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Abstract 
 
We propose the concept of level r consensus as a useful property of a preference profile 
which considerably enhances the stability of social choice. This concept involves a weakening 
of unanimity, the most extreme form of consensus. It is shown that if a preference profile 
exhibits level r consensus around a given preference relation, the associated majority relation 
is transitive. In addition, the majority relation coincides with the preference relation around 
which there is such consensus. Furthermore, if the level of consensus is sufficiently strong, 
the Condorcet winner is chosen by all the scoring rules. Level r consensus therefore ensures 
the Condorcet consistency of all scoring rules, thus eliminating the tension between decision 
rules inspired by ranking-based utilitarianism and the majority rule. 
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1 Introduction

A major goal of social choice theory is to search for reasonable ways of aggregating individ-

ual preferences into a social preference relation. Arrow’s [1] impossibility theorem brought

a serious challenge to such aspiration by showing that any social welfare function defined

over an unrestricted domain, that satisfies the unanimity and the independence of irrele-

vant alternatives axioms must be dictatorial. Unanimity is a weak property requiring that

if all individuals share a particular preference relation, this common relation must be the

social preference relation. Unanimity is such a weak and sensible requirement that its vi-

olation would render any preference aggregation rule unacceptable. As a result, the search

for reasonable preference aggregation rules has focused on domain restrictions and on the

weakening of the independence axiom.

Among the many attempts to find reasonable aggregation rules, one can identify four

approaches which can be considered as unanimity geared. The best-known approach is based

on a unanimity that is not about a particular preference relation, but about the pattern of

preferences. Alternative forms of domain restrictions, notably single-peakedness of preference

relations, impose this type of weakened, implicit unanimity. In the latter case for instance,

given any three alternatives, there is a unanimous agreement that a particular alternative

is never the worst alternative among the three (see Sen [26]). The second approach looks

for a unanimously supported metric-based compromise. It postulates an agreed-upon metric

on the set of preference relations and, given a preference profile, seeks a social preference

relation that is closest to it, namely one that minimizes the sum of its distances to the

individual preference relations in the profile. Baigent [3], Kemeny [11], Nitzan [15], and

Nurmi [18, 19] adopt this approach. The third approach also applies a plausible metric

on the set of all possible preference profiles, but seeks a social choice rule that yields an

outcome which is as close as possible to be unanimously preferred. In other words, the

distance between the given preference profile and a profile where the chosen alternative is

unanimously supported is minimized. See Campbell and Nitzan [4], Farkas and Nitzan [5],

Lehrer and Nitzan [13], Nitzan [14], Nitzan [16] for instances of this approach. Finally, the
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fourth approach is a probabilistic one. It postulates the existence of a unanimously supported

true social preference relation and assumes that the preference profile is a noisy sample of

it. Specifically, it assumes that the probability that any individual’s ranking of any two

alternatives coincides with the true ranking is higher than 1/2, and looks for a maximum-

likelihood estimator that delivers a preference relation that maximizes the probability of

having induced the realized preference profile. See Young [27] for a representative of this

approach.

In the present paper we propose a new unanimity-inspired approach which is based on

strengthening the unanimity requirement. The reason why the unanimity axiom is very

weak is that it “bites” only in those rare instances of extreme preference homogeneity where

individual preference relations are identical. In this paper, instead of requiring the social

preference relation to coincide with the unanimous preference relation (when it exists), we

require it to be one around which there is some level of consensus. A preference profile

exhibits consensus of level r around some preference relation (the consensus preference), if

whenever a subset of r preference relations is at least as close to the consensus preference as

any other disjoint subset of r preference relations, the number of individuals whose preference

relations belong to the former subset is at least as large as the number of those whose pref-

erence relations belong to the latter.1 Clearly, looking for consensus around some preference

relation is more challenging when preferences are heterogeneous than in the extreme event of

unanimous preferences. While there is a natural consensus around a unanimous preference

relation, there may still be some kind of consensus around some preference relation, even in

cases of heterogeneous preferences. The proposed approach looks for preference aggregation

rules that select a social preference relation around which such consensus exists.

Several levels of consensus are defined, one more stringent than the other. Consensus of

level 1 is more difficult to achieve than consensus of level 2, and so on, and all of them are

achieved when there is unanimity about the preference relation. The least demanding level

1Several other attempts have been made to formalize and measure consensus. See, for example, Garćıa-

Lapresta and Pérez-Román [9]. For a survey of various consensus theories, see Hudry and Monjardet [10].
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of consensus is level K!/2, where K is the number of alternatives over which preferences

are defined. The definition of consensus rests on a given metric on the set of preferences

and thus different metrics induce different notions of consensus. Our results suggest that

when applying the inversion metric, the existence of consensus of level r, for some r ≤ K!/2,

considerably enhances the stability of social choice. Specifically, it implies the transitivity of

the induced majority relation and that the majority relation is the one around which consen-

sus exists. Furthermore, the existence of a sufficiently strong level of consensus, namely for

r ≤ (K − 1)!, ensures the selection of the same Condorcet winning alternative by majority

rule and by all scoring rules. In that sense, it eliminates the tension between the majority

rule and decision rules inspired by ranking-based utilitarianism.

2 Definitions

Let A = {a1, . . . , aK} be a set of K > 2 alternatives and let N = {1, . . . , n} be a set of

individuals. Also, let R be the set of binary relations on A, and P be the subset of complete,

transitive and antisymmetric binary relations on A. We will refer to the elements of P as

preference relations or simply as preferences. A preference profile or simply a profile is a

mapping π = (%1, . . . ,%n) of preference relations on A to the individuals in N . For each

individual i ∈ N , %i represents i’s preferences over the alternatives in A. We denote by Pn

the set of preference profiles.

Let π = (%1, . . . ,%n) be a preference profile. For each preference relation %∈ P ,

µπ(%) = |{i ∈ N :%i=%}| is the number of individuals whose preference relation is %. More

generally, for any subset C ⊆ P of preference relations, µπ(C) = |{i ∈ N :%i∈ C}| is the

number of individuals whose preference relations are in C.

An aggregation rule is a function f : Pn → R that assigns to each preference profile a

social binary relation. An aggregation rule is a Social Welfare Function if its range is the

subset of transitive binary relations on A.

A well-known social welfare function is the Borda rule. In order to define it, consider a
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preference profile π = (%1, . . . ,%n). For each individual i = 1, . . . , n and for each alternative

a ∈ A, let Si(a) = |{a′ ∈ A : a �i a
′}| be the number of alternatives that are ranked below

a according to i’s preferences.2 The Borda rule associates with π the preference relation Bπ

given by

aBπb ⇔
n∑

i=1

Si(a) ≥
n∑

i=1

Si(b).

Another example of a social welfare function is given by the family of Mode rules. A

Mode rule is a social welfare function f : Pn → R such that for each preference profile

π = (%1, . . . ,%n), f(π) =%i where µπ(%i) ≥ µπ(%j) for j = 1, . . . , n. In words, a Mode rule

selects one of the most “popular” preference relations in π.

An important example of an aggregation rule is the Majority rule, which we define next.

Let a, a′ ∈ A be two alternatives. Denote by C(a → a′) = {%∈ P : a → a′} the set

of preference relations according to which a is strictly preferred to a′. The majority rule

assigns to each preference profile π ∈ P the binary relation Mπ on A defined by

aMπa
′ ⇔ µπ(C(a → a′)) ≥ µπ(C(a′ → a)).

It is well known that the majority rule does not deliver a transitive binary relation for each

preference profile, and thus it is not a social welfare function.

Let d : P2 → IR be a metric on P . That is, for every %,%′,%′′∈ P , d satisfies

• d(%,%′) ≥ 0

• d(%,%′) = 0 ⇔ %=%′

• d(%,%′) = d(%′,%)

• d(%,%′′) ≤ d(%,%′) + d(%′,%′′)

2Strict preferences and indifference are defined as usual. For a, b ∈ A, a � b ⇔ (a % b and not b % a),

and a ∼ b ⇔ (a % b and b % a).
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For most of our results we will use the inversion metric, which is defined as follows:3

d(%,%′) is the minimum number of pairwise adjacent transpositions needed to obtain %′

from %. Alternatively, d(%,%′) is the number of pairs of alternatives in A that are ranked

differently by % and %′. Formally, the inversion metric is defined by

d(%,%′) =
|(% \ %′) ∪ (%′ \ %)|

2
.

Another known metric is the discrete metric. It is defined by

d(%,%′) =







0 if %=%′

1 otherwise.

A metric defined on P allows us to determine which one of any two preference relations is

closer to a third one. We are interested in extending this kind of comparison to equal-sized

sets of preferences as well. The following definition identifies circumstances where a given

set of preferences C ⊆ P is closer to %0 than an alternative set C ′ ⊆ P .

Definition 1 Let C and C ′ be two disjoint nonempty subsets of P with the same cardinality,

and let %0∈ P be a preference relation on A. We say that C is at least as close to %0 as C ′,

denoted by C ≥%0
C ′, if there is a one-to-one function φ : C → C ′ such that for all %∈ C,

d(%,%0) ≤ d(φ(%),%0). We also say that C is closer than C ′ to %0, denoted by C >%0
C ′,

if there is a one to one function φ : C → C ′ such that for all %∈ C, d(%,%0) ≤ d(φ(%),%0),

with strict inequality for at least one %∈ C.

In other words, C is at least as close as C ′ to some given preference relation %0∈ P if

each preference relation %′ in C ′ can be paired with a preference relation % in C that is at

least as close to %0, according to d, as %′ is. C is closer than C ′ to %0 if it is at least as

close to it as C ′ and it is not the case that C ′ is at least as close to %0 as C.

An alternative way to check whether C ≥%0
C ′ is as follows. Let d(C,%0) be the list

(d(%,%0))%∈C arranged in a non-decreasing order. Similarly, let d(C ′,%0) be the list (d(%

,%0))%∈C′ also arranged in a non-decreasing order. Then C ≥%0
C ′ ⇔ d(C,%0) ≤ d(C ′,%0).

3See Kemeny and Snell [12] for a characterization of this metric.
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Example 1 Let the set of alternatives be A = {a, b, c}. The set P contains six preference

relations, given by

%1 = a, b, c

%2 = a, c, b

%3 = b, a, c

%4 = c, a, b

%5 = b, c, a

%6 = c, b, a

There are ten ways to partition P into two subsets with three preference relations each. One

such partition is C1 = {%1,%2,%3} and C1 = {%4,%5,%6}. Consider the preference relation

%1. It can be checked that the distances of each preference relation in P to %1, according

to the inversion metric, are given by

d(%1,%1) = 0

d(%2,%1) = d(%3,%1) = 1

d(%4,%1) = d(%5,%1) = 2

d(%6,%1) = 3

It can also be checked that C1 >%1
C1. Indeed, d(%1,%1) < d(%4,%1), d(%2,%1) < d(%5,%1)

and d(%3,%1) < d(%6,%1). Alternatively, d(C1,%1) = (0, 1, 1) and d(C1,%1) = (2, 2, 3).

Therefore d(C1,%1)< d(C1,%1), which implies that C1 >%1
C1.

Note that any two disjoint, equal-sized subsets of preference relations contain at most

K!/2 elements each. Taking this into account and based on the “at least as close to %0”

relation defined above, we can now define the concept of consensus.

Definition 2 Let r ∈ {1, 2, . . . K!/2}, and let %0∈ P . A preference profile π ∈ Pn exhibits

consensus of level r around %0 if
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1. for all disjoint subsets C,C ′ of P with cardinality r, C ≥%0
C ′ ⇒ µπ(C) ≥ µπ(C

′)

2. for all disjoint subsets C,C ′ of P with cardinality r, C >%0
C ′ ⇒ µπ(C) > µπ(C

′)

3. there are disjoint subsets C,C ′ of P with cardinality r, such that C >%0
C ′.

In words, given 1 ≤ r ≤ K!/2, a preference profile π exhibits consensus of level r around

some preference relation %0, if whenever a subset C of r preference relations is at least as

close to %0 as another disjoint subset C ′ of r preference relations, the number of preference

relations in π that belong to C is at least as large as the number of preference relations in

π that belong to C ′, and strictly larger whenever C is closer to %0 than C ′. Furthermore,

there must be two such subsets where the relations are strict.

Example 2 Consider the set P of preference relations from Example 1. There are ten

different ways to partition P into two subsets, C,C, of cardinality 3. We have already seen

that

C1 = {%1,%2,%3} >%1
{%4,%5,%6} = C1.

Similarly, it can be checked that

C2 = {%1,%2,%4} >%1
{%3,%5,%6} = C2

C3 = {%1,%3,%4} >%1
{%2,%5,%6} = C3

C4 = {%1,%2,%5} >%1
{%3,%4,%6} = C4

C5 = {%1,%3,%5} >%1
{%2,%4,%6} = C5

Also, for the remaining five partitions {C,C}, we have that neither C ≥%1
C nor C ≥%1

C.

Let π be a preference profile containing 3 copies of %1, one copy of %3, one copy of %4 and

2 copies of %5. It can be checked that µ(Ci) > µ(Ci) for i = 1, 2, 3, 4, 5. Consequently, we

conclude that the profile π exhibits consensus of level 3 around %1. On the other hand, π

does not exhibit consensus of level 2 around %1. To see this, note that although {%2,%4}

is closer than {%5,%6} to %1 (indeed, d(%2,%1) = 1 < d(%5,%1) and d(%4,%1) = 2 < 3 =

d(%6,%1)), we have that µ({%2,%4}) = 1 < 2 = µ({%5,%6}).
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3 Consensus and Majority Rule

In this section we show some striking implications of the existence of consensus around some

preference relation. But before turning to this task, we first show that there is a hierarchy in

the levels of consensus: they are ordered by strength, the strongest being consensus of level

1 and the weakest consensus of level K!/2.

Proposition 1 Let r be an integer between 1 and K!/2− 1. If π ∈ Pn exhibits consensus

of level r around %0, then it exhibits consensus of level r + 1 as well around %0.

Proof : Assume π ∈ Pn exhibits consensus of level r around %0. We need to show that

conditions 1, 2, and 3 in Definition 2 are satisfied.

1. Let C = {%1, . . . ,%r+1} and C ′ = {%′

1, . . . ,%
′

r+1} be two disjoint subsets of P with

cardinality r + 1 such that C ≥%0
C ′. Then, there is a one-to-one function ϕ : C → C ′ such

that d(%i,%0) ≤ d(ϕ(%i),%0) for all i = 1, . . . r+1. Assume, without loss of generality, that

ϕ(%i) =%′

i for all i = 1, . . . r + 1. We need to show that µπ(C) ≥ µπ(C
′).

Assume by contradiction that

µπ(C) < µπ(C
′) (1)

Then, there must be two preference relations %i∈ C and %′

i∈ C ′ such that µπ(%i) < µπ(%
′

i).

Assume without loss of generality that

µπ(%r+1) < µπ(%
′

r+1). (2)

Assume also without loss of generality that

µπ(%1)− µπ(%
′

1) ≥ µπ(%i)− µπ(%
′

i) ∀i = 1, . . . , r.

Consider the subsets C−1 = {%2, . . . ,%r+1} and C ′

−1 = {%′

2, . . . ,%
′

r+1}. Since C ∩ C ′ = ∅,

and since C is at least as close as C ′ to %0, we have that C−1 ∩C ′

−1 = ∅, and C−1 is at least

as close as C ′

−1 to %0 as well. Since π exhibits consensus of order r around %0, we must have

µπ(C−1) ≥ µπ(C
′

−1). (3)
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Since µπ(C−1) =
∑r+1

k=2 µπ(%k) and µπ(C
′

−1) =
∑r+1

k=2 µπ(%
′

k), there must be some k =

2, . . . , r + 1 such that µπ(%k) ≥ µπ(%
′

k). Further, given (2) this k cannot be r + 1. As a

result,

µπ(%1)− µπ(%
′

1) ≥ 0. (4)

But then, using (3) and (4)

µπ(C) = µπ(C−1) + µπ(%1) ≥ µπ(C
′

−1) + µπ(%
′

1) = µπ(C
′)

which contradicts (1).

2. Let C = {%1, . . . ,%r+1} and C ′ = {%′

1, . . . ,%
′

r+1} be two disjoint subsets of P with

cardinality r + 1 such that C >%0
C ′. Then, there is a one to one function ϕ : C → C ′ such

that d(%i,%0) ≤ d(ϕ(%i),%0) for all i = 1, . . . r + 1. Assume, without loss of generality,

that ϕ(%i) =%′

i for all i = 1, . . . r + 1. We need to show that µπ(C) > µπ(C
′). Assume by

contradiction that

µπ(C) ≤ µπ(C
′). (5)

Since C >%0
C ′, there is j ∈ {1, . . . , r + 1} such that d(%j,%0) < d(%′

j,%0) and

d(%i,%0) ≤ d(%′

i,%0) for i 6= j. Assume, without loss of generality, that j = r + 1. Let

C−r = C \ {%r} and C ′

−r = C ′ \ {%′

r}. These two sets have cardinality r. By construction

C−r >%0
C ′

−r. Since, by hypothesis, π exhibits consensus of order r around %0, we have that

µπ(C−r) > µπ(C
′

−r). Therefore there are two preference relations, %i∈ C−r and %′

i∈ C ′

−r,

such that µπ(%i)− µπ(%
′

i) > 0. Let C−i = C \ {%i} and C ′

−i = C ′ \ {%′

i}. Since C ∩C ′ = ∅,

and since C >%0
C ′, we have that C−i ∩ C ′

−i = ∅, and that C−i is at least as close as C ′

−i to

%0 as well. Since π exhibits consensus of order r around %0, we must have that

µπ(C−i) ≥ µπ(C
′

−i). (6)

On the other hand, by the contradiction hypothesis, µπ(C) ≤ µπ(C
′); therefore

µπ(C−i) + µπ(%i) ≤ µπ(C
′

−i) + µπ(%
′

i)

But since µπ(%i)− µπ(%
′

i) > 0, we obtain that µπ(C−i) < µπ(C
′

−i), which contradicts (6).
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3. It remains to show that there exist disjoint subsets C,C ′ of P with cardinality

r + 1 such that C >%0
C ′. Since π ∈ Pn exhibits consensus of level r around %0, there

are disjoint subsets C(r) = {%1, . . . %r} and C ′(r) = {%′

1, . . . %′

r} of P with cardinal-

ity r, such that C(r) >%0
C ′(r). That is, there is a one to one function ϕ : C → C ′

such that d(%i,%0) ≤ d(ϕ(%i),%0) for all i = 1, . . . , r, with strict inequality for some

i ∈ {1, . . . , r}. Choose %r+1,%
′

r+1∈ P \ (C(r) ∪ C ′(r)) and assume, without loss of general-

ity, that d(%r+1,%0) ≤ d(%′

r+1,%0). Then, by extending ϕ so that ϕ(%r+1) =%′

r+1, we can

see that C = {%1, . . . %r+1} and C ′ = {%′

1, . . . %
′

r+1} are the two sets we are looking for. 2

We now turn to the implications of r consensus on the outcomes of the majority rule.

The next theorem shows that despite not being a social welfare function, if a profile exhibits

the weakest possible level of consensus with respect to the inversion metric, the majority

rule associates with it a transitive binary relation.

Theorem 1 Let π ∈ P be a preference profile that exhibits consensus of level K!/2 around

%0∈ P with respect to the inversion metric. Then Mπ, the binary relation assigned by the

majority rule to π, coincides with %0. In particular, Mπ is transitive.

Proof : Let a, b ∈ A be two alternatives. We need to show that aMπb ⇔ a %0 b. If

a = b the result is immediate. So assume that a 6= b, and further assume without loss of

generality that a �0 b. Partition P into the two sets C(a → b) and C(b → a). These sets

contain K!/2 elements each. Consider the one-to-one function ϕ : C(a → b) → C(b → a)

defined as follows: for each %∈ C(a → b), let ϕ(%) ∈ P be the preference relation that is

obtained from % by switching a and b in the ranking. Since a �0 b, d(%,%0) < d(φ(%),%0)

for all %∈ C(a → b), where d is the inversion metric. In other words, according to the

inversion metric, C(a → b) is closer to %0 than C(b → a) is. Since there is consensus of level

K!/2 around %0, this implies that µπ(C(a → b)) > µπ(C(b → a)), which means that aMπb.

Conversely, if aMπb we must have µπ(C(a → b)) ≥ µπ(C(b → a)). It follows that a %0 b since
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otherwise, by the previous argument we would have that µπ(C(b → a)) > µπ(C(a → b)).

Given that %0 is transitive we obtain that Mπ, is transitive. 2

The next example shows that the fact that a preference profile π exhibits consensus of

level K!/2 around some preference relation does not imply that the Borda rule will assign

this preference relation to π.

Example 3 We have seen in Example 2 that profile π exhibits consensus of level 3 around

%1. Consistent with Theorem 1, the majority rule applied to π yields a transitive order. In

contrast, it can be verified that the preference relation assigned by the Borda rule is not %1

but %3. Moreover, the Borda rule does not select the Condorcet winning alternative, which

is alternative a.

4 Rationalizability

Theorem 1 shows that, under the inversion metric, if a profile exhibits consensus of level

K!/2 around %0, then %0 coincides with the binary relation assigned to π by the majority

rule. This suggests the following definition.

Definition 3 We say that aggregation rule f : Pn → R is rationalizable by consensus of

level r (or r-rationalizable, for short), if whenever profile π ∈ Pn exhibits consensus of level

r around %0, we have f(π) =%0. We also say that f is rationalizable if it is r-rationalizable

for every r = 1, . . . , K!/2.

Claim 1 If f is r + 1-rationalizable, then it is also r-rationalizable.

Proof : Assume f is r+1-rationalizable. Let π ∈ Pn be a profile that exhibits consensus of

level r around %0. We need to show that f(π) =%0. By Proposition 1, π exhibits consensus

of level r + 1 as well. Since f is r + 1-rationalizable, f(π) =%0. 2
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Corollary 1 The majority rule is rationalizable.

Proof : By Claim 1 it is enough to show that the majority rule is K!/2-rationalizable. But

this follows from Theorem 1. 2

The following result shows that if we replace the inversion metric by the discrete metric,

the family of mode rules are also rationalizable.

Proposition 2 Let π ∈ Pn be a preference profile that exhibits consensus of level K!/2

around %0∈ P with respect to the discrete metric. Then, µπ(%0) > µπ(%) for all %∈ P .

Proof :

Assume that

µπ(%0) ≤ µπ(%) for some %∈ P . (7)

We will show that π does not exhibit consensus of levelK!/2 around %0. Consider a partition

{C0, C1} of P \ {%0,%} into two subsets of equal cardinality, K!/2− 1, and assume without

loss of generality that µπ(C0) ≤ µπ(C1). Now let C = C0∪{%0} and C ′ = C1∪{%}. It follows

from (7) that µπ(C) ≤ µπ(C
′). But according to the discrete metric, we have that C >%0

C ′.

If π exhibited consensus of level K!/2 around %0 we would have that µπ(C) > µπ(C
′).

2

The following result is an immediate corollary of Claim 1 and Proposition 2.

Corollary 2 The mode rules are rationalizable.

5 Consensus and Scoring Rules

Sometimes one is not interested in the social preference relation but only in its maximal

elements. In that case, instead of focusing on social welfare functions one should concentrate
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on social choice rules. A social choice rule assigns to each preference profile a set of chosen

alternatives. Formally, a social choice rule is a function g : Pn → 2A.

A special class of social choice rules consists of scoring rules, also known as positional

voting rules. Each scoring rule is characterized by a list S = {S1, S2, · · · , SK} of K non-

negative scores with S1 ≥ S2 ≥ · · · ≥ SK and S1 > SK . Given a preference profile π = (%1

, . . . ,%n), each individual i = 1, . . . n assigns Sk points, for k = 1, . . . , K, to the alternative

that is ranked kth in his preference relation, %i. That is, each agent assigns S1 points to

his most preferred alternative, S2 points to the second best alternative and so on. The

scoring rule associated with the sores in S, denoted by VS, chooses the alternatives with the

maximum total score.

Many social choice rules are instances of scoring rules. For example, the plurality rule

is the scoring rule associated with the scores (1, 0, . . . , 0). The inverse plurality rule is the

scoring rule associated with (1, . . . 1, 0). More generally, for 1 ≤ t ≤ K − 1, the t-approval

voting method, denoted Vt, is the scoring rule associated with St = (1, . . . , 1
︸ ︷︷ ︸

t

, 0, . . . , 0
︸ ︷︷ ︸

K−t

). Lastly,

the Borda rule is the scoring rule associated with SB = (K − 1, K − 2, . . . , 0).

The t approval voting rules, for t = 1, . . . , K − 1, play a central role in the theory of

scoring rules since any list of scores S = {S1, S2, · · · , SK} can be written as a non-negative

linear combination S =
∑K−1

t=1 αtSt of the K − 1 approval voting scores. Based on this

fact, Saari [22] showed that if all approval voting methods choose alternative a, then this

alternative is chosen by all the scoring methods. Formally, if a ∈ Vt(π) for t = 1, . . . K − 1

then a ∈ VS(π) for all scores S.
4

The next theorem establishes that the existence of r consensus, for r ≤ (K − 1)!, guar-

antees the invariance of the chosen alternative across all scoring rules.

Theorem 2 Suppose that r ≤ (K − 1)!. Also, let π ∈ Pn be a preference profile, %0∈ P

a preference relation, and a ∈ A the alternative that is ranked first according to %0. If π

4Baharad and Nitzan [2] offer a condition that applies directly on preference profiles which guarantees

the above scoring rule invariance.
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exhibits consensus of level r around %0∈ P according to the inversion metric, then a ∈ VS

for all scoring rules VS.

Proof : Let S be a list of scores. Given that S can be written as a non-negative linear

combination of the K − 1 t-approval voting scores St, it is enough to show that a ∈ Vt(π)

for t = 1, . . . K − 1.

Fix t ∈ {1, . . . , K − 1}, and let b ∈ A \ {a}. Denote by C(a
t
→ b) the set of preference

relations in P such that a ranks tth or above, and b ranks strictly below the tth place.

Similarly, denote by C(b
t
→ a) the set of preference relations in P such that b ranks tth

or above, and a ranks strictly below the tth place. Since b ∈ A is a fixed but otherwise

arbitrary alternative different from a, in order to show that a ∈ Vt(π) we must show that

µπ(C(a
t
→ b)) ≥ µπ(C(b

t
→ a)). By definition, C(a

t
→ b) ∩ C(b

t
→ a) = ∅. Furthermore, these

two sets have equal cardinality, which we denote by c. Therefore, in order to show that

µπ(C(a
t
→ b)) ≥ µπ(C(b

t
→ a)) it is enough to show that π exhibits consensus of level c and

that C(a
t
→ b) is closer than C(b

t
→ a) to %0.

Note that there are
(
K−2
t−1

)
ways to partition the K alternatives into two subsets, one

containing t alternatives, one being a, and the other containing K − t alternatives, one of

them being b. Therefore the cardinality of C(a
t
→ b) (and similarly of C(b

t
→ a)) is

c =

(
K − 2

t− 1

)

t!(K − t)!

=
(K − 2)!

(K − t− 1)!(t− 1)!
t!(K − t)!

= (K − 1)!
t(K − t)

K − 1

But since t(K−t)
K−1

≥ 1 if and only if (t− 1)(K − 1− t) ≥ 0 and since 1 ≤ t ≤ K − 1 we have

that t(K−t)
K−1

≥ 1. Therefore c ≥ (K − 1)! ≥ r. Consequently, since π exhibits consensus of

level r, Proposition 1 implies that π exhibits consensus of level c as well.

In order to show that C(a
t
→ b) >%0

C(b
t
→ a), let Mi(a

t
→ b), for each i = 1, . . . , t, be the

set of preference relations such that alternative a is ranked ith and alternative b is ranked

strictly below the tth place. Similarly, let Mi(b
t
→ a) be the set of preference relations such
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that alternative b is ranked ith and alternative a is ranked strictly below the tth place. Let

φ : Mi(a
t
→ b) → Mi(b

t
→ a) be the one-to-one function that maps each preference relation

%∈ Mi(a
t
→ b) into the preference relation that is obtained from % by switching alternatives

a and b in the preference ranking. Clearly, since a is ranked first in %0, we have that

d(%,%0) < d(φ(%),%0) for all %∈ Mi(a
t
→ b). Noting that C(a

t
→ b) = ∪t

i=1Mi(a
t
→ b) and

C(b
t
→ a) = ∪t

i=1Mi(b
t
→ a), we conclude that C(a

t
→ b) >%0

C(b
t
→ a). 2

For a given preference profile, different scoring rules may result in the selection of any

of the K alternatives (see, for instance, Fishburn [8], Saari [20, 21, 24]). It is also possible

that an alternative, and even a Condorcet winning alternative, will not be selected by any

scoring rule (see, Fishburn [6, 7] and Saari [23]). These findings are balanced by the results

of Baharad and Nitzan [2] and Saari [22] that specify necessary and sufficient conditions for

the selection of the same alternative by all scoring rules. By Proposition 4, level r consensus

is a sufficient condition for the selection of the same Condorcet winning alternative by all

scoring rules.

We have seen in Example 3 that even if the majority rule yields a transitive preference

relation and even if there is consensus of level K!/2 around it, a scoring rule may not

select the Condorcet winner. The following result shows, however, that level r consensus for

r ≤ (K − 1)! is a sufficient condition for all scoring rules to be Condorcet consistent.

Corollary 3 Let %0∈ P be a preference relation and a ∈ A the alternative that is ranked

highest according to %0. If π exhibits consensus of level r ≤ (K−1)! around %0∈ P according

to the inversion metric, then a is the unique Condorcet winner and it is chosen by all scoring

rules.

Proof : By Theorem 2, a is chosen by all scoring rules. By Theorem 1, %0 coincides with

the binary relation assigned by the majority rule to π. Therefore a is the Condorcet winner.

2
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We end with an example of a profile of heterogeneous preferences exhibiting consensus

of level 1 and another one exhibiting consensus of level 2. In consonance with Corollary 3,

all scoring rules, in particular the Borda rule, select in both cases the Condorcet winner.

Example 4 Let the set of alternatives be A = {a, b, c} and let N = {1, 2, . . . , 11} be a set

of eleven individuals. The preference profile is given by π = (%1, . . . ,%11) where

%1=%2=%3=%4=%5 = a, b, c

%6=%7 = a, c, b,

%8=%9 = b, a, c,

%10 = c, a, b

%11 = b, c, a

It can be checked that this profile exhibits consensus of level 1.

If we add a twelfth individual with a preference relation given by %12= c, b, a, then the

resulting profile (%1, . . . ,%12) does not exhibit consensus of level 1. It does, however exhibit

consensus of level 2. Consistent with Corollary 3, all scoring rules, in particular the Borda

rule, select the Condorcet winning alternative a.

6 Concluding Remarks

In this paper we have proposed the concept of level r consensus and showed that its existence

in its mildest form has significant implications. It ensures stability of one of the most

extensively studied aggregation rules, namely the simple majority rule. Specifically, we show

that under the inversion metric, when a preference profile exhibits level r consensus around

a given preference relation, this preference relation is the one assigned by the majority rule

to that profile which furthermore turns out to be transitive. The corresponding social choice

function therefore selects the Condorcet winning alternative. Additionally, if the level of

consensus is strong enough (r ≤ (K − 1)!), this chosen alternative is also the choice of all
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scoring rules. In other words, not only does the existence of r consensus ensure stability under

simple majority, it also ensures the Condorcet consistency of all scoring rules. That is, it

eliminates the tension between the simple majority rule and the scoring rules (in particular,

the Borda rule). The existence of r consensus thus simultaneously resolves two of the major

problems in social choice theory.

The two unanimity geared metric approaches mentioned in the introduction, the ones

used in Farkas and Nitzan [5] and in Kemeny [11] respectively, are different from our level

r consensus approach. Whereas the latter is based on a new preference domain restriction,

the former two approaches do not impose any domain restriction; in fact one of their notable

advantages is that they can be applied to any given preference profile. Interestingly, the

simple majority rule is rationalized by the level r consensus approach, provided that one

applies the inversion metric. This is in contrast to the outcome obtained under the two

alternative metric approaches. Indeed, under the first one, for any given preference profile,

the application of the inversion metric results in the rationalization of the Borda rule, and

under the second one, the application of the inversion metric need not result in either the

simple majority rule nor the Borda rule. However, as mentioned above, if a preference profile

exhibits consensus of any level r, then there exists a Codorcet winner which is selected by

Kemeny’s rule (see Nurmi [18]), and if the consensus is sufficiently strong, the Borda rule is

also Condorcet consistent.
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