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Abstract 
 
We offer a new explanation as to why international trade is so volatile in response to 
economic shocks. Our approach combines the uncertainty shock idea of Bloom (2009) with a 
model of international trade, extending the idea to the open economy. Firms import 
intermediate inputs from home or foreign suppliers, but with higher costs in the latter case. 
Due to fixed costs of ordering firms hold an inventory of intermediates. We show that in 
response to an uncertainty shock firms optimally adjust their inventory policy by cutting their 
orders of foreign intermediates disproportionately strongly. In the aggregate, this response 
leads to a bigger contraction in international trade flows than in domestic economic activity. 
We confront the model with newly-compiled monthly aggregate U.S. import data and 
industrial production data going back to 1962, and also with disaggregated data back to 1989. 
Our results suggest a tight link between uncertainty and the cyclical behavior of international 
trade. 
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1. Introduction

The recent global economic crisis saw a sharp decline in output. However, the
accompanying decline in international trade volumes was even sharper, and
almost twice as big. Globally, industrial production fell 12% and trade volumes fell
20% in the 12 months from April 2008, shocks of a magnitude not witnessed since
the 1930s (Eichengreen and O’Rourke 2010). Standard models of international
macroeconomics and international trade fail to account for the severity of the
event now known as the Great Trade Collapse.

In this paper, we attempt to explain why international trade is so volatile in
response to economic shocks, in the recent crisis as well as in prior episodes. On
the theoretical side, we combine the uncertainty shock concept due to Bloom
(2009) with a model of international trade. Bloom’s real options approach is
motivated by high-profile events that trigger an increase in uncertainty about the
future path of the economy, for example the 9/11 terrorist attacks or the collapse
of Lehman Brothers. In the wake of such events, firms adopt a ‘wait-and-see’
approach, slowing down their hiring and investment activities. Bloom shows
that bouts of heightened uncertainty can be modeled as second-moment shocks to
demand or productivity and that these events typically lead to sharp recessions.
Once the degree of uncertainty subsides, firms revert to their normal hiring and
investment patterns, and the economy recovers.

We extend the uncertainty shock approach to the open economy. In contrast
to Bloom’s (2009) closed-economy set-up, we develop a theoretical framework
in which firms import intermediate inputs from foreign or domestic suppliers.
This structure is motivated by the observation that a large fraction of international
trade now consists of capital-intensive intermediate goods such as car parts
and electronic components or capital investment goods, a feature of the global
production system which has taken on increasing importance in recent decades
(Campa and Goldberg 1997; Feenstra and Hanson 1999; Engel and Wang 2011).

In our model, due to fixed costs of ordering associated with transportation,
firms hold an inventory of intermediate inputs, but the costs are larger for
foreign inputs. Following the inventory model with time-varying uncertainty
by Hassler (1996), we show that in response to a large uncertainty shock in
business conditions, whether to productivity or the demand for final products,
firms optimally adjust their inventory policy by cutting their orders of foreign
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intermediates more strongly than orders for domestic intermediates. In the
aggregate, this differential response leads to a bigger contraction and subsequently
a stronger recovery in international trade flows than in domestic trade. Thus,
international trade exhibits more volatility than domestic economic activity. In a
nutshell, uncertainty shocks magnify the response of international trade, given
the differential cost structure.

Our model generates some additional testable predictions. First, the magnifica-
tion effect is increased by larger fixed costs of ordering. Intuitively, the larger the
fixed costs of ordering, the more reluctant firms are to order intermediate inputs
from abroad if uncertainty rises. This is a testable hypothesis to the extent that
fixed costs vary across domestic and foreign orders.

Second, the magnification effect is muted for industries characterized by high
depreciation rates. Perishable goods are a case in point since they have extremely
high depreciation rates. The fact that such goods have to be ordered frequently
means that importers have little choice but to keep ordering them frequently even
if uncertainty rises. Conversely, durable goods can be considered as the opposite
case of very low depreciation rates. Our model predicts that for those goods
we should expect the largest degree of magnification in response to uncertainty
shocks. Intuitively, the option value of waiting is most easily realized by delaying
orders for durable goods. We find strong evidence of this pattern in the data
when we examine the cross-industry response of imports to elevated uncertainty.

In sum, our model leads to various predictions in a unified framework. In
contrast to conventional static trade models such as the gravity equation, we
focus on the dynamic response of international trade. In addition, we highlight
second-moment shocks and thus move beyond the first-moment shocks tradi-
tionally employed in the literature, such as shocks to productivity or trade costs.
Our approach is relevant for researchers and policymakers alike who seek to
understand the recovery process in response to the Great Recession, and may also
be relevant for understanding historical events like the Great Depression. It could
also help account for the response of international trade in future economic crises.

On the empirical side, we confront the model with high-frequency monthly
U.S. import and industrial production data, some of it new and hand-collected,
going back to 1962. Our results suggest a tight link between uncertainty shocks
as identified by Bloom (2009) and the cyclical behavior of international trade.
That is, the behavior of trade can be well explained with standard uncertainty
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measures such as a VXO stock market volatility index. Bloom (2009) identifies 17

high-volatility episodes since the early 1960s such as the assassination of JFK, the
1970s oil price shocks, the Black Monday market crash of October 1987, the 1998

bailout of Long-Term Capital Management, 9/11, and the collapse of Lehman
Brothers in September 2008. As Bloom (2009) shows, these high-volatility episodes
are strongly correlated with alternative indicators of uncertainty.

In particular, we argue that the Great Trade Collapse of 2008/09 can to a
large extent be explained by the exceptional degree of uncertainty triggered by
subprime lending and rising further up to, and especially after, the collapse of
Lehman Brothers. According to our empirical results, the unusually large decline
in trade is thus a response to the unusually large increase in uncertainty at the
time.1 Although it stands out quantitatively, we show that qualitatively the Great
Trade Collapse is quite comparable to previous post-World War II contractions in
international trade. In fact, our aim is to empirically account for trade recessions
more generally, not only for the Great Trade Collapse. In addition, we confirm the
cross-industry predictions coming from our theoretical model.

We are certainly not the first authors to consider general uncertainty and
real option values in the context of international trade, but so far the literature
has not examined the role of uncertainty shocks in an open-economy model of
inventory investment. For example, Baldwin and Krugman (1989) adopt a real
options approach to explain the hysteresis of trade in the face of large exchange
rate swings but their model only features standard first-moment shocks. More
recently, the role of uncertainty has attracted new interest in the context of trade
policy and trade agreements (Handley 2012; Handley and Limão 2012; Limão and
Maggi 2013). Similar to our approach, Taglioni and Zavacka (2012) empirically
investigate the relationship between uncertainty and trade for a panel of countries
with a focus on aggregate trade flows. But, as they do not provide a theoretical
mechanism, they do not speak to variation across industries.2

The trade collapse of 2008/09 has been documented by various authors (see
Baldwin 2009 for a collection of approaches, and Bems, Johnson and Yi 2013 for a

1Similarly, Bloom, Bond and Van Reenen (2007) provide empirical evidence that fluctuations in
uncertainty can lead to quantitatively large adjustments of firms’ investment behavior.

2Whilst Bloom (2009) considers U.S. domestic data, Carrière-Swallow and Céspedes (2013)
consider domestic data on investment and consumption across 40 countries and their response to
uncertainty shocks. Gourio, Siemer and Verdelhan (2013) examine the performance of G7 countries
in response to heightened volatility. None of these papers consider international trade flows.
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survey). Eaton, Kortum, Neiman, and Romalis (2011) develop a structural model
of international trade in which the decline in trade can be related to first-moment
shocks, namely a collapse in the demand for tradable goods, and an increase
in trade frictions, both of which originate outside the model.3 They find that a
collapse in demand explains the vast majority of declining trade. Our approach
is different in that we explicitly model the collapse in demand by considering
second-moment uncertainty shocks. Firms react to the uncertainty by adopting a
‘wait-and-see’ approach, and we do not require an increase in trade frictions to
account for the excess volatility of trade.

Our approach is consistent with the view that trade frictions did not materially
change in the recent crisis. Evenett (2010) and Bown (2011) find that protectionism
was contained during the Great Recession. This view is underlined by Bems, John-
son, and Yi (2013). More specifically, Kee, Neagu, and Nicita (2013) find that less
than two percent of the Great Trade Collapse can be explained by a rise in tariffs
and antidumping duties. Bown and Crowley (2013) find that compared to previ-
ous downturns, during the Great Recession governments notably refrained from
imposing temporary trade barriers against partners who experienced economic
difficulties.

Examining Belgian firm-level data during the 2008/09 recession, Behrens,
Corcos, and Mion (2013) find that most changes in international trade across
trading partners and products occurred at the intensive margin, while trade fell
most for consumer durables and capital goods. Similarly, Bricongne, Fontagné,
Gaulier, Taglioni, and Vicard (2012) confirm the overarching importance of the
intensive margin for French firm-level export data. Levchenko, Lewis, and Tesar
(2010) stress that sectors with goods used as intermediate inputs experienced
substantially bigger drops in international trade. Likewise, Bems, Johnson, and Yi
(2011) confirm the important role of trade in intermediate goods. These findings
are consistent with our modeling approach.

Our model is cast in terms of real variables, and we do not model monetary
effects and prices. This modeling strategy is supported by the empirical regularity
documented by Gopinath, Itskhoki, and Neiman (2012) showing that prices
of differentiated manufactured goods (both durables and nondurables) hardly

3Leibovici and Waugh (2012) show that the increase in implied trade frictions can be rationalized
by a model with time-to-ship frictions such that agents need to finance future imports upfront
(similar to a cash-in-advance technology) and become less willing to import in the face of a
negative income shock.
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changed during the trade collapse of 2008/09. They conclude that the sharp
decline in the value of international trade in differentiated goods was “almost
entirely a quantity phenomenon.” We therefore focus on modeling real variables.4

Amiti and Weinstein (2011) and Chor and Manova (2012) highlight the role of
financial frictions and the drying up of trade credit. However, based on evidence
from Italian manufacturing firms Guiso and Parigi (1999) show that the negative
effect of uncertainty on investment cannot be explained by liquidity constraints.
Paravisini, Rappoport, Schnabl, and Wolfenzon (2011) find that while Peruvian
firms were affected by credit shocks, there was no significant difference between
the effects on exports and domestic sales. We do not rely on credit frictions, but
such effects may be complementary to our approach.

Engel and Wang (2011) point out the fact that the composition of international
trade is tilted towards durable goods. Building a two-sector model in which only
durable goods are traded, they can replicate the higher volatility of trade relative
to general economic activity. Instead, we relate the excess volatility of trade to
inventory adjustment in response to uncertainty shocks. As this mechanism in
principle applies to any industry, compositional effects do not drive the volatility
of international trade in our model.

Finally, our paper is related to Alessandria, Kaboski, and Midrigan (2010a;
2011) who rationalize the decline in international trade by changes in firms’
inventory behavior driven by a first-moment supply shock. In contrast, we
focus on the role of increased uncertainty, modeled as a second-moment shock.
Heightened uncertainty was arguably a defining feature of the Great Recession,
and we employ an observable measure of it.5

The paper is organized as follows. In section 2, to motivate our approach, we
show that impulse responses to uncertainty shocks are stronger for U.S. imports
than U.S. industrial production at the aggregate level. In sections 3, 4 and 5 we
outline our theoretical model, conduct comparative statics and provide theoretical
simulation results. Section 6 presents the main part of our empirical evidence
with disaggregated data. In section 7 we ask to what extent uncertainty shocks
can empirically account for the recent Great Trade Collapse. Section 8 concludes.

4In contrast, prices of non-differentiated manufactures decreased considerably. In the empirical
part of the paper, however, we most heavily rely on differentiated products.

5Yilmazkuday (2012) compares a number of competing explanations for the Great Trade
Collapse in a unified framework. Consistent with our approach, he finds that a model with an
inventory adjustment mechanism fits the data best.
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2. Motivation: Uncertainty Shocks and International Trade

The world witnessed an unusually steep decline in international trade during the
Great Recession of 2008/09, generally the steepest since the Great Depression.
International trade plummeted by 30% or more in many cases. Some countries
suffered particularly badly. For example, Japanese imports declined by about 40%
from September 2008 to February 2009. In addition, the decline was remarkably
synchronized across countries. Baldwin (2009, introductory chapter) notes that
“all 104 nations on which the WTO reports data experienced a drop in both
imports and exports during the second half of 2008 and the first half of 2009.” The
synchronization hints at a common cause (Imbs 2010).

To motivate our approach, we first showcase the simplest possible evidence
on the importance of uncertainty shocks for trade using aggregate data on real
imports and industrial production (IP). We estimate a simple vector autoregression
(VAR) with monthly data from 1962 through 2012, following the econometric
specification in the seminal work of Bloom (2009) exactly, with the data used here
and below as detailed in the appendix.

Figure 1 presents the VAR results for both imports and IP side by side. The
impulse response functions (IRFs) are based on a one-period uncertainty shock
where the Bloom uncertainty indicator increases by one unit (the indicator is
an equity market index, VXO, and more details follow in the main empirical
part of the paper). The bottom line is very clear from this figure. In response to
the uncertainty shock, both industrial production and imports decline. But the
response of imports is considerably stronger, about 5 to 10 times as strong in its
period of peak impact during year one. The response of imports is also highly
statistically significant. At its peak the IRF is 3 or 4 standard errors below zero,
whereas the IRF for IP is only just about 2 standard errors below zero, and only
just surmounts the 95% confidence threshold.

While we will argue throughout the paper that uncertainty shocks can go a
long way in explaining the behavior of international trade in recessions, we note
that static gravity equations typically fail to explain the disproportionate decline
in trade. They can only match the trade collapse if they incorporate increases
in bilateral trade frictions such as tariff hikes combined with a sufficiently large
trade cost elasticity (Eaton, Kortum, Neiman, and Romalis 2011). However, most
evidence indicates that trade policy barriers moved little during the recession
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Figure 1: IRFs at aggregate level for uncertainty shocks.

-.02

-.01

0

.01

0 6 12 18 24 30 36

Real imports

month

-.02

-.01

0

.01

0 6 12 18 24 30 36

Industrial production

month

Notes: Sample is 1962:1–2012:2. The quadvariate VAR ordering as in Bloom (2009) is: stock market,
volatility, log employment, followed lastly by either log real imports or log IP. No rescaling of
shocks. 95% confidence intervals shown. See text and appendix.

(Evenett 2010; Bown 2011; Kee, Neagu, and Nicita 2013), while freight rates
actually declined for most modes of shipping, given the slackening of trade flows
and surplus capacity. In the absence of rising trade costs, it is similarly difficult to
relate the excessive responsiveness of trade to ‘back-and-forth trade’ or ‘vertical
specialization’ (Bems, Johnson, and Yi 2011). For example, if demand for final
goods drops by 10%, then in the standard framework demand for intermediates
typically also drops by 10% throughout the supply chain.

We therefore turn to a different model of trade with dynamic effects arising
from uncertainty shocks to account for outcomes like the Great Trade Collapse.
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3. A Model of Trade with Uncertainty Shocks

We build on Hassler’s (1996) setting of investment under uncertainty to construct
a model of trade in intermediate goods. Following the seminal contribution by
Bloom (2009) we then introduce second-moment uncertainty shocks.

Hassler’s (1996) model starts from the well-established premise that uncertainty
has an adverse effect on investment. In our set-up we model ‘investment’ as firms’
investing in intermediate goods. Due to fixed costs of ordering firms build up an
inventory of intermediate goods that they run down over time and replenish at
regular intervals. The intermediate goods can be either ordered domestically or
imported from abroad. Thus, we turn the model into an open economy.

In addition, firms face uncertainty over ‘business conditions’ (in Bloom’s ter-
minology), which means they experience unexpected fluctuations in productivity
and demand. What’s more, the degree of uncertainty varies over time. Firms
might therefore enjoy periods of calm when business conditions are relatively
stable, or they might have to weather ‘uncertainty shocks’ that lead to a volatile
business environment characterized by large fluctuations. Overall, this formu-
lation allows us to model the link between production, international trade and
shifting degrees of uncertainty. Hassler’s (1996) key innovation is to formally
model how changes in uncertainty influence investment. His model therefore
serves as a natural starting point for our analysis of uncertainty shocks.

3.1. Production and Demand

As in Bloom (2009), each firm has a Cobb-Douglas production function

F(A, K, L) = AKαL1−α, (1)

where A is productivity, L is domestic labor and K is an intermediate production
factor that depreciates at rate δ.6 Each firm faces isoelastic demand Q with
elasticity ε

Q = BP−ε, (2)

where B is a demand shifter. As we focus on the firm’s short-run behavior,
we assume that the firm takes the wage rate and the price of the intermediate

6Both K and L are stock variables.
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production factor as given.7 We thus adopt a partial equilibrium approach to keep
the model tractable.

3.2. Inventory and Trade

The input factor K is an intermediate input factor (or a composite of such inputs).
As the firm has to pay fixed costs of ordering per shipment f , it stores the
intermediate factor as inventory and follows an s, S inventory policy. Scarf (1959)
shows that in the presence of such fixed costs of ordering, an s, S policy is
an optimal solution to the dynamic inventory problem. We assume that the
intermediate factor is either ordered from abroad or sourced domestically, leading
to imports or domestic trade flows, respectively. The corresponding fixed costs
are fF and fD with fF ≥ fD > 0, where F stands for foreign and D for domestic.8

Given the intermediate input price and the wage rate, it follows that the firm
employs a constant ratio of intermediates and labor regardless of productivity
fluctuations. That is, the Cobb-Douglas production function (1) implies that the
firm’s use of the intermediate factor K is proportional to output Q. Similar to
Hassler (1996) we assume that the firm has a target level of intermediates to be
held as inventory, denoted by M∗, which is proportional to both K and Q. Thus,
we can write

m∗ = c + q, (3)

where c is a constant, m∗ ≡ ln(M∗) denotes the logarithmic inventory target and
q ≡ ln(Q) denotes logarithmic output. Grossman and Laroque (1990) show that
such a target level can be rationalized as the optimal solution to a consumption
problem in the presence of adjustment costs.9 In our context the target level can
be similarly motivated if it is costly for the firm to adjust its level of production
up or down.

We follow Hassler (1996) in modeling the dynamic inventory problem. In

7The prices of differentiated manufactured goods in international trade were essentially un-
changed during the trade collapse of 2008/09, as documented by Gopinath, Itskhoki, and Neiman
(2012). Their evidence further motivates our assumption of a given input price.

8Guided by empirical evidence we do not model firms’ switching from a foreign to a domestic
supplier, or vice versa. Thus, the source of the intermediate good is exogenous for the firm.
However, we provide comparative statics on fF and fD. See sections 4.3 and 5 for details.

9In their model consumers have to decide how much of a durable good they should hold given
that they face fluctuations in their wealth. Adjustment is costly due to transaction costs. The
optimal amount of the durable good turns out to be proportional to their wealth.
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particular, we assume a quadratic loss function that penalizes deviations z from
the target m∗ as 1

2 z2 with z ≡ m−m∗.10 Clearly, in the absence of ordering costs
the firm would continuously set m equal to the target m∗. However, since we
assume positive ordering costs ( f > 0), the firm faces a trade-off of balancing the
fixed costs on the one hand and the costs of deviating from the target on the other.
Changes in inventory are brought about whenever the firm pays the fixed costs f
to adjust m (and costs are higher when the input is sourced from abroad).

We solve for the optimal solution to this inventory problem subject to a
stochastic process for output q. The optimal control solution can be characterized
as follows: when the deviation of inventory z reaches a lower trigger point s, the
firm orders the amount φ so that the inventory rises to a return point of deviation
S = s + φ. Formally, we can state the problem as

min
{It,zt}∞

0

{
E0

∫ ∞

0
e−rt

(
1
2

z2
t + It f

)
dt
}

(4)

subject to

z0 = z;

zt+dt =

{
free if mt is adjusted,
zt − δdt− dq otherwise;

Itdt =

{
1 if mt is adjusted,
0 otherwise.

It is a dummy variable that takes on the value 1 whenever the firm adjusts mt

by paying f , r > 0 is a constant discount rate, and δ > 0 is the depreciation rate
for the intermediate so that dKt/K = δdt. Note that the intermediate input only
depreciates if used in production, not if it is merely in storage as inventory.11

10The loss associated with a negative deviation could be seen as the firm’s desire to avoid a
stockout, while the loss associated with a positive deviation could be interpreted as the firm’s
desire to avoid excessive storage costs.

11In our trade and production data at the 4-digit industry level, examples of the intermediate
factor K include ‘electrical equipment’, ‘engines, turbines, and power transmission equipment’,
‘communications equipment’ and ‘railroad rolling stock.’ We can consider the firm described in
our model as ordering a mix of such products. We therefore think of a situation where inventories
are essentially a factor of production, for instance spare parts for when machines break down
(Ramey 1989).
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3.3. Business Conditions with Time-Varying Uncertainty

Due to market clearing output can move because of shifts in productivity A in
equation (1) or demand shifts B in equation (2). Like Bloom (2009), we refer to
the combination of supply and demand shifters as business conditions. Specifically,
we assume that output q follows a stochastic marked point process that is known
to the firm. With an instantaneous probability λ/2 per unit of time and λ > 0, q
shifts up or down by the amount ε:

qt+dt =


qt + ε with probability (λ/2)dt,
qt with probability 1− λdt,
qt − ε with probability (λ/2)dt.

(5)

The shock ε can be interpreted as a sudden change in business conditions. Through
the proportionality between output and the target level of inventory embedded in
equation (3), a shift in q leads to an updated target inventory level m∗. Following
Hassler (1996) we assume that ε is sufficiently large such that it becomes optimal
for the firm to adjust m.12 That is, a positive shock to output increases m∗

sufficiently to lead to a negative deviation z that reaches below the lower trigger
point s. As a result the firm restocks m. Vice versa, a negative shock reduces
m∗ sufficiently such that z reaches above the upper trigger point and the firm
destocks m.13 Thus, to keep our model tractable we allow the firm to both restock
and destock depending on the direction of the shock.

The arrival rate of shocks λ is the measure of uncertainty and thus a key
parameter of interest. We interpret changes in λ as changes in the degree of
uncertainty. Note that λ determines the frequency of shocks, not the size of
shocks. This feature is consistent with λ determining the second moment of shocks,
not their first moment. More specifically, as the simplest possible set-up we follow
Hassler (1996) by allowing uncertainty λω to switch stochastically between two
states ω ∈ {0, 1}: a state of low uncertainty λ0 and a state of high uncertainty λ1

12Hassler (1996, section 4) reports that relaxing the large shock assumption, while rendering the
model more difficult to solve, appears to yield no qualitatively different results.

13To keep the exposition concise we do not explicitly describe the upper trigger here and focus
on the lower trigger point s and the return point S. But it is straightforward to characterize the
upper trigger point. See Hassler (1996) for details.
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with λ0 < λ1. The transition of the uncertainty states follows a Markov process

ωt+dt =

{
ωt with probability 1− γωdt,
ωt with probability γωdt,

(6)

where ωt = 1 if ωt = 0, and vice versa. The probability of switching the
uncertainty state in the next instant dt is therefore γωdt, with the expected
duration until the next switch given by γ−1

ω .
Below we will choose parameter values for λ0, λ1, γ0 and γ1 that are consistent

with uncertainty fluctuations as observed over the past few decades.14 The firm
knows the parameters of the stochastic process described by (5) and (6) and takes
them into account when solving its optimization problem (4).15

3.4. Solving the Inventory Problem

The Bellman equation for the inventory problem is

V(zt, ωt) =
1
2

z2
t dt + (1− rdt)EtV(zt+dt, ωt+dt). (7)

The cost function V(zt, ωt) at time t in state ωt thus depends on the instantaneous
loss element from the minimand (4), z2

t dt/2, as well as the discounted expected
cost at time t + dt. The second term can be further broken down as follows:

EtV(zt+dt, ωt+dt) =

Vz(zt, ωt)− δdtVz(zt, ωt)

+λωdt {V(Sω, ωt) + f −V(zt, ωt)}
+γωdt {V(zt, ωt)−V(zt, ωt)} ,

(8)

where Vz denotes the derivative of V with respect to z. The expected cost at time
t + dt thus takes into account the cost of depreciation over time through the term
involving δ. It also captures the probability λωdt of a shock hitting the firm’s
business conditions (in which case the firm would pay the ordering costs f to

14Overall, the stochastic process for uncertainty is consistent with Bloom’s (2009). In his setting
uncertainty also switches between two states (low and high uncertainty) with given transition
probabilities. But he models uncertainty as the time variation of the volatility of a geometric
random walk.

15When we simulate the model in section 5, we consider a large number of firms that are
identical apart from receiving idiosyncratic shocks. Those firms do not behave strategically, and
there are no self-fulfilling bouts of uncertainty.
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return to point Sω), as well as the probability γωdt that the uncertainty state
switches from ωt to ωt.

Equations (7) and (8) form a system of two differential equations for the two
possible states ωt and ωt. Following Hassler (1996) we show in the technical
appendix how standard stochastic calculus techniques lead to a solution for
the system. We have to use numerical methods to obtain values for the four
main endogenous variables of interest: the bounds s0 and S0 for the state of low
uncertainty λ0, and the bounds s1 and S1 for the state of high uncertainty λ1. It
turns out that in either state, the cost function V reaches its lowest level at the
respective return point Sω. This point represents the level of inventory the firm
ideally wants to hold given the expected outlook for business conditions and
given it has just paid the fixed costs f for adjusting its inventory.16

As in Hassler (1996), the following condition can be derived from the Bellman
equation:17

1
2

(
s2

ω − S2
ω

)
= (r + λω) f + γω { f − (V(sω, ωt)−V(Sω, ωt))} > 0. (9)

This expression can be shown to be strictly positive since (r + λω) f > 0 and
γω { f − (V(sω, ωt)−V(Sω, ωt))}≥ 0. This last non-negativity result holds be-
cause the smallest value of V can always be reached by paying the fixed costs f
and stocking up to Sω. That is, for any zt, the cost value V(zt, ωt) can never exceed
the minimum value V(Sω, ωt) plus f . It therefore also follows that V(sω, ωt) can
never exceed V(Sω, ωt) + f , i.e., V(sω, ωt) ≤ V(Sω, ωt) + f .

Recall that the lower trigger point sω is expressed as a deviation from the
target level m∗. We therefore have sω < 0. Conversely, the return point Sω is
always positive, Sω > 0. The fact that expression (9) is positive implies |sω| > Sω,
i.e., the lower trigger point is further from the target than the return point. Why
does this asymmetry arise? Intuitively, in the absence of uncertainty the firm
would stock as much inventory as to be at the target value on average. That is,
its inventory would be below and above the target exactly half of the time, with
the lower trigger point and return point equally distant from the target. However,
in the presence of uncertainty this symmetry is no longer optimal. There is now

16It would not be optimal for the firm to return to a point at which the cost function is above
its minimum. The intuition is that in that case, the firm would on average spend less time in the
lowest range of possible cost values.

17For details of the derivation see Hassler (1996, appendix 2).
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a positive probability that output q gets hit by a shock according to equation (5).
Whenever a shock hits, the firm adjusts its inventory to the return point Sω.18 If
the return point were the same distance from the target as the lower trigger point,
the firm’s inventory would on average be above target. To avoid this imbalance
the firm chooses a return point that is relatively close to the target.19

4. Time-Varying Uncertainty and Inventory Behavior

The main purpose of this section is to explore how the firm endogenously changes
its s, S bounds in response to increased uncertainty. Our key result is that the
firm lowers the bounds in response to increased uncertainty. In addition, we are
interested in comparative statics for the depreciation rate δ and the fixed cost of
ordering f . As explained in the preceding section, the model cannot be solved
analytically. Instead, we use numerical methods.

4.1. Parameterizing the Model

We choose the same parameter values for the interest rate and rate of depreciation
as Bloom (2009), i.e., r = 0.065 and δ = 0.1 per year. The interest rate value
corresponds to the long-run average for the U.S. firm-level discount rate. Based
on data for the U.S. manufacturing sector from 1960 to 1988, Nadiri and Prucha
(1996) estimate depreciation rates of 0.059 for physical capital and 0.12 for R&D
capital. As reported in their paper, those are somewhat lower than estimates by
other authors. We therefore take δ = 0.1 as a reasonable baseline value.

For the stochastic uncertainty process described by equations (5) and (6) we
choose parameter values that are consistent with Bloom’s (2009) data on stock
market volatility. In his Table II he reports that an uncertainty shock has an
average half-life of two months. This information can be expressed in terms of
the transition probabilities in equation (6) with the help of a standard process of
exponential decay for a quantity Dt:

Dt = D0 exp(−gt).

18Recall from section 3.3 that for tractability the shock ε is assumed to be sufficiently large.
19Although we will fill in more details in section 4, we can refer interested readers to Figure 5

where we illustrate the difference between no uncertainty (cases 1 and 2) and positive uncertainty
(cases 3a and 3b).
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Setting t equal to 2/12 years yields a rate of decay g = 4.1588 for Dt to halve. The
decaying quantity Dt in that process can be thought of as the number of discrete
elements in a certain set. We can then compute the average length of time that
an element remains in the set. This is the mean lifetime of the decaying quantity,
and it is simply given by g−1. It corresponds to the expected duration of the
high-uncertainty state, γ−1

1 , so that γ1 = g = 4.1588. Thus, the average duration
of the high-uncertainty period follows as 4.1588−1 = 0.2404 years.

Bloom (2009) furthermore reports 17 uncertainty shocks in 46 years. Hence,
an uncertainty shock arrives on average every 46/17 = 2.7059 years. Given
the duration of high-uncertainty periods from above, this implies an average
duration of low-uncertainty periods of 2.7059− 0.2404 = 2.4655 years. It follows
γ0 = 2.4655−1 = 0.4056.

The uncertainty term λdt in the marked point process (5) indicates the proba-
bility that output is hit in the next instant by a supply or demand shock that is
sufficiently large to shift the target level of inventory. Thus, the expected length
of time until the next shock is λ−1. It is difficult to come up with an empirical
counterpart of the frequency of such shocks since they are unobserved. For the
baseline level of uncertainty we set λ0 = 1, which implies that the target level
of inventory is adjusted on average once a year. This value can therefore be
interpreted as an annual review of inventory policy.

However, we note that our results are not very sensitive to the λ0 value. In our
baseline specification we follow Bloom (2009, Table II) by doubling the standard
deviation of business conditions in the high-uncertainty state. This corresponds to
λ1 = 4λ0 = 4.20 In the comparative statics below we also experiment with other
values for λ1. An uncertainty shock is defined as a sudden shift from λ0 to λ1.

Finally, we need to find an appropriate value for the fixed costs of ordering,
fF and fD. Based on data for a U.S. steel manufacturer, Alessandria, Kaboski,
and Midrigan (2010b) report that “domestic goods are purchased every 85 days,
while foreign goods are purchased every 150 days.” To match the behavior of
foreign import flows we set fF to ensure that the interval between orders is on
average 150 days in the low-uncertainty state.21 This implies fF = 0.00005846 as

20For a given λ, the conditional variance of process (5) is proportional to λ so that the standard
deviation is proportional to the square root of λ. Thus, we quadruple λ0 to double the standard
deviation.

21In the model the interval between orders corresponds to the normalized bandwidth, (S0 −
s0)/δ. In the case of fF we set it equal to 150 days, or 150/365 years.
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our baseline value. Matching the interval of 85 days for domestic flows would
imply fD = 0.00001057. These fixed costs differ by a large amount (by a factor of
about 5.5), and that difference might seem implausibly large. However, we show
in the simulation section that quantitatively, we can obtain large declines in trade
flows with values for fF that are not as high as in our baseline specification. That
is, we are able to obtain a large decline in trade flows for a ratio of fF/ fD that is
lower than implied by the above values.

4.2. A Rise in Uncertainty

Given the above parameter values we solve the model numerically. Figure 2

illustrates the change in s, S bounds in response to rising uncertainty. The vertical
scale indicates the percentage deviation from the target m∗. Note that there are
two sets of s, S bounds: one set for the low-uncertainty state 0, and the other for
the high-uncertainty state 1. The level of low uncertainty is fixed at λ0 = 1 but the
level of high uncertainty λ1 varies on the horizontal axis (as our baseline value
we will use λ1 = 4 in later sections). At λ0 = λ1 = 1 the bounds for the two
states by construction coincide. As the s, S bounds are endogenous, all of them in
principle shift in response to rising values of λ1. But clearly, the bounds for the
low-uncertainty state are essentially not affected by rising values of λ1.

Two observations stand out. First, the lower trigger point always deviates
further from the target than the return point. This is true for both states of
uncertainty, i.e., |s0| > S0 and |s1| > S1. As explained in the context of equation
(9), in the presence of uncertainty a symmetric band around the target, i.e.,
|sω| = S0, would not be optimal. The reason is that with uncertainty, there is a
positive probability of the firm’s output getting hit by a shock, leading the firm to
adjust its inventory to the return point. Thus, the higher the shock probability, the
more frequently the firm would adjust its inventory above target. To counteract
this tendency it is optimal for the firm to set the return point closer to the target
compared to how close the lower trigger point is to the target.

Second, the bounds for the high-uncertainty state decrease with the extent of
uncertainty, i.e., ∂S1/∂λ1 < 0 and ∂s1/∂λ1 < 0. The intuition for the drop in the
return point S1 is the same as above – increasing uncertainty means more frequent
adjustment so that S1 needs to be lowered to avoid excessive inventory holdings.
The intuition for the drop in the lower trigger point s1 reflects the rising option
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Figure 2: Change in s, S bounds due to higher uncertainty. The low-uncertainty state is in grey,
the high-uncertainty state is in black.

value of waiting. Suppose the firm is facing low inventory and decides to pay the
fixed costs of ordering f to stock up. If the firm gets hit by a shock in the next
instant, it would have to pay f again. The firm could have therefore saved one
round of fixed costs by waiting. Waiting longer corresponds to a lower value of s1.
This logic follows immediately from the literature on uncertainty and the option
value of waiting (McDonald and Siegel 1986; Dixit 1989; Pindyck 1991).

Figure 3 shows that the decline in the lower trigger point s1 compared to s0 can
be quite substantial for high degrees of uncertainty. It plots the percentage decline
in s1 relative to s0. Given the above parameterization, the lower trigger point
declines by 28 percent when uncertainty increases to λ1 = 4 from λ0 = 1. As we
show in section 5 when we simulate the model, this translates into a precipitous
drop of imports. Intuitively, when uncertainty rises, the firm becomes more
cautious and adopts a wait-and-see attitude. It will then run down its inventory
further than in the low-uncertainty state, and it does not stock up as much. In this
model, it turns out that the firm lowers s1 more than S1 so that the bandwidth
(S1 − s1) rises in response to higher uncertainty. Figure 4 plots this increase in
bandwidth.
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Figure 3: How uncertainty decreases the lower trigger point (compared to the low-uncertainty
state).

Figure 4: How uncertainty increases the s, S bandwidth (compared to the low-uncertainty state).
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Figure 5: Summary: How uncertainty pushes down the s, S bounds and increases the bandwidth.
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Figure 5 summarizes the main qualitative results in a compact way. Case 1

depicts the (hypothetical) situation where both fixed costs f and uncertainty λ are
negligible. Due to the very low fixed costs the bandwidth (i.e., the height of the
box) is tiny, and due to the lack of uncertainty the s1 and S1 bounds are essentially
symmetric around the target level m∗. In case 2 the fixed costs become larger,
which pushes both s1 and S1 further away from the target but in a symmetric
way. Cases 3a and 3b correspond to the situation we consider in this paper with
non-negligible degrees of uncertainty as in Figures 2–4. The uncertainty in case
3a induces two effects compared to case 2. First, both s1 and S1 shift down so that
they are no longer symmetric around the target. Second, the bandwidth increases
further (see Figure 4). A shift to even more uncertainty (case 3b) reinforces these
two effects.
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4.3. Comparative Statics

4.3.1 Varying the Fixed Costs of Ordering

We assume fixed costs of ordering to be lower when the intermediate input is
ordered domestically, i.e., fD < fF. Figure 6 shows the effect of using the value fD

from above that corresponds to an average interval of 85 days between domestic
orders compared to the baseline value fF in Figure 3 that corresponds to 151 days.
Lower fixed costs imply more frequent ordering and therefore allow the firm to
keep its inventory closer to the target level. This means that for any given level
of uncertainty, the optimal lower trigger point does not deviate as far from the
target compared to the high fixed cost scenario.

4.3.2 Varying the Depreciation Rate

Some types of imports are inherently difficult to store as inventory, for instance
food products and other perishable goods. We model this inherent difference in
storability with a higher rate of depreciation of δ = 0.2 compared to the baseline
value of δ = 0.1. In general, the larger the depreciation rate, the smaller the
decreases in the lower trigger point and the return point in response to heightened
uncertainty. Intuitively, with a larger depreciation rate the firm orders more
frequently. The value of waiting is therefore diminished. Figure 7 graphs the
percentage decline in the lower trigger point s1 relative to s0 for both the baseline
depreciation rate (as in Figure 3) and the higher value.

5. Simulating an Uncertainty Shock

So far we have described the behavior of a single firm. We now simulate 50,000

firms that receive shocks according to the stochastic uncertainty process in equa-
tions (5) and (6). These shocks are idiosyncratic for each firm but drawn from the
same distribution. The firms are identical in all other respects. We use the same
parameter values as in section 4.1.

We should add that we do not model an extensive margin response, i.e.,
firms neither enter nor exit over the simulation period.22 This approach seems
reasonable given that most of the changes in the value of international trade

22Neither do we model firms’ switching from a foreign to a domestic supplier, or vice versa.
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Figure 6: The effect of a lower fixed costs of ordering on the decrease in the lower trigger point.

Figure 7: The effect of a higher depreciation rate on the decrease in the lower trigger point.
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during the trade collapse of 2008/09 happened at the intensive margin (see
Behrens, Corcos, and Mion 2013; Bricongne et al. 2012). Allowing for extensive
margin responses would be an important avenue for future research. We conjecture
that the extensive margin would amplify uncertainty shocks. Firms would likely
exit in the face of higher uncertainty and enter once the recovery takes hold, thus
reinforcing the effects of higher uncertainty.

5.1. A Permanent Uncertainty Shock

We simulate an uncertainty shock by permanently shifting the economy from low
uncertainty λ0 to high uncertainty λ1. A key result from section 4.2 is that firms
lower their s, S bounds in response to increased uncertainty. This shift leads to a
strong downward adjustment of intermediate input inventories and thus a strong
decline in imports. Figure 8 plots simulated imports of intermediate goods in the
economy (normalized to 1 for the average value). Given our parameterization
imports decrease by about 25% in response to the shock. The decrease happens
quickly, in about one month, followed by a quick recovery and in fact an overshoot

Figure 8: Simulating the response of aggregate imports to an uncertainty shock.
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(we comment on the overshoot below). As in Bloom (2009), this pattern of sharp
contraction and recovery is typical for uncertainty shocks.

While the trade collapse and recovery happen quickly in the simulation, this
process takes longer in the data. For instance, during the Great Recession German
imports peaked in the second quarter of 2008, rapidly declined by 32% and only
returned to their previous level by the third quarter of 2011.23 Such persistence
could be introduced into our simulation by staggering firms’ responses. Currently,
all firms perceive uncertainty in exactly the same way and thus synchronize their
reactions. It might be more realistic to introduce some degree of heterogeneity by
allowing firms to react at slightly different times. In particular, firms might have
different assessments as to the time when uncertainty has faded and business
conditions have normalized. This would tend to stretch out the recovery of trade.
Moreover, delivery lags could be introduced that vary across industries. We
abstracted from such extensions here in order to keep the model tractable.

We stress that the short-run dynamics in Figure 8 are purely driven by a
second-moment shock (we discuss first-moment shocks in section 5.2). The extent
of orders and imports in the long run is ultimately determined by the depreciation
rate δ as intermediates depreciate over time.24 Average aggregate orders in the
long run (i.e., once the economy settles into a new steady state) are the same as
before the uncertainty shock hits.

In contrast to imports, the short-run dynamics of output are not characterized
by systematic fluctuations in our model. As a result of the stochastic process (5),
output is driven by idiosyncratic mean-zero shocks that wash out in the aggregate.
As we explain in more detail in section 5.2, if output shifted due to first-moment
shocks, then demand for intermediates and thus imports would move one-for-one
due to the Cobb-Douglas production function (1) and fixed input prices.25 For
example, a ten percent decline in demand would translate into a ten percent
decline in imported intermediate goods. Our framework can therefore best be
interpreted as explaining the excess volatility of trade flows that arises in addition
to any first moment movements, or as explaining the magnified response of trade
flows relative to output.

23Most high-income countries experienced similar patterns. U.S. and Japanese imports declined
by 38% and 40% over that period, respectively (source: IMF, Direction of Trade Statistics).

24As firms are equally likely to receive positive or negative shocks, the effects of restocking and
destocking cancel in the aggregate.

25As discussed in the context of equation (3), the use of inputs is proportional to output.
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5.1.1 The Volatility Effect

The reaction of aggregate imports can be thought of in terms of two effects,
depicted in Figure 9. The blue line (at the bottom) represents a ‘pure’ uncertainty
effect, and the red line (at the top) is a volatility effect. The black line (in the middle)
is the total effect as in Figure 8.

The decomposition is computed as follows. The uncertainty effect only cap-
tures the shifting down of the s, S bounds (i.e., we use the lower bounds whilst
holding the degree of volatility fixed at λ0). Once the uncertainty shock hits, firms
decrease their lower trigger point such that they initially take longer to run down
their inventory. This leads to a sharp drop in orders of imported intermediate
inputs. Once firms approach the new lower trigger point, they start restocking.
This leads to the sharp recovery in orders.

The volatility effect is an overshoot caused by the increased probability of firms
receiving a shock (i.e., we switch to λ1 from λ0 whilst holding the s, S bounds

Figure 9: Simulating the response of aggregate imports to an uncertainty shock: the total effect
(baseline), the ‘pure’ uncertainty effect and the volatility effect.
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fixed).26 Recall that a shock ε moves output symmetrically in either direction with
equal probability. Suppose that all firms were exactly at the return point (z = S).
Then the size of negative orders (induced by z being pushed above the upper
trigger point) and the size of positive orders (induced by z being pushed below the
lower trigger point) would be the same. Switching to λ1 increases the frequency
of orders, but given that negative and positive orders are of the same size and
of equal probability, there would be no net effect on aggregate orders. However,
most firms are in fact below the return point (z < S), which means that they have
not stocked up in a while. Positive orders are therefore larger than negative orders,
and increasing the frequency leads to a rise in aggregate orders.27 We stress that
the volatility effect plays an important role in this simulation because we assume
a permanent increase in uncertainty. It would matter less for a temporary increase.

Note that the total (baseline) effect reaches beyond the volatility effect in Figure
9 about one-and-a-half months into the period of heightened uncertainty. This
happens due to the interaction of the volatility and uncertainty effects. While the
volatility effect implies more frequent ordering and thus larger aggregate orders,
it is reinforced by the increase in the bandwidth (S − s), which entails larger
restocking orders all else being equal. With a larger bandwidth in place as a result
of the uncertainty effect, the volatility effect is in fact stronger compared to the
scenario with no interaction as indicated by the red line.

In Figure 10 we illustrate the inventory position of the average firm. Specifi-
cally, we plot the average deviation of imported intermediates from the target level.
In the steady state before the uncertainty shock hits, this deviation is essentially
zero as firms on average hold precisely the amount of inventory that minimizes
their loss function. After the shock has hit, their average inventories initially
decline sharply as firms decrease their lower trigger point. This is driven by the
uncertainty effect described above. But at the same time, the higher volatility
means that firms are more likely to restock, implying a rising average deviation
over time. Although this volatility effect sets in immediately, it is initially domi-

26This effect is analogous to Bloom’s ‘volatility overshoot’ (see Bloom 2009, section 4.4).
27One implication is that the upper trigger point does not matter for the size of orders. The

reason is that the shock size is such that once a shock hits, there is always adjustment (i.e., the
upper trigger point is always breached given a shock in that direction). Therefore, only the return
point and the lower trigger point matter for the size of orders as they mark the range of inventory
that the average firm holds. Since depreciation can only decrease but never increase inventory, the
average firm’s inventory can never be above the return point.
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Figure 10: Simulating the inventory position of the average firm.
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nated by the uncertainty effect. In Figure 10 firms’ inventories eventually start
rising after just under a month into the period of heightened uncertainty.

5.1.2 Comparative Statics

In Figure 11 we plot the total effect of an uncertainty shock for three different
values of fixed costs fF. The black line corresponds to our baseline value of
fF = 0.00005846. The remaining two lines in grey correspond to smaller values of
fF. Their values are fF = 0.00004846 for the dark grey line and fF = 0.00003846
for the light grey line. Although the latter value is about a third smaller than the
baseline value, imports still drop by over 20 percent (compared to 25 percent in
the baseline scenario).

The insight is that although the trade collapse becomes less severe with smaller
fixed cost values (as predicted by the theory), quantitatively the collapse is not so
sensitive to fixed costs above a certain threshold. In case of the light grey line in
Figure 11, the foreign fixed cost value is only 3.6 times as large as the domestic
fixed cost value ( fD = 0.00001057 in section 4.1, so fF/ fD = 3.64). In contrast,
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Figure 11: Simulating aggregate imports with different values of fixed costs of ordering.
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Alessandria, Kaboski, and Midrigan (2010a) use a ratio of fF/ fD = 6.54, a large
difference in frictions.28 The reason that smaller and arguably more plausible
values of fF suffice is as follows. The decline of the lower trigger point in response
to an uncertainty shock (as depicted in Figure 6) is increasing but concave in fF.
Thus, increases in fF have a strong marginal impact when fF is low. Once fF is
high, increases have a weak impact on the lower trigger point. For instance, the
impact associated with the baseline value of fF makes up more than two-thirds
(72 percent) of the impact associated with doubling fF.29

In Figure 12 we plot the effect of an uncertainty shock for three different values
of the depreciation rate δ. The black line is for our baseline value of δ = 0.10. The
dark grey line corresponds to δ = 0.125 and the light grey line is for δ = 0.15.

28In their benchmark case, Alessandria, Kaboski, and Midrigan (2010a, Table 4) choose values
for fixed costs of ordering that correspond to 23.88 percent of mean revenues for foreign orders
and 3.65 percent of mean revenues for domestic orders.

29Given the parameterization in section 4.1, the baseline value of fF = 0.00005846 is associated
with a decline in the lower trigger point by 27.7 percent in response to an uncertainty shock.
Doubling the baseline value of fF is associated with a 38.4 percent decline. It follows 27.7/38.4 =
0.72.
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Figure 12: Simulating aggregate imports with different values of the depreciation rate.
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As predicted by the theory, higher rates of depreciation tend to entail a smaller
adjustment of s, S bands so that the decline in imports is not as pronounced.

5.2. A First-Moment Shock

In section 5.1 we only considered a second-moment shock. Whereas aggregate
imports display distinct short-run dynamics, aggregate output is flat because
positive and negative shocks at the firm level are of equal probability and thus
exactly offset each other. The increase in volatility due to the second-moment
shock does not change this result.

We now consider a first-moment shock. Due to the Cobb-Douglas production
function (1) and due to the assumption of fixed input prices, it follows that
the optimal ratios of the production factors to output, K/Q and L/Q, do not
vary over time in our model. At the firm level, a shock to output as in the
stochastic process (5), which could be driven by a supply or demand shock or
their combination, therefore translates into a one-for-one movement of inputs and
inventories. For instance, if a firm experiences a negative ten percent productivity
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Figure 13: Simulating the response of aggregate imports to a negative ten percent first-moment
shock.
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shock (or demand shock), this translates into a ten percent decline in K and thus
a ten percent decline in imports (assuming the firm sources K from abroad).

In the aggregate, it is ultimately the rate of depreciation that drives inventory
behavior and thus imports in the steady state.30 In our model a negative ten
percent permanent productivity shock therefore corresponds to a ten percent cut
in the depreciation rate. This is the shock we consider in Figure 13. We leave the
degree of uncertainty and the s, S bands unchanged at their baseline levels (i.e., as
in the low-uncertainty state). The drop in demand leads to a gradual decline in
aggregate imports by around ten percent in total.

We should note that in the context of our sample, we find no evidence of a
large, negative U.S. productivity shock which might account for the observed trade
collapse in this manner. As the dotted line in Figure 14 shows, during the Great
Trade Collapse total factor productivity (TFP) in fact increased. Thus, a TFP-based
explanation seems unlikely to account for the direction, let alone the severity of

30The idiosyncratic shocks that lead to inventory adjustment at the firm level wash out in the
aggregate.

29



Figure 14: U.S. real imports, IP, total factor productivity, and real GDP from 2006:Q1 to 2011:Q4.
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the Great Trade Collapse, and this (and the lack of plausible first-moment shocks
to trade frictions) motivates our focus on second-moment shocks.

Alessandria, Kaboski, and Midrigan (2010a) also develop an s, S inventory
model with a band of inaction as in our model. However, they only consider first-
moment shocks (in particular a negative supply shock) but no second moment
shocks. In contrast to Figure 13, their model nevertheless generates a decline in
imports that exceeds the decline in output or sales. The reason is that they treat
the intermediate input as a flow variable that needs to be replaced fully every
period, and that the firm has a desired inventory-to-sales ratio above 1. Once sales
take a hit, a multiplier effect kicks in such that imports are reduced more than
one-for-one because firms run down their high levels of inventory. In our model,
however, the imported input factor is not fully absorbed in the production process.
It only depreciates by rate δ, which is less than 100 percent in our parameterization.
We do not impose a desired inventory-to-sales ratio above 1. Instead, we generate
a disproportionate decline in imports through an endogenous adjustment of s, S
inventory bands caused by a second-moment shock.
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6. Empirical Evidence

To explore the relationship between uncertainty, production, and international
trade we run vector autoregressions (VARs) with U.S. data. In particular, we
follow the seminal work of Bloom (2009) in running a VAR to generate an impulse
response function (IRF) relating the reactions of key model quantities, in this case
not only industrial production but also imports, to the underlying impulses which
take the form of shocks to uncertainty.

We contend that, as with the application to production, the payoffs to an
uncertainty-based approach can be substantial again in the new setting we propose
for modeling trade volatility. Recall that in the view of Bloom (2009, p. 627):

More generally, the framework in this paper also provides one re-
sponse to the “where are the negative productivity shocks?” critique
of real business cycle theories. In particular, since second-moment
shocks generate large falls in output, employment, and productivity
growth, it provides an alternative mechanism to first-moment shocks
for generating recessions.

The same might then be said of theories of the trade collapse that rely on
negative productivity shocks, or other first-moment shocks. So by the same token,
the framework in our paper provides one response to the “where are the increases
in trade frictions?” objection that is often cited when standard static models are
unable to otherwise explain the amplified nature of trade collapses in recessions,
relative to declines in output.

Our theoretical model, and empirical evidence, can thus be seamlessly in-
tegrated with the Bloom (2009) view of uncertainty-driven recessions, whilst
matching a crucial and recurrent feature of international economic experience:
the highly magnified volatility of trade, which has been a focus of inquiry since at
least the 1930s, and which, since the onset of the Great Recession has flared again
as an object of curiosity and worry to scholars and policymakers alike.

6.1. Three Testable Hypotheses

To look ahead and quickly sum up the bottom line, our empirical results expose
several new and important stylized facts, all of which are consistent with, and
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thus can motivate our previously described theoretical framework. Specifically we
focus on testing three empirical propositions that would be implied by our theory.

• First, trade volumes do respond to uncertainty shocks, the effects are quanti-
tatively and statistically significant, and are robust to different samples and
methods. In addition, trade volumes respond much more to uncertainty
shocks than does the volume of industrial production; that is to say, there
is something fundamentally different about the dynamics of traded goods
supplied via the import channel, as compared to supply originating from
domestic industrial production.

• Second, we confirm that these findings are true not just at the aggregate level,
but also at the disaggregated level, indicating that the amplified dynamic
response of traded goods is not just a sectoral composition effect.

• Third, we find that the dynamic response of traded goods to uncertainty
shocks is greatest in durable goods sectors as compared to nondurable
goods sectors, consistent with the theoretical model where a decrease in the
depreciation parameter (interpreted as a decrease in perishability) leads to a
larger response.

The following parts of this section are structured as follows. The first part
briefly spells out the empirical VAR methods we employ based on Bloom (2009).
The second part spells out the data we have at our disposal, some of it newly
collected, to examine the differences between trade and industrial production
in this framework. The subsequent parts discuss our findings on the first three
testable hypotheses noted above, and we discuss the corroborative evidence in the
next section, before concluding.

6.2. Computing the Responses to an Uncertainty Shock

In typical business cycle empirical work, researchers are often interested in the
response of key variables, most of all output, to various shocks, most often a
shock to the level of technology or productivity. The analysis of such first-moment
shocks has long been a centerpiece of the macroeconomic VAR literature. The
innovation of Bloom (2009) was to construct, simulate and empirically estimate
a model where the key shock of interest is a second-moment shock, which is

32



Figure 15: The Bloom (2009) index: Monthly U.S. stock market volatility, 1962–2012.

Cu
ba

n 
m

iss
ile

 c
ris

is
JF

K 
as

sa
ss

in
at

ed

Vi
et

na
m

 b
ui

ld
-u

p

Ca
m

bo
di

a,
 K

en
t S

ta
te

O
PE

C 
I, 

Ar
ab

-Is
ra

el
i W

ar
Fr

an
kli

n 
Na

tio
na

l fi
na

nc
ia

l c
ris

is

O
PE

C 
II Af

gh
an

ist
an

, I
ra

n 
ho

st
ag

es

M
on

et
ar

y 
cy

cle
 tu

rn
in

g 
po

in
t

Bl
ac

k 
M

on
da

y*

G
ul

f W
ar

 I

As
ia

n 
Cr

isi
s

Ru
ss

ia
n 

& 
LT

CM
 D

ef
au

lts

9/
11

W
or

ld
 C

om
 &

 E
nr

on

Cr
ed

it 
cr

un
ch

/L
eh

m
an

*

Eu
ro

zo
ne

 I
Eu

ro
zo

ne
 II

10
20

30
40

50
Un

ce
rta

in
ty

 in
de

x 
(a

nn
ua

liz
ed

 s
ta

nd
ar

d 
de

via
tio

n,
 %

)

1960 1970 1980 1990 2000 2010

G
ul

f W
ar

 II

Source: VXO index, and proxies. Capped at 50 (*). From Bloom (2009) and updates. See appendix.

conceived of as an ‘uncertainty shock’ of a specific form. This shock amounts to
an increase in the variance, but not the mean, of a composite ‘business condition’
disturbance in the model, which can be flexibly interpreted as a demand or supply
shock. For empirical purposes when the model is estimated using data on the
postwar U.S., Bloom proposes that changes in the market price of the VXO index,
a daily options-based implied stock market volatility for a 30-day horizon, be used
as a proxy for the uncertainty shock, with realized volatility used when the VXO
is not available. A plot of this series, scaled to an annualized form, and extended
to 2012, is shown in Figure 15. 31

31As Bloom (2009, Figure 1) notes: “Pre-1986 the VXO index is unavailable, so actual monthly
returns volatilities are calculated as the monthly standard deviation of the daily S&P500 index
normalized to the same mean and variance as the VXO index when they overlap from 1986

onward. Actual and VXO are correlated at 0.874 over this period. The asterisks indicate that for
scaling purposes the monthly VXO was capped at 50. Uncapped values for the Black Monday
peak are 58.2 and for the credit crunch peak are 64.4. LTCM is Long Term Capital Management.”
For comparability, we follow exactly the same definitions here and we thank Nicholas Bloom for
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Following Bloom (2009) we evaluate the impact of uncertainty shocks using
VARs on monthly data from 1962 (the same as in Bloom) to February 2012 (going
beyond Bloom’s end date of June 2008). Bloom’s full set of variables, in VAR esti-
mation order are as follows: log(S&P500 stock market index), stock-market volatil-
ity indicator, Federal Funds Rate, log(average hourly earnings), log(consumer
price index), hours, log(employment), and log(industrial production).32

For simplicity, for the main results presented in this section, all VARs of
this form are estimated using a quad-variate VAR (log stock-market levels, the
volatility indicator, log employment, and lastly the industrial production or trade
indicator).

6.3. Data

Many of our key variables are taken from the exact same sources as Bloom
(2009): log industrial production in manufacturing (Federal Reserve Board of
Governors, seasonally adjusted), employment in manufacturing (BLS, seasonally
adjusted), a monthly stock-market volatility indicator as above, and the log of the
S&P500 stock-market index. All variables are HP detrended using a filter value of
λ = 129, 600. We follow these definitions exactly as in Bloom, and full details are
provided in the appendix. Collection of these data was updated to February 2012.

However, in some key respects, our data requirement are much larger. For
starters, we are interested in assessing the response of trade, so we needed to
collect monthly import volume data. In addition, we are interested in computing
disaggregated responses of trade and industrial production (IP) in different sectors,
in the aftermath of uncertainty shocks, in an attempt to gauge whether some of
the key predictions of our theory are sustained. Thus, we needed to assemble new
monthly trade data (aggregate and disaggregate) as well as new disaggregated
monthly IP data to complement the Bloom data.

We briefly explain the provenance of these newly collected data, all of which
will also be HP filtered for use in the VARs as above.

providing us with an updated series extended to 2012.
32In terms of VAR variable ordering and variable definitions we follow Bloom (2009) exactly

for comparability. As Bloom notes: “This ordering is based on the assumptions that shocks
instantaneously influence the stock market (levels and volatility), then prices (wages, the consumer
price index (CPI), and interest rates), and finally quantities (hours, employment, and output).
Including the stock-market levels as the first variable in the VAR ensures the impact of stock-market
levels is already controlled for when looking at the impact of volatility shocks.”
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• U.S. aggregated monthly real import volume. These data run from 1962:1
to 2012:2. After 1989, total imports for general consumption were obtained
from the USITC dataweb, where the data can be downloaded online. From
1968 to 1988 data were collected by hand from FT900 reports, where the
imports series are only available from 1968 as F.A.S. (free alongside ship)
at foreign port of export, general imports, seasonally unadjusted; the series
then change to C.I.F. (cost, insurance and freight) value available beginning
in 1974, and the definition changes to customs value in 1982. Prior to 1968

we use NBER series 07028, a series that is called “total imports, free and
dutiable” or else “imports for consumption and other”; for the 1962 to
1967 window this NBER series is a good match, as it is sourced from the
same FT900 reports as our hand-compiled series. The entire series was then
deflated by the monthly CPI.

• U.S. disaggregated monthly real imports. These data only run from 1989:1 to
2012:2. In each month total imports for general consumption disaggregated
at the 4-digit NAICS level were obtained from the USITC dataweb, where
the data can be downloaded online. All series were then deflated by the
monthly CPI. In this way 108 sector-level monthly real import series were
compiled.

• U.S. disaggregated monthly industrial production. These data only run from
1972:1 to 2012:2 at a useful level of granularity. Although aggregate IP data
are provided by the Fed going back to 1919, the sectorally disaggregated
IP data only start in 1939 for 7 large sectors, with ever finer data becoming
available in 1947 (24 sectors), 1954 (39 sectors) and 1967 (58 sectors). However,
it is in 1972 that IP data are available using the 4-digit NAICS classification
which permits sector-by-sector compatibility with the import data above.
Starting in 1972 we use the Fed G.17 reports to compile sector-level IP indices,
which affords data on 98 sectors at the start, expanding to 99 in 1986.

6.4. Results 1: IRFs at Aggregate Level for Trade versus IP

We begin with the simplest possible evidence on the importance of uncertainty
shocks for the dynamics of trade flows, using aggregate data on real imports and
industrial production.
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Following Bloom (2009) exactly, a baseline quad-variate VAR is estimated
for both series, which are placed last in the ordering. Ordering is stock market,
volatility, log employment, followed lastly by either log real imports or log IP.
Data differ from Bloom in that we have updated all series through February 2012

so as to include the response to the 2008 financial crisis. However, our results are
not sensitive to this extension of the sample. The presentation also differs from
Bloom in that we do not rescale the IRFs at this stage, since we are only interested
in the comparative responses of internationally traded and domestically produced
goods.

In Figure 1 we already presented the VAR results for both imports and IP
side by side. The impulse response functions (IRFs) are based on a one-period
uncertainty shock where the Bloom uncertainty indicator (i.e., VXO or its proxy)
increases by one unit. The VXO, later superseded by the VIX, is the Chicago Board
Options Exchange Market Volatility Index, a measure of the implied volatility of
S&P 500 equity index options. It is a proxy for the market’s expectation of stock
market volatility over the subsequent 30-day period.

The bottom line is very clear from this figure. In response to the uncertainty
shock, both industrial production and imports decline. But the response of imports
is considerably stronger, about 5 to 10 times as strong in its period of peak impact
during year one. The response of imports is also highly statistically significant.
At its peak the IRF is 3 or 4 standard errors below zero, whereas the IRF for IP is
only just about 2 standard errors below zero, and only just surmounts the 95%
confidence threshold.

These results offer prima facie confirmation of the mechanisms suggested in
our theoretical model. Indeed to the extent that the Bloom (2009) result for IP
has proven novel, robust, and influential, one might argue that our finding of a
import response to uncertainty that is almost an order of magnitude larger is also
notable, especially since it opens an obvious route towards finding an explanation
for the amplification effects seen during the recent trade collapse, a puzzle where,
as we have seen, no fully convincing theoretical explanation has yet been given.

However, to make that claim more solid, we must convince the reader that
the theoretical mechanisms we propose are indeed at work. To do that, we delve
more deeply into the dynamics of disaggregated trade and IP in the wake of
uncertainty shocks. In the following we demonstrate that, taking into account
cross-sectoral variations in perishability/durability and also in the intensity of
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downstream intermediate use, the empirical evidence closely matches our model’s
predictions. We find that imports of any good are, in general, more responsive
to uncertainty shocks than domestic IP, whether in broad sectors (like End Use
categories), or at a much more disaggregated level (e.g., NAICS 4-digit sectors).
However, the aggregate results seen above will be shown to mask substantial
sectoral heterogeneity in response to uncertainty shocks. At the end we will be
able to weight the responses, for both imports and IP, and compute a simulated
response to the 2008 uncertainty shock aggregated across sectors. We will show
that this response closely matches the observed data, with import volume falling
about twice as much as a basket of industrial production.

6.5. Results 2: IRFs with Coarse Disaggregation

Proceeding to a coarse level of disaggregation we now investigate IRFs for uncer-
tainty shocks when trade and IP data are divided into either End Use categories
(a Bureau of Economic Analysis classification) or into Market Groups (a Fed
classification). The purpose is to see whether the aggregate result holds up at
the sectoral level, and, if there is any departure, to see if there is any systematic
variation that is yet consistent with our model’s more detailed predictions for
heterogeneous goods.

Figure 16 shows IRFs for real imports disaggregated into 6 BEA 1-digit End
Use categories. The response to an uncertainty shock varies considerably across
these sectors, but in a manner consistent with predictions from theory. There is
essentially no response for the most perishable, or least durable, types of goods
in End Use category 0. These goods include foods, feeds and beverages. This
response matches up with cases in our model when the depreciation parameter is
set very high. In this case the response to uncertainty shocks diminishes towards
zero. Responses are also weak for other nondurable consumer goods (End Use 4)
and the residual category of imports not elsewhere specified (End Use 5).

In contrast, some sectors show a very large response to an uncertainty shocks,
notably End Use categories 1, 2, and 3, which include industrial inputs, capital
goods, and autos. These are all sectors characterized by either high durability
and/or high downstream intermediate use. Again, our theory predicts that it is
precisely these sectors that will experience the largest amplitude response to an
uncertainty shock.
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Figure 16: Import IRFs by End Use category for uncertainty shocks.
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Source: Sample is 1989:1–2012:2. Imports by End Use 1-digit from USITC dataweb, deflated by CPI;
all other data as in Bloom (2009), updated. Uncertainty shocks for quadvariate VARs as in Bloom
(2009). Ordering is stock market, volatility, log employment, followed lastly by log real imports.
Data updated through February 2012. No rescaling of shocks. 95% confidence intervals shown.
See text and appendix.

It is not possible to compare these IRFs to the corresponding response of
domestic IP using the same End Use classification, since we cannot obtain IP
disaggregated by End Use code. However, we can obtain both imports and IP
disaggregated in a matched way at a coarse level by using the Fed’s Market Group
categories. IP is available directly in this format on a monthly basis and we
were able to allocate imports to this classification by constructing a concordance
mapping from 4-digit NAICS imports to Fed Market Groups (with some weighting
using 2002 data on weights).

Figure 17 shows IRFs for real imports (upper panel) and IP (lower panel)
disaggregated into Fed Market Group categories. Again, the response to an
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uncertainty shock varies considerably across these sectors, and we can compare
the import and IP responses directly. To facilitate this, all responses are shown on
the same scale.

In panel (a) the results for imports are compatible with those above based on
the End Use categories. Here, under the Fed Market Groups the largest amplitude
responses to an uncertainty shock are seen for materials, business equipment and
consumer durables. The responses are between a 1 and 2 percent drop at peak.
The weakest response is for consumer nondurables, which shows about a 0.5
percent drop at peak, although this is barely statistically significant at the 95%
level.

By contrast, in panel (b) the results for IP are very muted indeed. Confidence
intervals are tighter, so these responses do in all cases breach the 95% confidence
interval within a range of steps. However, the magnitude of the response is
qualitatively different from imports. The consumer durables response is just
below 1 percent at peak for IP, whereas it was almost twice as large, near 1.5
percent, for imports. Materials and business equipment fall at peak by about 0.25

percent for IP, but fell about four times as much in the case of imports. Consumer
nondurables in IP are barely perturbed at all.

6.6. Results 3: IRFs with Finer Disaggregation

Our next set of results aims to study dynamic responses to uncertainty shocks
at an even finer level of disaggregation, whilst still allowing for comparability
between import and IP responses.

For these purposes we move to the 3- or 4-digit NAICS level of classification,
again sourcing the data from USITC dataweb and the Fed G.17 releases at a
monthly frequency starting in 1989. The overlap between these two sources allows
us to work with 51 individual sectors, as seen in Figure 18. A list of NAICS codes
is provided in the appendix.

A similar pattern emerges here, consistent with previous results, whereby the
responsiveness in any sector tends to be higher for real imports (CPI deflated)
than for industrial production. There are some exceptions but these are generally
to be found in only a few sectors. The bars in Figure 18 are ordered from top
to bottom starting with largest negative real import response measured by the
average sectoral IRF over months 1–12.
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Figure 17: Import and IP IRFs by Fed Market Group for uncertainty shocks.
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Notes: Sample is 1989:1–2012:2. Imports via concordance from USITC dataweb, deflated by CPI; IP
from Fed G.17; all other data as in Bloom (2009), updated. Uncertainty shocks for quadvariate
VARs as in Bloom (2009). Ordering is stock market, volatility, log employment, followed lastly by
either log real imports or log IP. Data updated through February 2012. No rescaling of shocks.
95% confidence intervals shown. See text.
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Figure 18: Import and IP IRFs compared in months 1–12.
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followed lastly by either log real imports or log IP. Data updated through February 2012. No
rescaling of shocks. 95% confidence intervals shown. See text and appendix.
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Some of the sectors are also obviously quite peculiar. One is basically a non-
manufacturing sector, and not very tradable — namely logging (NAICS 1133,
which is resource intensive and not highly traded apart from imports from
Canada). This does fit the general pattern of imports being more volatile than
domestic output, but it may reflect downstream use in the heavily procyclical
construction industry (we discuss downstream use in the next section). Another
oddity is tobacco manufacturing (NAICS 3122) where the response goes heavily
against the prevailing pattern, with tobacco imports rising sharply after an uncer-
tainty shock, and domestic supply basically flat. Still, this response is consistent
with clinical studies showing that the use of tobacco may rise, and the ability of
people to quit smoking may fall, in stressful periods of hard economic times.

Less unusual cases where the negative response of IP exceeds real imports are:
Audio and video equipment manufacturing (NAICS 3343); Household and insti-
tutional furniture and kitchen cabinet manufacturing (3371); Industrial machinery
manufacturing (3332); Ventilation, heating, air-conditioning, and commercial
refrigeration equipment manufacturing (3334); Leather and allied product manu-
facturing (316); Apparel manufacturing (315); Nonmetallic mineral mining and
quarrying (2123); Metalworking machinery manufacturing (3335). Still, out of 51

sectors, these are a minority. But generally, and especially for the high-response
sectors where responses are significantly different from zero, the real import bar
is larger and more negative than the IP bar. The essence of this pattern is revealed
in Figure 19 which presents a scatter of the average real import one-year IRF on
the vertical axis against the average IP one-year IRF on the horizontal axis. There
is only a very weak correlation between these responses (0.25), and when the
outlier tobacco sector is excluded the correlation essentially vanishes (it falls to
0.15, but is not statistically significant).

What is more striking in the figure, however, is the general asymmetry relative
to the 45 degree line. Most points lie in the lower-left quadrant where both real
imports and IP react negatively to an uncertainty. In that quadrant, we do find
points above the diagonal, where the IP response is more negative than the real
import response – but generally these deviations from the diagonal are small.
In contrast, several sectors fall well below the diagonal by a significant margin,
indicating a much sharper negative response of real imports compared to IP.
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Figure 19: Import and IP IRFs compared in months 1–12.
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for quadvariate VARs as in Bloom (2009). Ordering is stock market, volatility, log employment,
followed lastly by either log real imports or log IP. Data updated through February 2012. No
rescaling of shocks. 95% confidence intervals shown. See text and appendix.
The correlation of the two variables is 0.2544 (with a significance level of p = .0716). However,
the correlation falls to 0.1467 and is not statistically significant (p = .3092) when tobacco (3122) is
excluded.

7. Can the Great Trade Collapse Be Explained?

Can our model, which takes second-moment uncertainty shocks as its main driver,
provide a plausible account of the Great Trade Collapse of 2008/09? We conclude
by using a simulation exercise to argue that it could.

The four months following the collapse of Lehman Brothers were characterized
by particularly strong increases in uncertainty as measured by the volatility index
VXO in September to December 2008, with elevated volatility persisting into the
first quarter of 2009. To simulate this shock we choose to feed into the model a
series of exogenous volatility shocks which generate a path of volatility similar
to that observed. That is, we assume that the dynamics are driven primarily by
an exogenous shock to the system from the volatility index and the subsequent
endogenous response of the variables in the system.
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Figure 20: Actual and simulated VXO index in the crisis.
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We observe that the own-response of volatility to itself in the orthogonalized
impulse response is about 3. We begin with a simulated VXO level of 20, and
then subject the process to monthly shocks of +20,+5,+5,+5,+5,+5,+5 starting in
September 2008; the first shock takes the simulated VXO up to just over 80, and
the additional shocks keep the simulated VXO very elevated for several months
before the decay commences. In actuality, the VXO rises from its pre-crisis mean
of about 20 to almost 90 in the last quarter of 2008, a shift of +70, and thus the
simulated impulses matches the actual path of VXO quite well, as shown in Figure
20.

Given these VXO shocks, the model-implied and the actual observed responses
of IP and real imports are shown in Figure 21. As can be seen, the model is capable
of explaining a large fraction of the actual observed IP response, especially up to 6

months out. It is also capable of explaining most of the real import response over
a similar horizon. Overall, the simulations show that our model can on average
explain over three-quarters of the imports collapse out to the 12-month horizon.
But we can see that, especially in early to mid-2009, some additional factors must
have been at work that are not captured by the uncertainty shock. Nonetheless,
overall the comparison of the model IRFs with actual data shows that the evidence
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Figure 21: Actual and simulated real imports and IP in the crisis.
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is consistent with a large fraction of the Great Trade Collapse being explicable in
terms of second-moment uncertainty shocks, rather than the more conventional
first-moment explanations seen in the literature to date.

8. Conclusion

Following the seminal work of Bloom (2009), we introduce second-moment uncer-
tainty shocks into a dynamic, open-economy model. Firms import intermediate
inputs and due to fixed costs of ordering store them according to an optimal s, S
inventory policy. We show that elevated uncertainty leads firms to shift down their
s, S bands. This induces a sharp contraction of international trade flows followed
by a swift recovery. In contrast, output remains unaffected unless conventional
first-moment shocks are introduced. Uncertainty shocks can therefore explain
why trade is more volatile than domestic economic activity.

Our results offer an explanation for the Great Trade Collapse of 2008/09 and
previous trade slowdowns in a way that differs from the conventional static trade
models or dynamic inventory models seen before. We argue that imports and

45



industrial production can be modeled as reacting to uncertainty shocks in theory
and in practice. Such second-moment shocks are needed since the required
first-moment shocks are either absent on the impulse side or insufficient on the
propagation side (for plausible parameters) to explain the events witnessed. We
also show that there is substantial heterogeneity in responses at the sectoral level,
both for imports and industrial production, in a way consistent with the model.
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Bricongne, J., Fontagné, L., Gaulier, G., Taglioni, D., Vicard, V. 2012. Firms and the Global
Crisis: French Exports in the Turmoil. Journal of International Economics 87(1): 134–146.

Campa, J., Goldberg, L. 1997. The Evolving External Orientation of Manufacturing
Industries: Evidence from Four Countries. NBER Working Paper 5919.
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Technical Appendix

This appendix shows how the solution to the system of differential equations implied
by equations (7) and (8) can be found. We closely follow Hassler (1996) and refer to his
appendix for further details.

We plug the expression for EtV(zt+dt, ωt+dt) from equation (8) into equation (7). We
then set dt2 = 0 and divide by dt to arrive at the following system of differential equations:

rV(zt, ωt) =
1
2 z2

t − δVz(zt, ωt)

+λω {V(Sω, ωt) + f −V(zt, ωt)}+ γω {V(zt, ωt)−V(zt, ωt)} .

The set of solutions to this system is given by

V(zt, 0) =
α0
2 z2

t + β0zt + c1 exp (ρ1zt) + c2 exp (ρ2zt)

+φ0 +
1
∆ {λ1γ0V(S1, 1) + λ0ψ1V(S0, 0)}

(10)

for the state of low uncertainty, and

V(zt, 1) =
α1
2 z2

t + β1zt + v1c1 exp (ρ1zt) + v2c2 exp (ρ2zt)

+φ1 +
1
∆ {λ1ψ0V(S1, 1) + λ0γ1V(S0, 0)}

(11)

for the state of high uncertainty, where c1 and c2 are the integration constants. The
parameters ψ0, ψ1, ∆, α0, α1, β0, β1, φ0 and φ1 are given by

ψω = r + λω + γω,

∆ = ψ0ψ1 − γ0γ1,

αω =
1
∆
(r + λω + γω + γω) ,

βω = − δ

∆
(ψωαω + γωαω) ,

φω =
1
∆
(ψω (λω f − δβω) + γω (λω f − δβω)) ,

where ω = 1 if ω = 0, and vice versa. [vi, 1]′ is the eigenvector that corresponds to the
eigenvalue ρi of the matrix

1
δ

[
− (r + λ1 + γ1) γ1

γ0 − (r + λ0 + γ0)

]

for i = 1, 2. Expressions for V(S0, 0) and V(S1, 1) can be obtained by setting V(zt, 0) =
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V(S0, 0) and V(zt, 0) = V(S1, 1) in equations (10) and (11), respectively, and then solving
the two resulting equations.

Six key equations describe the solution. They are two value-matching conditions
positing for each state of uncertainty that the value of the cost function at the return point
must be equal to the value at the lower trigger point less the fixed ordering costs f :

V(S0, 0) = V(s0, 0)− f ,

V(S1, 1) = V(s1, 1)− f .

The remaining four equations are smooth-pasting conditions:

Vz(S0, 0) = 0,

Vz(s0, 0) = 0,

Vz(S1, 1) = 0,

Vz(s1, 1) = 0.

These six conditions determine the six key parameters: the return points S0 and S1, the
lower trigger points s0 and s1 as well as the two integration constants c1 and c2. Numerical
methods have to be used to find them.

Empirical Appendix

Sources for Data Used in Empirical Analysis
We follow Bloom (2009, p. 630) and estimate the empirical responses of model quantities
to uncertainty shocks using a VAR approach. Bloom estimates a range of VARs on
monthly data from June 1962 to June 2008. In his basic 4-variable system the variables in
Cholesky estimation order are log(S&P500 stock market index), the stock-market volatility
indicator, log(employment), and log(industrial production). This ordering is based on the
assumption that shocks instantaneously influence the stock market (levels and volatility),
and only later quantities (hours, employment, and output). Including the stock-market
levels as the first variable in the VAR ensures that the impact of stock-market levels is
already controlled for when looking at the impact of volatility shocks. All variables are
Hodrick-Prescott (HP) detrended (λ = 129,600) in the VAR estimations, and the same
procedure is followed here.

To this empirical framework we make three additions: we extend all the data through
December 2012, we add a time series for real imports at the aggregate level, and we add
time series for real imports and industrial production at the disaggregated 4-digit NAICS
level. The sources are as follows.
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S&P500 stock market index: June 1962 to June 2008 from Bloom (2009). Extended
through December 2012 with data scraped from http://finance.yahoo.com.

Stock-market volatility indicator: June 1962 to June 2008 from Bloom (2009). “Pre-1986

the VXO index is unavailable, so actual monthly returns volatilities are calculated as the
monthly standard deviation of the daily S&P500 index normalized to the same mean and
variance as the VXO index when they overlap from 1986 onward. Actual and VXO are
correlated at 0.874 over this period. [... M]onthly VXO was capped at 50. Uncapped values
for the Black Monday peak are 58.2 and for the credit crunch peak are 64.4. LTCM is Long
Term Capital Management.” For comparability, we follow exactly the same definitions
here and we thank Nicholas Bloom for providing us with an updated series extended to
2012.

Employment, All Manufacturing: June 1962 to June 2008 from Bloom (2009). Extended
through December 2012 using the series for All Employees/ Manufacturing (MANEMP)
from FRED http://research.stlouisfed.org/fred2/.

Industrial Production, Aggregated: June 1962 to June 2008 from Bloom (2009). Extended
from 1919 through December 2012 using the series from G.17 Industrial Production and
Capacity Utilization, Board of Governors of the Federal Reserve System.

Real Imports, Aggregated: These data run from January 1962 to February 2012. After
1989, total imports for general consumption were obtained from the USITC dataweb,
where the data can be downloaded online. From 1968 to 1988 data were collected by hand
from FT900 reports, where the imports series are only available from 1968 as F.A.S. at
foreign port of export, general imports, seasonally unadjusted; the series then change to
C.I.F. value available beginning in 1974, and the definition changes to customs value in
1982. Prior to 1968 we use NBER series 07028, a series that is called “total imports, free
and dutiable” or else “imports for consumption and other”; for the 1962 to 1967 window
this NBER series is a good match, as it is sourced from the same FT900 reports as our
hand-compiled series. To obtain real values we deflate by the U.S. series for Consumer
Price Index for All Urban Consumers: All Items, Not Seasonally Adjusted (CPIAUCNS),
constructed by the U.S. Department of Labor, Bureau of Labor Statistics, and taken from
FRED http://research.stlouisfed.org/fred2/.

Industrial Production, Disggregated: These data only run from January 1972 to February
2012 at a useful level of granularity. Although aggregate IP data are provided by the Fed
going back to February 1919, the sectorally disaggregated IP data only start in 1939 for 7

large sectors, with ever finer data becoming available in 1947 (24 sectors), 1954 (39 sectors)
and 1967 (58 sectors). However, it is in 1972 that IP data are available using the 4-digit
NAICS classification which will permit sector-by-sector compatibility with the import
data above. Starting in 1972 we use the Fed G.17 reports to compile sector-level IP indices,
which affords data on 98 sectors at the start, expanding to 99 in 1986. Monthly values
with data by NAICS 4-digit group and by Fed Market Group. Mapped into End Use
categories using a concordance with 2010 gross value added weights also from the G.17

report.
Real Imports, Disggregated: These data only run from January 1989 to February 2012.

In each month total imports for general consumption disaggregated at the 4-digit NAICS
level were obtained from the USITC dataweb, where the data can be downloaded online.
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All series were then deflated by the monthly CPI. In this way 108 sector-level monthly
real import series were compiled. Mapped into Fed Market Group categories using a
concordance. To obtain real values we deflate by the U.S. CPI as above.

List of NAICS 4-Digit Codes

1111 Oilseeds and Grains
1112 Vegetables and Melons
1113 Fruits and Tree Nuts
1114 Mushrooms, Nursery and Related Products
1119 Other Agricultural Products
1121 Cattle
1122 Swine
1123 Poultry and Eggs
1124 Sheep, Goats and Fine Animal Hair
1125 Farmed Fish and Related Products
1129 Other Animals
1132 Forestry Products
1133 Timber and Logs
1141 Fish, Fresh, Chilled or Frozen and Other Marine Products
2111 Oil and Gas
2121 Coal and Petroleum Gases
2122 Metal Ores
2123 Nonmetallic Minerals
3111 Animal Foods
3112 Grain and Oilseed Milling Products
3113 Sugar and Confectionery Products
3114 Fruit and Vegetable Preserves and Specialty Foods
3115 Dairy Products
3116 Meat Products and Meat Packaging Products
3117 Seafood Products Prepared, Canned and Packaged
3118 Bakery and Tortilla Products
3119 Foods, NESOI
3121 Beverages
3122 Tobacco Products
3131 Fibers, Yarns, and Threads
3132 Fabrics
3133 Finished and Coated Textile Fabrics
3141 Textile Furnishings
3149 Other Textile Products
3151 Knit Apparel
3152 Apparel
3159 Apparel Accessories
3161 Leather and Hide Tanning
3162 Footwear
3169 Other Leather Products
3211 Sawmill and Wood Products
3212 Veneer, Plywood, and Engineered Wood Products
3219 Other Wood Products
3221 Pulp, Paper, and Paperboard Mill Products
3222 Converted Paper Products
3231 Printed Matter and Related Product, NESOI
3241 Petroleum and Coal Products
3251 Basic Chemicals
3252 Resin, Synthetic Rubber, & Artificial & Synthetic Fibers & Filiment
3253 Pesticides, Fertilizers and Other Agricultural Chemicals
3254 Pharmaceuticals and Medicines
3255 Paints, Coatings, and Adhesives
3256 Soaps, Cleaning Compounds, and Toilet Preparations
3259 Other Chemical Products and Preparations
3261 Plastics Products
3262 Rubber Products

3271 Clay and Refractory Products
3272 Glass and Glass Products
3273 Cement and Concrete Products
3274 Lime and Gypsum Products
3279 Other Nonmetallic Mineral Products
3311 Iron and Steel and Ferroalloy
3312 Steel Products From Purchased Steel
3313 Alumina and Aluminum and Processing
3314 Nonferrous Metal (Except Aluminum) and Processing
3315 Foundries
3321 Crowns, Closures, Seals and Other Packing Accessories
3322 Cutlery and Handtools
3323 Architectural and Structural Metals
3324 Boilers, Tanks, and Shipping Containers
3325 Hardware
3326 Springs and Wire Products
3327 Bolts, Nuts, Screws, Rivets, Washers and Other Turned Products
3329 Other Fabricated Metal Products
3331 Agriculture and Construction Machinery
3332 Industrial Machinery
3333 Commercial and Service Industry Machinery
3334 Ventilation, Heating, Air-Conditioning, and Commercial Refrigeration

Equipment
3335 Metalworking Machinery
3336 Engines, Turbines, and Power Transmission Equipment
3339 Other General Purpose Machinery
3341 Computer Equipment
3342 Communications Equipment
3343 Audio and Video Equipment
3344 Semiconductors and Other Electronic Components
3345 Navigational, Measuring, Electromedical, and Control Instruments
3346 Magnetic and Optical Media
3351 Electric Lighting Equipment
3352 Household Appliances and Miscellaneous Machines, NESOI
3353 Electrical Equipment
3359 Electrical Equipment and Components, NESOI
3361 Motor Vehicles
3362 Motor Vehicle Bodies and Trailers
3363 Motor Vehicle Parts
3364 Aerospace Products and Parts
3365 Railroad Rolling Stock
3366 Ships and Boats
3369 Transportation Equipment, NESOI
3371 Household and Institutional Furniture and Kitchen Cabinets
3372 Office Furniture (Including Fixtures)
3379 Furniture Related Products, NESOI
3391 Medical Equipment and Supplies
3399 Miscellaneous Manufactured Commodities
5111 Newspapers, Books & Other Published Matter, NESOI
5112 Software, NESOI
5122 Published Printed Music and Music Manuscripts
9100 Waste and Scrap
9200 Used or Second-Hand Merchandise
9800 Goods Returned to Canada (Exports Only); U.S. Goods Returned and

Reimported Items (Imports Only)
9900 Special Classification Provisions, NESOI
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