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1 Introduction

In recent years, exclusionary conduct by firms with strong market power has become a high-
priority issue on the agenda of antitrust agencies. For instance, the European Commission
has made it clear that the emphasis of its enforcement activities is on “ensuring that under-
takings which hold a dominant position do not exclude their competitors by other means than
competing on the merits of the products or services they provide.” The U.S. Department of
Justice states that “whether conduct has the potential to exclude, eliminate, or weaken the
competitiveness of equally efficient competitors can be a useful inquiry”, and suggests that
this inquiry “may be best suited to particular pricing practices.”1

In this article, we consider a wide range of pricing practices that fall under the general
heading of nonlinear pricing, e.g. quantity or market-share rebates and exclusivity discounts.
We organize a taxonomy of price schemes around the following main distinction: whether or
not the price set by the dominant firm depends on the quantity supplied from rivals. When
this is the case, we say that the dominant firm’s price schedule is “conditional” (on rival
quantities). Market-share discounts enter into this category. Because enforcing a conditional
price may be unfeasible or legally prohibited, we also consider the situation where the firms
are restricted to use “non-conditional” price schedules. Finally we define “exclusivity-based”
schedules as conditional schedules for which the price depends on whether or not the buyer
supplies exclusively from the dominant firm, but does not otherwise depend on the quantities
sold by competitors.

Our analysis aims to understand how these different types of price-quantity schedules affect
the way large buyers split their purchase requirements between the dominant firm and rival
suppliers. It relies on a game close to Aghion and Bolton (1987) with three players – an
incumbent firm, a rival, and a buyer – where contract offers are sequential: first a price
schedule is decided by the buyer and the incumbent; only then have the rival and the buyer a
chance to interact. In the present paper, the incumbent’s market power is captured by the first-
mover advantage and the corresponding commitment power. In a companion paper, Choné
and Linnemer (2014), we introduce on top of incumbency the notion that the incumbent firm
is, at least to some extent, an “unavoidable trading partner” – a key ingredient of dominance

1See, respectively, European Commission (2009) and U.S. Department of Justice (2008). High-profile
exclusionary cases involving pricing practices include Virgin v British Airways (S.D.N.Y. 1999 and 2nd Cir.
2001), Concord Boat (8th Cir. 2000), Lepage’s v 3M (3d Cir. 2003) in the United States; Virgin/British Airways
(2000/74/EC of 14 July 1999), Michelin (COMP/E-2/36.041/PO of 20 June 2001), Tomra (COMP/E-1/38.113,
2006), and Intel (COMP/C-3 /37.990, 2009) in Europe. Figueroa, Ide, and Montero (2014) present a Chilean
case: Chile v. Unilever.
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under European competition law at least since Hoffmann-La Roche.2

As in Aghion and Bolton (1987), we assume that the buyer and the incumbent contract at
a time when the characteristics of the rival good are not yet known, i.e., the rival’s cost and
the buyer’s willingness to pay for the rival good are uncertain. To concentrate on the exclu-
sionary effects of nonlinear pricing, we assume away any bilateral inefficiency (e.g. asymmetric
information) between the buyer and each of the two suppliers. In particular, the buyer and the
incumbent would have no reason to distort the traded quantity in the absence of a rival. Sim-
ilarly, we assume throughout the article that the negotiation between the buyer and the rival
takes place under perfect information and is efficient. Formally, the game is thus equivalent
to an asymmetric information set-up where the principal would be the buyer-incumbent pair
and the agent the buyer-rival pair, and we can thus use insights from the nonlinear pricing
literature, see Wilson (1993) and Laffont and Martimort (2002). The fact that the buyer is
part of both coalitions raises interesting theoretical questions that are discussed at the end
of the paper. In particular, the buyer’s dual role might open a scope for more sophisticated
screening instruments and create subtle patterns of information revelation.

In the spirit of Martimort and Stole (2009), we are interested in distortions of produc-
tive allocations at both the extensive and the intensive margins. In their terminology, our
framework is a common-agency game: the buyer may supply exclusively from the incumbent
firm, in which case the rival is driven out of the market. We carefully examine distortions
at the “extensive” margin, and indeed find that complete exclusion of an efficient rival occurs
with positive probability. A contribution of the present article is to consider distortions at the
intensive margin as well. To this aim, we model the incumbent and the rival goods as imper-
fect substitutes for the buyer. The degree of substitution can vary from perfect substitutes
to independent goods.3 We find intensive distortions of the quantity supplied by the rival,
specifically that quantity is positive but distorted downwards, which is sometimes referred to
as “partial foreclosure” in the antitrust literature.

We emphasize a second kind of intensive distortions, which pertains to the quantity of
incumbent good at given level of rival supply. This distortion is linked to an opportunistic
behavior of the buyer at the last stage of the game, hereafter referred to as “buyer oppor-
tunism”. The intuition goes as follows. The general purpose of the quantity-price schedules
agreed upon by the incumbent and the buyer is to place the latter in a favorable position
when bargaining with the rival. In this bargain, the buyer can argue she will lose rebates if

2Judgment of the European Court of Justice of 13 February 1979. Hoffmann-La Roche & Co. AG v
Commission of the European Communities. Case 85\76.

3Marx and Shaffer (2004) also study a model à la Aghion and Bolton with differentiated goods but they
restrict themselves to a complete information setting.
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she purchases less from the incumbent, which allows her to extract surplus from the rival. Ex
ante, the incumbent and the buyer share expected profits and their interests are aligned. Ex
post, however, the buyer does not take into account the production costs of the incumbent
good. Due to the offered rebates, the buyer has an incentive to purchase inefficiently many
units from the incumbent conditionally on the quantity supplied from the rival.

A key issue in the paper is to compare the exclusionary properties of the three considered
price schedules – conditional, exclusivity-based, and non-conditional. In Aghion and Bolton
(1987) the buyer’s demand is inelastic and is supplied from only one producer, making it
hard to distinguish between the three types of schedules. In contrast, here, the results differ
strikingly across the three pricing regimes.

When the price of the incumbent good can freely depend on the supply from the rival
(conditional regime), the optimal schedule is a two-part tariff. The incumbent good is priced
at marginal cost, hence the absence of buyer ex post opportunism. The fixed part of the tariff
is increasing and concave in the quantity purchased from the rival. That fixed part can be
seen as a penalty imposed for buying from the rival, in line with Aghion and Bolton (1987),
but here the rival’s supply is distorted at both the extensive and the intensive margins. These
distortions increase with the rival’s bargaining power vis-à-vis the buyer. Market-share rebates
are shown to be ill-adapted to control buyer opportunism.

When the price schedule only depends on the incumbent quantity (non-conditional regime),
the buyer purchases the efficient quantity of rival good given the incumbent’s quantity. This
link between the two quantities creates a channel through which the buyer and the incumbent
can indirectly control the rival’s activity. In equilibrium, the marginal price of the incumbent is
lower than the marginal cost of production up to a certain quantity threshold. These generous
rebates allow the buyer to extract a good deal from the rival but at the same time induce
her to behave opportunistically ex post. This distortion, in turn, translates into complete or
partial foreclosure of efficient rival types. The presence of complete exclusion in equilibrium
implies that the price schedule is not globally concave: the price is set at a high level beyond
the quantity threshold mentioned above to deter the buyer from purchasing even more units
of incumbent good, hence a convex kink in the schedule.

In the exclusivity-based regime, the price schedule is the same as in the non-conditional case
for low quantities of incumbent good. The exclusivity offer allows to avoid buyer opportunism
when the rival is inactive. On the other hand, this offer creates locally a strong distortion at
the extensive margin, excluding a bunch of efficient rival types.

Finally, we are able to extend the analysis to the case where the buyer can dispose of or
resell unconsumed units of incumbent good. In practice, the magnitude of the disposal costs
depends on the seller’s ability to impose or to prevent particular uses of the purchased units
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and on the buyer’s ability to avoid such monitoring by the dominant firm. Depending on
the industry, unused items can be difficult to store or dispose of making disposal costs large.
On the contrary, the buyer may have access to a secondary market and resell the extra units
making disposal costs negative.

Purchasing units from the incumbent with the sole purpose of pocketing rebates, and then
throwing away the unneeded units, would constitute an extreme form of buyer opportunism.
We show that this form is never part of an equilibrium. We find that low disposal costs prevent
the incumbent from committing on too generous rebates because the buyer could purchase
units and discard them. Lower disposal costs are associated to less exclusion and higher values
of the expected total welfare. Antitrust authorities, therefore, should pay close attention to
contracting provisions that help increase disposal costs.

It is worthwhile relating our work to recent studies on market-share discounts. In a set-
ting with a dominant firm, a competitive fringe and two retailers, Inderst and Shaffer (2010)
show that market-share discounts can be used by the dominant firm to dampen intra- and
inter-brand competition. Their anticompetitive scenario, contrary to the one presented here,
highlights retail competition and assume complete information. Turning to models with im-
perfect information, most of the literature has examined how specific forms of pricing perform
in discriminating among privately informed buyers. For instance, in a discrete type model, Ko-
lay, Shaffer, and Ordover (2004) show that all-units discounts are more effective than menus of
two-part tariffs in screening out retailers with private information about the state of demand.
Majumdar and Shaffer (2009) and Calzolari and Denicolo (2013) introduce market-share dis-
counts. In the former article, a dominant firm resorts to nonlinear pricing to screen a buyer
who is informed about the size of demand and who also sells a good provided by a competitive
fringe. The latter article addresses the issue in a symmetric duopoly setting, considering both
market-share discounts and exclusive contracts.

The article is organized as follows. Section 2 introduces the model, and Section 3 studies
conditional price-quantity schedules. Assuming very large disposal costs, Sections 4 and 5
explore the non-conditional and exclusivity-based regimes. Section 6 describes the effect of
moderate disposal costs. Section 7 discusses a couple of extensions regarding the timing of
the game, the informational environment, and the available instruments.

2 The model and purchase decisions

A dominant firm, I, competes with a rival, E, to serve a buyer, B. Marginal production costs
are assumed to be constant and are denoted by cI and cE. The timing of events reflects the
incumbency advantage of the dominant firm and the uncertainty as to the characteristics of
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the rival good: 1) B and I design a price-quantity schedule to maximize (and split) their joint
expected surplus. At this stage, they know cI and the characteristics of good I, but they do
not know cE nor the willingness to pay vE for the rival good. 2) B and E discover cE and vE
and jointly decide on the variables under their control, namely a transfer pE and quantities qE
and qI , knowing both the terms of the agreement between B and I and all the relevant cost
and preference parameters.

At the first stage, we consider three types of price-quantity schedules that differ in how
the price of the incumbent good depends on the quantity supplied from the rival: (i) under a
non-conditional schedules T (qI), the price depends only on the number of I-units purchased;
(ii) under a conditional schedule T (qE, qI), the price of qI units of good I freely depends
on the quantity purchased from the rival; (iii) an exclusivity scheme is a pair of schedules
(T (qI), T

x(qI)) that specifies the price of qI units of good I if the buyer supplies exclusively
from the incumbent, T x(qI), and if she purchases a positive number of units from the rival
firm, T (qI).4

At the second stage, we assume that B and E negotiate under complete information (Nash
bargaining where β denotes E’s bargaining power) to maximize their joint surplus. The timing
of negotiations assumes that B and I cannot renegotiate once uncertainty is resolved. This
assumption and a couple of variants are discussed in Section 7.

Buyer’s demand When the buyer consumes xE units of good E and xI units of good I,
she earns a gross profit of vExE + vIxI − h(xE, xI), where h is a convex function of (xE, xI)

with first derivatives at (0, 0) equal to zero and with positive cross-derivative to reflect the
imperfect substitutability of the two goods.

A key feature of the model is that the buyer can dispose of unneeded units of each good at
a cost γE ≥ −cE and γI ≥ −cI . That is, it is always inefficient (from a welfare perspective) to
produce units in order to throw them away or to resell them. Consequently, the buyer’s net
utility if she purchases qE units from the rival and qI units from the incumbent is

V (qE, qI) = max
xE≤qE ,xI≤qI

vExE + vIxI − h(xE, xI)− γE(qE − xE)− γI(qI − xI). (1)

The buyer disposes of units of good k, k = E, I, when the purchased quantity qk is so large
that the marginal utility vk − ∂h(qk, ql)/∂qk becomes smaller than the utility loss caused by
disposal, −γk. In this region, the buyer net utility V decreases linearly with qk, and the
marginal net utility ∂V/∂qk is equal to −γk. When the buyer consumes all the purchased

4We do not impose a priori restrictions on the shape of the price schedules. Some authors have studied
specific types of schedules such as two-part tariffs (Marx and Shaffer (1999)) and all-units discounts (Feess
and Wohlschlegel (2010)) under complete information.
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units of the rival and incumbent goods (“no-disposal region”), the marginal net utility is
greater than −γk for each good.

Efficient quantities We denote by q∗∗E and q∗∗I the quantities that maximize the total surplus

W (qE, qI) = V (qE, qI ; vE)− cEqE − cIqI .

The efficient quantities involve no disposal and hence do not depend on the magnitude of
disposal costs. These quantities also maximize ωEqE + ωIqI − h(qE, qI), where ωE = vE − cE
and ωI = vI − cI . Hence q∗∗E and q∗∗I are respectively nondecreasing and non-increasing in
ωE. Hereafter, we denote by ω∗∗E the maximum value of ωE for which q∗∗E (ωE) = 0. We now
introduce the distribution of ωE, that we denote by F , and a set of assumptions maintained
throughout the paper.

Assumption 1. The distribution of ωE has a positive density f on its support [ωE, ωE], with
ωE < ω∗∗E < ωE and q∗∗I (ωE) > 0. The hazard rate f/(1− F ) is nondecreasing in ωE.

The assumption on ω∗∗E allows us to concentrate on the most interesting case where full
exclusion is socially optimal with positive probability. Moreover, to avoid uninteresting com-
plications, we assume that both firms are active when the surplus created by the rival is
maximal, formally q∗∗E (ωE), q∗∗I (ωE) > 0.

Definition 1. The quantity of good E that maximizes the social welfare W given qI is said to
be conditionally efficient and is denoted by q∗E(qI ;ωE). The conditionally efficient quantity of
incumbent good, q∗I (qE;ωI), is symmetrically defined.

If the buyer consumes all the units of good I she has purchased, then q∗E(qI ;ωE) is defined
by the first order condition ∂h/∂qE(q∗E, qI) = ωE. In this region, the function q∗E(qI ;ωE) is
decreasing by substitutability. In contrast, in the region where qI is so high that the buyer
disposes of some units of good I, q∗E does not vary with qI as only the consumed quantity of
good I is relevant to determine the conditionally efficient quantity of good E. In this region,
total surplus W decreases linearly with qI , and the partial derivative ∂W/∂qI is −cI − γ.

Definition 2. The rival firm is said to be super-efficient when q∗E(qI ;ωE) is positive for any
value of qI .

Example: Quadratic utility The leading example in this paper has h(xE, xI) = x2E/2 +

x2I/2 + σxExI , 0 ≤ σ < 1. The efficient quantities involve no disposal cost and are given by

q∗∗E (ωE) = max

(
ωE − σωI

1− σ2
, 0

)
and q∗∗I (ωE) =

ωI − σωE
1− σ2

. (2)
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To respect Assumption 1, we must have in the quadratic case: ωE < ω∗∗E = σωI < ωE < ωI/σ.
The efficient allocation is represented by the point A on Figure 1. When the buyer’s utility is
quadratic, the welfare isolines are ellipses centered at A.

If the buyer has purchased qI units of good I, with qI ≥ vI + γ − σqE, she consumes
xI = vI + γ− σqE units of good I, thus an amount that is independent of qI . The no-disposal
region is located below the bold dashed line on the figure. Applying the envelope theorem, we
find that the conditionally efficient quantity q∗E(qI ;ωE) is constant in this region and equal to
the second argument of the following maximum:

q∗E(qI ;ωE) = max

(
ωE − σqI ,

ωE − σ(vI + γ)

1− σ2
, 0

)
.

The rival firm is super-efficient if and only if ωE > σ(vI + γ). This is the case represented on
Figure 1, where q∗E(qI ;ωE) is positive for any value of qI .

W = cst

No disposal

Some units of
good I are

disposed of

Some units of
each good are

disposed of

Some units of
good E are

disposed of

qI = vI + γ − σqE

qE = vE + γ − σqI
q∗∗I

q∗∗E

A

vI + γ

vE + γ

qI

qE

q∗I(qE ;ωI)

ωI

q∗E(qI ;ωE)

ωE

Figure 1: The total welfare is maximal at A (quadratic example)
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Purchase decisions The last stage of the game takes place under perfect information, given
the price schedule T = T (qE, qI) or T = T (qI) and the known characteristics of the rival good.
The buyer and the rival choose the quantities to maximize their joint surplus

SBE = max
qE ,qI

V (qE, qI)− T (qE, qI)− cEqE, (3)

with no consideration for the incumbent’s cost or profit. The above expression shows that
under a non-conditional schedule T (qI), the quantity of rival good is efficient given that of the
incumbent good, formally qE = q∗E(qI ;ωE), implying that no unit of the rival good is produced
and disposed of. To avoid uninteresting developments, we take the latter property as granted
under conditional schedules as well.5

Without loss of generality, the competitor’s outside option is normalized to zero. As to
the buyer, she may source exclusively from the incumbent, so her outside option is

V 0
B = max

qI≥0
V (0, qI)− T (0, qI). (4)

The reservation utility V 0
B, which depends on the price schedule by (4), is endogenous but

independent from ωE. The surplus created by the buyer and the rival firm can thus be written
as

∆SBE = SBE − V 0
B. (5)

Denoting by β ∈ (0, 1) the competitor’s bargaining power vis-à-vis the buyer, we derive the
competitor’s and buyer’s profits:

ΠE = β ∆SBE

ΠB = (1− β) ∆SBE + V 0
B.

(6)

If β = 0, the competitor has no bargaining power and may be seen as a competitive fringe
from which the buyer can purchase any quantity at price cE. On the contrary, the case β = 1

happens when the competitor has all the bargaining power vis-à-vis the buyer.

Perfect information Marx and Shaffer (2004) have shown that quantities are efficient
under perfect information. When the incumbent can make an exclusivity offer to the buyer,
all the surplus from the rival can be extracted by adjusting the level of that offer in such a
way that the surplus created by the rival, ∆SBE, is zero. The situation is subtler when the
sole instrument available to the buyer and the incumbent is a non-conditional schedule T (qI).
In our terminology, the result can be expressed as follows: full extraction occurs if and only if
the rival is not super-efficient, see Section 7.

5It would be extremely counter-intuitive that the buyer and the incumbent use their pricing instrument,
e.g. T (qE , qI), to encourage production and disposal of the rival good. The following analysis finds no force
pushing in that direction. A formal proof is available upon request.
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Virtual surplus We henceforth focus on the situation where the buyer and the incumbent
commit to a price-quantity schedule before the uncertainty on the rival good is realized. In
this context, the schedule is designed ex ante to maximize the expected joint surplus, equal
to the total surplus minus the profit left to the competitor:

EcE ,vEΠBI = EcE ,vE {W (qE, qI ; cE, vE)− ΠE} , (7)

where qE and qI are solution to (3) and ΠE is given by (6). The sharing of the expected joint
surplus between the buyer and the incumbent, and hence the respective bargaining power of
each party, play no role in the following analysis.6

As all purchased units of rival good are consumed, the surplus (3) depends on the uncertain
cost and preference parameters cE and vE only through the difference ωE = vE − cE. The
surplus SBE is a convex function of ωE because it is the upper bound of a family of functions
that are affine in ωE; hence SBE is almost everywhere differentiable in ωE. By the envelope
theorem, the rent left to the rival satisfies:

∂ΠE

∂ωE
= β

∂∆SBE
∂ωE

= βqE(ωE). (8)

Integrating by parts, we get
∫ ωE

ωE

ΠE(ωE)f(ωE) dωE = ΠE(ωE) + β

∫ ωE

ωE

qE(ωE)[1− F (ωE)] dωE.

Substituting in (7), we rewrite the buyer-incumbent objective as

EωE
ΠBI = EωE

S v(qE, qI ;ωE)− ΠE(ωE), (9)

where, following Jullien (2000), we have defined the “virtual surplus” S v as

S v(qE, qI ;ωE) = W (qE, qI ;ωE)− βqE
1− F (ωE)

f(ωE)
. (10)

The virtual surplus is the total surplus W (qE, qI ;ωE) adjusted for the informational rents
βqE (1− F (ωE)) /f(ωE) induced by the self-selection constraints.

Buyer opportunism Expression (7) reflects a standard rent-extraction tradeoff. From the
ex ante perspective, the tariff has two purposes: on the one hand, maximizing the expected
welfareW ; on the other, making ΠE = β∆SBE as small as possible. Rent extraction is obtained

6Figueroa, Ide, and Montero (2014) restrict the ability of the buyer and the incumbent to share rents
through transfers and explore the implications for inefficient exclusion in a model with inelastic demand and
one-dimensional uncertainty.
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by placing competitive pressure on the rival firm, i.e., granting the buyer low marginal price to
force the rival to match these rebates, which may drive the rival out of the market or distort
downwards the quantity it sells, qE < q∗∗E .

The novelty in our analysis lies in the possible distortion of qI . We call buyer opportunism
the fact that the buyer purchases too many units of incumbent good given her supply from
the rival, formally qI > q∗I (qE;ωI). We show below that buyer opportunism is observed in
equilibrium except when the buyer and the incumbent firm have the most powerful instrument
T (qE, qI) at their disposal. Granting rebates to the buyer induces her to distort the quantity
purchased from the dominant firm upwards. The buyer indeed wants to pocket the rebates
and does not internalize the production cost cI when she purchases from the dominant firm.

Purchasing and throwing away units of incumbent good would constitute an extreme form
of buyer opportunism. We show that this form is never part of an equilibrium. On the
contrary, we find that the possibility of disposing of units of good I alters the terms of the
rent-extraction tradeoff and limits the exclusionary effects of nonlinear pricing.

3 Conditional price-quantity schedules

For each type of pricing instrument, we proceed as follows. First, we derive necessary con-
ditions for a quantity allocation (qE(ωE), qI(ωE)) to be achieved with the considered type
of price-quantity schedule. Second, we maximize the virtual surplus under those necessary
conditions. Third, we check that the found allocation can indeed be implemented.

We start with conditional schedules T (qE, qI). As regards implementability, we simply
observe that the quantity of rival good qE is a nondecreasing function of ωE. This follows
from the convexity of the surplus function SBE(ωE), combined to the envelope condition (8).

Maximization of the virtual surplus The maximum of the virtual surplus (10) is achieved
in the no-disposal region. At the optimum, the quantity of good I is conditionally efficient,
qI = q∗I (qE;ωI). More precisely, for each ωE, the virtual surplus S v is maximal at (qcE, q

c
I) such

that
ωE −

∂h

∂qE
(qcE, q

c
I) ≤ β

1− F (ωE)

f(ωE)
and

∂h

∂qI
(qcE, q

c
I) = ωI . (11)

with equality in the first inequality when qcE > 0. In this case, the two conditions can be
collapsed into

ωE −
∂h

∂qE
(qcE, q

∗
I (q

c
E;ωI)) = β

1− F (ωE)

f(ωE)
. (12)

By convexity of h, the function ∂h/∂qE(qE, q
∗
I (qE)) increases with qE, and hence the left-hand

side of (12) decreases with qcE. Under Assumption 1, the right-hand side is non-increasing
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in ωE. The function qcE(ωE), therefore, is nondecreasing. Let ωcE be defined by

ωcE − β
1− F (ωcE)

f(ωcE)
− ∂h

∂qE
(0, q∗I (0;ωI)) = 0.

The left-hand side of the above equation increases with ωcE and is negative for ωE = ω∗∗E =

∂h/∂qE(0, q∗I (0;ωI)), hence ωcE > ω∗∗E .
For ωE > ωcE, the rival supplies a positive quantity, qcE > 0, as represented by point C

on Figure 2. For ωE below ωcE, the virtual surplus is maximum at the point (qcE, q
c
I) =

(0; q∗I (0;ωI)), i.e., the rival is driven out of the market – the distortion is at the extensive
margin. (On Figure 2, the point C would lie on the qI-axis.) The dashed ellipses centered
at C represent the isolines of the virtual surplus.

W = cst

qcI

qcE

C

q∗E

(
qI ;ωE − β 1−F

f

)

ωE − β 1−F
f

Sv = cst

No disposal

Some units of
good I are

disposed of

Some units of
each good are

disposed of

Some units of
good E are

disposed of

qI = vI + γ − σqE

qE = vE + γ − σqI
q∗∗I

q∗∗E

A

vE + γ

qI

qE

q∗I(qE ;ωI)

ωI

q∗E(qI ;ωE)

ωE

Figure 2: The virtual surplus is maximal at C (quadratic example)

Implementation The quantity allocation (qcE(ωE), qcI(ωE)) can be represented by a curve
in the (qE, qI)-space, see Figure 4c for an example. Conditional schedules T (qE, qI) are de-
fined on the whole space qE ≥ 0, qI ≥ 0. Considering perturbations of T far away from the
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quantity allocation shows that many schedules T (qE, qI) yield the same allocation. Yet there
are necessary conditions for implementation. We have seen that the surplus

SBE(ωE) = ωEq
c
E(ωE) + vIq

c
I(ωE)− h(qcE(ωE), qcI(ωE))− T (qcE(ωE), qcI(ωE))

is almost everywhere differentiable in ωE, with its derivative being qcE(ωE). It follows that T
is differentiable along the quantity allocation, but in general it need not be differentiable with
respect to (qE, qI). The simplest way to implement the allocation (qcE(ωE), qcI(ωE)) is a two-
part tariff of the form T (qE, qI) = cIqI + P (qE). In this case, the right-hand side depends
on ωE through qcE(ωE) but not through qcI(ωE) = q∗I (q

c
E(ωE)) by definition of q∗I . It follows

that the function P is differentiable. Differentiating with respect to ωE and simplifying by
dqcE/ dωE in the region where qcE is increasing, we get ωE − ∂h/∂qE = P ′(qcE(ωE)), where the
partial derivative is evaluated at (qcE(ωE), qcI(ωE)). Combining with (12), we find

P ′(qcE(ωE)) = β
1− F (ωE)

f(ωE)
. (13)

We check in Appendix A that such a two-part tariff indeed implements the allocation (qcE, q
c
I).

Proposition 1. The following properties hold at the second-best optimum with a conditional
price-quantity schedule:

1. For any level of rival’s surplus ωE but ωE, the quantity purchased from the rival, qcE, is
distorted downwards relative to q∗∗E . Exclusion is complete for ωE ≤ ωcE, where ωcE > ω∗∗E .

2. The quantity purchased from the incumbent firm, qcI = q∗I (q
c
E;ωE), is efficient given qcE

but distorted upwards relative to q∗∗I .

3. The magnitude of the disposal costs, γI , does not affect the buyer’s supply policy or the
price quantity schedule T (qE, qI).

4. The buyer and the incumbent firm may agree on a price schedule that is linear in qI with
slope cI and nondecreasing and concave in qE.

Letting the price of the incumbent good depend on the quantity purchased from the rival
allows the buyer and the incumbent to neutralize buyer ex post opportunism, i.e., to make
sure that the quantity of incumbent good is efficient given the quantity supplied from the rival.
Conditional efficiency imposes that the partial derivative of T with respect to qI is cI at the
second-best allocation. This condition is hard to meet when the price schedule T depends on
the market share qI/(qE+qI) rather than directly on qE, because the market share is nonlinear
in qI . Market-share discounts, for this reason, appear as a less convenient way to implement
the second-best allocation than two-part tariffs of the form cIqI + P (qE).

12



Proposition 1 builds a bridge between the literatures on market foreclosure and nonlinear
pricing. As in Aghion and Bolton (1987), the buyer and the incumbent jointly act like a
monopoly towards the rival, setting P (qE) to extract rent at the cost of reducing the extent of
entry: qE < q∗∗E , which yields inefficient market foreclosure. The efficiency-rent tradeoff leads
to more inefficient exclusion as the rival’s bargaining power, β, rises. When β is high, the rival
has a strong bargaining power vis-à-vis the buyer, which makes rent extraction a more serious
issue and pushes towards reducing qE.

Aghion and Bolton (1987) assume that the buyer’s demand was supplied entirely by a
single supplier. Hence they interpret the difference P (1) − P (0) as a penalty for breach of
contract. In contrast, we allow the buyer to split her purchase requirements between the two
suppliers and find that inefficient foreclosure may be complete or partial: 0 ≤ qE < q∗∗E . We
interpret the difference P (qE)−P (0) as rebates lost when supplying from the competitor. The
presence of these rebates implies a form of below-cost pricing. Specifically, when qE > 0, the
average incremental price of the “last” units of good I (units between q∗I (qE;ωI) and q∗I (0;ωI))
is lower than the production cost:

T (0, q∗I (0;ωI))− T (qE, q
∗
I (qE;ωI))

q∗I (0;ωI)− q∗I (qE;ωI)
= cI −

P (qE)− P (0)

q∗I (0;ωI)− q∗I (qE;ωI)
< cI ,

because the penalty function is increasing, P (qE) > P (0), and the function q∗I is decreasing,
q∗I (0;ωI) > q∗I (qE;ωI). The above price-cost comparison is reminiscent of the “as-efficient
competitor test”. The precise form of the test advocated by the European Commission, which
involves the notion of contestable demand, is more accurately described in a model with
inelastic demand (see our companion paper, Choné and Linnemer (2014)).

Quadratic example With h(qE, qI ; sE) = q2E/2 + q2I/2 + σqEqI , the second-best quantities
purchased from both suppliers under a conditional tariff are given by

qcE(ωE) = max

(
ωE − β

1− F (ωE)

f(ωE)
− σqcI , 0

)
and qcI(ωE) = q∗I (q

c
E),

The quantity purchased from the incumbent is conditionally efficient while that purchased
from the rival is distorted downwards. We get the allocation that would be efficient if the
rival’s efficiency index ωE were artificially reduced by β(1− F (ωE))/f(ωE):

qcE(ωE) = q∗∗E

(
ωE − β

1− F (ωE)

f(ωE)

)
, qcI(ωE) = q∗∗I

(
ωE − β

1− F (ωE)

f(ωE)

)

where the efficient quantities q∗∗E and q∗∗I are given by (2). When ωE is uniformly distributed
over the interval [ωE, ωE], the penalty function is quadratic, with its derivative being given by

P ′(qE) =
β

1 + β
[q∗∗E (ωE)− qE] .
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In the limit case where the demands for the two goods are independent (σ = 0), the penalty
is given by the formula above with q∗∗E (ωE) = ωE, and hence is increasing in qE. Rent-shifting
appears here as pure extortion, and we now turn to more realistic price instruments.

4 Non-conditional price-quantity schedules

The analysis is more involved when the price schedule cannot freely depend on the quantity
purchased from the rival, because buyer opportunism will materialize at the second-best allo-
cation and the degree of buyer opportunism will depend on the magnitude of the disposal costs.
To simplify the presentation, in this and the next section, we assume that the buyer must con-
sume the all the purchased units, γE = γI = +∞, and hence V (qE, qI) = vEqE+vIqI−h(qE, qI).
The effect of disposal costs is examined Section 6.

Implementable quantity functions We now suppose that the buyer and the dominant
firm are constrained to use a schedule of the form T (qI). As the schedule does not depend
on qE, the buyer and the rival trade the efficient quantity of good E given qI , qE = q∗E(qI ;ωE).
Following Martimort and Stole (2009), we think of the buyer and rival joint utility as a function
of the quantity purchased from the incumbent:

S̃BE(qI ;ωE) = max
qE≥0

vIqI + ωEqE − h(qE, qI) = vIqI + ωEq
∗
E(qI ;ωE)− h(q∗E(qI ;ωE), qI).

The function S̃BE is concave in qI as the marginal utility

∂S̃BE
∂qI

= vI −
∂h

∂qI
(q∗E(qI ;ωE), qI) (14)

decreases in qI by convexity of h. It is nondecreasing in ωE with derivative q∗E(qI ;ωE), and
satisfies the single-crossing property:

∂2S̃BE
∂qI∂ωE

=
∂

∂qI

(
∂S̃BE
∂ωE

)
=
∂q∗E
∂qI
≤ 0 (15)

by substitutability of the two goods: the buyer and rival marginal utility for good I decreases
with ωE. For non super-efficient rival types, the isolines of S̃BE coincide with those of vIqI −
h(0, qI) for large values of qI , namely in the region where q∗E(qI ;ωE) = 0; in this region, the
marginal joint utility (14) does not depend on ωE, and the Spence-Mirrlees inequality (15) is
in fact an equality.

The chosen quantity of incumbent good, qI(ωE), is solution to

SBE(ωE) = max
qI≥0

S̃BE(qI ;ωE)− T (qI), (16)
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for some price schedule T (qI). Adapting usual arguments, we find that a quantity allocation
(qE(ωE), qI(ωE)) is implementable under a non-conditional schedule if and only if the two
conditions are satisfied: (i) qE = q∗E(qI ;ωE); (ii) qI is decreasing in ωE where qE > 0 and
constant in ωE where qE = 0.

Constrained maximization of the virtual surplus We now maximize the virtual surplus
under the two constraints listed above, namely qE = q∗E(qI ;ωE) and qI non-increasing in ωE.
To account for the former constraint, we define the constrained virtual surplus as

S̃ v(qI ;ωE) = S v(q∗E(qI ;ωE), qI ;ωE).

Then we maximize the constrained surplus subject to the monotonicity requirement imposed
on the function qI(ωE). Following Martimort and Stole (2009)’s approach in multi-principal
games, we make the following regularity assumption:

Assumption 2. The constrained virtual surplus S̃ v(qI ;ωE) is strictly quasi-concave in qI and
has strict decreasing differences with respect to qI and ωE where q∗E(qI ;ωE) > 0.

Before proceeding to the maximization, we comment on the two conditions stated in As-
sumption 2. The concavity condition is equivalent to the following function being decreasing
in qI :

∂S̃ v(qI ;ωE)

∂qI
= ωI −

∂h

∂qI
(q∗E(qI ;ωE), qI)− β

1− F (ωE)

f(ωE)

∂q∗E(qI ;ωE)

∂qI
. (17)

The second term of the right-hand side is indeed decreasing in qI by convexity of h, which tends
to make the virtual surplus concave in qI . The last term involves the slope of the conditionally
efficient quantity, ∂q∗E/∂qI . In the quadratic example, that slope is −σ, and hence the virtual
surplus is concave. In general, however, the slope is equal to a ratio of second-order derivatives
of h whose variations with qI depend on properties of third-order derivatives of h.7

The second part of Assumption 2 is equivalent to the partial derivative ∂S̃ v(qI ;ωE)/∂qI

being decreasing in ωE. By substitutability, the second term at the right-hand side of (17) is
decreasing in ωE when q∗E > 0 and constant when q∗E = 0. The last term has two factors: by
Assumption 1 the hazard rate f/(1−F ) also tends to make ∂S̃ v/∂qI decrease with ωE (recall
that ∂q∗E/∂qI is negative). The contribution of the last factor, however, is ambiguous as we
do not know how the slope of the conditionally efficient quantity, ∂q∗E/∂qI , varies with ωE. In
the quadratic case, the slope is constant and the first two forces yield the desired property.

7The derivative of q∗E with respect to qI is −
(
∂2h/∂qE∂qI

)
/
(
∂2h/∂q2E

)
evaluated at (q∗E(qI ;ωE), qI).
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Lemma 1. Let (q̂uE, q̂
u
I ) denote the quantity allocation that maximizes the constrained virtual

surplus for each value of ωE. There exists ω̂uE in (ωE, ωE) such that (q̂uE, q̂
u
I ) satisfies

ωI −
∂h

∂qI
(q̂uE, q̂

u
I ) = β

1− F (ωE)

f(ωE)

∂q∗E
∂qI

and ωE −
∂h

∂qE
(q̂uE, q̂

u
I ) = 0, (18)

for ωE ≥ ω̂uE and q̂uE = q∗E(q̂uI ;ωE) = 0 for ωE ≤ ω̂uE. The quantity q̂uI decreases (increases)
with ωE above (below) ω̂uE.

Proof. Under Assumption 2, the virtual surplus is concave and hence its maximum is deter-
mined by the first-order conditions. These conditions are given by (18) when q̂uE > 0. The
second part of Assumption 2 guarantees that q̂uI decreases with ωE as long as q̂uE > 0. It
follows that q̂uE = q∗E(q̂uI ;ωE) increases with ωE in this region.

The existence of the threshold ω̂uE follows from the assumption that q∗∗E (ω∗∗E ) = 0 < q∗∗E (ωE)

and the observation that quE is equal to (lower than or equal to) q∗∗E at ωE (at ω∗∗E ). Below
that threshold, the maximum of the constrained virtual surplus is achieved at a point where
quE = 0 and the value of q̂uI is determined by conditional efficiency, i.e., by the condition
0 = q∗E(q̂uI ;ωE), implying that q̂uI is increasing in ωE in this region.

Figure 3 shows a situation in the quadratic example where the maximum of the constrained
virtual surplus is achieved at a point where qE > 0, i.e., the represented case corresponds to a
value of ωE higher than ω̂uE. For ωE lower than that threshold, the point U lies on the vertical
qI-axis. The non-monotonicity of q̂uI is apparent on Figure 4b, see the thin dotted line.

Lemma 1 shows that the pointwise maximization of the constrained virtual surplus yields
a quantity of incumbent good that is not monotonic and hence not implementable. There
must therefore be bunching at the bottom of the distribution of ωE. The next proposition
characterizes the optimal quantity allocation (quE, q

u
I ) under a non-conditional schedule.

Proposition 2. Under Assumption 2, the optimal quantities implementable with a non-
conditional schedule T (qI) satisfy the following properties:

1. There exists ω̃uE in (ωE, ωE) such that quI (ωE) is constant up to ω̃uE and then equal to
q̂uI (ωE).

2. The quantity purchased from the rival is efficient given quI , quE = q∗E(quI ;ωE), and distorted
downwards relative to q∗∗E for all ωE < ωE. Exclusion is complete for ωE ≤ ωuE, with
ω∗∗E < ωuE < ω̃uE.

3. The quantity purchased from the dominant firm is distorted upwards relative to the con-
ditionally efficient quantity, quI > q∗I (qE;ωI) (“buyer opportunism”) for all ωE < ωE.
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W = cst

ωI/σ

qcI = quI

qcE quE

C U

q∗E

(
qI ;ωE − β 1−F

f

)

ωE − β 1−F
f

Sv = cst

q∗∗I

q∗∗E

A

qI

qE

q∗I(qE ;ωI)

ωI

q∗E(qI ;ωE)

ωE

Figure 3: The constrained virtual surplus is maximal at U (quadratic example)

Proof. The condition that determines the bunching threshold ω̃uE is
∫ ω̃u

E

ωE

∂

∂qI
S̃ v(q̄I ;ωE) dF (ωE) = 0, (19)

where q̄I = q̂uI (ω̃uE) is the constant value of qI over the interval [ωE, ω̃
u
E], see Figure 4b. The

derivative of the constrained virtual surplus ∂S̃ v/∂qI depends on whether qE is positive or zero.
Let ωuE be defined by q∗E(q̄I ;ω

u
E) = 0. For ωE < ωuE, quE = 0, the derivative of the constrained

virtual surplus is wI − ∂h/∂qI(0, q̄I), which is negative because q̄I is above q̂uI (ωE). For ωuE <
ωE < ω̃uE, quE > 0, the derivative features the additional (positive) term −β(1−F )/f∂q∗E/∂qI ;
in this region it is positive because q̄I is below q̂uI (ωE). The threshold ω̃uE is such that the
positive and negative contributions offset each other.

The quantity purchased from the rival is undistorted for ωE = ωE and is zero below a
threshold ωuE that is strictly larger than ω∗∗E . The quantity purchased from the dominant firm,
being distorted upwards relative to q∗I (qE;ωI), is a fortiori distorted upwards relative to q∗∗I . In
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particular, quI (ωE) is above q∗I (0;ωI) for low values of ωE. This can be seen on Figure 4c where
the “trajectories” of the quantity pairs (qE, qI) are represented in various regimes. We see
that qI is efficient conditionally on qE at the first-best allocation as well as under a conditional
price-quantity schedule. In contrast, inefficiently many units of incumbent good given rival
supply are purchased under a non-conditional schedule.

Shape of the price-quantity schedule Under Assumption 2 and assuming furthermore
that h is twice continuously differentiable, quI = q̂uI is differentiable outside the bunching
region, i.e., for ωE > ω̃uE, and its derivative is positive in that region. Now we observe
that the surplus function SBE(ωE) = vIqI + ωEq

∗
E − h(q∗E, qI) − T (qI) is convex and hence

differentiable at almost every value of ωE. It follows that the price schedule T is almost
everywhere differentiable over the range of quI (ωE). Differentiating SBE and simplifying by
dquI / dωE, we get vI − ∂h/∂qI(q∗E, qI) = T ′(qI), which, combined with (18), yields

T ′(quI (ωE)) = cI + β
1− F (ωE)

f(ωE)

∂q∗E
∂qI

< cI , (20)

where the slope ∂q∗E/∂qI is evaluated at (quI (ωE);ωE). The monotonicity of the hazard rate
tends to make the schedule concave in qI . Indeed, as ωE rises, the quantity quI falls and the
hazard rate pushes the the right-hand side of (20) upwards because ∂q∗E/∂qI is negative. There
is, however, the additional effect that the derivative ∂q∗E/∂qI can itself move with ωE; this effect
is absent in the quadratic case where the derivative is constant. The following proposition
presents sufficient conditions (derived from (20)) for the price schedule to be concave below
the maximum quantity purchased from the incumbent, q̄I , given by (19).

Proposition 3. Suppose that the slope of the conditionally efficient quantity, ∂q∗E/∂qI , is non-
increasing (nondecreasing) in qI (resp. ωE). Then the optimal non-conditional price-quantity
schedule T (qI) is concave in qI up to q̄I and has a convex kink at this point.

The shape of the optimal non-conditional schedule is shown on Figure 5. The convex kink
at q̄I is due to complete exclusion and the associated bunching phenomenon at the bottom
of the distribution. Indeed, the slope of the price schedule at the left of q̄I is equal to the
marginal rate of substitution for vI − ∂h/∂qI evaluated at (q∗E(q̄I ; ω̃

u
E), q̄I). This rate is higher

for the agents with lower type, and is the highest for ωE = ωE, because these types value the
rival good less, and hence the incumbent good more. To prevent these agents from purchasing
more than q̄I , the price schedule must lie above the iso-utility curve of the lowest type, hence
a the convex kink. To be specific, the right derivative of the schedule at q̄I must be greater
than vI − ∂h/∂qI evaluated at (0, q̄I).8

8The bunching at the bottom of the distribution of ωE , and the corresponding non-concavity of T (qI) at q̄I ,
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In the limit case of two independent markets, the conditionally efficient quantity of rival
good, q∗E, does not depend on qI , and Lemma 2 and Proposition 2 show that both quantities
are fully efficient at the second-best allocation. In particular, the quantity of incumbent good
does not vary with the rival’s efficiency index ωE, so the range of quI (ωE) is the singleton {q∗∗I },
which makes the above analysis inoperative. Here we see directly that T ′ = cI is necessary to
induce efficiency.

Quadratic example When the buyer’s utility is quadratic, the second-best quantities under
a non-conditional schedule are given in the no-bunching region, i.e., for ωE > ω̃uE, by

quE(ωE) = q∗E(quI ;ωE) and quI (ωE) = ωI + σβ
1− F (ωE)

f(ωE)
− σquE(ωE),

which yields

quE(ωE) = q∗∗E (ωE)− β σ2

1− σ2

1− F (ωE)

f(ωE)
and quI (ωE) = q∗∗I (ωE) + β

σ

1− σ2

1− F (ωE)

f(ωE)
.

When the distribution is uniform, the bunching condition (19) can be rewritten as:

(ωI − q̄I)(ωuE − ωE) +

∫ ω̃u
E

ωu
E

[
ωI − (1− σ2)q̄I − σωE + βσ(ωE − ωE)

]
dωE = 0, (21)

with ωuE = σq̄I and quI continuous at ω̃uE. The quantities are represented as a function of ωE
on Figures 4a and 4b.

As already observed, the sufficient conditions of Proposition 3, that guarantee the concavity
of the price schedule, are satisfied when the buyer’s utility is quadratic. To illustrate, we
compute the curvature of the schedule when the distribution of ωE is uniform. Observing that
(1−F )/f = ωE −ωE and combining (20) with the expression of quI (ωE), we find that the first
derivative of the schedule is linear in qI :

T ′(qI) = cI −
β

1 + β
(1− σ2) [qI − q∗∗I (ωE)] < cI

for all qI between quI (ωE) and q̄I ; the schedule is quadratic (and concave) in this region.

5 Exclusivity offer

In this section, we investigate the situation where the price of the incumbent good can be
conditioned on the rival supply only through the events qE = 0 and qE > 0. This situation is
somewhat intermediary between conditional and non-conditional schedules.

are present because q̂uE(ωE) = 0 for low values of ωE . This is due in particular to our assumption that q∗∗E
is zero at the bottom of the distribution (ω∗∗

E > ωE , see Assumption 1). We would have no bunching and a
globally concave schedule if q∗E(qI ;ωE) were positive for all qI and ωE .
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Figure 4a: Equilibrium quantities of
good E under each type of price sched-
ule

Figure 4b: Equilibrium quantities of
good I under each type of price schedule

0 q∗∗E (ωE)

q∗∗I (ωE)

q∗∗I (ωE)

qI

qI

qE

(qE = q∗∗E (ωE), qI = q∗I(ωE))

(qE = qcE(ωE), qI = qcI(ωE))

(qE = quE(ωE), qI = quI (ωE))

quE(ω̃
u
E)

(qE = qxE(ωE), qI = qxI (ωE))

quE(ω
x
E)

Figure 4c: Buyer opportunism in regimes u and x: qI is above q∗I (qE;ωI)

Let (T (qI), T
x(qI)) be an exclusivity price scheme constituted of a pair of non-conditional

schedules, where T x is available to the buyer only if she supplies exclusively from the dominant
firm. Under such a scheme, the buyer and the rival, should they settle on a positive quantity,
choose qE = q∗E(qI ;ωE) and qI solution to (16). If they fail to find such an agreement, the
buyer earns

Sx = vIqI − h(0, qI)− T x(qI),
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which does not depend on ωE. It follows that the price schedule T x consists in fact of a single
price-quantity pair. The only difference with the non-conditional situation studied in Section 4
is the availability of an independent instrument to control the outside option.

Proposition 4. There exists a threshold ωx
E such that the quantities purchased by the buyer

under an exclusivity scheme satisfy (qxE, q
x
I ) = (0, q∗I (0)) for ωE ≤ ωx

E and (qxE, q
x
I ) = (quE, q

u
I )

for ωE ≥ ωx
E.

Proof. Maximizing the virtual surplus under the constraint qE = 0 yields the conditionally
efficient quantity of incumbent good, q∗I (0;ωI). If qE > 0, we maximize as above the con-
strained virtual surplus to account for the constraint qE = q∗E(qI ;ωE). The virtual surplus is
S v(0, q∗I (0;ωI)) = W (0, q∗I (0;ωI)) in the former situation, maxqI S

v(q∗E(qI ;ωE), qI ;ωE) in the
latter. Let ωx

E be the type for which the buyer and the incumbent are ex ante indifferent
between these alternatives:

max
qI

S v(q∗E(qI ;ω
x
E), qI ;ω

x
E) = W (0, q∗I (0;ωI)). (22)

Since maxqI S
v(q∗E(qI ;ωE), qI ;ωE) increases with ωE, the quantity allocation (qxE, q

x
I ) defined

in the statement of the proposition maximizes the virtual surplus.

We now explain how to implement this allocation with a pair (T, T x). Regarding T , we
use the same schedule as in Section 4. We define T x as a two-part tariff with slope cI to
ensure that qI = q∗I (0;ωI). The intercept of this tariff, and hence the price T x(q∗I (0;ωI))

associated to the exclusivity offer, is adjusted so that the buyer and the rival, for ωE = ωx
E,

are ex post indifferent between (quE(ωx
E), quI (ωx

E)) and (0, q∗I (0;ωI)). Then the types above the
threshold ωx

E, who value the incumbent good less than ωx
E, prefer a non-exclusive arrangement

and pick a point in the nonlinear schedule T . In contrast, the types below ωx
E, who value the

incumbent good more than ωx
E, are attracted by the exclusivity offer. That offer is represented

by the point X on Figure 5.

Next, we compare the magnitude of exclusionary effects in the three considered pricing
regimes.

Assumption 3. The nonlinear part of the buyer’s utility, h(qE, qI) satisfies
∫ q1I

q0I

[
∂2h

∂q2E
(qE, q

1
I )
∂2h

∂q2I
(qE, qI)−

∂2h

∂qE∂qI
(qE, q

1
I )

∂2h

∂qE∂qI
(qE, qI)

]
dqI ≥ 0

for all qE and q1I ≥ q0I .

Assumption 3 holds for any convex quadratic function because the term under the integral
is then constant and nonnegative. If h is a convex function with positive second-order cross
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Figure 5: Price-quantity schedules in the three regimes

derivative as assumed in this paper, the assumption is true for instance when ∂2h/∂q2I and
∂2h/∂qE∂qI are respectively non-increasing and nondecreasing in qI .

Recall ω∗∗E , ωuE, ωcE and ωx
E denote the maximum values of ωE for which the rival is inactive

at the first-best optimum and at the second-best optima under respectively a non-conditional
schedule T (qE, qI), a conditional schedule T (qI), and an exclusivity price scheme. We refer to
these values as the exclusion thresholds in each regime.

Proposition 5. Under Assumption 3, the quantities purchased from the rival firm in each
regime are ordered as follows:

0 = qxE(ωE) ≤ qcE(ωE) ≤ quE(ωE) < q∗∗E (ωE) (23)

for ωx
E < ωE and

qcE(ωE) ≤ quE(ωE) = qxE(ωE) < q∗∗E (ωE) (24)

for ωE > ωx
E. The exclusion thresholds are ordered as follows:

ω∗∗E ≤ ωuE ≤ ωcE ≤ ωx
E. (25)

Proof. The first part of the proposition, relative to the ordering of qcE and quE is proved in the
appendix. The left two inequalities in (25) follow directly. We now prove the right inequality.
From the analysis of Section 3, we have:

W (0, q∗I (0;ωI)) = max
qE ,qI

S v(qE, qI ;ω
c
E).
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Imposing the constraint that qE must be efficient conditional on qI reduces the maximum
value of the virtual surplus:

max
qI

S v(q∗E(qI ;ω
c
E), qI ;ω

c
E) < W (0, q∗I (0;ωI)) = max

qE ,qI
S v(qE, qI ;ω

c
E). (26)

The right inequality in (25) follows from the comparison of (22) and (26), combined with the
observation that maxqI S

v(q∗E(qI ;ωE), qI ;ωE) increases with ωE.

The above analysis implies that qcI(ωx
E) < qcI(ω

c
E) = q∗I (0;ωI) and hence the optimal quan-

tity of incumbent good under an exclusivity scheme, qxI , admits a downward discontinuity at
ωx
E, see the dashed line on Figure 4b for an illustration.

Quadratic Example For ωE = ωx
E, the buyer and the incumbent are ex ante indifferent

between the points (0, q∗I (0)) and the point U on Figure 3. Geometrically, the same isoline of
the virtual surplus contains the point (0, q∗I (0)) and the non-conditional second-best allocation
denoted by U (the dashed ellipsis passing through (0, q∗I (0)) is tangent to the straight line
qE = q∗E(qI ;ω

x
E)).

The quantities sold by each suppliers in each of the three regimes are represented on Fig-
ures 4a and 4b. A specificity of the quadratic case is that when qE > 0 the quantity of
incumbent good is the same under the conditional and non-conditional regimes. (Geometri-
cally the points C and U are on the same horizontal line on Figure 3.) The ordering of qI
across regimes is unclear in general.

Welfare analysis The welfare implications of the three pricing regimes involve two types
of distortion. First, the quantity of rival good is distorted downwards, which deteriorates
the social welfare. The best regime in this dimension is non-conditional pricing. Second, the
quantity of incumbent good may be distorted upwards conditionally on the rival supply. The
best regime in this dimension is conditional pricing because it completely eliminates buyer
opportunism. In this respect, non-conditional schedules perform badly at the bottom of the
distribution because qI is larger than q∗I (0;ωI) in this region. Exclusivity schemes avoid the
latter effect while behaving like unconditional schedules at the top of the distribution; they
induce, however, the largest distortions for both goods in an intermediate range of values for
the efficiency index ωE. All these effects are summarized on Figure 6.

In the quadratic case with a uniform distribution, numerical simulations suggest that the
non-conditional regime is socially preferred to the conditional and exclusivity regimes and that
the exclusivity regime is preferred to the conditional regime for small values of β.
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Figure 6: Welfare at the first-best and second-best allocations

6 Disposal costs

We now allow the buyer to dispose of unconsumed units at the unit cost γI > −cI . We
know that the total welfare and the virtual surplus linearly decrease in the region where the
buyer indeed does not consume all of the purchased units of incumbent good. As noted in
Section 3, the possibility of disposal is of no importance for the analysis of the conditional
regime because the virtual surplus attains its maximum in the interior of the no-disposal region
for all γI > −cI .

In contrast, we have seen in Sections 4 and 5 that when the buyer must consume all
purchased units (γI = ∞) the second-best allocations under a non-conditional schedule and
under an exclusivity scheme are essentially determined by the maximum of the constrained
virtual surplus, see the characterization of (q̂uE, q̂

u
I ) in Lemma 1. More precisely, (quE, q

u
I ) and

(qxE, q
x
I ) coincide with (q̂uE, q̂

u
I ) respectively for ωE ≥ ω̃uE and for ωE ≥ ωx

E, with ωx
E ≥ ω̃uE.

Below these thresholds, the quantities purchased from the incumbent, quI and qxI , are constant
in ωE, equal to respectively q̂uI (ω̃uE) and q∗I (0;ωI).

The possibility of disposal does not change the second-best allocations if and only if the
solutions found for γI = ∞ remain in the no-disposal region for finite γI . This is the case if
and only if the buyer is strictly better off consuming all the units purchased than disposing of
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some of them:
vI −

∂h

∂qI
(q̂uE(ωE), q̂uI (ωE)) = T ′(q̂uI (ωE)) > −γI , (27)

for all ωE greater than ω̃uE or ωx
E depending on the considered regime. If this condition is

violated, the maximum of the constrained virtual surplus lies on boundary of the no-disposal
region. It is then determined as the intersection of that boundary, vI − ∂h/∂qI(qE, qI) = −γI ,
and of the conditionally efficient curve, qE = q∗E(qI ;ωE). The intersection point is denoted
by Bγ on Figure 7 for the quadratic example.9

Proposition 6. Suppose the assumptions of Proposition 3 hold. Then the second-best allo-
cations under a non-conditional schedule and under an exclusivity scheme do not vary with
the magnitude of disposal costs as long as γI remains above −T ′(quI (ω̃uE)) and −T ′(quI (ωx

E))

respectively. As γI falls below these thresholds and tends to −cI , the quantity purchased from
the rival and the incumbent respectively increases and decreases, tending to q∗∗E and q∗∗I ; the
slope of the price schedule tends to cI ; the welfare rises to its first-best optimum.

Proof. Under the assumptions of Proposition 3, the optimal non-conditional schedule is con-
cave, i.e., T ′(q̂uI (ωE)) increases with ωE. The condition imposed by (27), therefore, is stronger
for lower values of ωE or equivalently higher values of q̂uI . If (27) holds for ωE = ω̃uE in the
non-conditional regime and for ωE = ωx

E in the exclusivity regime, it holds for all ωE above
the threshold.

Otherwise, if (27) is violated at the relevant lower bound (ω̃uE or = ωx
E), it is violated for

all values of ωE below some threshold. As ωE falls from this threshold to the lower bound, the
maximum of the constrained virtual surplus is first located on the boundary of the no-disposal
region (point Bγ on Figure 7); at some point, qE reaches zero (point Dγ on Figure 7); for
lower values of ωE, the maximum of the constrained virtual surplus is determined by qE = 0

and q∗E(qI ;ωE) = 0. Under the non-conditional regime, the latter phenomenon gives rise to
bunching as in Section 4; under an exclusivity scheme, the second-best solution switches to
(0, q∗I (0;ωI)) before the point Dγ is reached.

When γI falls to −cI , the boundary of the no-disposal region, vI − ∂h/∂qI = −γI , moves
closer to the conditional efficiency line qI = q∗I (qE;ωI). On Figure 7, the point Bγ tends to
the first-best optimum A. At the same time, the slope of the price schedule, T ′(qI), which lies
between −γI and cI , tends to cI .

It is ex ante suboptimal for the buyer and the incumbent that some units of incumbent
good are produced and disposed of. When the magnitude of the disposal cost is low, the

9In this case, the tangency point of the isoline of the virtual surplus (dashed ellipsis) to the straight line
qE = ωE − σqI , lies above the boundary of the no-disposal region, qI = vI + γI − σqE .
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W = cst

qcI

quI

qcE quE

C

Bγ

q∗E

(
qI ;ωE − β 1−F

f

)

ωE − β 1−F
f

Sv = cst

No disposal

Some units of

good I are
disposed of

Some units of

each good are
disposed of

Some units of

good E are
disposed of

qI = vI + γ − σqE

qE = vE + γ − σqI

q∗∗I

q∗∗E

A

vE + γ

qI

qE

Dγ

q∗I(qE ;ωI)

ωI

q∗E(qI ;ωE)

ωE

Figure 7: The constrained virtual surplus is maximal at Bγ

purchased quantity of incumbent good cannot be too far away from the conditionally efficient
quantity, q∗I (qE;ωI). In other words, the possibility of disposing of unconsumed units of good I
reduces the degree of buyer opportunism present at the second-best allocation.

7 Discussion

We now consider a couple of variants in the timing of events and the instruments available to
the parties.

First suppose the buyer and the incumbent can wait for the uncertainty to be resolved
before deciding on the price-quantity schedule and still enjoy the same commitment power
at this point. They can then implement the efficient allocation and extract all the surplus
from non super-efficient rival types through a non-conditional price-quantity schedule. Indeed,
if q̄I is such that q∗E(q̄I ;ωE) = 0, the following non-conditional schedule yields the first-best
outcome: T (qI) = cIqI + T (0) for qI < q̄I ; T (q̄I) is such that V (q∗∗E , q

∗∗
I ) − cEq∗∗E − T (q∗∗I ) =
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W (q∗∗E , q
∗∗
I ) − T (0) is slightly above V (0, q̄I) − T (q̄I); and T (qI) = +∞ beyond q̄I . (The

constant T (0) serves to share the surplus W (q∗∗E , q
∗∗
I ).) It is easy to check that the quantities

purchased in equilibrium are q∗∗E and q∗∗I . If the rival and the buyer failed to agree on a price
and a quantity for good E, the buyer would purchase q̄I from the incumbent. It follows from
the definition of T (q̄I) that the surplus ∆SBE created by from the trade with the rival is
negligible, and the rival profit can be made arbitrarily close to zero.10 This timing, therefore,
would be very favorable to the buyer and the incumbent. In contrast, this paper has assumed
that the incumbent and the buyer cannot wait for the resolution of uncertainty and at the
same time keep their commitment power.

Next we discuss the perhaps intriguing feature of the model that the buyer is part of two
successive coalitions. One might consider an interim stage where the buyer has learnt the
characteristics of the rival good but has not yet started negotiating a price and a quantity
with the rival. It would then be natural to endow the buyer and the incumbent firm with
a more powerful instrument consisting of a menu of price-quantity schedules, (T (qI ; ω̂E))ω̂E

,
and to consider the following game: (i) the buyer and the incumbent agree on such a menu;
(ii) the buyer learns ωE and announces ω̂E; (iii) the buyer and the rival negotiate under the
price-quantity schedule T (qI ; ω̂E). At the interim stage, the buyer pursues her own interest
and may therefore try to cheat on the incumbent by manipulating ω̂E. The menu should be
designed to maintain truthfulness.

A fundamental observation is that at the interim stage the buyer is weakly better off
colluding with the rival firm on the announcement ω̂E. In other words, it is in the buyer’s
interest to agree with the rival not only on the quantities of both goods and the price of the
rival good but also on the announcement. Indeed, negotiating on all variables under control
weakly increases the surplus to be shared with the rival, and hence the part that goes to the
buyer. We believe that in practice collusion on the announcement is unavoidable, and for this
reason we have not included such an interim stage in our modeling framework.

Suppose, for the sake of the discussion, that the buyer and the rival can be prevented
from colluding on the announcement. We now show that if the rival is never super-efficient
and has all the bargaining power vis-à-vis the buyer (β = 1), then there exists a menu of
schedules T (qI ; ω̂E) that yields the first-best outcome. Let q̄I be such that q∗E(q̄I ;ωE) = 0

for all ωE. We define T (qI ; ω̂E) for each ω̂E in the same way as in the complete informa-
tion case presented above. The only difference with that case is that we choose T (0; ω̂E) =

W (q∗∗E (ω̂E), q∗∗I (ω̂E); ω̂E)−V̄ , where V̄ is a constant. The latter equality ensures that T (q̄I ; ω̂E),
10When the rival is super-efficient, dealing with the rival creates a positive surplus however large qI becomes.

Formally the decreasing function β[V (q∗E(qI ;ωE); qI)− cEq∗E(qI ;ωE)− V (0, qI)] remains positive for all qI . It
can be shown that the rival’s rent at the second-best optimum is equal to the lower bound of this function.
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and hence the buyer’s outside option, does not depend on ωE or ω̂E. Since β = 1, the buyer,
at the interim stage, gets utility V̄ irrespective of her announcement. If we assume that she
declares the true value of ωE to the incumbent, then the first-best allocation obtains.11 Yet,
as explained above, the mechanism is not collusion-proof because the rival would like ω̂E to be
as low as possible and is ready to bribe the buyer in return for such an announcement. Since
an arbitrarily small bribe is sufficient to break the buyer’s indifference, truthful revelation is
unrealistic.

In our companion paper, Choné and Linnemer (2014), we assume that the rival firm cannot
compete for the entire buyer’s demand. Assuming that the size of the contestable demand is
uncertain, we obtain concave price-quantity schedules together with full exclusion (which we
do not have here), as well as many other shapes of nonlinear schedules, including retroactive
rebates.
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Appendix

A Implementation with a two-part tariff

We start by introducing a function P (qE) whose derivative is given by (13) on the interval
[0, qcE(ωE)] and is zero above qcE(ωE). The value of P (0) determines the sharing of the surplus
between the buyer and the dominant firm. It is straightforward to verify that the function P
is globally concave. Moreover, by definition of qcE, we have

∂h

∂qE
(qcE(ωE), q∗I (q

c
E(ωE))) + P ′(qcE(ωE)) = ωE, (28)

for all ωE between ωE and ωE. We now check that the function h(qE, q
∗
I (qE))+P (qE)−ωIq∗I (qE)

is convex in qE. Indeed its derivative at some qE = qcE(ωE) in the interval [0, qcE(ωE)] is the
left-hand side of (28) and, therefore is increasing with ωE and qE. Hence the convexity result.

Under the two-part tariff T (qE, qI) = cIqI + P (qE), the buyer and the rival choose the
efficient quantity of good I given qE, q∗I (qE;ωI). Replacing qI with q∗I (qE;ωE) in their common
objective (3), we find that the buyer and the rival choose the quantity qE that maximizes the
function ωEqE + ωIq

∗
I (qE) − h(qI , q

∗
I (qE)) − P (qE). This function is concave in qE from the

above analysis. The quantity of good E, therefore, is determined by the first-order conditions,
and is thus qcE(ωE) for any ωE.

B Proof of Proposition 5

We first observe that the bunching procedure at the bottom of the distribution leads to increase
the quantity of good E, i.e., quE ≥ q̂uE, where q̂uE maximizes the constrained virtual surplus,
see Lemma 1. This follows from q̂uE = q∗E(q̂uI ;ωE) and quE = q∗E(q̄I ;ωE), together with q̄I ≤ q̂uI

when q̂uE > 0. It is therefore sufficient to prove that q̂uE ≥ qcE.
Let q̃I be defined by q∗E(q̃I ;ωE) = qcE. By concavity of the modified virtual surplus, the

ordering qcE(ωE) ≤ q̂uE(ωE; γ) is equivalent to

ωI −
∂h

∂qI
(qcE, q̃I)− β

1− F (ωE)

f(ωE)

∂q∗E
∂qI

(qcE, q̃I) ≤ 0. (29)

This inequality is indeed equivalent to the modified virtual surplus reaching its maximum for
qI < q̃I , and hence qE > qcE. We have, using qcI = q∗I (q

c
E)

ωI −
∂h

∂qI
(qcE, q̃I) = −

∫ q̃I

qcI

∂2h

∂q2I
(qcE, qI) dqI (30)
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and, using qcE = q∗E(q̃I)

β
1− F (ωE)

f(ωE)
= ωE −

∂h

∂qE
(qcE, q

c
I) =

∫ q̃I

qcI

∂2h

∂qE∂qI
(qcE, qI) dqI (31)

Finally recall that
∂q∗E
∂qI

(qcE, q̃I) = − ∂2h

∂qE∂qI
(qcE, q̃I)

/
∂2h

∂q2E
(qcE, q̃I) (32)

We get (29) by combining (30), (31), and (32) and applying the inequality of Assumption 3
with qE = qcE, q0I = qcI and q1I = q̃I .

31


	CESifo Working Paper No. 4873
	Category 11: Industrial Organisation
	July 2014
	Abstract
	Linnemer nonlinearpricing_Part1.pdf
	Introduction
	The model and purchase decisions
	Conditional price-quantity schedules
	Non-conditional price-quantity schedules
	Exclusivity offer
	Disposal costs
	Discussion
	Implementation with a two-part tariff
	Proof of Proposition 5


