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1 Introduction

It has long been recognized that the covariates of interest in a linear regression analysis

are often measured with error. A well-known example is the investment model due to

Fazzari, Hubbard, and Petersen (1988), where a firm’s investments are regressed on a

proxy of investment demand such as Tobin’s q and cash flows. Measurement error arises

because average q, which is observable, is taken as a proxy for marginal q, which is

unobservable but desirable from a theoretical point of view; see Almeida, Campello, and

Galvao (2010) for an overview of this literature. If not accounted for, measurement errors

cause a downward bias in the parameter estimates, known as attenuation bias (e.g., Wans-

beek and Meijer, 2000, section 2.3). Here, we reconsider the problem of measurement

error in panel data models.

Since the seminal article by Griliches and Hausman (1986), several papers have

discussed the topic of measurement error in panel data models. Wansbeek and Koning

(1991) present a simple approach for the case where the intertemporal covariance matrix

of the measurement errors is scalar (i.e., proportional to the identity matrix). For the more

general case where this matrix is diagonal, Biørn and Klette (1998) present a generalized

method of moments (GMM) approach, generalized by Biørn (2000) to the case where

some off-diagonal elements of the intertemporal covariance matrix of the measurement

errors are zero. Wansbeek (2001) presents a general GMM approach based on linear

restrictions of any form on this matrix, which is extended by Shao et al. (2011) to the

case of unbalanced panel data. Xiao et al. (2007) correct an error in Wansbeek (2001) and

identify cases in which a single-step approach in GMM is already optimal. Xiao et al.
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(2010a, 2010b) provide several extensions, including the presence of multiple covariates

measured with error. Biørn and Klette (1999), Aasness et al. (2003), Biørn (2003), and

Biørn and Krishnakumar (2008) provide further applications and context.

The literature has focused on moment conditions that exploit structure based on as-

sumptions on the intertemporal covariance matrix of the measurement errors. Because

the measurement errors are not observed, these assumptions may be hard to justify. We

therefore consider GMM estimation based on moment conditions from other sources. We

focus on deriving appropriate moment conditions, for the various cases that we consider.

The resulting GMM estimators’ consistency and asymptotic normality follow from stan-

dard GMM theory. We assess the finite-sample performance of our estimators by means

of simulation.

Our derivation of moment conditions starts with the intertemporal covariance matrix

of errors in the equations. This matrix is often taken to be highly structured, like in the

random effects model. We consider linear restrictions of any form on this matrix and

derive all implied moment conditions.

The second set of moment restrictions that we explore consists of restrictions based on

an exogenous regressor. Exogenous regressors are not just a complication to be accounted

for, but they can also be a source of additional moment conditions that allow for consistent

estimation in the presence of measurement error. However, for the method to work well,

it is desirable that the relation between the error-ridden regressor and the additional one

is heteroskedastic or nonlinear.

The third moments of the error-ridden regressor provide a third source of moment

conditions. We thus extend, to the panel data case, the classical literature on exploiting
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the third moments of the error-ridden regressor. This approach has been developed, for the

case of a single cross-section, already by Geary (1942) and has since then been extended

by Pal (1980), Dagenais and Dagenais (1997), Lewbel (1996, 1997), and Erickson and

Whited (2002). To our best knowledge, application to the panel data case has not yet been

addressed in the literature. The only assumption needed is that the third moment of the

true value of the regressor for at least one of the time points does not vanish (in addition to

independence of measurement errors from the true regressor). Although this assumption

cannot be verified as the true value is clouded by measurement error, checking the third

moment of the observed value of the regressor should provide enough guidance.

As to our three methods, we propose a variety of instrumental variables (IVs) that

can be constructed from the already available data set. Some of these constructs involve

the dependent variable (and possibly the error-ridden regressor), and others only the

error-ridden regressor. These IVs remain valid when exogenous variables are added to

the model. However, when the lagged dependent variable (without measurement error)

is added to the model, the IVs involving the dependent variable sometimes need to be

adapted. In combination with existing GMM techniques, our moment conditions greatly

expand the toolkit of the applied researcher.

The setup of this paper is as follows. The panel data model with measurement error is

introduced in section 2. Special attention is given to panel IV estimation and its practical

implementation. In section 3, we show how restrictions on the intertemporal covariance

matrix of errors in the equations can be used to obtain consistent estimators. Section 4

adapts this to the dynamic panel data model, where such restrictions are commonplace,

for example, for deriving the Arellano-Bond estimator. In section 5, we show how the
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presence of additional exogenous regressors in the model generates additional moment

conditions. Section 6 derives the instrumental variables that become available when the

third moment of the true regressor is nonzero, and again we use this to obtain consistent

estimators. Section 7 discusses the impact of heteroskedasticity on the estimators based

on the covariance matrix restrictions and third moments. In Section 8 we adapt the results

when fixed individual effects are considered. We present simulation results in Section 9.

Section 10 concludes.

2 Basics

We start with the simplest possible panel data regression model and consider extensions

in later sections. We derive the basic inconsistency result, consider identification, and

discuss panel instrumental variables.

2.1 The model and its implications

Let, for n = 1, . . . ,N, the T -vector yn, with elements yn1, . . . , ynT , depend on the T -vector

ξn, with analogously denoted elements. Typically, the elements of these vectors are mea-

surements of the same variable at different points in time. The vector ξn is unobservable,

and instead a proxy xn is observed:

yn = ξn β + εn

xn = ξn + vn,
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with ξn ∼ (0,Σ
ξ
), εn ∼ (0,Σ

ε
), and vn ∼ (0,Σv), which are mutually independent. Since

we do not impose a structure on these matrices as yet, this specification encompasses the

random effects model. Throughout, we take all variables in deviations from their means

per time period, thus implicitly handling fixed time effects. In order not to burden the

notation unduly, this is left implicit in the following. This is without loss of generality as

we will consider large N, fixed T asymptotics.

Elimination of ξn leads to the reduced form

yn = xn β + un

un ≡ εn − vn β.

So E(x′nun) = −(tr Σv) β , 0 and hence (pooled) OLS is inconsistent. With E(x′nyn) =

(tr Σ
ξ
) β and Σx ≡ Σ

ξ
+ Σv, OLS estimation of the reduced form gives

plim
N→∞

b
OLS

= plim
N→∞

∑
n x′nyn∑
n x′nxn

=
tr Σ

ξ

tr Σx

β, (1)

which (since tr Σ
ξ
≤ tr Σx) reflects the usual attenuation bias towards zero with measure-

ment error.

2.2 Identification

For the case of a single cross section, that is, the above model with T = 1, the model is

not identified, and hence does not allow for consistent estimators, if the observations are

independent and the regressor is normally distributed, cf. Wansbeek and Meijer (2000,

chapter 4). For T > 1 the observations are not independent, making an investigation of its
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identification worthwhile. The complete second-order implications of the model are

E(yny′n) = Σ
ξ
β2 + Σ

ε
(2)

E(ynx′n) = Σ
ξ
β (3)

E(xnx′n) = Σ
ξ

+ Σv. (4)

As an informal check on identification, notice that, from (2), we need the information

contained in the second moment of yn to identify Σ
ε

since the latter only occurs in (2).

Analogously, we need the information contained in the second moment of xn to identify

Σv. This leaves us with the covariance of yn and xn to identify both β and Σ
ξ
, which occur

as a product and cannot be disentangled without further information in some form. Hence,

dependence of observations in panel data by itself is insufficient for identification.

2.3 Panel instruments

As usual, the way to proceed is through instrumental variables (IVs). Cameron and

Trivedi (2005, section 22.2) discuss IV estimation in a panel data context. IVs may be

available from outside the model, but under circumstances to be described in the following

sections, they are implied by the model itself.

In cross-sections, IV is based on moment conditions of the form E(znun) = 0, where

zn is a vector of instruments for observation n. This carries over to the panel data context,

where the analogous moment condition is E(zntunt) = 0. However, in panel data contexts,

we can expand this to moment conditions of the form E(Z′nun) = 0, with Zn now a matrix of

order T×q and un now a T -vector. For example, this allows moment conditions of the form

E(znsunt− zntuns) = 0 (for some s , t), which do not fit in the standard (cross-sectional) IV
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structure. We will encounter moments like these below. As with the cross-sectional IVs,

the panel IVs also need to be correlated with the explanatory variable, that is, E(Z′nxn) , 0.

With Z′ ≡ (Z′1, . . . ,Z
′
N) and W a weight matrix of order q× q, the basic IV estimator is

β̂
IV

=

 N∑
n=1

x′nZn

 W

 N∑
n=1

Z′nyn

 N∑
n=1

x′nZn

 W

 N∑
n=1

Z′nxn


=

x′ZWZ′y
x′ZWZ′x

, (5)

with the yn and xn collected in NT -vectors y and x. The properties of β̂
IV

and the choice of

W follow from basic GMM theory. One choice for W is to take it proportional to (Z′Z)−1,

leading to 2SLS. Another choice is to take it proportional to a robust estimator of the

inverse of the variance of Z′nun: first compute the 2SLS estimator β̂
2SLS

and the residuals

ûn = yn − xn β̂2SLS
and then use the inverse of the sample covariance matrix of Z′nûn as the

weight matrix. This gives 3SLS or optimal GMM.

A remarkable practical aspect of panel IV is that it can be estimated in a standard

statistical package (like Stata) that offers cross-sectional IV with clustered standard errors.

This is mentioned briefly by Cameron and Trivedi (2005, p. 751), but not discussed in de-

tail and therefore perhaps underappreciated. Because this has great practical implications

for the implementation of the estimators we propose, we treat this more explicitly here.

Consider the situation where E(Z′nun) = 0 but E(zntunt) , 0. We think of a panel data

set organized in the long form, so each (n, t) combination has one row in the data matrix,

and a moment condition of the form E(zntunt) = 0 would be considered a single moment

condition (of dimension q) when used with an IV command intended for cross-sectional

data, not as T moment conditions. The assumption E(zntunt) , 0 would suggest that

standard IV with znt as instruments for unt is incorrect. However, the IV estimators are of
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the same form as (5) and thus are also panel IV estimators and therefore consistent. The

reason for this remarkable result is that the IV estimators aggregate the moments zntynt

and zntxnt across both n and t, and thus instead of being based on E[znt(ynt− xnt β)] = 0 can

be reinterpreted as being based on

E

 T∑
t=1

znt(ynt − xnt β)

 = 0,

or E[Z′n(yn− xn β)] = 0 which is the panel IV moment condition. In most cases, one would

expect dependence across time within cross-sectional units, and therefore the standard

errors need to be clustered, but this is straightforward in software like Stata.

There are, however, two caveats with this implementation. The first is that the proce-

dure breaks down with time-varying sampling weights. For example, suppose that one of

the moment conditions is E(yn2un1−yn1un2) = 0, so the corresponding column of Zn has yn2

as its first element and −yn1 as its second element, and its remaining elements are zero.

With time-varying weights, the moment condition that would become implemented is

E(wn1yn2un1 −wn2yn1un2) = 0, which is different, and typically incorrect. Hence, sampling

weights that differ across cross-sectional units are fine, but weights that vary within unit

cannot be used without adaptation. An example of an adaptation would be to use the

average of the sampling weights across time for each individual, because then we obtain

E[w̄n(yn2un1 − yn1un2)] = 0, which is correct if the moment conditions are uncorrelated

with the weights. (If this is not the case, one needs to investigate selectivity bias in more

detail, but this is not specific to panel IV. Typically, the idea is that the weights remove

rather than induce selectivity bias.)

The second, related, caveat is that the method may also break down for unbalanced
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panel data or missing data. For unbalanced data, moments of the form E(yn2un1−yn1un2) =

0 would not pose a problem, because both terms would be missing if, say, the individual

was absent in period 2 but not in period 1, and the estimator would aggregate only

over time periods that are observed. But, for example, missing data on xn2 but not yn2

would pose a problem, because the second term would be omitted but the first not if yn1

and xn1 are both observed. Without such item-missing data, unbalanced panel data still

cause problems for moment conditions like E(yn1un1 − yn2un2) = 0. The problems with

unbalanced or missing data can be solved by setting the whole affected column of Zn to

zero.

The panel IV theory generalizes immediately to more explanatory variables: if Xn is a

T × p matrix, then the IV estimator becomes

β̂
IV

=

 N∑
n=1

X′nZn

 W

 N∑
n=1

Z′nXn

−1  N∑
n=1

X′nZn

 W

 N∑
n=1

Z′nyn

 = (X′ZWZ′X)−1X′ZWZ′y,

with X the matrix that stacks all the Xn and W = (Z′Z)−1 leading to the 2SLS estimator.

3 Restrictions on Σε

We consider linear restrictions that we may be willing to impose on Σ
ε
, the covariance

matrix of the errors in the model equations. We start with two motivating examples and

then treat the general case.
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3.1 Motivating examples

In this section we discuss two examples of models for the errors that lead to linear restric-

tions on the error covariance matrix, and we show examples of moment conditions that

follow from these models. In the examples, we will use that

E
[
yns(ynt − xnt β)

]
= E(εnsεnt) = (Σ

ε
)st. (6)

The first example is the random effects model. In this model, it is assumed that the error

εit can be decomposed into a random individual effect αi and an i.i.d. residual error term

wit, that is, εit = αi + wit, and αi ∼ (0, σ2
α
) and wit ∼ (0, σ2

w) are assumed independent of

each other and of the other terms in the model. Hence, (Σ
ε
)tt = σ2

α
+ σ2

w and (Σ
ε
)ts = σ2

α

for s , t. From the latter and (6), we obtain E
[
(yns − ynr)(ynt − xnt β)

]
= 0, with s, r,

and t all distinct. Hence, yns − ynr can be used as an instrument for xnt, provided that

E[(yns − ynr)xnt] , 0, which is equivalent to E
[
(ξns − ξnr)ξnt

]
, 0. This is violated if ξnt

itself follows a random effects structure.

In the second example, we assume that {εnt} is stationary, which implies (Σ
ε
)ts = π

|t−s|

for some set of parameters π0, . . . , πT−1. Combining this with (6), we obtain E
[
(yn,t+k −

yn,t−k)(ynt − xnt β)
]

= 0. Hence, yn,t+k − yn,t−k can be used as an instrument for xnt, again,

provided that it is correlated with xnt.

In both cases, panel IV implies moment conditions that do not fit into a standard IV

framework, as discussed in section 2.3. For example, in both examples, E(εntεn,t+k) =

E(εnsεn,s+k), which gives rise to moment conditions of the form E
[
yn,t+k(ynt − xnt β) −

yn,s+k(yns − xns β)
]

= 0.
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3.2 Moment conditions

The restrictions we consider are linear and hence can be expressed as vec Σ
ε

= C
ε
π
ε
, with

C
ε

known (and of full column rank) and π
ε

(r
ε
×1) unknown. For example, when we have

the basic random-effects model, C
ε

=
(
ιT 2 , vec IT

)
, with in general ιK a vector of K ones,

and π
ε

= (σ2
α
, σ2

w)′.

In stacked form, the moment conditions (2)–(4) with the restrictions inserted can now,

with σ
ξ
≡ vec Σ

ξ
and σv ≡ vec Σv, be written as

E


yn ⊗ yn − σξ

β2 −C
ε
π
ε

xn ⊗ yn − σξ
β

xn ⊗ xn − σξ
− σv

 = 0. (7)

The third element just-identifies σv and, conditional on β, the second one just-identifies

σ
ξ
. Subtracting β times the second element from the first element, the remaining moment

condition becomes

E
[
(yn − xn β) ⊗ yn −C

ε
π
ε

]
= 0. (8)

Let the matrix C
ε⊥

be a complement of C
ε
, that is, a matrix of order T 2×(T 2−r

ε
) and rank

T 2 − r
ε

such that C′
ε⊥

C
ε

= 0. We can now isolate the moment conditions for estimating β

from (8) as E
(
C′
ε⊥

[(yn − xn β) ⊗ yn]
)

= 0, or

E
[
C′
ε⊥

(IT ⊗ yn)(yn − xn β)
]

= 0. (9)

So the (panel) IVs that are implied by the structure on Σ
ε

are Zn = (IT ⊗ yn)′C
ε⊥

, with Zn

the IV matrix as described in section 2.3. Finally, conditional on β, π
ε

is identified from

the complementary transformation of (8):

E
{
(C′

ε
C
ε
)−1C′

ε

[
(yn − xn β) ⊗ yn

]
− π

ε

}
= 0.
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3.3 The random effects model reconsidered

By way of illustration, let us reconsider the classical error-components (random effects)

model as discussed in section 3.1, with T = 3. The error covariance matrix is

Σ
ε

=


σ2
α

+ σ2
w σ2

α
σ2
α

σ2
α

σ2
α

+ σ2
w σ2

α

σ2
α

σ2
α

σ2
α

+ σ2
w

 ,
so r

ε
= 2,

C′
ε

=

(
1 0 0 0 1 0 0 0 1
1 1 1 1 1 1 1 1 1

)
, and π

ε
=

(
σ2

w
σ2
α

)
.

Hence, for one valid but otherwise arbitrary choice of C
ε⊥

, we obtain

Z′n = C′
ε⊥

(IT ⊗ yn)

=



1 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 −1

0 0 1 −1 0 0 0 0 0
0 0 0 1 0 0 0 −1 0

0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0
0 0 0 0 0 1 0 −1 0





yn1 0 0
yn2 0 0
yn3 0 0
0 yn1 0
0 yn2 0
0 yn3 0
0 0 yn1
0 0 yn2
0 0 yn3



=



yn1 −yn2 0
0 yn2 −yn3

yn3 −yn1 0
0 yn1 −yn2

yn2 −yn1 0
yn3 0 −yn1

0 yn3 −yn2


.

As shown in section 3.1, the expectation of each of the rows of the latter matrix multiplied

by (yn1 − xn1 β, yn2 − xn2 β, yn3 − xn3 β)′ is zero, yielding seven moment conditions. The
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first two exploit the homoskedasticity, that is, the equality of the diagonal elements of Σ
ε
.

The third and the fourth exploit the equality of the off-diagonal elements of Σ
ε
. The final

three are of the form E(ynsxnt − yntxns)β = 0 with s , t. With β , 0, β drops out of these

three moments. Thus, they reflect the assumption of symmetry of Σxy that is implied by

the model.

3.4 Extensions

We have derived these moment conditions in a model with a single regressor, which is

too simple for any empirical application. However, our findings remain valid in a quite

general setting, with an arbitrary number of regressors, with or without measurement

error. To see this, consider the general linear model

yn = Ξn β + Rnγ + εn

Xn = Ξn + Vn,

the reduced form of which is

yn = Xn β + Rnγ + un

un = εn − Vn β,

with Xn a T × k matrix of observations on k variables with measurement error, true value

Ξn, measurement error Vn, and Rn a T × ` matrix of observations on ` correctly measured

exogenous variables; β is now a k-vector and γ is an `-vector. Adapting the moment
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conditions (9), we have

E
[
C′
ε⊥

(IT ⊗ yn)(yn − Xn β − Rnγ)
]

= C′
ε⊥
E

[
(εn − Vn β) ⊗ (Ξn β + Rnγ + εn)

]
= C′

ε⊥
vec Σ

ε

= 0, (10)

due to the exogeneity of Rn. So the moment conditions (9) remain valid after this

straightforward adaptation. The panel IVs that are implied by the structure on Σ
ε
,

Zn = (IT ⊗ yn)′C
ε⊥

, are unaltered.

Another adaptation regards the identification of the regression parameters. The addi-

tion of the ` parameters in γ can be covered by the ` moment conditions

E(R′nun) = 0. (11)

As to the identification of β, because of the T (T − 1)/2 symmetry conditions that do not

involve β, the number of informative (on β) moment conditions is T (T + 1)/2 − r
ε
, so a

necessary condition for identification is T (T + 1)/2 − r
ε
≥ k.

As briefly indicated in section 3.1, when using the structure on Σ
ε
, a caveat is in order.

To illustrate this, we return to the simplest case of a single regressor and notice that the

columns of Zn are valid IVs only when they are correlated with xn,

E(Z′nxn) = E
[
C′
ε⊥

(IT ⊗ yn)xn

]
= C′

ε⊥
σ
ξ
β , 0,

so Σ
ξ

should not have the same structure as Σ
ε
. If the two structures are close, the

estimators will have a large variance, possibly too large to be of practical value.
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4 The dynamic model

Until now we have considered the static model. The moment conditions (10) do not hold

when the lagged dependent variable is included as a regressor; Zn = (IT ⊗ yn)′C
ε⊥

is no

longer a valid set of IV’s. To see this, consider the simplest model,

yn = xn β + yn,−1γ + un, (12)

where yn,−1 is the vector with t-th element yn,t−1. (Note that with this notation, t = 0 is the

first time point for which ynt is observed.) In the place of (10), we now obtain

E
[
C′
ε⊥

(IT ⊗ yn)(yn − xn β − yn,−1γ)
]

= E
{
C′
ε⊥

[
(εn − vn β) ⊗ (ξn β + yn,−1γ + εn)

]}
= C′

ε⊥
E(εn ⊗ yn,−1)γ.

Because yn,−1 contains elements of εn, the last expectation is nonzero. Moreover, this

expectation will generally not have the same structure as vec Σ
ε
, so that the nonzero ele-

ments are not eliminated by premultiplication with C′
ε⊥

. The extension to more regressors

with or without measurement error is straightforward.

Notice that this discussion is about measurement error in xn, not in yn. As to the latter,

there is a growing literature, see e.g. Meijer, Spierdijk, and Wansbeek (2013), Biørn

(2014), Gospodinov, Komunjer, and Ng (2014), and Lee, Moon, and Zhou (2014).

4.1 Example

By way of illustration, consider the random effects example from section 3.3 with the

lagged dependent variable added. Still assuming that E(ξnsεnt) = 0 for all s and t, we find
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that

E(εntyns) =

∞∑
j=0

E(εntεn,s− j)γ
j =

σ2
α

1 − γ
+ I(t ≤ s)σ2

wγ
s−t,

provided that |γ| < 1. After a bit of algebra, we obtain

E
[
C′
ε⊥

(IT ⊗ yn)(yn − xn β − yn,−1γ)
]

= γσ2
w



0
0
γ

0
1
γ

1


. (13)

So the moment conditions do not apply anymore. However, they still can be exploited to

some extent since
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 1 0 0 0
0 0 0 1 1 0 −1


C′
ε⊥
E

[
(IT ⊗ yn)(yn − xn β − yn,−1γ)

]
= 0,

so now

Z′n =


yn1 −yn2 0

0 yn2 −yn3
0 −yn1 yn1
0 yn1 −yn2

yn2 −yn3 0


.

contains valid instruments. This result is highly case-specific but the point has some

generality. Adding the lagged dependent variable to the model invalidates the moment

conditions but an adaptation may offer a way out, with fewer moment conditions.
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4.2 Arellano-Bond estimation

In the context of dynamic models, the dominant assumption on Σ
ε

is that it is a diagonal

matrix, possibly with equal elements. This assumption plays a crucial role in the validity

of the instruments on which the Arellano-Bond (1991) estimator is based. This estimator

takes the model in first differences and uses lags of y as instruments. With measurement

error, we get from (12)

∆yn = ∆xn β + ∆yn,−1γ + ∆un,

with ∆ taking first differences. For example, the first element of ∆yn is yn2 − yn1. The

Arellano-Bond instruments are

Z′n =



yn0
yn0
yn1

yn0
yn1
yn2

. . .

yn0
...

yn,T−2



,

of order T (T − 1)/2 × (T − 1). Still assuming that the measurement errors in x are

independent of the other random terms in the equation. The presence of ∆vn in ∆un does

not affect the validity of the Arellano-Bond instruments. Moreover, these instruments

also cover estimation of β; there is no need to search for new instruments when some

(< T (T − 1)/2) regressors are measured with error.

However, this does not necessarily exhaust the set of available instruments. Let yn+
be

the vector of all observed ynt, so yn+
≡ (yn0, . . . , ynT )′ and let Q of order (T − 1) × (T + 1)
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be such that

vec Q = E
[
(yn+
⊗ IT−1)∆un

]
.

Then

Q ≡ E(∆uny′n+
) =


0 π21 π22 . . . π2,T−1 π2T
0 0 π32 . . . π3,T−1 π3T
...

...
...

. . .
...

...

0 0 0 . . . πT,T−1 πTT

 ,
where the πs are functions of γ and the parameters on the diagonal of Σ

ε
. In general, there

is no linear structure that can be exploited beyond the zeros (which correspond with the

Arellano-Bond instruments), unless the elements on the diagonal of Σ
ε

are equal. Then

the elements on each of the pseudo-diagonals of Q are equal, which can be exploited to

generate instruments. As before, these instruments also help to increase the asymptotic

efficiency in estimating γ; they are not in any sense specific to the measurement error

problem. The latter kind of instruments were first described by Ahn and Schmidt (1995).

Blundell and Bond (1998) spawn yet another set of moment conditions, which usually

greatly improve on Arellano-Bond and which can also be used for the estimation of β just

like Arellano-Bond. Linear restrictions on Q may carry over to a corresponding matrix

for Blundell-Bond.

5 Using an additional exogenous regressor

In the analysis above, the role played by the exogenous variables Rn was restricted. Their

only property used, cf. (11), was contemporaneous lack of correlation with un. This suf-

fices to obtain the number of additional moment conditions (i.e., `) equal to the number of

additional regression coefficients. However, we can exploit the exogeneity of Rn to obtain
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more moment conditions, which can be used to identify and estimate β, even when there

are no restrictions on Σ
ε

at all. We now turn to this.

When the model contains an exogenous regressor rn in addition to ξn, this can be

used to construct additional moment conditions that allow for consistent estimation of

the parameters. Intuitively, the reason for this is that the additional regressor also adds

exclusion restrictions, because rnt is included in the equation for ynt but not in the equation

for yns, s , t. Formally, consider the model

yn = ξn β + rnγ + εn

xn = ξn + vn,

with rnt also in deviation of the mean at time t. In this context, we define strong exogeneity

as

E(rnsunt) = 0 for all s and t, (14)

where un = yn − xn β − rnγ. Weak exogeneity is defined in the same way, except that

the orthogonality condition in (14) is only assumed to hold for s ≤ t. The analysis

here will focus on strong exogeneity. The adaptations to weak exogeneity are minor

and straightforward. We first consider the advantage of having an exogenous variable

available. There appears to be a caveat here, and we can only truly benefit from it when

this exogenous variable has a heteroskedastic relation with the variable that was already

present in the model.
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5.1 Benefit and caveat

In section 3.4, we already showed how γ is identified with the additional moment con-

dition E(r′nun) = 0. However, we can increase the efficiency of the estimators by us-

ing all T 2 moment conditions from (14). These conditions include E(r′nun) = 0 as

r′nun = (vec IT )′(rn ⊗ un); the additional moment conditions can be shown to be non-

redundant in the sense of Breusch, Qian, Schmidt, and Wyhowski (1999).

But the presence of an additional, exogenous regressor can pay off in a much more

general sense. The T 2 moment conditions from (14) by themselves allow for consistent

estimation of the model, without recourse to restrictions on the error covariance matrix

Σ
ε
. This approach is straightforward and seemingly attractive. The Jacobian matrix of the

moment conditions is

J ≡ E
(
∂(rn ⊗ un)
∂(β, γ)

)
= −(vec Σxr, vec Σr), (15)

where Σxr ≡ E(xnr′n) and Σr ≡ E(rnr′n). Identification of β and γ from (14) requires J to

be of full column rank. This condition will be fulfilled in most cases, but the asymptotic

variance of the estimators of β and γ depends on the degree of collinearity of the two

columns of J, and in many cases of empirical relevance this degree will be high, leading

to imprecise and unreliable results. In particular, when xn = c rn + wn with E(rnw′n) = 0,

Σxr = c Σr and consequently the rank of J is 1 and the model is not identified from (14).

When the model deviates somewhat from this, the model is identified but the estimators

have a large variance in a wide set of reasonable parameter values. This showed up

clearly in various simulation exercises that we performed. Hence this seemingly attractive

approach is not recommended.
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5.2 Heteroskedasticity

Yet the presence of an additional regressor can be helpful as soon as the relation between

xn and zn is more complex, in particular when it is heteroskedastic. We will now elaborate

this point, to some extent generalizing results from Lewbel (2012) to a panel data setting.

Consider the linear projection of ξn on rn,

ξn = Krn + ωn, (16)

where K ≡ E(ξnr′n)
[
E(rnr′n)

]−1. With wn ≡ vn + ωn and κ ≡ vec K,

xn = Krn + wn = (rn ⊗ IT )′κ + wn.

By the definition of ωn and the assumption that vn is independent of rn, E(wnr′n) = 0 or,

arranged differently,

E(rn ⊗ wn) = 0. (17)

Now consider the situation where the relation (16) between ξn and rn is heteroskedastic,

so that E(ωnω
′
n | rn) is a function of rn. We make the slightly stronger assumption that

E(rn ⊗ ωn ⊗ ωn) , 0. (18)

Let

hn ≡


rn ⊗ wn
rn ⊗ un

rn ⊗ wn ⊗ un

 , (19)

where wn is now shorthand for xn − (rn ⊗ IT )′κ. In view of (14), (17), the various indepen-

dence assumptions made, and the assumption that rn is in deviation of its mean, E(hn) = 0

and hence can be used for GMM estimation of the model parameters θ ≡ (κ′, β, γ)′.
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There are T 2 + 2 parameters, and their identification depends on the rank of the matrix

G ≡ E(∂hn/∂θ
′). Since

∂hn

∂θ′
= −


rnr′n ⊗ IT 0 0

0 rn ⊗ xn rn ⊗ rn
rnr′n ⊗ IT ⊗ un rn ⊗ wn ⊗ xn rn ⊗ wn ⊗ rn

 ,
we obtain

G = −


Σr ⊗ IT 0 0

0 vec Σxr vec Σr
0 q1 q2

 , (20)

with

Σxr = KΣr

q1 ≡ E(rn ⊗ wn ⊗ xn)

= E
(
rn ⊗ (vn + ωn) ⊗ (Krn + vn + ωn)

)
= (IT ⊗ IT ⊗ K)E(rn ⊗ ωn ⊗ rn) + E(rn ⊗ ωn ⊗ ωn)

q2 ≡ E(rn ⊗ wn ⊗ rn)

= E(rn ⊗ ωn ⊗ rn).

In view of (18), we conclude that the heteroskedasticity adds T 3 moment conditions. If

the projection (16) can be strengthened to E(ξn | rn) = Krn, then E(rn ⊗ ωn ⊗ rn) = 0, q1

simplifies to E(rn ⊗ωn ⊗ωn), and q2 = 0. If E(rn ⊗ωn ⊗ rn) , 0, the regression of ξn on rn

must be nonlinear and q2 , 0.

Given identification, the parameters can be estimated by (nonlinear) GMM based on

hn. However, the structure of hn suggests a simpler two-step method: First estimate κ by

OLS, which amounts to using only the first moment condition. Second, use the first-step
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estimate κ̂ to construct ŵn ≡ xn − (rn ⊗ IT )′κ̂ and estimate β and γ by panel IV with yn as

dependent variable, xn and rn as explanatory variables, and

Ẑ′h,n ≡ rn ⊗

(
1

ŵn

)
⊗ IT (21)

as instruments. Although ŵn is estimated, the IV standard errors are correct. This is due

to the fact that the instruments are estimated in the first step and not the covariates.

Summarizing, this procedure consists of the following steps:

1. For t = 1, . . . ,T , regress xnt on rns, s = 1, . . . ,T . So these are T separate regressions

with in each regression the values of the additional regressor at all T time points as

regressors (T regressions with T regressors each).

2. For each of these T regressions, compute the residual ŵnt.

3. Create T sets of instruments. Instrument set t consists of rns, s = 1, . . . ,T and all

products rnsŵnk, s, k = 1, . . . ,T , as instruments for the t-th time point and zeros for

the other time points.

4. With the instruments defined like this, compute a standard IV estimator (2SLS,

GMM, LIML, etc.) and use panel-robust standard errors.

5.3 Discussion

It is of interest to compare the Jacobians (15) and (20). The two columns in (15) may

be highly collinear, which makes it hard to obtain estimators with decent small-sample

properties from an additional regressor. In (20), these two columns are “stretched” with q1
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and q2, which may decrease collinearity and hence the problem in obtaining satisfactory

estimators.

Note that linearity of the regression of xn on rn is helpful under heteroskedasticity,

because it leads to q2 = 0, whereas if nonlinearity is more important than heteroskedas-

ticity, the additional moment conditions are less helpful, although a situation in which

E(rn ⊗ rn ⊗ ωn) , 0 and E(rn ⊗ ωn ⊗ ωn) = 0 is unlikely to be approximately met, so the

additional moment conditions still add value.

Also for this approach, it is interesting to see how the validity is affected when regres-

sors are added. The IV’s are based on xn and rn only and do not involve yn. Hence their

validity is not affected when regressors are added to the model, even if they include the

lagged dependent variable.

6 Non-zero third moments

We can obtain instruments from within the model when ξn is not normally distributed.

Then, higher moments contain additional information that can help with identification and

estimation. This has received some attention in the literature on cross-sectional models,

as cited in the Introduction. Again, we start with a motivating example and then treat the

general case.

6.1 Motivating example

Suppose that E(ξ3
nt) = λ , 0 and that ξnt, vnt, and εnt are stochastically independent of

each other. Under these assumptions, Pal (1980), in a cross-sectional context, discusses a
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consistent estimator that in the panel context translates into

β̂ =

∑N
n=1

∑T
t=1 xnty

2
nt∑N

n=1

∑T
t=1 x2

ntynt

.

This is an IV estimator with instrument rnt = xntynt, that is, it is based on the moment

condition

E
[
(xntynt)(ynt − xnt β)

]
= E

[
(ξnt + vnt)(ξntβ + εnt)(εnt − vnt β)

]
= 0,

whereas E[(xntynt)xnt] = βλ , 0, provided that β is nonzero. Note that the independence

assumption ensures that expressions like E(ξntε
2
nt) are zero. Lack of independence, in this

case heteroskedasticity, would invalidate this moment condition. In a small simulation

study, Van Montfort, Mooijaart, and De Leeuw (1987) found that this estimator has

reasonably good statistical properties in moderately sized samples.

The panel data context implies additional moment conditions. Suppose that

E(ξnrξnsξnt) = λrst , 0 and that ξn, vn, and εn are stochastically independent of each other.

Then

E
[
xnryns(ynt − xnt β)

]
= E

[
(ξnr + vnr)(ξnsβ + εns)(εnt − vnt β)

]
= 0,

while E[(xnryns)xnt] = βλrst , 0. Hence, (xnryns) is also a valid instrument for xnt.

6.2 Moment conditions

As in the motivating example, we restrict ourselves here to third moments. Let λ
ξ
≡

E(ξn ⊗ ξn ⊗ ξn) , 0, the latter meaning that at least one element of λ
ξ

is nonzero. Let

λ
ε
≡ E(εn ⊗ εn ⊗ εn) and λv ≡ E(vn ⊗ vn ⊗ vn) be defined accordingly.
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The third moments can now be written as

E(yn ⊗ yn ⊗ yn) = λ
ξ
β3 + λ

ε
(22a)

E(yn ⊗ yn ⊗ xn) = λ
ξ
β2 (22b)

E(yn ⊗ xn ⊗ xn) = λ
ξ
β (22c)

E(xn ⊗ xn ⊗ xn) = λ
ξ

+ λv. (22d)

These expressions owe their simplicity to the assumed independence between ξn, εn,

and vn. As mentioned in the motivating example, the independence assumption implies

homoskedasticity:

E(εn ⊗ εn ⊗ ξn) = E(vn ⊗ vn ⊗ ξn) = 0.

Subtracting β times (22c) from (22b) gives

E
[
yn ⊗ (yn − xn β) ⊗ xn

]
= E

[
(yn ⊗ IT ⊗ xn)(yn − xn β)

]
= 0. (23)

Hence, Zyx,n ≡ (yn⊗ IT ⊗ xn)′ is a valid instrument matrix (E(Z′yx,nxn) = λ
ξ
β , 0). In scalar

notation, the set of moments (23) is

E
[
ynsxnk(ynt − xnt β)

]
= 0, k, s, t = 1, . . . ,T. (24)

Thus, (23) amounts to ordinary IV with T 3 instruments, divided in T sets: set t has T 2

instruments (ynsxnk), k, s = 1, . . . ,T that multiply with (ynt − xnt β) and zeros that multiply

with (ynτ − xnτ β) for τ , t.

Although this is the most useful form of the moments for implementation in a stan-

dard statistics/econometrics software package, we can linearly transform the moment

conditions to highlight that they include a set of symmetry conditions. In particular,
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let hn(k, s, t) ≡ ynsxnk(ynt − xnt β). Then hn(k, s, t) − hn(t, s, k) = yns(xnkynt − xntynk) and

hn(k, s, t) − hn(k, t, s) = xnk(xntyns − xnsynt)β, which are both symmetry conditions that do

not depend on β (assuming β , 0 for the latter). The moments with other permutations of

{k, s, t} can be similarly transformed, so that we can nonsingularly transform the system

of moment conditions (24) to a set of T (T + 1)(T + 2)/6 moment conditions

E
[
ynsxnk(ynt − xnt β)

]
= 0, k, s, t = 1, . . . ,T ; k ≤ s ≤ t, (25)

and a set of T 3 − T (T + 1)(T + 2)/6 symmetry conditions that do not involve β.

Conditional on β, (22a) identifies λ
ε
, (22d) identifies λv, and (22c) identifies λ

ξ
. Also,

the matrices Zyy,n ≡ (yn ⊗ yn ⊗ IT )′ and Zxx,n ≡ (IT ⊗ xn ⊗ xn)′, of the same order, are valid

instrument matrices if the third moments of ε and v, respectively, are assumed to vanish.

As stated before, using third moments to estimate measurement error models has a

long history, with a number of publications added more recently, all pertaining to the case

of a single cross-section. The method is generally not considered favorably by applied

researchers, because the results are often not very robust as the instruments are often

weak. In the panel data model context, the situation may be more favorable as the number

of instruments generated is O(T 3). So there is no dearth of instruments. Of course, more

instruments mean more signal but also more noise, so the balance is not clear a priori. We

will investigate this issue through simulation in section 9.

When exogenous regressors are added to the model, nothing essential changes and

therefore these instruments are still valid. Now let us look at what happens when we add
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the lagged dependent variable as a regressor. Then

E(Z′yx,nun) = E(yn ⊗ un ⊗ xn)

= E
[
(ξn β + yn,−1γ + εn) ⊗ (εn − vn β) ⊗ (ξn + vn)

]
= E

[
yn,−1 ⊗ (εn − vn β) ⊗ (ξn + vn)

]
γ.

This is zero, because we can write yn,−1 as an infinite sum of terms of the form εn,− j and

ξn,−k and in the resulting triple products there is always at least one mean-zero factor that

is independent of the others. Thus, Zyx,n is still a valid instrument matrix. Analogously,

Zyy,n is still a valid instrument matrix under the assumption that the third moments of εn

(for all triples of time points, including t < 0) vanish and Zxx,n is still a valid instrument

matrix under the assumption that the third moments of vn vanish.

7 Heteroskedasticity

Apart from the relation between the two regressors in our third approach, we have

assumed that relations are homoskedastic. This may be undesirably strong. In our

first approach, we considered linear restrictions on the error covariance matrix, that is,

vec Σ
ε

= C
ε
π
ε
, with C

ε
a known matrix of constants and π

ε
a vector of unknown pa-

rameters. With heteroskedasticity, it is most natural to assume that vec Σ
εn = C

ε
π
εn.

The instruments that we use are still valid under this relaxation, because they operate

in the space orthogonal to C
ε
, in which π

ε
is eliminated, and this carries over to the

heteroskedastic case. The estimators are also still consistent if the measurement error is

heteroskedastic.
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The estimators that use third moments do not accommodate heteroskedasticity as eas-

ily. The moment condition (22b) is only valid if E(εn⊗εn⊗ξn) = 0 and E(ξn⊗vn⊗vn) = 0.

Under arbitrary heteroskedasticity, the third moments do not identify the regression co-

efficient anymore. We can, however, allow some form of heteroskedasticity, as long as

enough elements of these third moment vectors are zero. For example, we may be willing

to assume that E(εntεnsξnr) = 0 and E(vntvnsξnr) = 0 if r, s, and t are all distinct. This

would identify β if T ≥ 3 in the random effects situation and T ≥ 4 in the fixed effects

situation (to be discussed in section 8), even if E(ε2
ntξnt) or E(v2

ntξnt) are allowed to be

nonzero.

For the estimators that use an additional regressor, the most important assumption is

that E(rn ⊗ vn ⊗ vn) = 0. Thus, the regression of ξn on rn is required to be heteroskedastic,

but the measurement error must be homoskedastic with respect to rn. Here too, we will

still be able to identify the parameters if the assumption is violated only for a subset of

the elements.

If under heteroskedasticity a set of instruments has been selected that identify the

parameters, the IV estimators are consistent, but the default IV standard errors are incor-

rect. However, the default GMM standard errors are robust to heteroskedasticity, so it is

straightforward to obtain correct standard errors.
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8 Individual effects

We now extend the model to include individual effects,

yn = ξn β + ιTαn + εn (26)

xn = ξn + vn, (27)

where αn is the random, mean-zero individual effect. If it is uncorrelated with ξn we have

a random effects model and it can be subsumed in εn. With restrictions on the covariance

matrix of the time-varying error term, this potentially leads to restrictions on Σ
ε
. This

case has been dealt with in section 3.

If αn is correlated with ξn we have a model that is commonly called a fixed effects

model, which requires a separate treatment. We can for instance employ a matrix B, of

order T × T and rank T − 1, with property B′ιT = 0. We put a tilde on a T -vector when it

has been pre-multiplied by B′.

We first consider the moment conditions from the restrictions on the covariance matri-

ces. Conceptually the simplest approach is the usual approach with fixed-effects models,

which is to transform the model by eliminating the individual effects through some choice

of B matrix, and then proceed with the model for transformed variables. In our context,

the essential change concerns (8), E[(yn − xn β) ⊗ yn − C
ε
π
ε
] = 0. After transformation,

this becomes

E
[
(ỹn − x̃n β) ⊗ ỹn − (B ⊗ B)′C

ε
π
ε

]
= 0. (28)

So the IVs are now based on the complement of (B ⊗ B)′C
ε

rather than C
ε
.

However, there is an avoidable loss of efficiency in this approach. If the individual

effects are not correlated with εnt and vnt, E[(εn − vn β) ⊗ yn] = vec Σ
ε

still holds. Hence,
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for estimation we only need to eliminate the αn from ynt − xnt β. Consequently,

E
[
(ỹn − x̃n β) ⊗ yn − (B ⊗ IT )′C

ε
π
ε

]
= 0

is a larger set of moment conditions, generating more IVs than (28).

The adaptation of the results with an additional exogenous regressor in section 5 to the

inclusion of fixed effects is relatively simple. The key element is that in (19), un is replaced

by ũn = ỹn− x̃n β. This eliminates the individual effect, while after this transformation, the

analog of (19) still holds. Hence, we then estimate the regressions with the transformed

variables, but with the same instruments as in section 5.

We next consider the third moments when there are individual effects. Again, we need

to transform the regression equation to eliminate the individual effect. We can eliminate

the individual effect also from yn in the instrument matrix to obtain the analog of (23)

E
[
ỹn ⊗ (ỹn − x̃n β) ⊗ xn

]
= E

[
(ỹn ⊗ IT−1 ⊗ xn)(ỹn − x̃n β)

]
= 0, (29)

so that Z̃yx,n ≡ (ỹn ⊗ IT−1 ⊗ xn)′ is a valid instrument matrix. However, if we additionally

assume that the individual effect αn is independent of εn and vn, then the instrument matrix

Žyx,n ≡ (yn ⊗ IT−1 ⊗ xn)′ is also valid and gives us more instruments. An analogous

analysis shows that, under the assumption that the third moments of εn vanish, Z̃yy,n ≡

(ỹn ⊗ ỹn ⊗ IT−1)′ is a valid instrument matrix, and Žyy,n ≡ (yn ⊗ yn ⊗ IT−1)′ is valid if αn is

independent of εn and vn. Finally, Žxx,n ≡ (IT−1 ⊗ xn ⊗ xn)′ is valid if the third moments of

vn are zero.

In most linear panel data models with fixed effects, the analysis starts by transforming

the model by some choice of B to eliminate the individual effects. Nearly always, this is

done by taking first differences or by using the “within” transformation. Since panel data
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often evolve only slowly over time, this step takes out quite a bit of the variation in the

data, to the detriment of the precision of the estimates. The striking feature of the analysis

here is the presence, in the final result, of the untransformed variables in the instruments,

though not in ũn. This is analogous to the Arellano-Bond estimator for the dynamic panel

data model, where a model in first differences is estimated by IVs in levels, as discussed

in section 4.2.

Not all parameters may be identified in the presence of fixed effects. The main parame-

ter of interest, β, is identified as discussed here, but only transformations of the parameters

π
ε

in the case of covariance restrictions, or λ
ξ
, λ

ε
, and λv in the case of third order moment

estimation may be identified, depending on the restrictions imposed on these parameters

by the model. This is similar to the multinomial probit model, where only the covariance

matrix of the transformed error terms is identified unless the model sufficiently restricts

the covariance matrix of the untransformed errors (e.g., a factor structure).

9 Simulations

To get an impression of the performance of the various estimators proposed in the previous

sections, we conducted some simulations. We generated data largely following a well-

known setup originally due to Nerlove (1971) and subsequently used by various other

researchers. This setup has

ynt = αn + ξnt β + εnt,

with εnt ∼ N(0, σ2
ε
) and αn ∼ N(0, σ2

α
). We introduce measurement errors by

xnt = ξnt + vnt,
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with vnt ∼ N(0, σ2
v). We let σ2

α
= 0.7, β = 1, σ2

ε
= 2, and σ2

v = 1. The ξnt are generated

according to

ξnt = 0.5ξn,t−1 + ζnt,

with ζnt ∼

√
4
3 χ

2
1 and ξn0 =

√
4
3 ζn0. This choice of ζnt implies that the third mo-

ment of ξnt is nonzero, which is exploited in the estimators based on third moments.

For N = 100, 200, 500, and 1,000, we generate 1,000 data sets, all with T = 5.

In each sample, ynt and xnt are centered by subtracting their sample averages across

n before further estimation. This setup implies that V(ξnt) = 32/9 for all t, and thus

C(ynt, xnt) = 32/9, V(xnt) = 32/9 + 1 = 41/9, and V(ynt) = 0.7 + 32/9 + 2 = 563/90.

Hence, the pooled OLS estimator of β (= 1) converges to 32/41 = 0.78, with an R2

of 322/(41 · 563/10) = 0.44. The standard fixed effects (“within”) estimator subtracts

the within-individual across-time average of y and x before performing OLS. Let QT =

IT − ιT ι
′
T/T be the associated centering matrix. Then the within estimator converges to

tr[QT C(yn, x
′
n)]/ tr[QT C(xn)] = tr[QT C(ξn)]/{tr[QT C(ξn)]+(T−1)σ2

v}. Using the station-

ary AR(1) structure of ξn, the numerical value of this for our setup is 37/52 = 0.71, with

an R2 of {tr[QT C(ξn)]}2/
(
{tr[QT C(ξn)] + (T − 1)σ2

v} {β
2 tr[QT C(ξn)] + (T − 1)σ2

ε
}
)

= 0.39.

Below, we employ estimators based on the moment conditions derived in sections 3–8.

Unless stated otherwise, all results are based on the optimally weighted GMM estimator,

that is, the estimator based on (5) with W = (
∑

n ûnû′n)−1. Throughout, we take the matrix

B′ equal to QT with the first row left out. We use clustered standard errors that are robust

to time-series correlation and heteroskedasticity.
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9.1 Covariance restrictions

The number of instruments from the structure on Σ
ε

depends on whether we consider

random effects (RE) or fixed effects (FE) estimation. With RE, the individual effect αn is

subsumed in the error term εnt. These terms have covariance matrix Σ
ε
. Its structure has

already been illustrated in section 3.3. We leave out the moment conditions that do not

involve β, which results in 13 instruments for RE and 9 for FE.1

Columns 2–5 of Table 1 give an impression of the strength of these instruments. The

adjusted R2 of the regression of x on the instruments, denoted by R̄2, is typically low,

which is not unusual for panel data. The F statistics indicate that the instruments are

weak for N = 100, 200 and 500, and strong for N = 1000, if we take F < 10 as the

threshold for weak instruments (e.g., Stock, Wright, and Yogo, 2002).

The simulation results for covariance matrix restrictions are given in Table 2, for

random effects (column 2) and fixed effects (column 3). This table reports the average

value of the GMM estimator β̂ over the 1,000 replications (“avg. β̂”) , the sample standard

deviation of β̂ over the replications (“sample σ(β̂)”), and the average (formula-based)

standard error of β̂ according to the usual asymptotic theory (“avg. σ̂(β̂)”). For sample

sizes larger than N = 200, the bias of β̂ is negligible for both RE and FE estimators.

A comparison of the average formula-based standard error and the sample standard de-

viation computed over the replications sheds light on the accuracy of the asymptotic

standard error as an approximation of the finite-sample standard deviation. The average

formula-based standard error of both the RE and FE estimators is smaller than the sample

1Throughout, the simulation results involving all moment conditions are slightly worse that the ones

reported here. They are available upon request.
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standard deviation of β̂ over the replications, but but with sample sizes of 500 and larger,

the difference is negligible.

Columns 2–3 of Table 3 report the corresponding rejection rates (in percentages) of the

t-test over the 1,000 replications for random and fixed effects, where the null hypothesis

H0 : β = 1 is rejected if and only if | β̂−1|/σ̂(β̂) > 1.96. Thus, the rejection rates should be

close to 5%. The standard error used in the t-test is either the formula-based standard error

(“σ̂(β̂)”), or the sample standard deviation as measured over the replications (“sample

σ(β̂)”). The latter is, of course, not a test that can be used in practice, but it serves here

to illustrate the impact of the less accurate standard errors, as opposed to the unbiased

estimators. Table 3 shows that the rejection rate of the t-tests is close to 5% when the

sample standard deviation is used. For N ≤ 200, the rejection rates exceed the 5% level

when the formula-based standard error is used.

A panel bootstrap based on the recentered moment conditions can be used to estimate

standard deviations that represent a second-order improvement relative to the formula-

based asymptotic standard errors (Hall and Horowitz, 1996). The rejection rates of the

t-tests are improved when the bootstrap standard errors are used instead of the formula-

based standard errors. The use of bootstrap standard errors is particularly useful for

smaller values of N, when the downward bias in the formula-based standard errors is

relatively large. The improvement in rejection rates thanks to the bootstrap is illustrated

in columns 2–3 of Table 5, where we display the rejection rates based on the sample

standard deviation as measured over the replications (“sample σ(β̂)”), the formula-based

standard error (“σ̂(β̂)”), and the bootstrap (bootstrap σ̂(β̂)). The bootstrap results in a

considerable improvement of the rejection rates relative to the formula-based standard
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error for N = 100. In case of FE it even leads to a conservative standard error and a

rejection rate slightly below the nominal level.

9.2 Third moments

We now exploit the third moments of the data. We use T 3 = 125 instruments for RE and

T (T − 1)2 = 80 instruments for FE. If we also exploit that the third moments of εn and vn

vanish, this adds 2 × 125 = 250 instruments for RE, resulting in 375 instruments in total.

For FE, the additional number of instruments is (T − 1)3 + T 2(T − 1) = 164, resulting in

244 instruments in total.

Columns 6–9 of Table 1 give an impression of the strength of these instruments.

The R2s and F statistics are much higher than the ones for the covariance restrictions

in columns 2–5.

The simulation results for the third-order restrictions are given in columns 4–9 of

Table 2. For the GMM estimator exploiting third moments the weight matrix turns out

to be crucial. We consider three different weight matrices: the asymptotically optimal

weight matrix W
OPT

(columns 4–5), the 2SLS weight matrix W
2SLS

(columns 6–7), and the

identity matrix I (columns 8–9).

The GMM estimators based on W
OPT

and W
2SLS

show some bias even for N = 1, 000.

Throughout, the FE estimator has a larger bias than the RE estimator. In contrast, for

the GMM estimator with W = I there is virtually no bias. As expected, the estimator

based on W = I has a larger variance, but the 2SLS estimator is at least as efficient as the

asymptotically optimal one. For the 2SLS and identity-weighted estimators, the average

formula-based standard error is relatively close to the sample standard deviation measured
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over the replications. For the optimally-weighted GMM estimator the difference between

the two is much larger.

The combination of some bias in the estimator and a large downward bias in the stan-

dard error results in rejection rates of the two-sided t-test for the null hypothesis H0 : β = 1

that are far too high for the GMM estimator based on W
OPT

, as shown in columns 4 and 5

of Table 3. Even if the formula-based standard errors are replaced by the sample standard

deviation of β̂ across replications, the rejection rates are still too high (particularly for the

FE estimator), although they are noticeably better than with the formula-based standard

errors. Columns 6–9 show that the test results for the non-optimally weighted GMM

estimators are much better, even when the formula-based standard errors are used.

Again we can use the bootstrap to obtain more accurate estimates of the standard

deviation of β̂. The resulting bootstrap standard errors improve the rejection rates of the

t-tests, except for the 2SLS estimator. This is illustrated in columns 4–9 of Table 5. Note

that, as mentioned in section 9.1, the test that uses the sample standard deviation of β

across replications is not available in practice. It should be viewed as a hypothetical test

that would be obtained if the correct standard error was known.

The non-optimally weighted GMM estimators perform better in terms of bias and

rejection rates than the GMM estimator based on the asymptotically optimal weight ma-

trix. If the asymptotic distribution is a reasonable approximation of the exact distribution,

optimal weighting is to be preferred. However, there is ample evidence that, especially

when the sample used is not too large, the approximation can be poor. GMM estimators

may then be severely biased and inference based on them can be highly unreliable. One

possible cause is the imprecision of the weight matrix based on higher-order moments
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(Mooijaart and Satorra, 2012). Another cause is due to the fact that the data are used twice,

to construct both the instruments and the weight matrix, inducing a correlation between

the two. This correlation leads to a negative bias in the case of covariance structures,

as shown by Altonji and Segal (1996). See also the discussion in Wansbeek and Meijer

(2000, p. 274).

It appears that the standard deviations of the third-moment estimator are much smaller

than for the estimators based on covariance restrictions. The third-moment GMM estima-

tor with W = I has no bias, resulting in a considerably smaller (in a relative sense) mean

squared error than the covariance restriction estimator.

9.3 Additional regressor

To study the estimator that exploits the presence of an additional regressor, we start by

simulating the regressor znt analogous to ξnt in the previous simulations: ent ∼

√
4
3 χ

2
1 for

t = 0, . . . ,T (T = 5), zn0 =

√
4
3 en0, and

znt = 0.5zn,t−1 + ent.

We then compute ωnt = zntζnt, where ζnt ∼ N(0, σ2
ζ
) (i.i.d.), so that E(zntωns) = 0 for all t

and s, but E(zntω
2
nt) = E(z3

nt)E(ζ2
nt) , 0, so that E(zn ⊗ ωn ⊗ ωn) , 0. The regressor ξnt is

then generated according to

ξnt = κ1znt + κ2zn,t−1 + ωnt.
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This satisfies the setup in section 5 with K , c IT , but q2 = 0 and q1 = E(zn⊗ωn⊗ωn) , 0.

The model is completed by the system

ynt = αn + ξnt β + zntγ + εnt

xnt = ξnt + vnt,

with again εnt ∼ N(0, σ2
ε
), αn ∼ N(0, σ2

α
), and vnt ∼ N(0, σ2

v). As in the previous simu-

lation, we choose σ2
α

= 0.7, β = 1, σ2
ε

= 2, and σ2
v = 1. The additional parameters are

σ2
ζ

= 1, κ1 = κ2 = 1/
√

3 = 0.577, and γ = 1.

From (21) we see that the two-step approach gives us T (T +1)T = 150 IVs for RE and

T (T + 1)(T − 1) = 120 IVs for FE. Table 4 shows the simulation results for the optimally-

weighted GMM estimator based on the restrictions that follow from the presence of an

exogenous regressor. This table reports the average values of β̂ and γ̂ over the replications,

the sample standard deviations over the replications, the average formula-based standard

errors, and the rejection rates corresponding to the two t-tests H0 : β = 1 and H0 : γ = 1

(for both types of standard errors). The bias in the estimators is small, particularly for

N = 500 and N = 1, 000. Throughout, the average formula-based standard error is close

to the sample standard deviation over the replications. The rejection rates are close to 5%

for the larger sample sizes. Again the bootstrap can be used to improve the rejection rates

for small values of N, which is illustrated in the third panel of Table 5.

10 Conclusions

We have presented three ways to consistently estimate a linear panel data model with

measurement error. We have departed from the existing literature by avoiding the hard-
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to-justify assumptions on the intertemporal covariance matrix of the measurement errors,

and replaced them with various alternative assumptions, which researchers may be more

comfortable with. Specifically, we consider restrictions on the intertemporal covariance

matrix Σ
ε

of the equation errors, exploiting third moments of the data, and using moments

that involve an additional regressor to which the error-ridden regressor is heteroskedas-

tically related. For each of these cases, we derive a set of moment conditions that can

be used in a GMM procedure to obtain consistent estimators. These are all relatively

simple IV estimators, although in the case of an additional regressor, this is a two-step IV

estimator. We also adapt these estimators to accommodate fixed effects. The simulation

results suggest that our three approaches work well, at least for the particular settings

chosen in our simulation study.

When the moment conditions based on at least one of the three approaches have been

selected, a standard J-test for over-identifying restrictions can be used to test the validity

of the chosen moment conditions. In this way, the moment conditions derived in this

paper greatly expand the toolkit of the applied researcher.

There are various directions for further research as to each of our three approaches.

As to using restrictions on Σ
ε
, we considered linear restrictions only. A researcher may be

willing to restrict Σ
ε

in a nonlinear way, for example, by imposing some ARMA structure.

Then, the elements of the error covariance matrix are functionally dependent on a few

underlying parameters, η, say, in a nonlinear way. One may proceed by using a consistent

but inefficient estimate of η, which can often easily be constructed, and improve on it by

linearized GMM, cf. Wansbeek and Meijer (2000, section 9.3).

As to our second approach, using third moments, the presence of outliers will often
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have a negative impact on estimator quality. This also defines a direction for further

research, by bringing the literature on robust estimation in panel data models to bear on

measurement error, cf. Wagenvoort and Waldmann (2002) and Bramati and Croux (2007).

We have focused on the static panel data model, although we also showed how our

results generalize to the dynamic panel data model, provided the measurement error is not

in the (lagged) dependent variable. Meijer, Spierdijk, and Wansbeek (2013) explore the

effect of measurement error in the dependent variable and propose a consistent estimator,

for the simplest version of the model, where the lagged dependent variable is the only

regressor and where the structure of the measurement error is kept very simple. One

promising area of research is to explore the possibilities offered by the presence of further

regressors, which are an underexploited source of instruments in the usual estimation of

the dynamic panel data model and which (with caveats, see section 5) can yield instru-

ments to deal with measurement error.
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Table 1: Strength of instruments

cov. restr. 3rd order mom.

RE FE RE FE

N R̄2 F R̄2 F R̄2 F R̄2 F

100 0.05 3.14 0.04 3.09 0.43 12.06 0.37 9.03

200 0.04 4.41 0.03 4.71 0.43 22.77 0.36 16.44

500 0.04 8.22 0.03 9.78 0.42 53.76 0.36 37.92

1000 0.03 14.67 0.03 18.13 0.42 103.93 0.35 72.97
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Table 2: Covariance restrictions and 3rd order moments: bias and variance

cov. restr. 3rd order mom.

W
OPT

W
2SLS

W = I

RE FE RE FE RE FE RE FE

N = 100

avg. β̂ 97 96 96 91 98 93 100 99

sample σ(β̂) 187 208 75 94 72 88 96 109

avg. σ̂(β̂) 135 160 27 33 71 84 84 89

N = 200

avg. β̂ 98 97 97 94 99 96 100 100

sample σ(β̂) 133 150 53 63 49 59 66 72

avg. σ̂(β̂) 116 131 27 33 52 62 64 67

N = 500

avg. β̂ 99 99 98 96 100 98 100 100

sample σ(β̂) 90 94 35 42 33 40 43 46

avg. σ̂(β̂) 85 92 23 28 34 41 43 44

N = 1000

avg. β̂ 100 99 99 98 100 99 100 100

sample σ(β̂) 66 68 24 28 23 28 28 31

avg. σ̂(β̂) 63 67 19 22 25 29 31 32

Notes: To facilitate reading, avg. β̂ has been multiplied by 100, whereas sample σ(β̂) and

avg. σ̂(β̂) have been multiplied by 1,000.



Table 3: Covariance restrictions and 3rd order moments: rejection rates (in %)

cov. restr. 3rd order mom.

W
OPT

W
2SLS

W = I

RE FE RE FE RE FE RE FE

N = 100

% rejections (sample σ(β̂)) 5 6 7 16 6 12 5 5

% rejections (σ̂(β̂)) 16 13 55 68 7 15 12 15

N = 200

% rejections (sample σ(β̂)) 6 5 9 17 6 10 5 5

% rejections (σ̂(β̂)) 10 9 42 51 5 9 8 9

N = 500

% rejections (sample σ(β̂)) 5 5 9 14 5 7 5 5

% rejections (σ̂(β̂)) 6 5 28 35 5 8 6 8

N = 1000

% rejections (sample σ(β̂)) 5 4 7 12 6 6 5 5

% rejections (σ̂(β̂)) 6 5 18 24 5 6 3 5
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Table 4: Exogenous regressors: bias, variance, and rejection rates

RE FE RE FE

β γ β γ β γ β γ

N = 100 N = 500

avg. β̂ 97 103 97 102 100 100 100 100

sample σ(β̂) 31 56 32 61 16 26 17 28

% rejections 13 6 13 6 6 4 6 4

avg. σ̂(β̂) 34 59 36 64 16 26 17 29

% rejections 18 10 18 7 7 5 8 6

N = 200 N = 1000

avg. β̂ 98 101 98 101 100 100 100 100

sample σ(β̂) 24 41 25 44 12 18 12 20

% rejections 10 6 9 6 5 6 6 5

avg. σ̂(β̂) 24 42 25 45 12 19 13 21

% rejections 11 8 10 6 6 8 8 7

Notes: To facilitate reading, avg. β̂ has been multiplied by 100, whereas sample σ(β̂) and

avg. σ̂(β̂) have been multiplied by 1,000. The rejection rates are in %.
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