests Applied Problems   Passage Comprehension 

  (1) (2) (3) (4)   (5) (6) (7) (8) 

African American -10.169*** -9.706*** -9.267*** 4.476 
 

-5.565*** -5.368*** -5.075*** 2.795 

 
(0.866) (0.838) (0.838) (4.082) 

 
(0.891) (0.866) (0.874) (4.194) 

Latino -9.169*** -5.369*** -5.300*** 3.031 
 

-8.706*** -5.936*** -5.897*** -0.537 

 
(1.503) (1.492) (1.485) (4.761) 

 
(1.475) (1.461) (1.475) (4.749) 

Other -1.645 -1.852 -1.672 -1.328 
 

-2.228 -2.415 -2.280 -2.080 

 
(1.718) (1.754) (1.746) (1.743) 

 
(1.705) (1.766) (1.763) (1.764) 

Maternal education 
 

1.385*** 1.375*** 1.798*** 
  

1.031*** 1.027*** 1.276*** 

  
(0.167) (0.166) (0.212) 

  
(0.177) (0.177) (0.225) 

Log of birthweight 
  

5.394*** 5.476*** 
   

3.808*** 3.270** 

   
(1.276) (1.483) 

   
(1.297) (1.514) 

African American * Mother's education 
  

-1.053*** 
    

-0.603** 

    
(0.308) 

    
(0.316) 

Latino * Mother's education 
   

-0.670* 
    

-0.440 

    
(0.420) 

    
(0.418) 

N 4609 4609 4609 4609   4106 4106 4106 4106 

Note: Standard errors are in parentheses. All regressions include the same set of covariates as in Table 3. * p<0.10, ** p<0.05, *** p<0.01. 
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                     Table 9 – Robustness Check: Endogenous Mother’s Education 

WJ Achievement tests Applied Problems   Passage Comprehension 

  (1) (2) (3)   (4) (5) (6) 

Panel A: Birthweight 
       

Log of birthweight 5.394*** 5.394*** 5.374*** 
 

3.808*** 3.743*** 3.803*** 

  (1.276) (1.279) (1.276)   (1.297) (1.311) (1.305) 

Panel B: Nutritional intake in utero 
       

Fetal growth rate 0.059*** 0.059*** 0.058*** 
 

0.036* 0.036 0.035 

 
(0.021) (0.021) (0.021) 

 
(0.022) (0.022) (0.022) 

Preterm birth -1.286 -1.280 -1.326 
 

-1.660 -1.579 -1.709 

  (1.040) (1.049) (1.045)   (1.075) (1.095) (1.086) 

N 4609 4609 4609 
 

4106 4106 4106 

Mother's education endogenous No Yes Yes 
 

No Yes Yes 

Own instruments Yes Yes Yes 
 

Yes Yes Yes 

Covariance restriction No No Yes 
 

No No Yes 

Note: Standard errors are in parentheses. All regressions include the same set of covariates in Table 3. Breusch-Pagan tests 

strongly support the relevance of instruments from covariance restrictions in all cases. * p<0.10, ** p<0.05, *** p<0.01. 
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