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Abstract 
 
We develop a framework for optimal taxation when agents can earn their income both in 
traditional activities, where private and social products coincide, and in rent-seeking 
activities, where private returns exceed social returns either because they involve the capture 
of pre-existing rents or because they reduce the returns to traditional work. We characterize 
Pareto optimal non-linear taxes when the government does not observe the shares of an 
individual’s income earned in each of the two activities. We show that the optimal externality 
correction typically deviates from the Pigouvian correction that would obtain if rent-seeking 
incomes could be perfectly targeted, even at income levels where all income is from rent-
seeking. If rent-seeking externalities primarily affect other rent-seeking activity, then the 
optimal externality correction lies strictly below the Pigouvian correction. If the externalities 
fall mainly on the returns to traditional work, the optimal correction strictly exceeds it. We 
show that this deviation can be quantitatively important. 
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1 Introduction

The financial crisis has exposed examples of highly compensated individuals whose ap-
parent contributions to social output proved illusory. The view that some top incomes
reflect rent-seeking—i.e., the pursuit of personal enrichment by extracting a slice of the
existing economic pie rather than by increasing the size of that pie—has inspired calls
for a more steeply progressive tax code (Piketty et al., 2014), and, motivated by similar
concerns about rent-seeking in finance, various countries have proposed higher taxes on
financial-sector bonus payments (Besley and Ghatak, 2013).

The argument behind such proposals is intuitively appealing. If part of the economic
activity at high incomes is socially unproductive rent-seeking or “skimming,” then it
would seem natural for a well designed income tax code to impose high marginal rates at
high income levels.1 This would discourage such behavior while simultaneously raising
revenues which could be used, for instance, to reduce taxes and encourage more produc-
tive effort at lower income levels. Moreover, if some sectors or professions are more prone
to rent-seeking than others (Lockwood et al., 2014), sector-specific corrective taxes would
be useful.

In this paper, we study the optimal design of such policies under the assumption of
imperfect targeting. For example, lawyers produce many socially efficient services, uphold-
ing property rights and providing incentives to abide to useful rules. On the other hand,
they may also engage in rent-seeking activities, some of which resemble zero-sum games.
The friction that we account for here is that it can be very hard to tell which is which:
the only way to find out can be a costly trial, a highly imperfect process. A similar point
can be made of finance and many other sectors, as we discuss below. Hence, even sector-
or profession-specific taxes (such as a bonus tax) are necessarily imperfectly targeted, as
they apply to multiple different activities within such sectors that all come together in the
same market and cannot be easily distinguished in any given transaction. At the extreme,
an individual may engage both in productive and rent-seeking activities simultaneously,
but only total income is observable when computing tax liabilities.

We adapt the Mirrlees (1971) framework to provide a formal foundation for study-
ing the implications of such rent-seeking activities for optimal taxation under imper-
fect targeting. We use this framework to characterize optimal taxes in the presence of
a broad class of rent-seeking externalities and to provide a precise formal comparison to
the Pigouvian taxes that would obtain under perfect targeting. This allows us to provide
conditions under which the above intuition about the progressivity of taxes is or is not

1See Bertrand and Mullainathan (2001) for evidence of such rents.
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valid. We also simulate optimal tax schedules for an example economy calibrated to U.S.
data, which allows us to quantitatively asses the impact of rent-seeking on tax policy.

We study an economy where individuals can pursue two types of activities: tradi-
tional work, where private and social returns to effort coincide, and rent-seeking, where
private returns exceed the social returns to effort. We characterize the set of Pareto effi-
cient income taxes, capturing the idea that the shares of an individual’s income earned
in rent-seeking and traditional work can be hard to disentangle. These taxes are char-
acterized by a multiplicative correction to standard optimal tax formulas for economies
without rent-seeking. Our main result is that this correction diverges systematically from
the Pigouvian tax rate that would be optimal if rent-seeking income could be separately
identified.

To illustrate this, suppose, for instance, that rent-seeking effort involves claiming credit
for productive work done by other workers. Then rent-seeking imposes across-activity
externalities (i.e., reduces the productivity of traditional effort) as well as within-activity
externalities (due to crowding effects). Both externalities drive a wedge between the pri-
vate returns to effort and its true underlying productivity, or social returns. There is,
therefore, a potential role for corrective taxation. A natural, but typically incorrect guess
for the optimal corrective component of the income tax would be the weighted Pigouvian
tax rate, i.e. the average wedge between the private and social returns to effort at each
income level.

To see why this guess is generally incorrect, consider raising marginal tax rates at
income levels containing a high share of rent-seeking income. This directly reduces rent-
seeking activity by discouraging effort at these incomes. But it also has indirect effects
since a reduction in rent-seeking effort raises the returns to both types of effort. If the
within-activity externalities are large relative to the across-activity ones, the returns to
rent-seeking rise by more than the returns to productive effort. The tax change thus en-
courages a perverse shift of effort at all income levels into rent-seeking. This indirect effect
partially offsets the direct corrective benefits of higher marginal taxes, and the optimal
correction lies strictly below the Pigouvian rate.

When the across-activity rent-seeking externalities dominate the within-activity ones,
on the other hand, a reduction in rent-seeking effort lowers the relative returns to rent-
seeking, the activity shift effect reverses sign, and the optimal correction exceeds the
Pigouvian tax rate. Only in the knife-edge case where the within and across-activity
externalities exactly balance does the standard Pigouvian correction apply. Hence, the
comparison depends on a transparent condition: does an additional unit of rent-seeking
effort increase or decrease the relative returns to rent-seeking?
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Solving for the optimal taxes in our framework is more challenging than in a standard
Mirrlees (1971) optimal tax problem. The first reason is that wages are endogenous: for
any given tax schedule, aggregate rent-seeking effort determines the returns to the two
activities; and these returns determine individual and hence aggregate effort levels. The
second challenge is that, naturally, individuals are characterized by a two-dimensional
skill type: one skill for each activity. For these models, standard techniques typically do
not apply (Rochet and Choné, 1998). Generalizing insights from Rothschild and Scheuer
(2013), we address these challenges by observing that the realized wage distribution is
well-defined conditional on any given aggregate rent-seeking effort (Lemma 2). Since
taxes depend only on income, a standard single-crossing property allows us to treat the
problem as a fixed point problem for aggregate rent-seeking effort nested within a Mir-
rleesian optimal tax problem.

Proposition 1 provides a partial characterization of the solution to this problem. It
reveals that the optimal marginal keep shares (one minus the marginal tax rate) can, as
alluded to above, be expressed as a standard optimal tax formula multiplied by an extra
correction term. This structure is consistent with the “principle of targeting” (Dixit, 1985)
and, more specifically, the “additivity principle” discussed in the literature on corrective
taxation in the presence of atmospheric externalities, according to which taxes can be
expressed as a sum of the optimal Pigouvian taxes and the optimal taxes from a related
problem without externalities.2 In fact, if rent-seeking could be directly targeted, the
optimal correction would be precisely the Pigouvian tax (Proposition 3).

Our main results, however, are driven by the observation that individuals in most in-
dustries engage in different activities, so taxes in practice can never be perfectly targeted:
they cannot condition on the composition of individual incomes into income earned from
rent-seeking and productive work. This restriction makes our analysis both theoretically
interesting and practically relevant. In particular, Proposition 2 shows that the correc-
tion term in the optimal tax formula then diverges from the Pigouvian tax in manner that
depends in a transparent way on the direction of the relative return effects.

We finally complement these analytical results with a quantitative exploration of how
large this divergence can be in a calibrated version of our model using data from the
2013 Current Population Survey (CPS). In our baseline, the optimal correction amounts
to only 53% of the Pigouvian correction, indicating that the general equilibrium effects we
emphasize can be of first-order importance in practice, and of similar magnitude as the
Pigouvian taxes themselves. We also perform comparative statics exercises, demonstrat-
ing the impact on tax policy of varying the importance of rent-seeking, e.g. reducing it to

2See Sandmo (1975), Sadka (1978), Cremer et al. (1998), Kopczuk (2003) and the discussion in section 4.6.
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the level found in the model calibrated to CPS data from the 1970s. Similar to the recent
quantitative work in Ales et al. (2014) for an economy without externalities, this allows us
to decompose the change in optimal income taxes for the U.S. in the 1970s versus today
into the component due to a change in rent-seeking and the component due to a change
in the underlying skill distribution, holding redistributive motives fixed.

Related Literature. Our main result is related in spirit to Diamond (1973), although
our motivation, framework, and instruments are quite distinct. Most importantly, Dia-
mond considers linear commodity taxation in the Ramsey framework, whereas our analy-
sis is in a Mirrleesian setting with non-linear income taxes, which combines redistributive
and corrective motives for taxation. He shows that the optimal linear tax on an external-
ity producing consumption good can be expressed as a Pigouvian correction that captures
the direct effect of the tax on the demand for the good, and an adjustment term that re-
flects the indirect effect of the changes in consumption of the good induced by the direct
effect. Our general equilibrium effects are very different, as they result from effort choice
along two intensive margins corresponding to two income-earning activities. Moreover,
in contrast to Diamond, we are able to characterize in which direction and by how much
the optimal correction should deviate from the Pigouvian tax rate as a function of simple
properties of technology that could potentially be estimated empirically.

A special case of our model obtains when rent-seeking income is earned through a
crowdable search activity. Our analysis is therefore related to recent work by Golosov et
al. (2013), who consider optimal taxation in labor markets with search frictions (see also
Hungerbuhler et al., 2006). However, the former paper completely abstracts from skill-
driven wage heterogeneity, in contrast to the Mirrleesian framework employed here. In
addition, both papers consider search for employment rather than search as an income
producing (but, through crowding, negative externality generating) activity.

While rent-seeking is a conceptually important element of our model, our methods
more closely track the optimal income taxation literature, notably Mirrlees (1971), Dia-
mond (1998), Saez (2001) and Werning (2007). Our paper also contributes to recent efforts
to study optimal taxation under multidimensional private heterogeneity (Kleven et al.,
2009, Scheuer, 2013, 2014, Choné and Laroque, 2010, and Beaudry et al., 2009). These
papers have different information structures than ours, however. The second dimension
of heterogeneity enters preferences additively in the first three. In Choné and Laroque
(2010), the second dimension is a taste for labor rather than a full second skill type as we
employ here. In Beaudry et al. (2009), types have two distinct labor productivities, but
one activity is a non-market activity, the returns from which are unobservable, whereas
total income—but not its breakdown between the two activities—is observable in our
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model.3 More closely related is Rothschild and Scheuer (2013), who use similar methods
as developed here to characterize optimal taxation in a Roy (1951) model. That paper
shares our structure of two-dimensional heterogeneity, but (as the other papers above)
considers the special case where individuals always specialize in one type of activity and
rules out wages that deviate from the social marginal product of effort and the resulting
corrective motives for taxation, issues we focus on here.4

Finally, our paper relates to the literature studying the equilibrium allocation of tal-
ent across different sectors when there are rents to be captured in some of them. Most
of this literature (e.g. Baumol, 1990, Murphy et al., 1991, Acemoglu and Verdier, 1998,
and Cahuc and Challe, 2012) does not consider optimal tax policy to correct these equi-
librium outcomes. But there are important recent exceptions. Philippon (2010) considers
an endogenous growth model with financiers, workers and entrepreneurs and analyzes
the effect of linear, sector-specific taxes on growth. The recent studies by Piketty et al.
(2014) and Lockwood et al. (2014) assume that rent-seeking reduces everyone else’s in-
come in a lump-sum fashion rather than the proportional reduction that we consider here.
This rules out the relative return effects from effort that we emphasize, which arise when
the externalities can affect different activities to varying degrees. Due to the absence of
general equilibrium effects, the simple weighted Pigouvian correction is always optimal
in their frameworks, which we use as a benchmark to compare our results to, both an-
alytically and quantitatively. Furthermore, Lockwood et al. abstract from redistributive
motives and Piketty et al. only consider top marginal tax rates, both in contrast to our
analysis.

This paper proceeds as follows. In Section 2, we begin with a stylized example that
generates a particularly stark version of our main result. Section 3 then introduces our
general modeling framework and discusses applications and implementation issues. In
Section 4, we analyze this model and provide our main results. Finally, Section 5 provides
a quantification of these results for a calibrated version of our model, and Section 6 con-
cludes. Most proofs as well as details on the data and calibration appear in a technical
appendix.

3Beaudry et al. also assume that, unlike here, effort in the market activity is observable.
4Our setting with two unobservable margins of effort also relates to the literature on multi-tasking

(Holmström and Milgrom, 1991 and Baker, 1992), although our Mirrleesian framework with private ex
ante heterogeneity and externalities is quite distinct. In Rothschild and Scheuer (2014), we show how our
method to solve the two-dimensional screening problem here can be extended to N ≥ 2 dimensions.
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2 A Simple Example

By way of illustration, we begin with a simple yet stark example to illustrate the key idea
underlying our results. Consider an economy in which individuals pursue two types of
activities. In the productive activity, output is proportional to (skill-weighted) aggregate
effort. In the other activity, workers compete for a fixed rent µ̄ > 1. There is an equal
measure of two types of individuals, each with preferences u(c, e) = c− eγ/γ over con-
sumption and effort. Type 1 agents have a skill θ1 = 1 for the productive activity and
ϕ1 = 1 for rent-seeking. In contrast, type 2 workers are unable to work in the productive
activity (θ2 = 0) but have ability ϕ2 ≡ ϕR > 1 for rent-seeking. Individuals of type i
face returns to rent-seeking effort equal to ϕiµ̄/E, i = 1, 2, where E ≡ λe1 + ϕRe2 is the
(skill-weighted) aggregate rent-seeking effort in the economy and λ is the (endogenous)
fraction of type 1 workers who work in the rent-seeking activity. These rent-seeking re-
turns correspond to a situation in which each unit of skill-weighted effort in that activity
claims an equal share of the total rent µ̄.

We will show that the optimal nonlinear income tax can involve zero marginal tax rates
for both types in this example economy, even though type 2 can only perform an activity
that is socially completely wasteful. To wit, there are three possibilities for type 1’s activity
choice: If E > µ, the rent-seeking activity is relatively crowded, so type 1 individuals all
prefer to do productive work (λ = 0); if E < µ, rent-seeking returns are higher than
θ1 = 1, so type 1 workers strictly prefer to do rent-seeking (λ = 1); and finally an interior
allocation with E = µ̄ where they are indifferent and some fraction λ ∈ [0, 1] of them does
rent-seeking. We focus on this third case and derive parameter conditions below under
which the utilitarian optimum indeed corresponds to such an interior allocation.

If E = µ, we can solve for the equilibrium share λ of type 1 workers doing rent-seeking

µ = E = λe1 + ϕRe2 ⇒ λ =
µ− ϕRe2

e1

and substituting yields a total income in the economy of (1− λ)e1 + µ = e1 + ϕRe2. In
other words, the wages of the two types are w1 = 1 and w2 = ϕR since E = µ. As a result,
utilitarian social welfare is simply

W = e1 + ϕRe2 − eγ
1 /γ + eγ

2 /γ. (1)

Now suppose we have access to a nonlinear income tax, which allows us to control efforts
ei, i = 1, 2, but not directly type 1’s activity choices. Maximizing (1) w.r.t. ei yields eγ−1

i =
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wi, i = 1, 2, implying zero marginal tax rates for both types.5 These efforts are consistent
with an interior λ whenever ϕ

γ/(γ−1)
R ∈ [µ − 1, µ]. For sufficiently large γ, this interior

allocation yields higher social welfare than the corner allocations with E 6= µ.6 A fortiori,
the optimal non-linear income tax for this economy has zero marginal taxes at both types’
income levels.

In this example, the high income rent-seekers are clearly identifiable (a tax that hits
only them can be levied, namely a tax on type 2’s higher income ϕRe2) and they produce
no output. The targeted, Pigouvian tax on their effort would therefore be 100%. Yet it is
optimal not to tax them under the nonlinear income tax. In other words, taxing the income
of an identifiable subset of rent-seekers is not a good substitute for a direct tax on rent-
seeking. To see why not, consider imposing a small tax on the type 2 individuals, reducing
their effort by δ. This decrease in total rent-seeking effort E raises the returns to rent-
seeking µ/E. Productive workers then shift into rent-seeking (λ increases) until E = µ is
restored. The net effect is an aggregate income reduction of exactly w2δ. Although rent-
seekers are not directly productive, their indirect productivity is therefore exactly equal to
their wage: by congesting the rent-seeking activity, they help to keep type 1 workers out
of rent-seeking and thereby sustain their productivity in the productive activity.

We call this indirect productivity the activity shift effect. The optimality of zero taxes
is a knife-edge feature of this stylized example. It provides a stark illustration of the im-
portance of general equilibrium effects from activity choice for optimal taxation in the
presence of rent-seeking.7 In the next two sections, we show that these effects are ex-
tremely robust and extend to a framework with general preferences and social welfare,
with a continuum of types, with an arbitrary two-dimensional distribution of skills for
the traditional and rent-seeking activities, wherein agents can work in both activities si-
multaneously, and wherein rent-seeking effort may impose externalities both on other
rent-seekers—as in this example—and across-activity externalities on productive work.
In Section 5, we also show that they can be of first-order importance quantitatively in
more realistically calibrated versions of our model.

5Clearly, this zero-tax allocation is also incentive compatible, and therefore is the utilitarian optimum
among the E = µ-allocations.

6To see this, note that social welfare in the optimum with interior λ is W∗ =
(

1 + ϕ
γ/(γ−1)
R

)
(γ− 1)/γ.

The highest welfare among the allocations with λ = 1 is µ, obtained in the allocation with 100% taxation
and E = 0. Clearly, W∗ > µ for high enough γ since ϕ

γ/(γ−1)
R > µ − 1 as assumed above. The highest

welfare with λ = 0 involves E = µ and e1 = 1, e2 = µ/ϕR. It can be checked that the welfare from this
allocation is always less than W∗.

7The same results obtain if type 1 individuals can only do productive work whereas type 2 individuals
can pursue both activities.
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3 The General Model

3.1 Setup

As in the example, individuals can pursue two activities: Traditional work, where private
and social marginal products of effort coincide, and a rent-seeking activity, where the pri-
vate marginal product exceeds the social marginal product. This model can apply to an
entire economy or alternatively a particular sector, profession or industry within which
both activities take place, as discussed in the introduction. There is a unit-measure contin-
uum of individuals who choose how much effort to provide in each activity. Individuals
are endowed with a two-dimensional skill vector (θ, ϕ) ∈ Θ×Φ, Θ = [θ, θ], Φ = [ϕ, ϕ],
where θ captures an individual’s skill in the traditional activity (the “Θ-activity”), and ϕ

captures her skill in the rent-seeking activity (the “Φ-activity”). Skills are distributed with
a continuous cdf F : Θ×Φ→ [0, 1] and associated continuous pdf f (θ, ϕ).

Preferences are characterized by a continuously differentiable and concave utility func-
tion over consumption c and effort in each activity, eθ and eϕ, given by U(c, eθ, eϕ) =

u(c, m(eθ, eϕ)) ≡ u(c, e). We assume uc > 0, ue < 0, and that the effort aggregator
m(eθ, eϕ) is increasing in both arguments, continuously differentiable, quasiconvex and
linear homogeneous.8 A special case would obtain for m(eθ, eϕ) = eθ + eϕ, in which case
individuals always specialize in the activity that yields them the highest returns, as in
the Roy model considered in Rothschild and Scheuer (2013). Let the consumption and
activity-specific efforts of an individual of type (θ, ϕ) be denoted by c(θ, ϕ), eθ(θ, ϕ), and
eϕ(θ, ϕ). We respectively denote the total individual effort and utility of type (θ, ϕ) by
e(θ, ϕ) ≡ m(eθ(θ, ϕ), eϕ(θ, ϕ)) and V(θ, ϕ) ≡ u(c(θ, ϕ), e(θ, ϕ)).

Aggregate output (income) is given by

Y(Eθ, Eϕ) = Yθ(Eθ, Eϕ) + Yϕ(Eθ, Eϕ), where

Eθ ≡
∫

Θ×Φ
θeθ(θ, ϕ)dF(θ, ϕ) and Eϕ ≡

∫
Θ×Φ

ϕeϕ(θ, ϕ)dF(θ, ϕ)

are the aggregate effective (i.e., skill-weighted) efforts in the traditional and rent-seeking
activities, respectively, and Yθ and Yϕ are the aggregate incomes earned in the Θ- and Φ-
activities as (continuously differentiable) functions of both aggregate efforts. The income
of an individual of type (θ, ϕ) in each activity is yθ(θ, ϕ) and yϕ(θ, ϕ). Total individual in-

8Note that, since u is left general, this allows for preferences ũ(c, m̃(eθ , eϕ)) where m̃ is homothetic but
not linear homogeneous: then there exist transformations u and m of ũ and m̃ such that ũ(c, m̃(eθ , eϕ)) =
u(c, m(eθ , eϕ)) for all (c, eθ , eϕ) with linear homogeneous m. An example is û(c)− hθ(eθ)− hϕ(eϕ) with hθ(.)
and hϕ(.) homogeneous of the same degree.

8



come is denoted by y(θ, ϕ) ≡ yθ(θ, ϕ) + yϕ(θ, ϕ), with Y(Eθ, Eϕ) =
∫

Θ×Φ y(θ, ϕ)dF(θ, ϕ),
and analogously for Yθ and Yϕ.

To capture the distinction between the traditional and rent-seeking activities in terms
of their social versus private returns, we model technology in this two-activity model as
a fully general setting in which (i) each unit of effective effort in a given activity has the
same private return, (ii) effort in the Θ-activity imposes no externalities, so its private
return equals its social marginal product, and (iii) effort in the Φ-activity imposes at least
weakly negative externalities on both activities. The following lemma formalizes these
three properties and derives their implications for aggregate technology.

Lemma 1. Suppose that there exist some rθ(Eθ, Eϕ) and rϕ(Eθ, Eϕ) such that
(i) yθ(θ, ϕ) = rθ(Eθ, Eϕ)θeθ(θ, ϕ) and yϕ(θ, ϕ) = rϕ(Eθ, Eϕ)ϕeϕ(θ, ϕ) ∀ (θ, ϕ) ∈ Θ × Φ
(same private return to each unit of effective effort within a given activity),
(ii) rθ(Eθ, Eϕ) = ∂Yθ(Eθ, Eϕ)/∂Eθ = ∂Y(Eθ, Eϕ)/∂Eθ ∀Eθ, Eϕ (no externalities from the tradi-
tional activity), and
(iii) rϕ(Eθ, Eϕ) ≥ ∂Yϕ(Eθ, Eϕ)/∂Eϕ ≥ ∂Y(Eθ, Eϕ)/∂Eϕ ∀Eθ, Eϕ (weakly negative externalities
from rent-seeking). Then

1. Yθ(Eθ, Eϕ) = Γ(Eϕ)Eθ for some Γ(Eϕ) with Γ′(Eϕ) ≤ 0 ∀ Eϕ,

2. Yϕ(Eθ, Eϕ) = µ(Eϕ) for some µ(Eϕ) such that µ(Eϕ)/Eϕ ≥ µ′(Eϕ) ∀ Eϕ, and

3. rθ(Eθ, Eϕ) = Γ(Eϕ) and rϕ(Eθ, Eϕ) = µ(Eϕ)/Eϕ.

Proof. By (i), Yθ(Eθ , Eϕ) =
∫

Θ×Φ yθ(θ, ϕ)dF(θ, ϕ) =
∫

Θ×Φ rθ(Eθ , Eϕ)θeθ(θ, ϕ)dF(θ, ϕ) = rθ(Eθ , Eϕ)Eθ and,
analogously, Yϕ(Eθ , Eϕ) = rϕ(Eθ , Eϕ)Eϕ. Hence, ∂Yθ(Eθ , Eϕ)/∂Eθ = rθ(Eθ , Eϕ) + Eθ∂rθ(Eθ , Eϕ)/∂Eθ , and,
by (ii), rθ must be independent of Eθ . Since ∂Y(Eθ , Eϕ)/∂Eθ = rθ(Eθ , Eϕ) + Eϕ∂rϕ(Eθ , Eϕ)/∂Eθ , (ii) also
implies that rϕ is independent of Eθ . We can thus write Yθ(Eθ , Eϕ) = rθ(Eϕ)Eθ ≡ Γ(Eϕ)Eθ for some Γ, and
Yϕ(Eθ , Eϕ) = rϕ(Eϕ)Eϕ ≡ µ(Eϕ) for some µ. Finally, by (iii), rϕ(Eϕ) = µ(Eϕ)/Eϕ ≥ µ′(Eϕ) ≥ µ′(Eϕ) +

Γ′(Eϕ)Eθ ∀Eθ , Eϕ, which requires µ(Eϕ)/Eϕ ≥ µ′(Eϕ) and Γ′(Eϕ) ≤ 0 for all Eϕ.

Since private returns to effective effort only depend on Eϕ by result 3 in Lemma 1,
we simplify notation by dropping the subscript and letting E ≡ Eϕ henceforth. Lemma
1 establishes that in any two-activity model with properties (i) to (iii), traditional and
rent-seeking outputs can respectively be written as Γ(E)Eθ and µ(E). Moreover, private
returns to effective effort must be rθ(E) = Γ(E) in the traditional activity and rϕ(E) =

µ(E)/E in the rent-seeking activity, with Γ′(E) ≤ 0 and µ(E)/E ≥ µ′(E).9

Returns in the traditional activity reflect the social marginal product of effort in that
activity, while private returns exceed the social marginal product of effort in the rent-
seeking activity for two reasons: First, rent-seeking effort imposes a negative cross-activity

9This is guaranteed, e.g., if µ is increasing and concave with µ(0) ≥ 0, although it is not necessary.
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externality on the traditional activity by reducing output in that activity when Γ′(E) < 0.
Second, rent-seeking effort imposes a negative within-activity externality when rϕ(E) =

µ(E)/E > µ′(E) and the private returns exceed the within-activity social marginal prod-
uct. One extreme case would arise if Γ(E) ≡ 1 and µ(E) ≡ E, so that the rent-seeking
externality disappears. On the other hand, pure rent-seeking occurs when Γ(E) ≡ 1 and
µ(E) = µ, so there is a fixed rent to be captured in the rent-seeking activity and any effort
there is socially unproductive “skimming,” as in the example in Section 2.

It is worth emphasizing that this technology does not require firms or employers. We
can assume that each worker is self-employed and reaps the return to his effort directly.
However, the returns to both productive and rent-seeking effort are determined in general
equilibrium, by the supply of effort of all other workers.

While this technology thus generally captures a situation in which one activity exhibits
negative externalities and the other does not, property (i) of the Lemma implies that the
rent-seeking externality works through individual returns to effective effort. It therefore
rules out the uniform absolute reduction in other individuals’ incomes due to rent-seeking
(considered, for instance, in Piketty et al., 2014, and Lockwood et al., 2014), which is
independent of effort. Indeed, the interesting relative return effects on activity choice
that we explore in the following arise precisely because we allow rent-seeking to have
differential effects on the returns to different types of effort.

3.2 Applications

Our general framework is flexible enough to capture a wide range of rent-seeking activ-
ities. For instance, in many applications, labor effort effectively takes the form of search,
such as search for arbitrage opportunities in financial markets, where traders compete
to exploit a potentially limited set of profitable trades. As a trading strategy becomes
more crowded, its equilibrium return falls, leading to negative search externalities (as e.g.
in Axelson and Bond, 2012). Similarly, portions of individual incomes are often earned
through tournaments (Lazear and Rosen, 1979), i.e., fixed-sum games with winner-takes-
all compensation, e.g. in activities related to the arts, entertainment, law, or consulting.
The next example illustrates our connection to these standard rent-seeking applications
formally.

Example 1 (Contests). Consider N rent-seekers competing for a rent of value µ. As in Tullock
(1980), the probability pi that player i ∈ {1, ..., N} wins the contest is increasing in her own
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effective effort relative to everyone else’s effective effort:

pi(ϕiei
ϕ, ϕ−ie−i

ϕ ) = ϕiei
ϕ

/ N

∑
j=1

ϕjej
ϕ.

Player i’s expected payoff (and thus long-run income if these contests occur repeatedly) is
therefore ϕiei

ϕµ/E with E ≡ ∑N
j=1 ϕjej

ϕ. Whenever ϕiei
ϕ/E is small, the private return to effective

rent-seeking effort is given by µ/E, as in our general model, and exceeds the social marginal return
to effective effort, given by µ′(E) (zero if µ(E) = µ).

Relatedly, our model can capture activities that take the form of races, where individ-
uals compete to be the first to discover new ideas and innovations in R&D and academic
research, market opportunities or consulting strategies (see e.g. Arrow, 1962, for busi-
ness stealing effects and Dixit, 1987, for innovation races). This framework also describes
socially wasteful but privately profitable financial speculation (Hirshleifer, 1971, Arrow,
1973) when traders have an incentive to be the first to incorporate a piece of information
into market prices, even if the social value of this acceleration is small, leading to ex-
cessive investments in accelerating the pace of adjustments. This is again demonstrated
formally in the following example.

Example 2 (Races). Suppose individuals race to discover a rent with value M(t) at time t (with
M′ < 0 if early discovery is valuable), with the winner capturing the entire benefit. If individual
discovery hazards λϕiei

ϕ are proportional to skill-weighted efforts ϕiei
ϕ, then, defining aggregate

effort E = ∑i ϕiei
ϕ, the time to discovery is p(t|E) = λE exp(−λEt) and the expected payoff to

an individual rent-seeker i is

ϕiei
ϕ

E

∫ ∞

0
M(t)p(t|E)dt ≡ ϕiei

ϕ
µ(E)

E
with µ(E) ≡

∫ ∞

0
M(t)p(t|E)dt,

as in our general model. Conditions that ensure µ(E)/E ≥ µ′(E) are easy to provide.

Of course, many jobs involve a mixture of both rent-seeking and traditional, produc-
tive activities. For instance, Glode and Lowery (2012) consider a model where financial
sector workers engage in both (zero-sum) speculative trading and surplus creation (e.g.
from market making) and argue that profits from both activities are interlinked. In such
cases, rent-seeking may also have negative impacts on the productivity of traditional ac-
tivities, as captured by Γ′(E) < 0 in our general model and illustrated in the next example,
which elaborates on the illustrative example from the introduction.

Example 3 (Red Tape). Consider an organization wherein individuals compete for rents µ (as
in Example 1) and provide traditional work. Agents skim rents by routing paperwork through
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their desk or inserting themselves more in the way of decision and production processes. The total
income of individual i is given by ϕiei

ϕµ/E + Γ(E)θiei
θ, where Γ′(E) < 0 captures the negative

effect on traditional output when individuals compete harder for rents.

Rent-seeking is also a natural feature of labor markets where pay is determined by
offers from competing employers, such as for academic faculty. Academics can put time
and effort both into doing actual research and into competing for outside offers (which is
costly and time-consuming both for the academic and potential recruiters). Both types of
effort increase pay, but salary raises due to outside offers may not necessarily correspond
to an increase in research productivity, as captured by the contest compensation structure
in Example 1.10 Spending time and resources on outside offers may also get in the way of
actual research, leading to cross-activity externalities as in Example 3.

While Example 3 describes negative production externalities from rent-seeking, our
framework can also capture situations where some of the rent-seeking incomes are at
the expense of productive incomes. For instance, Besley and Ghatak (2013) argue that
bailouts in the financial sector come at the expense of productive workers, leading to
wasteful (risk-taking) effort among financial workers with negative cross-sectoral exter-
nalities. Piketty et al. (2014) emphasize that executive officers may set their compensation
through bargaining, thereby claiming a larger share of the resources in the company and
leaving less for workers. In Biais et al. (2011), fast traders impose externalities on slow
traders through adverse selection from their information advantage. In team production
settings, individuals spend time and effort both to produce profits and to get credit for
those profits (and to make sure to get compensated for the profits they get credit for).

As these examples make clear, our assumption that rent-seeking incomes are hard to
target separately not only makes our analysis theoretically interesting but is also most
relevant in practice. In particular, even sector- or profession-specific taxes e.g. on the
financial sector, such as the bonus taxes mentioned in the introduction, affect individ-
uals who earn income both from productive work and rent-seeking. Our model then
characterizes the optimal design of a non-linear tax for any given such sector or occupa-
tion. As discussed in the introduction, enforcing even more targeted instruments, such as
taxes only on particular activities within financial markets or law services, would require
the government to collect detailed information about the kind of tasks that individuals
do and therefore be difficult and costly, especially if individuals can rather easily relabel
their type of activity.11

10The same framework applies when researchers spend part of their time on competing for grants or
prizes through races or contests with winner-takes-all compensation, as in Examples 1 and 2, and other
parts of their time on producing actual research.

11Our qualitative results would extend to the case where incomes from different activities can be dis-
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In an alternative interpretation, the model can be applied to an entire economy with a
general income tax and where activities themselves correspond to sectors or occupations.
The activity shift effect could then be interpreted as a shift of effort across such sectors.
Our assumption of imperfect targeting within sectors would then translate into the as-
sumption that profession-specific tax instrument are not available (as in Rothschild and
Scheuer, 2013, and Lockwood et al., 2014). This is also the interpretation we pursue in the
quantitative exercise in Section 5. One could imagine various practical reasons for such a
restriction. Differential taxation may create additional distortions if individuals can rela-
bel their occupations or shift income from one sector to another. It may encourage special
interest lobbying for preferential tax treatment of particular occupations. Finally, it may
raise concerns about horizontal equity and about empowering the government to make
the determination of how socially productive workers in different professions or sectors
really are. A general income tax also corresponds to the tax systems in most countries, so
the second interpretation would connect naturally to the recent policy debate.12

3.3 Implementation

We start by characterizing a general, direct implementation, where individuals announce
their privately known type (θ, ϕ) and then get assigned c(θ, ϕ), y(θ, ϕ), and the frac-
tion of income earned through the Θ-activity, given by q(θ, ϕ) ≡ yθ(θ, ϕ)/y(θ, ϕ) =

Γ(E)θeθ(θ, ϕ)/y(θ, ϕ). Income y and consumption c are observable but an individual’s
skill type (θ, ϕ) and, due to imperfect targeting, their activity-specific efforts eθ or eϕ (and
q) are not. The resulting incentive constraints that guarantee truth-telling of the agents
are:

u
(

c(θ, ϕ), m
(

q(θ, ϕ)y(θ, ϕ)

θΓ(E)
,
(1− q(θ, ϕ))y(θ, ϕ)

ϕµ(E)/E

))
≥ max

p∈[0,1]

{
u
(

c(θ′, ϕ′), m
(

py(θ′, ϕ′)

θΓ(E)
,
(1− p)y(θ′, ϕ′)

ϕµ(E)/E

))}
∀(θ, ϕ), (θ′, ϕ′), (2)

since type (θ, ϕ) can imitate another type (θ′, ϕ′) by earning (θ′, ϕ′)’s income using a
continuum of combinations of efforts (and thus income shares (p, 1− p)) in the Θ- and

tinguished imperfectly, e.g. because of an imperfect signal about an individual’s income composition or
a “fuzzy frontier” between different types of income, which allows for income shifting. This issue has re-
ceived much attention and empirical support in the context of labor versus capital income (e.g. Saez et al.,
2012) and would presumably apply even more to income from traditional versus rent-seeking effort.

12We take the rent-seeking opportunities and hence externalities in a given sector as given. Presumably,
the government can also affect rents through regulation, which would affect the form of the externalities
through Γ(E) and µ(E) directly. However, as long as some rent-seeking opportunities remain after regula-
tion, our analysis of optimal taxes remains relevant, taking the degree of regulation as given.
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Φ-activities.
The following lemma shows that incentive compatibility implies that each type (θ, ϕ)

has a well-defined wage w ≡ y/e and activity-specific income share q, which both depend
on aggregate rent-seeking effort E but are otherwise independent of the allocation.

Lemma 2. In any incentive compatible allocation {c(θ, ϕ), y(θ, ϕ), q(θ, ϕ), E},

w(θ, ϕ) ≡ y(θ, ϕ)

e(θ, ϕ)
= max

p∈[0,1]
m
(

p
θΓ(E)

,
1− p

ϕµ(E)/E

)−1

(3)

and q(θ, ϕ) is a corresponding arg max.

Proof. By the linear homogeneity of m, the “own type” incentive constraints (for (θ, ϕ) = (θ′, ϕ′)) imply

q(θ, ϕ) ∈ argmin
p∈[0,1]

m
(

py(θ, ϕ)

θΓ(E)
,
(1− p)y(θ, ϕ)

ϕµ(E)/E

)
= argmin

p∈[0,1]
m
(

p
θΓ(E)

,
1− p

ϕµ(E)/E

)
.

Equation (3) then follows immediately from the definitions w(θ, ϕ) ≡ y(θ, ϕ)/e(θ, ϕ) and

e(θ, ϕ) ≡ m(eθ(θ, ϕ), eϕ(θ, ϕ)) = y(θ, ϕ)m
(

q(θ, ϕ)
θΓ(E) , 1− q(θ, ϕ)

ϕµ(E)/E

)
.

By Lemma 2, fixing E pins down each type’s wage w(θ, ϕ); we write wE(θ, ϕ) to make
this E-dependency explicit henceforth. Moreover, q(θ, ϕ) is chosen to minimize the over-
all effort m(eθ, eϕ) subject to achieving a given amount of income. Hence, by (3) and linear
homogeneity of m,

wE(θ, ϕ)= max
p∈[0,1]

ym
(

py
θΓ(E)

,
(1− p)y
ϕµ(E)/E

)−1

= max
eθ ,eϕ

y
m(eθ, eϕ)

s.t. θΓ(E)eθ + ϕ
µ(E)

E
eϕ = y (4)

for any y. When m is strictly quasiconvex, q(θ, ϕ), which depends only on the skill ra-
tio α ≡ θ/ϕ, is also uniquely determined by E for each α. With weakly quasiconvex
m, q(θ/ϕ) is uniquely determined outside of a countable set of α-values, where it is
interval-valued because the individual is indifferent between various effort combinations
to achieve a given income. By Lemma 2, the correspondence q(θ/ϕ) depends on, and is
non-decreasing in, the relative returns xE(α) ≡ αΓ(E)/(µ(E)/E), and we can define the
functions qE(α) ≡ Q(xE(α)) by taking q to be equal to the midpoints of the intervals on the
countable set of degenerate α’s. Viewed as a distribution, Q has a well-defined derivative
denoted by Q′.13 Note that the constraint in (4) can be rearranged to

eθ

eϕ
=

ϕµ(E)/E
θΓ(E)

(
y

eϕ ϕµ(E)/E
− 1
)
=

1
xE(α)

q
1− q

, (5)

13In particular, Q(x) is ordinarily differentiable except at some countable number of jump discontinuities;
the latter adds a series of Dirac δ-functions to Q′. See appendix A.2. Recall that q ∈ {0, 1} for almost all
individuals if m is linear, but otherwise will typically take interior values.
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so that Q(x) = xr(x)/(1 + xr(x)) with r ≡ eθ/eϕ, which only depends on and is increas-
ing in x by linear homogeneity and quasiconvexity of m. For later use, it will also be
helpful to define Q̃x0(x) ≡ x0r(x)/(1+ x0r(x)) with Q̃′(x) ≡ Q̃′x0

(x)
∣∣
x0=x, i.e. the change

in the traditional income share Q that is due to the change in the activity-specific effort
ratio r in response to a change in relative returns x, but holding x fixed otherwise.

All individuals with the same wage w have the same preferences over (c, y)-bundles
given by u(c, y/w). As is standard, we assume the single crossing property, i.e., that the
marginal rate of substitution between y and c, −ue(c, y/w)/ (wuc(c, y/w)), is decreasing
in w. Under this assumption, it is straightforward to show that any incentive compatible
allocation can be implemented with a non-linear income tax T(y) and that we can trace
out the Pareto frontier by restricting attention to allocations {c(w), y(w), E} that pool all
same-wage individuals at the same (c, y)-bundle (see Lemma 1 in Rothschild and Scheuer,
2013).

4 Optimal Non-linear Income Taxation

4.1 Definitions and Preliminaries

We use general cumulative Pareto weights Ψ(θ, ϕ) in (θ, ϕ)-space with the correspond-
ing density ψ(θ, ϕ) to obtain Pareto efficient allocations. The social planner maximizes∫

Θ×Φ V(θ, ϕ)dΨ(θ, ϕ) subject to resource and self-selection constraints. The observation
that makes this problem tractable is that, by Lemma 2, fixing E determines the wage
wE(θ, ϕ) and the traditional activity income share qE(α) for each type (θ, ϕ). For any given
E, it will be useful in the following to compute the cdf over (w, α)-pairs from

GE(w, α) ≡
∫
{(θ,ϕ)|wE(θ,ϕ)≤w, θ/ϕ≤α}

dF(θ, ϕ)

with the corresponding density gE(w, α). We denote the support of the wage distribution
for any E by [wE, wE], where wE = wE(θ, ϕ) and wE = wE(θ, ϕ). This allows us to obtain
the wage distribution for any given E simply as the marginal distribution

FE(w) ≡
∫
{(θ,ϕ)|wE(θ,ϕ)≤w}

dF(θ, ϕ) =
∫ w

wE

∫ ∞

α=0
dGE(z, α)

with the corresponding density fE(w) =
∫ ∞

α=0 dGE(w, α) as well as the activity-specific
densities f θ

E(w) ≡
∫ ∞

α=0 qE(α)dGE(w, α) and f ϕ
E (w) ≡

∫ ∞
α=0(1− qE(α))dGE(w, α). Hence,

these densities can be interpreted as an average value of q (respectively 1 − q) for all

15



individuals at wage w, and fE(w) = f θ
E(w) + f ϕ

E (w) for all w ∈ [wE, wE].14 Finally, for any
given E, we can derive Pareto weights over wages ΨE(w), as well as their density and
decomposition across activities ψE(w) = ψθ

E(w) + ψ
ϕ
E(w), completely analogously from

Ψ(θ, ϕ). We are particularly interested in the regular case in which the planner assigns
greater weight to low-wage individuals, i.e., where ψE(w)/ fE(w) is non-increasing in w
for any E.15

Any incentive compatible allocation {c(w), y(w), E} implies total effort and utility
e(w) ≡ y(w)/w and V(w) ≡ u(c(w), e(w)) as well as the activity-specific efforts eθ(θ, ϕ) =

qE(θ/ϕ)y(wE(θ, ϕ))/θΓ(E) and (analogously) eϕ(θ, ϕ). We denote the uncompensated
and compensated wage elasticities of total effort e by εu(w) and εc(w), respectively.

4.2 A Decomposition and Pareto Optimality

Generalizing the analysis of the extensive-margin Roy model in Rothschild and Scheuer,
2013, we can decompose the problem of finding Pareto optimal allocations into two steps.
The first step involves finding the optimal level of aggregate rent-seeking effort E. We
call this the “outer” problem. The second (which we call the “inner” problem) involves
finding the optimal resource-feasible and incentive-compatible allocation for a given level
of E. This inner problem is an almost standard Mirrlees problem; the only difference is
that the induced level of aggregate effective rent-seeking effort has to be consistent with
the level of E that we are fixing for the inner problem. For some given Pareto weights
Ψ(θ, ϕ) (and hence induced weights ΨE(w)), we therefore define the inner problem as
follows (where c(V, e) is the inverse function of u(c, e) w.r.t. c):

W(E) ≡ max
V(w),e(w)

∫ wE

wE

V(w)dΨE(w) (6)

subject to
V′(w) + ue(c(V(w), e(w)), e(w))

e(w)

w
= 0 ∀w ∈ [wE, wE] (7)

µ(E)−
∫ wE

wE

we(w) f ϕ
E (w)dw = 0 (8)

14In the special case with m(eθ , eϕ) = eθ + eϕ, (3) immediately implies qE(α) ∈ {0, 1} almost everywhere
and wE(θ, ϕ) = max{θΓ(E), ϕµ(E)/E}. Then, as in Rothschild and Scheuer (2011), f ϕ

E (w)/ fE(w) can be
interpreted as the share of rent-seekers at w (whereas here it is more generally the rent-seeking income
share at wage w).

15For example, consider the case of relative Pareto weights where Ψ(θ, ϕ) = Ψ̃(F(θ, ϕ)) for some increas-
ing function Ψ̃ : [0, 1]→ [0, 1]. Then these Pareto weights are regular whenever Ψ̃ is weakly concave.

16



∫ wE

wE

we(w) fE(w)dw−
∫ wE

wE

c(V(w), e(w)) fE(w)dw ≥ 0. (9)

We employ the standard Mirrleesian approach of optimizing directly over allocations,
i.e., over effort e(w) and consumption or, equivalently, utility V(w) profiles. The social
planner maximizes a weighted average of individual utilities V(w) subject to three con-
straints. (9) is a standard resource constraint and (8) ensures that aggregate effective effort
in the rent-seeking activity indeed sums up to E (or, equivalently, rent-seeking incomes
sum to µ(E)). Finally, the allocation V(w), e(w) needs to be incentive compatible, i.e.,

V(w) ≡ u(c(w), e(w)) = max
w′

u
(

c(w′),
e(w′)w′

w

)
. (10)

It is a well-known result that under single-crossing, the global incentive constraints (10)
are equivalent to the local incentive constraints (7) and the monotonicity constraint that
income y(w) must be non-decreasing in w.16 We follow the standard approach of drop-
ping the monotonicity constraint, which can easily be checked ex post (as we do for the
numerical simulations in Section 5). If the solution to problem (6) to (9) does not satisfy
it, optimal bunching would need to be considered. Accounting for bunching is conceptu-
ally straightforward and does not substantively effect our analysis, so, for simplicity, we
abstract from bunching henceforth.

Once a solution V(w), e(w) to the inner problem has been found, the resulting welfare
is given by W(E). The outer problem is then simply maxE W(E). It is straightforward to
show that a solution to the inner problem exists for any E (see Rothschild and Scheuer,
2014, for details) and that, at any E for which individuals work in both activities, W(E) is
continuous, so that the outer problem has a solution over any compact set of Es.17

4.3 Marginal Tax Rate Formulas from the Inner Problem

Solving the inner problem (6) to (9) for a given E yields the following optimal marginal
tax rate formula:

Proposition 1. The marginal tax rate in any Pareto optimum is such that

1− T′(y(w)) =

(
1− ξ

f ϕ
E (w)

fE(w)

)(
1 +

η(w)

w fE(w)

1 + εu(w)

εc(w)

)−1

with (11)

16See, for instance, Fudenberg and Tirole (1991), Theorems 7.2 and 7.3.
17Compactness would be ensured, for instance, by a standard Inada condition ue(c, e)→ −∞ as e ↑ e for

some e < ∞.
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η(w) =
∫ wE

w

(
1− ψE(x)

fE(x)
uc(x)

λ

)
exp

(∫ x

w

(
1− εu(s)

εc(s)

)
dy(s)
y(s)

)
fE(x)dx (12)

for all w ∈ [wE, wE], where λ is the multiplier on the resource constraint (9) and λξ the multiplier
on the consistency constraint (8).

These formulas are the same as those for a standard Mirrlees model (see e.g. equations
(15) to (17) in Saez, 2001), with the only difference that, at each wage, marginal keep shares
1− T′(y(w)) are scaled down by the correction factor 1− ξ f ϕ

E (w)/ fE(w), where ξ is the
(normalized) Lagrange multiplier on constraint (8) and f ϕ

E (w)/ fE(w) is the fraction of
incomes earned in the rent-seeking activity at wage level w. This optimal local correction,
which makes agents internalize the rent-seeking externality, is thus proportional to the
relative importance of rent-seeking at w and the shadow cost of the consistency constraint
(8). As usual, the term η(w) captures the redistributive motives of the government and
income effects from the terms in the exponential function. A particularly transparent
formula can be obtained from (11) with quasilinear preferences u(c, e) = c− h(e), where
income effects disappear, as in Diamond (1998). Then uc(w) = λ = 1 and εu(w) =

εc(w) ∀w, so that η(w) = ΨE(w)− FE(w). Hence T′(y(w)) ≥ 0 at all income levels under
regular Pareto weights, and the marginal tax rate is increasing in the degree to which
ΨE(w) shifts weight to low-wage individuals compared to FE(w).

Under any preference assumptions, the top marginal tax rate is given by T′(y(wE)) =

ξ f ϕ
E (wE)/ fE(wE), or simply ξ if all income at the top is from rent-seeking. We next con-

sider the outer problem in order to explore the determination of E and ξ.

4.4 Optimal Rent-Seeking Effort from the Outer Problem

Our main goal here is to compare ξ to the Pigouvian tax tPigou, defined by

(
1− tPigou

) µ(E)
E
≡ µ′(E) + Γ′(E)Eθ,

i.e., as the tax that aligns the private and social returns to rent-seeking effort. We show
in section 4.6 below that tPigou can be interpreted as the optimal corrective tax if, in addi-
tion to levying an optimal nonlinear income tax, the government could directly tax rent-
seeking income (see Proposition 3). The key question in the following will be how ξ—
interpretable the optimal externality correction in our model with imperfect targeting—
differs from this targeted instrument benchmark tPigou. For this purpose, it is useful to
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denote the elasticities of the returns rθ(E), rϕ(E) in the two activities w.r.t. E by

βθ(E) ≡ −Γ′(E)
E

Γ(E)
> 0 and βϕ(E) ≡ − d

dE

(
µ(E)

E

)
E

µ(E)/E
= 1− µ′(E)E

µ(E)
> 0.

Then tPigou can be expressed as an output weighted sum of the corrections for the within-
and the cross-activity externalities from rent-seeking:

tPigou = βϕ(E) +
Yθ

Yϕ
βθ(E) > 0.

Let ∆β(E) ≡ βϕ(E)− βθ(E) denote the relative importance of the within- versus across-
activity externalities. Lemma 3 uses this to provide a simple decomposition of the welfare
effect of marginal changes in E.

Lemma 3. The welfare effect of a marginal change in aggregate rent-seeking effort E is

W ′(E) = λ
µ(E)

E
(
ξ − tPigou

)
+

∆β(E)
E

[I + R + ξλ (C + S)] , (13)

where
I ≡ λ

∫ wE

wE

η(w)w
V′(w)

uc(w)

d
dw

(
f ϕ
E (w)

fE(w)

)
dw, (14)

R ≡
∫ wE

wE

V′(w)w
f θ
E(w) f ϕ

E (w)

fE(w)

(
ψθ

E(w)

f θ
E(w)

−
ψ

ϕ
E(w)

f ϕ
E (w)

)
dw, (15)

C ≡
∫ wE

wE

w2e′(w)VarE(q|w) fE(w)dw (16)

and
S ≡

∫ wE

wE

∫ ∞

α=0
y(w)Q̃′(xE(α))xE(α)dGE(w, α) ≥ 0 (17)

with VarE(q|w) =
∫ ∞

0 qE(α)
2gE(α|w)dα−

(∫ ∞
0 qE(α)gE(α|w)dα

)2 and gE(α|w) = gE(w,α)
fE(w)

.

The terms λξµ(E)/E and −λtPigouµ(E)/E in (13) respectively capture the direct effect
of a change in E on constraint (8) and the effect of changing sectoral returns on (9), holding
fixed the bundles eθ(θ, ϕ), eϕ(θ, ϕ), and V(θ, ϕ) (and hence c(θ, ϕ)) for all types (θ, ϕ).18

In fact, when ∆β(E) = 0, E has no effect on relative returns xE(α). So changing E while

18To see the former, multiply (8) by 1/rϕ(E) = E/µ(E) to re-write it as E −
∫

Θ×Φ ϕeϕ(θ, ϕ)dF(θ, ϕ) =

0 and note that the second term is independent of E when eϕ(θ, ϕ) is held constant. To see the latter,
differentiate with respect to E the total income in the economy rθ(E)Eθ + rϕ(E)

∫
Θ×Φ ϕeϕ(θ, ϕ)dF(θ, ϕ) to

get
r′θ(E)E
rθ(E)

rθ(E)Eθ

E
+

r′ϕ(E)E
rϕ(E)

rϕ(E) = −βθ(E)
Yθ

E
− βϕ(E)rϕ(E) = −µ(E)

E
tPigou.
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holding the effort-consumption bundle for each type (θ, ϕ) fixed is compatible with the
incentive constraints (2). By an envelope argument, then, W ′(E) = λ

(
ξ − tPigou

)
µ(E)/E,

consistent with (13).
When ∆β(E) 6= 0, the change in relative returns drives a wedge between ξ and tPigou

since holding allocations fixed is no longer incentive compatible, and there are additional
welfare effects from a change in E captured by the four effects in (14) to (17). In discussing
them, we focus on the case ∆β(E) > 0, so that an increase in E increases the relative return
to traditional work xE(α). The opposite case is analogous with reversed signs.

First, a change in E causes an activity shift. An increase in E (and thus xE(α)) leads
a type α = θ/ϕ-individual to increase her optimal effort ratio eθ/eϕ = r(x) and hence
the traditional income share Q (x) = xr(x)/(1 + xr(x)). The change in Q due to the
change in r (holding x itself constant) is Q̃′(xE(α))dxE(α)/dE = Q̃′(xE(α))xE(α)∆β(E)/E,
whence the term S in (13). As we detail in Appendix A.2, there are two components to
this change: a continuous one, which arises as individuals continuously increase eθ/eϕ

(and hence q), and a discrete one, which arises when the effort aggregator m(eθ, eϕ) has
linear segments and an incremental change in E leads some indifferent individuals to
jump discretely to a higher q (as emphasized in Rothschild and Scheuer, 2011, where
just indifferent individuals switch the activity they specialize in). The (distributional)
derivative Q̃′ subsumes both of these effects.

Second, a change in E has different effects on the wages of distinct individuals who
originally earned the same wage w. In particular, note that (4) can equivalently be written
as

wE(θ, ϕ)=max
eθ ,eϕ

θΓ(E)eθ + ϕ
µ(E)

E eϕ

m(eθ, eϕ)
s.t. m(eθ, eϕ) = e. (18)

Using the envelope theorem, the elasticity of wages with respect to E is therefore

− dwE(θ, ϕ)

dE
E

wE(θ, ϕ)
= qE(α)βθ(E) + (1− qE(α))βϕ(E), (19)

i.e., the income-share weighted average of the aggregate return elasticities. The average
wage change for individuals originally pooled at w is thus −

(
q̄wβθ + (1− q̄w)βϕ

)
w/E,

where we write q̄w as a shorthand for EE(q|w). By (19) and when ∆β(E) > 0, α-types
with qE(α) < (>) q̄w see their wages fall by more (less) than this average, however. The
terms C, I, and R are the extra welfare effects that arise in reconciling this with the fun-
damental incentive constraints (2). Specifically, since the thought experiment of holding
type-specific allocations fixed is infeasible when ∆β(E) 6= 0, the formal proof we provide
in Appendix A.2 (and discuss in more intuitive detail in Rothschild and Scheuer, 2011) is
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motivated by instead holding fixed the wage-specific allocations e(w), V(w).
The term C arises because, by changing their wages differentially in the face of a

fixed effort schedule e(w), an increase in E effectively re-allocates effort across individuals
with the same initial wage w but different activity-specific intensities q. In particular, the
change in effort induced by E, relative to the wage-w average, is e′(w)(q̄w − q)∆β(E)w/E
for an individual with original wage w and traditional income share q. The change in
rent-seeking income for this individual is thus w2e′(w)(1− q)(q̄w − q)∆β(E)/E. Averag-
ing over all q’s yields w2e′(w)VarE(q|w)∆β(E)/E and hence (after summing over all w’s)
the effect C on (8). In particular, for an increasing effort schedule e(w), a rise in E results
in a re-allocation of effort from low- to high-q individuals at any given w—and thus from
the Φ- to the Θ-activity. Hence, C reinforces S if e′(w) ≥ 0.

The terms R and I are parallel to those in Rothschild and Scheuer (2013). R arises from
the analogous reallocation of utility V(w) from low-q to high-q individuals at the same
initial wage, as a rise in E decreases the latter’s wage by relatively less when ∆β(E) >

0. It obviously disappears with relative welfare weights Ψ(θ, ϕ) = Ψ̃(F(θ, ϕ)), since
then ψθ

E(w)/ f θ
E(w) = ψ

ϕ
E(w)/ f ϕ

E (w) for all w, E. Otherwise, it is welfare improving
when the planner puts more weight on high-q individuals at each wage (ψθ

E(w)/ f θ
E(w) >

ψ
ϕ
E(w)/ f ϕ

E (w)) and vice versa.
Finally, the term I is a generalized Stiglitz (1982) effect: if ∆β(E) > 0 and the share of

income earned through rent-seeking is locally increasing in w (i.e., d( f ϕ
E (w)/ fE(w))/dw >

0), an increase in E leads to a local compression of the wage distribution, since returns in
the high-wage activity fall and vice versa. This yields a welfare improving easing of
the local incentive constraints (7) if they are binding downwards (η(w) ≥ 0). I there-
fore vanishes if there are no redistributive motives (e.g. with quasilinear preferences and
Ψ̃(F) = F ∀F), so that η(w) = 0 for all w.

With linear m, the model collapses to the special case in Rothschild and Scheuer (2011)
with binary occupational choice, q ∈ {0, 1}. Then the effects simplify as follows:

Corollary 1. If m(eθ, eϕ) = eθ + eϕ, then I and R are as in Lemma 3 and

C =
∫ wE

wE

w2e′(w)
f θ
E(w) f ϕ

E (w)

fE(w)
dw, S =

E
µ(E)Γ(E)

∫ wE

wE

w2e(w) f
(

w
Γ(E)

,
wE

µ(E)

)
dw ≥ 0.

C then just captures the re-allocation of effort from rent-seekers to traditional workers
with the same initial w at wage levels where the activity-specific distributions overlap,
and S measures the effort moved from Φ to Θ as originally indifferent individuals switch
activities.
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4.5 Marginal Tax Rate Results

Setting W ′(E) = 0 and using (13) at any interior Pareto optimum yields the following
relationship between ξ and tPigou:

ξ = tPigou

(
1− 1

λtPigou

∆β(E)
µ(E)

(I + R)

)/(
1 +

∆β(E)
µ(E)

(C + S)
)

. (20)

In a one-activity model with only the rent-seeking activity available and f θ
E(w) = 0 for

all w, we mechanically have I = R = C = S = 0 and therefore ξ = tPigou = βϕ(E). The
tax formula (11) then implies that the correction factor by which marginal keep shares are
scaled down compared to the standard formula is uniform and given by 1− tPigou. This
can be understood as a two-step correction as in Kopczuk (2003): first tax all wages by
tPigou to correct the rent-seeking externality. Then apply the standard optimal tax formula,
as in a Mirrlees model without externalities, with the corrected wages (1− tPigou)w. In
particular, the top marginal tax rate is just T′(y(wE)) = tPigou.

In the general case where both activities take place, the optimal correction ξ deviates
from tPigou due to the relative return effects (14) to (17) whenever ∆β(E) 6= 0. Based
on the discussion in the previous subsection and (20), the following proposition collects
conditions that determine this comparison.

Proposition 2. In any regular Pareto optimum, ξ > 0. If in addition (i) effort e(w) is weakly
increasing in w, (ii) marginal utility of consumption uc(c(w), e(w)) is weakly decreasing in w,
(iii) the share of rent-seeking incomes f ϕ

E (w)/ fE(w) is weakly increasing in w, and (iv) the welfare
weights on high-q workers are weakly greater than those on low q-workers at each w, so that
ψθ

E(w)/ f θ
E(w) ≥ ψ

ϕ
E(w)/ f ϕ

E (w) ∀w, then

ξ S tPigou if ∆β(E) T 0.

Combined with the marginal tax rate formula in Proposition 1, this result has clear im-
plications for Pareto optimal tax schedules. For instance, under the conditions in Propo-
sition 2 and if all income at the top is earned through rent-seeking ( f ϕ

E (wE) = fE(wE)),
then T′(y(wE)) = ξ S tPigou if ∆β(E) T 0. Hence, if e.g. ∆β(E) > 0, the top marginal tax
rate is less than the Pigouvian correction tPigou even when all top earners are exclusively
active in the rent-seeking activity.19 At other income levels, the optimal correction ξ is
still less than tPigou by Proposition 2, but of course gets combined with the redistributive

19Of course, a fortiori we obtain 0 ≤ T′(y(wE)) = ξ f ϕ
E (wE)/ fE(wE) < tPigou if the share of income from

rent-seeking is less than one at the top and ∆β(E) > 0.
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components of the marginal tax rate according to (11).
The divergence of the optimal correction ξ from tPigou directly reflects the fact that

the income tax is an imperfect tool for externality correction. It is an imperfect tool even
in brackets of the income distribution where all income comes from rent-seeking. This
is because, as the discussion above highlights, the effects of the externality E are non-
uniform—i.e., there are relative return effects whenever ∆β(E) 6= 0. When ∆β(E) > 0,
taxing rent-seeking intensive portions of the income distribution at a higher rate directly
discourages effort at those income levels, lowering E and helping to correct the external-
ity. Partly offsetting this is the fact that a lower E raises the relative returns to rent-seeking,
encouraging a shift into this activity. This partial offset implies a smaller-than-Pigouvian
optimal correction. If ∆β(E) < 0, all the effects reverse their sign: higher taxes directly
discourage the externality-causing activity, and, since this lowers the relative returns to
rent-seeking, indirectly encourage effort-shifting away from rent-seeking. As a result, the
optimal ξ exceeds tPigou and, for instance, the optimal top marginal tax rate over-corrects
compared to the Pigouvian rate.

As discussed in subsection 4.4, apart from S ≥ 0, there are three additional relative
return effects C, I, and R. The assumptions in Proposition 2 are sufficient to ensure that
they are also non-negative and thus reinforce S. Note, however, that these are only suf-
ficient conditions, so that the comparison between ξ and tPigou can hold even when they
are violated for some wage levels. For instance, with relative Pareto weights and quasilin-
ear preferences, R = 0 since the planner attaches the same welfare weight to individuals
with the same wage but different q’s, and marginal utility of consumption is constant and
equal to one, so that both conditions (ii) and (iv) can be dropped.20 Assumptions (i) and
(iii) are easy to verify ex-post, as we do in Section 5.

Our results do not depend on a bounded skill distribution, but readily extend to the
case of an unbounded support. For simplicity, consider quasilinear and isoelastic pref-
erences.21 In addition, suppose that limw→∞ f ϕ

E (w)/ fE(w) = x with x ∈ [0, 1], that
χ = limw→∞ w fE(w)/(1− FE(w)) exists, and that limw→∞ ψE(w)/ fE(w) = 0 so that the
share of rent-seeking income at the top is well-defined, the wage distribution has a Pareto
tail, and the social planner puts zero weight on the top earners. Then we can use equation
(11) to derive the following asymptotic marginal tax rate for w → ∞ (see Rothschild and

20The only role of condition (ii) in Proposition 2 is to make sure (together with regular welfare weights)
that the incentive constraints bind downwards, i.e. η(w) ≥ 0. All that matters for this is that the overall
social marginal welfare weights uc(w)ψE(w)/ fE(w) are non-increasing in w.

21Similar results can be derived for the general case using the asymptotic methods in Saez (2001).
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Scheuer, 2011, for the details):

lim
w→∞

T′(y(w)) =
ξχx + 1 + 1/ε

χ + 1 + 1/ε
. (21)

Moreover, Lemma 3 and Proposition 2 also go through, so that 0 < ξ and ξ S tPigou under
the same conditions as in the bounded support case.

4.6 Comparison to the Perfectly Targeted Tax Benchmark

We finally compare the preceding results to the hypothetical scenario under which, in ad-
dition to the nonlinear income tax T(y), a linear tax t on rent-seeking income is available.
To attack the resulting optimal tax problem, it is useful to decompose it into an inner and
outer problem as follows: the inner problem takes t and E as given and is written in terms
of after-t returns in the rent-seeking activity. In particular, we define allocations as before,
except that now yϕ(θ, ϕ) ≡ (1− t)ϕ

µ(E)
E eϕ(θ, ϕ), with y(θ, ϕ) ≡ yθ(θ, ϕ) + yϕ(θ, ϕ) and

q(θ, ϕ) ≡ yθ(θ, ϕ)/y(θ, ϕ) following accordingly. Then by Lemma 2, incentive compati-
bility requires

wE,t(θ, ϕ) ≡ max
p∈[0,1]

m
(

p
θΓ(E)

,
1− p

(1− t)ϕµ(E)/E)

)−1

,

qE,t(θ/ϕ) is a corresponding arg max, and both are determined by t and E for each type
(θ, ϕ). This leaves the objective (6) and incentive constraints (7) in the inner problem
unchanged. The consistency and resource constraints become

∫ wE,t

wE,t

we(w) f ϕ
E,t(w)dw + tµ(E) = µ(E) and (22)

∫ wE,t

wE,t

(we(w)− c(V(w), e(w))) fE,t(w)dw+(t− s)µ(E)+
s

1− t

∫ wE,t

wE,t

we(w) f ϕ
E,t(w)dw = 0,

(23)
with multipliers ξλ and λ as before, and where s is a free parameter that will be useful
in what follows (the terms multiplied by s are identically 0 by (22), and a casual reader
can safely set s = 0). The inner problem yields social welfare W(E, t), which the outer
problem maximizes over E and t. The next proposition summarizes the results for this
scenario with targeted tax instruments.

Proposition 3. Suppose a linear activity-specific tax t on rent-seeking is available in addition to
the non-linear income tax T(y). Then, at any Pareto optimum:
(i) (1− t)ξ = tPigou − (t− s),
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(ii) the top marginal tax rate on rent-seeking income is t + (tPigou − t) f ϕ
E,t(wE,t)/ fE,t(wE,t),

which reduces to tPigou if all top earners specialize in rent-seeking, and
(iii) if there are no redistributive motives (η(w) = 0 ∀w, Ψ(θ, ϕ) = F(θ, ϕ) ∀(θ, ϕ)), then t =

tPigou and no other distorting taxes are imposed (T′(y) ≡ 0 for all y).

Proposition 3 formally motivates our choice of tPigou as the benchmark corrective tax
based on three insights: First, as shown in part (ii), tPigou is the top marginal tax rate
when all top-wage workers only do rent-seeking and we can target rent-seeking directly.
Second, part (iii) implies that, in the absence of redistributive motives (e.g. with quasilin-
ear preferences and Ψ = F), the optimal tax on the rent-seeking component of income is
given by tPigou.

Third, although the optimal linear rent-seeking tax t is not generally equal to tPigou

when there are redistributive motives, tPigou can still be interpreted its corrective compo-
nent. Specifically, part (i) implies that, as in Kopczuk (2003), we can solve for an optimum
in two steps. First, set a baseline corrective tax τ. Second, solve for the remaining linear
rent-seeking tax s = t− τ and the non-linear income tax T. If we choose τ = tPigou, part
(i) yields ξ = 0, so the optimization problem in the second step is equivalent to a prob-
lem with no externalities (but with pre-s returns (1− tPigou)ϕµ(E)/E in the rent-seeking
activity). Hence, tPigou is the Pigouvian corrective tax tp as defined by Kopczuk (2003).

Proposition 3 also makes transparent that our key results are due to the fact that it
is impossible to target the rent-seeking externality directly. If a tax on rent-seeking were
available, the optimal correction would simply be given by the standard Pigouvian cor-
rection tPigou. In contrast, our analysis and the results in Proposition 2 focus on the more
realistic case where such a direct instrument is not available, since only total income y—
but not its composition q—is verifiable, and overall rent-seeking effort in a given profes-
sion or industry can only indirectly be influenced through the design of the (profession-
specific) nonlinear income tax. The interesting general equilibrium effects from endoge-
nous wages and activity choices play a crucial role for shaping optimal tax policy only
under this restricted instrumentarium.

5 Numerical Illustration

In this section, we provide optimal policy simulations for a simple version of our model
calibrated to the U.S. in order to quantitatively gauge the divergence between the op-
timal and Pigouvian correction in practice. Moreover, we perform comparative statics
exercises, comparing optimal policies for different levels of rent-seeking, intended to cap-

25



ture changes in the composition of activities between the 1970s and today.
Our data source is the Current Population Survey (CPS). We take this data as gener-

ated by a (sub-optimal) tax equilibrium and use parametric assumptions and equilibrium
restrictions from our model to identify the rent-seeking technology and the underlying
skill distribution. Specifically, we use information on worker earnings and hours to gen-
erate a sample of hourly wages for the U.S. working population.22 In addition, the CPS
provides an industry classification that we use to assign individuals to rent-seeking ver-
sus traditional work (see Acemoglu and Autor, 2011, and Ales et al., 2014, for recent
related exercises). For the sake of illustration and in the spirit of Lockwood et al. (2014),
we associate industries related to finance and law services with rent-seeking and all other
industries with traditional work, and consider the special case of our model where indi-
viduals always specialize in one activity by taking m(eθ, eϕ) = eθ + eϕ.

We assume that the observed wage distribution and sectoral choices are generated
from a two-sector Roy model with individuals whose skills (θ, ϕ) are drawn from a bi-
variate lognormal distribution so that, for given E, potential wages (θ, ϕµ(E)/E) are also
bivariate lognormal. As shown by Heckman and Honoré (1990) and French and Taber
(2010), the 5 parameters of this bivariate wage distribution (2 means, 2 variances and the
correlation) are identified and can be estimated by method of moments, matching the
conditional means and variances in each sector as well as the share of rent-seekers in the
sample. Appendix B provides further details and illustrates the quality of fit between the
empirical and fitted sectoral wage distributions based on the 2013 CPS.

We assume quasilinear preferences u(c, e) = c− h(e) with isoelastic disutility h(e) =
eγ/γ and labor supply elasticity 1/(γ− 1) = 0.5. As for the rent-seeking technology, we
consider for the purpose of illustration the extreme case where µ(E) = µ and estimate
µ from the total income generated by rent-seekers in the calibrated economy. Of course,
we do not view all of finance and law as pure rent-seeking, but take this as an illustrative
extreme case for taxes, as in this case tPigou = 100%. We know from Proposition 2 that
ξ < tPigou since ∆β = 1 > 0 (and the other conditions will turn out to be satisfied), and
will now be interested in how much lower the optimal correction ξ will turn out due to the
relative return effects emphasized here.

In particular, we draw a large sample of potential wages (wθ, wϕ) from the estimated
bivariate distribution. From this we infer sectoral choices and wages w = max{wθ, wϕ}.
Taking the data to be generated by a τ = 20% average tax rate (see e.g. Saez, 2001), we
can back out individual efforts from eγ−1 = (1− τ)w and sum up rent-seeking incomes
to obtain µ. Finally, we can, w.l.o.g., normalize E = µ. This is because scaling all ϕ-skills

22For further details on the data and sample selection, see Appendix B.
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Figure 1: Optimal and weighted Pigouvian income taxes for 2013, different rent levels

by some k > 0 scales E by k and hence µ/E by 1/k, which leaves rent-seeking wages
wϕ = ϕµ/E, efforts and incomes unchanged. In other words, the rent-seeking skills ϕ are
only identified up to such re-scalings for given observables.

Using this procedure, we find an overall 11% share of rent-seekers, and total rents µ

equivalent to 18% of total income. The left panel in Figure 1 shows the optimal marginal
income tax for this economy (the solid blue line) under utilitarian Pareto weights Ψ = F,
which together with quasilinear preferences imply the absence of redistributive motives.
This captures the benchmark where the income tax purely serves corrective purposes
and, by Proposition 1, is given simply by T′(y(w)) = ξ f ϕ

E∗(w)/ fE∗(w), where E∗ is the
optimal aggregate rent-seeking effort. We contrast this with the simple weighted average
of the Pigouvian correction found to be optimal by Lockwood et al. (2014) (the dashed red
line), which here is just the share of rent-seekers f ϕ

E (w)/ fE(w) at any given wage, since
tPigou = 1 (and E = µ is taken from the calibrated economy).

As can be seen, the share of rent-seekers is increasing in w for most of the wage
distribution and converges to 1 for very high wages given the calibrated skill distribu-
tion.23 The optimal policy, however, involves considerably lower marginal tax rates, since
ξ = .53. As a result, the top marginal tax rate, for instance, is only 53% even though ev-
eryone at the top engages purely in rent-seeking. In other words, the activity shift effects
S, C > 0 emphasized here reduce the optimal correction to roughly one-half of what a

23See Appendix B for a comparison to the empirical distributions. The bivariate lognormal distribution
matches the empirical patterns well for intermediate wages where most of the mass is located, but overes-
timates the share of rent-seekers for very high wages.
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Figure 2: Optimal income taxes with and without redistributive motives

simple Pigouvian intuition would suggest, indicating that these effects can be of first-
order importance, and of similar magnitude as the Pigouvian correction itself.24

The right panel in Figure 1 performs a counterfactual comparative statics exercise,
asking: what would be the optimal policy today if the share of rent-seeking in the econ-
omy was at the level of the 1970’s rather than today’s? Specifically, we retain the skill
distribution as identified from the 2013 data, but use CPS data from 1979 to reduce µ so
that the rent-seeking share of income in the calibrated economy is reduced to its 1979
level, roughly 6%.25 Clearly, the reduced rents lead to a lower share of rent-seekers in
the economy and hence a lower simple weighted Pigouvian correction, as indicated by
the red dashed line. However, interestingly, the (solid blue) optimal marginal income
tax does not fall in a proportional way: in fact, ξ now increases to .7, which shows that
the relative return effects S and C also decrease when µ falls. As a result, the divergence
between the optimal and Pigouvian correction becomes smaller, and, perhaps somewhat
unexpectedly, the top marginal tax rate is now actually higher than in the 2013 optimum.26

Finally, it is easy to use our general framework to include redistributive motives for

24Note that I = R = 0 under the specifications chosen here. It is easy to check numerically that effort
e(w) is increasing and C > 0. This also implies that y(w) is increasing, so that bunching is not part of the
optimum.

25All 1979 dollar variables are inflated to 2013 levels using the CPI.
26In Appendix B, we also show the optimal policy for 1979 itself, based on both the level of rent-seeking

and the skill distribution identified from the 1979 data. These two exercises together can be interpreted as
decomposing the change in optimal (corrective) optimal income tax rates between the 1970’s and today into
the component resulting from a change in rent-seeking and the component due to the change in the skill
distribution. See Ales et al. (2014) for similar decomposition exercises in the face of technological change.
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taxation. Figure 2 shows the optimal policy for relative Pareto weights Ψ(F) = 1− (1−
F)ρ. The case with ρ = 1 captures the absence of redistributive motives whereas ρ → ∞
converges to a Rawlsian criterion. We pick an intermediate ρ = 1.3 as depicted in the
right panel. The left panel shows the optimal tax policy (the blue line), contrasted with
the optimum for ρ = 1 from Figure 1 (the red dashed line). These redistributive motives
imply I > 0 and hence, by equation (20), generate yet another force that drives a wedge
between the optimal and Pigouvian correction. Consistent with this intuition, we now
find ξ = .4, implying an even lower top marginal tax rate than before. This indicates
that accounting for redistribution can have further quantitatively large effects compared
to purely efficiency-based approaches, such as Diamond (1973) in the different context of
Ramsey commodity taxation, or approaches that rule out both general equilibrium effects
and redistribution, such as Lockwood et al. (2014).

6 Conclusion

Our results are driven by the fact that income taxes, even when they can be conditioned
on particular occupations or industries, are an imperfect instrument for correcting rent-
seeking externalities. Directly taxing the externality-causing rent-seeking activity, were it
possible, would reduce both its absolute desirability and its desirability relative to other
activities. By contrast, an income tax for an economy or sector in which different activities
take place directly affects only the absolute desirability of rent-seeking. The magnitude of
the optimal correction via the income tax depends, however, on the direction of the indi-
rect (general equilibrium) effects of taxes on the relative desirability of rent-seeking. When
within-activity externalities dominate, these indirect effects are perverse: higher taxes on
portions of the income distribution with high levels of rent-seeking raise the relative re-
turns to rent-seeking and encourage a shift towards these activities. Consequently, the
optimal externality correction lies strictly below the Pigouvian correction.

In a version of our model calibrated to U.S. data, we demonstrate how our analytical
results can be operationalized for optimal tax design. The simulations imply a quantita-
tively important divergence between the optimal and simple Pigouvian correction. More
generally, our results emphasize that the form of rent-seeking is crucial for optimal tax
design: Are the returns to rent-seeking higher than its social marginal product because
it depresses other rent-seekers’ returns or the returns to productive activities? We view
providing further quantitative evidence on these questions as an important direction for
future research.
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A Proofs for Section 4

A.1 Proof of Proposition 1

Putting multipliers λ on (9), ξλ on (8) and η̂(w)λ on (7), the Lagrangian corresponding to (6)-(9) is, after
integrating by parts (7),

L =
∫ wE

wE
V(w)ψE(w)dw−

∫ wE
wE

V(w)η̂′(w)λdw +
∫ wE

wE
ue(c(V(w), e(w)), e(w)) e(w)

w η̂(w)λdw

+ξλµ(E)− ξλ
∫ wE

wE
we(w) f ϕ

E (w)dw + λ
∫ wE

wE
we(w) fE(w)dw− λ

∫ wE
wE

c(V(w), e(w)) fE(w)dw. (24)

By Theorem 3 in Clarke (1976), this Lagrangian approach is generically valid, i.e. constraint qualification is
satisfied and any solution must be a stationary point of Lagrangian for some (bounded) multipliers. Using
∂c/∂V = 1/uc and compressing notation, the first order condition for V(w) is

η̂′(w)λ = ψE(w)− λ fE(w)
1

uc(w)
+ η̂(w)λ

uec(w)

uc(w)

e(w)

w
. (25)

Defining η(w) ≡ η̂(w)uc(w), this becomes

η′(w) = ψE(w)
uc(w)

λ
− fE(w) + η(w)

ucc(w)c′(w) + uce(w)e′(w) + uce(w)e(w)/w
uc(w)

. (26)

Using the first order condition corresponding to the incentive constraint (10),

uc(w)c′(w) + ue(w)e′(w) + ue(w)
e(w)

w
= 0, (27)

the fraction in (26) can be written as −(∂MRS(w)/∂c)y′(w)/w, where M(c, e) ≡ −ue(c, e)/uc(c, e) is the
marginal rate of substitution between effort and consumption and MRS(w) ≡ M(c(w), e(w)), so (with a
slight abuse of notation) ∂MRS(w)/∂c stands short for ∂M(c(w), e(w))/∂c. Substituting in (26) and rear-
ranging yields

− ∂MRS(w)

∂c
e(w)

y′(w)

y(w)
η(w) = fE(w)− ψE(w)

uc(w)

λ
+ η′(w). (28)

Integrating this ODE gives

η(w) =
∫ wE

w

(
fE(x)− ψE(x)

uc(x)
λ

)
exp

(∫ x

w

∂MRS(s)
∂c

e(s)
y′(s)
y(s)

ds
)

dx

=
∫ wE

w

(
1− ψE(x)

fE(x)
uc(x)

λ

)
exp

(∫ x

w

(
1− εu(s)

εc(s)

)
dy(s)
y(s)

)
fE(x)dx, (29)

where the last step follows from e(w)∂MRS(w)/∂c = 1− εu(w)/εc(w) after tedious algebra (e.g. using
equations (23) and (24) in Saez, 2001).

Using ∂c/∂e = MRS, the first order condition for e(w) is

λw fE(w)

(
1− MRS(w)

w

)
− ξλw f ϕ

E (w) = −η̂(w)λ

[
(−uec(w)ue(w)/uc(w) + uee(w)) e(w)

w
+

ue(w)

w

]
,
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which after some algebra can be rewritten as

w fE(w)

(
1− MRS(w)

w

)
− ξw f ϕ

E (w) = η(w)

(
∂MRS(w)

∂e
e
w

+
MRS(w)

w

)
, (30)

where ∂MRS(w)/∂e again stands short for ∂M(c(w), e(w))/∂e. With MRS(w)/w = 1− T′(y(w)) from the
first order condition of the workers, this becomes

1− ξ
f ϕ
E (w)

fE(w)
= (1− T′(y(w)))

[
1 +

η(w)

w fE(w)

(
1 +

∂MRS(w)

∂e
e

MRS(w)

)]
. (31)

Simple algebra again shows that 1 + ∂ log MRS(w)/∂ log e = (1 + εu(w))/εc(w), so that the result follows
from (29) and (31).

A.2 Proof of Lemma 3
Because we allow m to be only weakly quasiconvex, the marginal rate of substitution χ(eθ/eϕ)≡ mθ(eθ/eϕ)/
mϕ(eθ/eϕ) can have constant regions. Since χ is non-decreasing, there are at most a countable number of
such regions. Use {si}n

i=1, with si increasing in i, to denote the values of χ at these flat regions.27 An in-
dividual with θ/ϕ = µ(E)

EΓ(E) si ≡ αi
E will be indifferent between a range of activity-specific income shares

q ∈
[
qi, qi

]
, where, by equation (5), the bounds are, respectively, the minimum and the maximum q for

which χ
(

q
1−q

1
si

)
= si and thus independent of E. The upper-hemicontinuous correspondence qE(α) thus

jumps from qi to qi as α crosses αi
E from below. For any given wage w and E, taking α0

E = θ/ϕ and
αn+1

E = θ/ϕ, we can thus write28

FE(w) =
∫ αn+1

E

α0
E

∫ w

wE(α)
gE(w′, α)dw′dα =

n

∑
i=0

∫ αi+1
E

αi
E

∫ w

wE(α)
gE(w′, α)dw′dα,

where wE(α) ≡ wE

(
max{θ, αϕ}, max{θ/α, ϕ}

)
and wE(α) ≡ wE

(
min{θ, αϕ}, min{θ/α, ϕ}

)
. Similarly, we

can write

Fθ
E(w) =

n

∑
i=0

∫ αi+1
E

αi
E

∫ w

wE(α)
qE(α)gE(w′, α)dw′dα.

The latter is a useful formulation because, on each of the intervals in the sum, the function qE(α) is contin-
uously differentiable. The discontinuities occur at the boundaries of the intervals. It allows us to prove the
following technical lemma, which will be useful below.

Lemma 4.

dFE(w)

dE
=

βϕ(E)
E

w f ϕ
E (w) +

βθ(E)
E

w f θ
E(w) and

dFθ
E(w)

dE
=

βθ(E)
E

w f θ
E(w)− KE(w)− LE(w), where (32)

27We deal with finite n to keep notation clean; the countably infinite case is an easy but notationally
cumbersome extension.

28We mildly abuse notation here in assuming that α0
E ≤ α1

E and αn+1
E ≥ αn

E since a simple redefinition of
n and the relevant αi

E values would yield the same formulae.
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KE(w) ≡ −
n

∑
i=0

∫ αi+1
E

αi
E

∫ w

wE(α)

dqE(α)

dE
gE(w′, α)dw′dα +

n

∑
i=1

∫ w

wE(α
i
E)

dαi
E

dE

(
qi − qi

)
gE

(
w′, αi

E

)
dw′

= −∆β(E)
E

∫ αn+1
E

α0
E

∫ w

wE(α)
Q′(xE(α))xE(α)gE(w′, α)dw′dα (33)

and LE(w) ≡ −∆β(E)
E

∫ αn+1
E

α0
E

qE(α)(1− qE(α))wgE(w, α)dα. (34)

Moreover, dFϕ
E (w)/dE = dFE(w)/dE− dFθ

E(w)/dE and analogous expressions hold for dΨE(w)/dE, dΨθ
E(w)/dE

and dΨϕ
E(w)/dE.

Proof. It is useful to define the function w̃(w, α, E; E0) as the wage, at E, of the type (θ, ϕ) that would have
had wage w (and α) at E = E0. Then, by construction, the set {(θ, ϕ)|wE(θ, ϕ) ≤ w̃(w, θ/ϕ, E; E0)} is in-
dependent of E: it is simply the set of types that would have had wage less than w at E0. Hence, for all
E,

FE0(w) =
∫ αn+1

E

α=α0
E

∫ w̃(w,α,E;E0)

wE(α)
gE(w′, α)dw′dα (35)

i.e., the measure of types with wage less than w when E = E0. Taking the derivative of the RHS with respect
to E (which is zero by construction) and evaluating at E0 yields

∫ αn+1
E

α=α0
E

∫ w

wE(α)

dgE0(w
′, α)

dE
dw′dα−

∫ αn+1
E

α=α0
E

dwE0
(α)

dE
gE0(wE0

, α)dα = −
∫ αn+1

E

α=α0
E

dw̃(w, α, E0; E0)

dE
gE0(w, α)dα.

The LHS is easily recognized as dFE(w)/dE, evaluated at E0. Using (19) to obtain dw̃(w, α, E0; E0)/dE,

dFE(w)

dE
=
∫ αn+1

E

α=α0
E

(
qE(α)

βθ(E)
E

w + (1− qE(α))
βϕ(E)

E
w
)

gE(w, α)dα =
βθ(E)

E
w f θ

E(w) +
βϕ(E)

E
w f ϕ

E (w),

which proves the first result in (32). Moreover, for all E,

Fθ
E0
(w) =

n

∑
i=0

∫ αi+1
E0

αi
E0

∫ w̃(w,α,E;E0)

wE(α)
qE0(α)gE(w′, α)dw′dα, (36)

since the set of types being integrated over is independent of E, and so is qE0(α). We explicitly compute the
derivative with respect to E of the RHS of (36), which is zero since the object is, by construction, independent
of E. After some re-arranging and evaluating at E0, we get

n

∑
i=0

∫ αi+1
E0

αi
E0

∫ w

wE0
(α)

qE0(α)
dgE0(w

′, α)

dE
dw′dα−

n

∑
i=0

∫ αi+1
E0

αi
E0

dwE0
(α)

dE
qE0(α)gE0

(
wE0

(α), α
)

dα

= −
n

∑
i=0

∫ αi+1
E0

αi
E0

dw̃(w, α, E0; E0)

dE
qE0(α)gE0(w, α)dα. (37)

Adding ∑n
i=0
∫ αi+1

E0
αi

E0

∫ w
wE0

(α)

dqE0 (α)

dE gE0(w
′, α)dw′dα−∑n

i=1
∫ w

wE0
(αi

E0
)

dαi
E0

dE

(
qi − qi

)
gE0

(
w′, αi

E0

)
dw′ to both sides,
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we can recognize the left hand side as dFθ
E(w)/dE evaluated at E0. Again using (19), the RHS of (37) is

∫ αn+1
E

α0
E

(
qE0(α)

βθ(E0)

E0
w + (1− qE0(α))

βϕ(E0)

E0
w
)

qE0(α)gE0(w, α)dα

=
βθ(E0)

E0
w f θ

E0
(w) +

∆β(E0)

E0

∫ αn+1
E

α0
E

qE0(α)(1− qE0(α))wgE0(w, α)dα.

Using the definitions in (33) and (34), we conclude that dFθ
E(w)/dE = βθ(E)

E w f θ
E(w)− KE(w)− LE(w).

Finally, observe that q̃E(α) ≡ qE(α)− ∑n
i=1(q

i − qi)H(α− αi
E), where H is the Heaviside step function

(using the half-maximum convention), is continuous. It has a well-defined derivative with respect to E
equal to dqE(α)/dE away from the αi

E-jumps, and well-defined (bounded) left- and right-derivatives at the
jumps. Therefore,∫ αn+1

E

α=α0
E

∫ w

wE(α)

dq̃E(α)

dE
gE(w′, α)dw′dα =

n

∑
i=0

∫ αi+1
E

α=αi
E

∫ w

wE(α)

dqE(α)

dE
gE(w′, α)dw′dα. (38)

Differentiating H as a distribution yields dH(α−αi
E)

dE = −δ(α− αi
E)

dαi
E

dE , where δ is the Dirac δ-function. Hence,

∫ αn+1
E

α=α0
E

∫ w

wE(α)
(qi − qi)

dH(α− αi
E)

dE
gE(w′, α)dw′dα = −

∫ w

wE(α
i
E)

dαi
E

dE
(qi − qi)gE(w′, αi

E)dw′. (39)

Combining (38) and (39) (and differentiating qE(α) as a distribution), we have

∫ αn+1
E

α=α0
E

∫ w

wE(α)

dqE(α)

dE
gE(w′, α)dw′dα =

n

∑
i=0

∫ αi+1
E

α=αi
E

∫ w

wE(α)

dqE(α)

dE
gE(w′, α)dw′dα−

n

∑
i=0

∫ w

wE(α
i
E)

dαi
E

dE
(qi − qi)gE(w′, αi

E)dw′.

Using Q(xE(α)) ≡ qE(α) and dxE(α)/dE = xE(α)∆β(E)/E yields the second equality in (33).

Lemma 4 will be used in the now following proof of Lemma 3. Using (24) and a standard envelope
theorem,

W ′(E) =
∫ wE

wE

V(w)
dψE(w)

dE
dw− λ

∫ wE

wE

c(V(w), e(w))
d fE(w)

dE
dw

+ λ(1− ξ)
∫ wE

wE

we(w)
d f ϕ

E (w)

dE
dw + λ

∫ wE

wE

we(w)
d f θ

E(w)

dE
dw + ξλµ′(E) + B1 (40)

with

B1 ≡
dwE
dE

[
V(wE)ψE(wE)− λc(V(wE), e(wE)) fE(wE) + λ

(
fE(wE)− ξ f ϕ

E (e(wE))
)

wEe(wE)
]

−dwE
dE

[
V(wE)ψE(wE)− λc(V(wE), e(wE)) fE(wE) + λ

(
fE(wE)− ξ f ϕ

E (e(wE))
)

wEe(wE)
]

.

Integrating by parts the four integrals yields

W ′(E) = B1 + B2 −
∫ wE

wE

V′(w)
dΨE(w)

dE
dw + λ

∫ wE

wE

(
V′(w)

uc(w)
+ MRS(w)e′(w)

)
dFE(w)

dE
dw

− λ(1− ξ)
∫ wE

wE

(we′(w) + e(w))
dFϕ

E (w)

dE
dw− λ

∫ wE

wE

(we′(w) + e(w))
dFθ

E(w)

dE
dw + ξλµ′(E) (41)
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with

B2 =

[
V(w)

dΨE(w)

dE
− λc(V(w), e(w))

dFE(w)

dE
+ λ(1− ξ)we(w)

dFϕ
E (w)

dE
+ λwe(w)

dFθ
E(w)

dE

]wE

wE

.

By the first order conditions (28) and (30) with respect to V(w) and e(w) from the inner problem, the terms

A1(E) ≡ λ
∫ wE

wE

e′(w)

fE(w)

[
w fE(w)

(
1− MRS(w)

w

)
− ξw f ϕ

E (w)− η(w)

(
∂MRS(w)

∂e
e(w)

w
+

MRS(w)

w

)]
dFE(w)

dE
dw

and A2(E) ≡ λ
∫ wE

wE

V′(w)

uc(w) fE(w)

[
ψE(w)

uc(w)

λ
− fE(w)− η′(w)− η(w)

∂MRS(w)

∂c
e(w)

y′(w)

y(w)

]
dFE(w)

dE
dw

are both equal to zero. Adding A1(E) and A2(E) to (41), using (7) and re-arranging yields

W ′(E) = B1 + B2 + ξλµ′(E) +
∫ wE

wE

V′(w)

(
ψE(w)

fE(w)

dFE(w)

dE
− dΨE(w)

dE

)
dw

− λ
∫ wE

wE

e(w)
dFE(w)

dE
dw + ξλ

∫ wE

wE

(
(e(w) + we′(w))

dFϕ
E (w)

dE
− we′(w)

f ϕ
E (w)

fE(w)

dFE(w)

dE

)
dw

− λ
∫ wE

wE

(
η(w)

w
d [MRS(w)e(w)]

dw
+ η′(w)

V′(w)

uc(w)

)
1

fE(w)

dFE(w)

dE
dw. (42)

Using Lemma 4, the first integral in (42) is

∆β(E)
E

∫ wE

wE

V′(w)w
f θ
E(w) f ϕ

E (w)

fE(w)

(
ψθ

E(w)

f θ
E(w)

−
ψ

ϕ
E(w)

f ϕ
E (w)

)
dw =

∆β(E)
E

R (43)

Again using Lemma 4, the terms with e(w) in the second line of (42) can be written as

−λ(1− ξ)
βϕ(E)

E

∫ wE

wE

we(w) f ϕ
E (w)dw− λ

βθ(E)
E

∫ wE

wE

we(w) f θ
E(w)dw + ξλ

∫ wE

wE

e(w)(KE(w) + LE(w))dw

= −λ

(
βϕ(E)

µ(E)
E

+ βθ(E)
Γ(E)

E
Eθ

)
+ ξλβϕ(E)

µ(E)
E

+ ξλ
∫ wE

wE

e(w)(KE(w) + LE(w))dw

= −λ
µ(E)

E
tPigou + ξλβϕ(E)

µ(E)
E

+ ξλ
∫ wE

wE

e(w)(KE(w) + LE(w))dw. (44)

The terms with we′(w) in (42) can be written as

ξλ
∫ wE

wE

we′(w)

[
βϕ(E)

E
w f ϕ

E (w)−
f ϕ
E (w)

fE(w)

w
E

(
βϕ(E) f ϕ

E (w) + βθ(E) f θ
E(w)

)
+ KE(w) + LE(w)

]
dw

= ξλ
∆β(E)

E

∫ wE

wE

w2e′(w)

[
f θ
E(w) f ϕ

E (w)

fE(w)
−
∫ ∞

0
qE(α)(1− qE(α))gE(w, α)dα

]
dw + ξλ

∫ wE

wE

we′(w)KE(w)dw

= ξλ
∆β(E)

E

∫ wE

wE

w2e′(w)VarE(q|w) fE(w)dw + ξλ
∫ wE

wE

we′(w)KE(w)dw

= ξλ
∆β(E)

E
C + ξλ

∫ wE

wE

we′(w)KE(w)dw, (45)

where the first equality uses (34). Combining the terms with KE(w) from (44) and (45) gives ξλ
∫ wE

wE
(we(w))′KE(w)dw,
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which can be integrated by parts to yield

B3 − ξλ
∫ wE

wE

we(w)K′E(w)dw = B3 + ξλ
∆β(E)

E

∫ wE

wE

∫ ∞

0
y(w)Q′(xE(α))xE(α)dGE(w, α) (46)

with B3 = ξλwEe(wE)KE(wE) since KE(wE) = 0. Further combining this with the LE(w)-term in (44) yields

B3 + ξλ
∆β(E)

E

∫ wE

wE

y(w)
∫ ∞

0

(
Q′(xE(α))xE(α)− qE(α)(1− qE(α))

)
dGE(w, α). (47)

Note that Q̃′(x) = Q̃′x0
(x)
∣∣
x0=x = Q′(x)x−Q(x)(1−Q(x)), so that (47) becomes

B3 + ξλ
∆β(E)

E

∫ wE

wE

∫ ∞

0
y(w)Q̃′(xE(α))xE(α)dGE(w, α) = B3 + ξλ

∆β(E)
E

S. (48)

Moreover, S ≥ 0 since Q̃′(x) = x2r′(x)/(1 + xr(x))2 ≥ 0. Finally, use the incentive constraint (7), rewritten
as V′(w)/uc(w) = MRS(w)e(w)/w, to write the last line of (42) as

−λ
∫ wE

wE

(
η(w)w

d[V′(w)/uc(w)]

dw
+ η′(w)w

V′(w)

uc(w)
+ η(w)

V′(w)

uc(w)

)
1

w fE(w)

dFE(w)

dE
dw

or, recognizing the sum of the bracketed terms as d[η(w)wV′(w)/uc(w)]/dw, integrating by parts, and
using the transversality condition η(wE) = η(wE) = 0 and (32),

λ
∫ wE

wE

η(w)w
V′(w)

uc(w)

d
dw

(
βθ(E)

E
f θ
E(w)

fE(w)
+

βϕ(E)
E

f ϕ
E (w)

fE(w)

)
dw

= λ
∆β(E)

E

∫ wE

wE

η(w)w
V′(w)

uc(w)

d
dw

(
f ϕ
E (w)

fE(w)

)
dw =

∆β(E)
E

I. (49)

Define F̃(w, E) ≡ FE(w). Since F̃(wE, E) ≡ 1 for all E,

dF̃(wE, E)
dE

=
∂F̃(wE, E)

∂E
+

∂F̃(wE, E)
∂w

dwE
dE

=
dFE(wE)

dE
+ fE(wE)

dwE
dE

= 0. (50)

Together with an analogous expression at wE and the fact that KE(wE) = LE(wE) = LE(wE) = 0, this yields
B1 + B2 = −ξλwE e(wE)KE(wE) = −B3. Using (43), (44), (45), (48) and (49) in (42) yields

W ′(E) = −λ
µ(E)

E
tPigou +

∆β(E)
E

(R + I) + ξλ

(
µ(E)

E
+

∆β(E)
E

(C + S)
)

, (51)

where we have used µ′(E) + βϕ(E)µ(E)/E = µ(E)/E.
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A.3 Proof of Corollary 1
Using the notation of Lemma 3, when m is linear, then n = 1, q1 = 1, q1 = 0, s1 = 1, and α1

E = µ(E)
EΓ(E) . Hence,

for the region where q = 1,

KE(w) =
n

∑
i=1

∫ w

wE

dαi
E

dE
(qi − qi)gE(w′, αi

E)dw′ =
d

dE

(
µ(E)

EΓ(E)

) ∫ w

wE

gE

(
w′,

µ(E)
EΓ(E)

)
dw′.

In this region, w = θΓ(E) and α = θ/ϕ. Hence, θ = w/Γ(E), ϕ = w
αΓ(E) and the Jacobian for the transfor-

mation is w
α2Γ(E)2 . Therefore, gE

(
w, µ(E)

EΓ(E)

)
= w

(α1
E)

2Γ(E)2 f
(

w
Γ(E) , w

α1
EΓ(E)

)
, or, transforming to ϕ = wE/µ(E),

KE(w) =
d

dE

(
µ(E)

EΓ(E)

) ∫ w

wE

gE

(
w′,

µ(E)
EΓ(E)

)
dw′ = −∆β(E)

E
µ(E)

EΓ(E)

∫ wE/µ(E)

ϕ
ϕ f
(

ϕ
µ(E)

Γ(E)E
, ϕ

)
dϕ.

Moreover, LE(w) = 0 since q ∈ {0, 1}. Using this in (45) and (46) yields the result.

A.4 Proof of Proposition 2
The first part of the proposition is established by the following lemma:

Lemma 5. ξ > 0 in any regular Pareto optimum.

Proof. By Lemma ??, any Pareto optimum solves maxE,T(.)
∫ wE

wE
u
(

yT(w)− T(yT(w)), yT(w)
w

)
dΨE(w) sub-

ject to (a) a set of incentive constraints yT(w) ∈ arg maxy u(y − T(y), y/w) for all w, (b) the consistency
constraint µ(E) −

∫ wE
wE

yT(w) f ϕ
E (w)dw = 0 and (c) the revenue constraint

∫ wE
wE

T(yT(w))dFE(w) ≥ 0. We
show that any solution to the relaxed problem where the consistency constraint (c) is replaced by the in-
equality constraint µ(E)−

∫ wE
wE

yT(w) f ϕ
E (w)dw ≥ 0, with associated multiplier λξ̃, always has ξ̃ > 0 with

regular Ψ. Since this implies that the solution (E∗, T∗(.)) to the relaxed problem is feasible in the unrelaxed
problem, ξ = ξ̃ > 0 as well. To see this, suppose, by way of contradiction, that ξ̃ = 0 in (E∗, T∗(.)). Standard
arguments (e.g. Werning, 2000) imply T∗′(.) ≥ 0 with regular Pareto weights in this case. Now consider
a small decrease ∆E from E∗ holding T∗(.) fixed. This at least weakly increases the wage, and hence the
utility, of each individual, increasing the objective. It has no effect on the set of incentive constraints (a)
since T∗(.) remains fixed. It has no effect on the relaxed constraint (b) since ξ̃ = 0. It relaxes the revenue
constraint (c) since yT(w) is non-decreasing and T∗′(.) ≥ 0. This contradicts the optimality of (E∗, T∗(.)) in
the relaxed problem, showing that ξ̃ > 0 in the relaxed problem and hence ξ = ξ̃ > 0.

We next show that η(w) ≥ 0 under the assumptions in the proposition. To see this, suppose (by way of
contradiction) η(w) < 0 for some w. Since η(wE) = η(wE) = 0 by the transversality condition, this together
with continuity of η(w) implies that there exists some interval [w1, w2] such that w1 < w2, η(w1) = η(w2) =

0 and η(w) < 0 for all w ∈ (w1, w2). Then η′(w1) ≤ 0 and η′(w2) ≥ 0. Using (12), this implies

ψE(w1)

fE(w1)

uc(w1)

λ
≤ ψE(w2)

fE(w2)

uc(w2)

λ
.

However, ψE(w)/ fE(w) is decreasing in w with regular Pareto weights and uc(w) is also decreasing under
condition (ii), yielding the desired contradiction. Hence, I is non-negative under condition (iii). Conditions
(i) and (iv) ensure that C and R are also non-negative, respectively, and S > 0. Hence, either the numerator
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or the denominator of (20) or both are positive. ξ > 0 implies that both are positive. Hence, ξ S tPigou ⇔
∆β(E) T 0.

A.5 Proof of Proposition 3
Part (i). Consider the change in W(E, t) induced by a small variation from (E, t) to (E + δE, t + δt) with
δt = −(1− t)∆β(E)δE/E. This variation is leaves (1− t)µ(E)/(EΓ(E)) unchanged and therefore affects
neither the optimal q of any individual nor

θ̃(θ, ϕ; E, t) ≡ max
q∈[0,1]

m
(

q
θ

,
1− q

(1− t)µ(E)/(EΓ(E))ϕ

)−1
.

By the envelope theorem, the welfare effects of this variation can be computed by holding fixed the allo-
cations e(θ̃), c(θ̃) for each individual. It therefore has no direct effect on individuals’ utilities, and, since it
leaves unchanged the ratio of after-t wages between any two types, does not affect the incentive constraints.
To compute the effects on the consistency and resource constraints (22) and (23), it is convenient to change
variables within the integrals from after-t wages w to the re-scaled wages θ̃ ≡ w/Γ(E):29

∫ θ̃E,t

θ̃E,t

θ̃Γ(E)e(θ̃) f̃ ϕ
E,t(θ̃)dθ̃ + tµ(E) = µ(E) (52)

∫ θ̃E,t

θ̃E,t

(
Γ(E)θ̃e(θ̃)− c(V(θ̃), e(θ̃))

)
f̃E,t(θ̃)dθ̃ + (t− s)µ(E) + s

(
Γ(E)E

(1− t)µ(E)

)
µ(E)

E

∫ θ̃E,t

θ̃E,t

θ̃e(θ̃) f̃ ϕ
E,t(θ̃)dθ̃ = 0,

(53)
where f̃ k

E,t(θ̃) = f̃ k
E,t(w/Γ(E)) ≡ Γ(E) f k

E,t(w), k = θ, ϕ, are the wage densities in terms of θ̃. The variation
leaves everything in these constraints unchanged except the terms Γ(E), µ(E), and t. Hence,

δW = λ

[
ξ

(
(1− t)µ′(E)− Γ′(E)

Γ(E)
(1− t)µ(E)

)
+

Γ′(E)
Γ(E)

((1− t)µ(E) + Yθ) + (t− s)µ′(E)− sβϕ(E)
µ(E)

E

]
δE

+λµ(E)(1− ξ)δt,

or, using δt = −(1− t)∆β(E)δE/E and the definition of tPigou, δW = λ
µ(E)

E
[
ξ(1− t) + (t− s)− tPigou

]
δE

after some algebra. Since δW = 0 at the optimum, the result follows.
Part (ii). The inner problem given E and t solves (6) s.t. (7), (22) and (23). When s = 0, this is the

same problem as without the tax t except for the fact that (i) wages w are after-t wages and (ii) there are
the additional constants tµ(E) in (22) and (23). As a result, the optimal marginal tax formula (11) goes
through, where w is the after-t wage and the effective marginal keep share on rent-seeking income is given
by (1− t)(1− T′(y(w))). Hence, the top marginal tax rate in the rent-seeking activity is

1− (1− t)(1− T′(y(wE,t))) = 1− (1− t)

(
1− ξ

f ϕ
E,t(wE,t)

fE,t(wE,t)

)
= t + (tPigou − t)

f ϕ
E,t(wE,t)

fE,t(wE,t)
,

where the last step uses the result from part (i).
Part (iii). To prove the result, we first show how the outer problem decomposition is extended to the

presence of the linear tax t. Fix the rent-seeking tax t and s = 0. If t = 0, ∂W(E, t)/∂E is given by the
right-hand-side of (13), since the outer problem for E is identical to the baseline without a rent-seeking tax.

29Note that this does not affect the multipliers λ and ξ: it is a change of variables within the integrals, not
a reformulation of the constraints.
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If t 6= 0, one can derive ∂W(E, t)/∂E using the same steps as in the proof of Lemma 3. The presence of t
changes this derivation in two ways. First, the consistency and resource constraints (22) and (23) contain an
extra tµ(E); this gives rise mechanically to an extra (1− ξ)λtµ′(E) term. Second, wages w are after-t. This
changes the interpretation (but not the form) of the effects R, I, C and S. The only formal change is when
going from the first to the second line of (44), because now

∫ wE,t
wE,t

we(w) f ϕ
E,t(w)dw = (1− t)µ(E). Hence, the

last line of (44) becomes

− λ
µ(E)

E
tPigou + λ

µ(E)
E

βϕ(E)t + ξλ(1− t)βϕ(E)
µ(E)

E
+ ξλ

∫ wE,t

wE,t

e(w)(KE(w) + LE(w))dw.

Incorporating these two changes implies that, for any given (E, t),

∂W(E, t)
∂E

= λ
µ(E)

E
(
ξ − tPigou + t(1− ξ)

)
+

∆β(E)
E

[I + R + ξλ (C + S)] . (54)

The result then follows from the fact that setting t = tPigou yields ∂W(E, t)/∂E ≡ 0 using (54) since ξ = 0
by the result in part (i) and I = R = 0 when there are no redistributive motives (η(w) = 0 and Ψ(θ, ϕ) =

F(θ, ϕ)). Moreover, with η(w) = 0, T′(y(w)) = 0.

B Data and Identification
We use the March releases of the CPS for 2013 and 1979. We use the earnings data and the self-reported
estimate of hours worked to construct wages. The CPS also provides a detailed industry classification
for working individuals. We drop individuals for whom earnings, hours, age or industry is not reported.
Following Heathcote et al. (2010), we also restrict attention to working age individuals between ages 25
and 65 and those employed (dropping those with very low hours or earnings per year). All variables
are weighted with the provided weights and dollar denominated variables from 1979 are inflated to 2013
dollars using the CPI.

The industry variable we use to classify individuals, for the sake of our illustration, as rent-seekers or
traditional workers is a 3-digit NAICS-based industry code. For 2013, this is the variable ind02 in the NBER
released Merged Outgoing Rotation Groups (MORG) data. We choose the finance and law-related cate-
gories “Banking and related activities,” “Savings institutions, including credit unions,” “Non-depository
credit and related activities,” “Securities, commodities, funds, trusts, and other financial investments,”
“Insurance carriers and related activities,” “Real estate,” and “Legal services” to capture rent-seeking (ad-
mittedly somewhat arbitrary, but following the spirit of, and simplifying comparison to, Lockwood et al.,
2013). For 1979, we use the comparable 3-digit variable ind70 with similar categories “Banking,” “Credit
agencies,” “Security, commodity brokerage, and investment companies,” “Insurance,” “Real estate, incl.
real estate-insurance-law offices,” “Finance, insurance, and real estate–allocated,” and “Legal services.”

We use the sectoral wage data in both years to estimate an underlying bivariate lognormal wage distri-
bution following Heckman and Honoré (1990) and French and Taber (2010). Let (wθi, wϕi) be individual i’s
potential log-wages in the traditional and rent-seeking activities, respectively, and assume(

wθi

wϕi

)
= N

((
µθ

µϕ

)
,

(
σ2

θ σθϕ

σθϕ σ2
ϕ

))
.
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Figure 3: Empirical and fitted (sectoral) log-wage distributions

Letting λ(.) = φ(.)/Φ(.) be Mill’s ratio (and φ and Φ the pdf and cdf of a standard normal, respectively),

c =
µθ − µϕ√

σ2
θ + σ2

ϕ − 2σθϕ

and
τj =

σj − σθϕ√
σ2

θ + σ2
ϕ − 2σθϕ

, j = θ, ϕ,

then we can estimate µj, σ2
j and σθϕ by matching the conditional moments

Pr(Ji = θ) = Φ(c)

E[wi|Ji = θ] = µθ + τθλ(c)

E[wi|Ji = ϕ] = µϕ + τϕλ(−c)

Var[wi|Ji = θ] = σ2
θ + τ2

θ (−λ(c)c− λ2(c))

Var[wi|Ji = ϕ] = σ2
ϕ + τ2

ϕ(λ(−c)c− λ2(−c)),

where wi and Ji are individual i’s observed wage and sector, respectively. Using this procedure, we obtain
µθ = 2.8201, µϕ = 2.0056, σ2

θ = 0.5488, σ2
ϕ = 0.8786, ρθϕ ≡ σθϕ/(σθσϕ) = 0.5943 for 2013. Figure 3 plots the

resulting distributions of log-wages (both overall and for the two sectors) as well as the share of rent-seekers
as a function of the wage, both for the data and the fitted bivariate lognormal, which demonstrates a rea-
sonably good fit (except at the very top, where the wage distribution is well known not to be lognormal but
Pareto in the data). We truncate the resulting skill distribution at the top 0.1 percentile in both dimensions
and rescale accordingly.

To compute optimal income taxes, we begin with the inner problem for given E. The (sectoral) wage
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Figure 4: Optimal policy for 2014 versus 1979

distributions are obtained numerically, and the resulting optimal tax problem can be solved using the same
methods as for a standard Mirrlees model (making use of the local incentive constraints), with the only
additional complication that the multiplier ξ needs to be found numerically such that the consistency con-
straint is satisfied. We then repeat this procedure to find the optimal E using a grid search. We finally verify
that the monotonicity constraint y′(w) ≥ 0 is satisfied, so the solution is globally incentive compatible.

We can perform the same steps based on the 1979 CPS data. This allows us to compare the optimal
policies for these periods, as alluded to in Section 5. As can be seen from Figure 4, rent-seeking was less
important at the top of the skill distribution in 1979, so that the share of rent-seekers converges to 0 for high
wages given the calibrated skill distribution, in contrast to 2013. Moreover, whereas the optimal correction
ξ is .53 for 2013, it increases to .92 for 1979. These comparisons suggest that, while the divergence between
the optimal correction ξ and the Pigouvian correction tPigou = 1 was not as pronounced in the 1970s, it has
become much more important today. Roughly half of this difference is due to changes in the underlying
skill distribution, whereas the other half is due to the higher level of rent-seeking according to our definition
(recall ξ = .7 for the 2013 skill distribution with 1979 rent-seeking levels).
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