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Abstract 
 
We develop a unifying framework for optimal income taxation in multi-activity economies 
with general production technologies. Agents are characterized by an N-dimensional skill 
vector that captures intrinsic abilities in N activities. The private return to each activity 
depends on individual skill and an aggregate activity-specific return, which is a general 
function of the economy-wide distribution of efforts across activities. The optimal tax 
schedule features a multiplicative income-specific correction to an otherwise standard tax 
formula. Because taxes affect the relative returns to different activities, this correction 
diverges, in general, from the weighted average of the Pigouvian taxes that would align 
private and social returns in each activity. We characterize this divergence as a function of 
relative return elasticities, and its implications for the shape of the income tax both generally 
and in a number of applications, including externality-free economies with general 
equilibrium effects, economies with increasing or decreasing returns to scale, zero-sum 
activities such as bargaining or rent extraction, and positive or negative spillovers. 
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1 Introduction

How to design redistributive income tax systems is both a classic question in economics
and a recurrent topic in public policy debates, as exemplified by the recent “Occupy” and
“Tea Party” movements. While the standard equity-efficiency tradeoff, i.e., the tension be-
tween redistributional goals and tax distortions, which has long been emphasized by the
formal optimal taxation literature,1 has played some role, the recent debate has pointed to
two central issues largely absent from this canonical framework. First, the trend towards
greater income inequality in the past decades (as documented e.g. by Atkinson, Piketty
and Saez, 2011) has gone hand in hand with shifts in the sectoral structure of the econ-
omy, for instance a flow towards finance at the top of the income distribution. Second,
some supporters of higher taxes on high earners have questioned whether wages in some
occupations actually fully reflect the true social marginal product of these activities.

Motivated by these observations, this paper provides a framework for the analysis of
optimal income taxation in multi-activity economies with fully general production tech-
nologies. In particular, individuals can pursue N different activities, the returns to each
of which depend in a fully general way on the aggregate efforts in all N activities (and not
necessarily aligned with marginal products). Naturally, we allow for N-dimensional het-
erogeneity of privately known individual skills across all N activities. Tax policies in this
setting reflect two novel effects: First, across-activity shifts of effort caused by income-tax-
change-induced changes in the relative returns to different activities; and second, Pigou-
vian motives for taxation, correcting the wedge between wages and social returns to effort
in different sectors and hence different parts of the income distribution.

Our unifying theory encompasses many applications as special cases, some of which
have appeared earlier in our work. In Rothschild and Scheuer (2013), we considered the
simplest framework for illustrating the first of the two effects above: A two-sector econ-
omy with a constant returns to scale aggregate production function and private returns
equal to marginal products. With complementary sectors, the income tax schedule can
be used to manipulate the relative returns to the two sectors and thereby achieve redistri-
bution indirectly through general equilibrium effects. In Rothschild and Scheuer (2014),
we added the second effect, again in the most parsimonious way: One of the two activ-
ities is rent-seeking and imposes negative externalities, so its private returns exceed its
social marginal product, and the second, traditional activity generates no externalities.
We show that general equilibrium effects from sectoral shifts of effort between produc-
tive and unproductive work cause the optimal income-tax correction to diverge from the

1See Mirrlees (1971), Diamond (1998), Saez (2001) and Werning (2007) among others.
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partial equilibrium Pigouvian externality correction.
These instructive examples remain restrictive for capturing many real-world settings.

Imagine, as a stylized example, a team production setting where individuals spend effort
both to actually produce output and also to claim credit (and get paid) for output they or
others have produced. Claiming credit is a zero sum activity from a social perspective,
so its private returns exceed its social returns. On the other hand, part of the productive
activity’s returns are captured by credit-claiming effort. Hence, this is a setting where
both activities generate externalities—one negative, and the other positive.

Some recent contributions to the taxation literature have addressed related phenom-
ena. For instance, Ales, Kurnaz, and Sleet (2014) examine the effect of technical change on
the optimal income tax in a multi-sector economy that is a special case of ours, abstract-
ing from externalities and multidimensional heterogeneity. Piketty, Saez, and Stantcheva
(2014) emphasize that some top incomes may come at the expense of lower incomes, e.g.
because CEOs set their compensation through bargaining, so when they claim a larger
share of the resources in the company, they leave less for workers. Besley and Ghatak
(2013) argue that some sectors may capture resources from others, e.g. in the form of
bailouts in the financial sector financed by taxes on everyone else. Lockwood, Nathanson,
and Weyl (2014) consider a model with multiple occupations, some over- and some un-
derpaid, with different relative representations in different parts of the income distribu-
tion, justifying a purely Pigouvian role for the income tax. However, all the papers incor-
porating externalities assume a particular pattern thereof, where whenever some activity
is overpaid, this comes at the expense of everyone else uniformly, rather than potentially
at the expense of some more than others.

In contrast, the unifying framework we develop here allows us to consider activities
that can be linked through arbitrarily rich externality structures: some activities may gen-
erate positive and others negative externalities, and the externalities may be borne dif-
ferently by different activities. For instance, an increase in aggregate effort in the credit-
claiming activity in the above example clearly reduces the returns to the productive activ-
ity. But it will also reduce the return to claiming credit itself when this activity is subject
to crowding. Depending on which effect is stronger, the relative return to the unproduc-
tive activity may rise or fall. This in turn determines whether a marginal tax increase at
incomes where the unproductive activity is strongly represented leads to a beneficial flow
of effort to the productive activity, or a perverse shift to the unproductive activity.

These activity shifts in response to relative return changes turn out to play an impor-
tant role for tax policy. We derive a useful formula for our general framework that offers
insight into the size and direction of the divergence between the optimal correction and
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the partial equilibrium Pigouvian correction that ignores these relative return effects. We
also show that this divergence vanishes precisely when a variation in the marginal in-
come tax at a given income level induces no relative return changes. We use these general
results in various applications to characterize the optimal progressivity of the income tax
schedule for any redistributive objectives, captured by arbitrary Pareto weights.

Since our model naturally involves N dimensions of private information, we begin by
demonstrating how they can be collapsed into a single dimension relevant for screening,
extending our previous work in Rothschild and Scheuer (2013, 2014).2 In particular, we
identify a one-dimensional, but endogenous, summary statistic for heterogeneity in our
framework. When confronted with an income tax, an individual always earns a given
amount of income through a cost-minimizing combination of efforts in the N activities.
For any vector of activity-specific returns, this results in a well-defined wage that deter-
mines her preferences over consumption-income bundles. We can therefore work with a
screening problem in terms of these wages, with the only complication that they depend
on sectoral returns and therefore the vector of aggregate efforts in all activities.3

We first solve this screening problem for any given combination of aggregate activity-
specific efforts (the “inner” problem). We obtain a formula for the Pareto optimal marginal
income tax rates (Proposition 1) which closely mirrors the standard Mirrlees formula but
which features an additional adjustment factor capturing the optimal corrections for both
externalities and relative return effects. The remainder of the paper then focuses on pre-
cisely characterizing this adjustment factor. This characterization is closely related to the
“outer” problem of finding the optimal combination of aggregate efforts in each activ-
ity (for given Pareto weights), and we describe in detail the welfare effects of marginal
variations in these efforts.

To interpret the adjustment factor in the marginal tax rate formula, we compare it to
the partial equilibrium, Pigouvian correction, which is simply the income share weighted
average, at each income level, of the wedges between the private returns and social
marginal products of the activities. Proposition 2 shows that the two coincide precisely
at income levels where a variation in the marginal tax rate has no relative return effects.
Based on this, Proposition 3 provides conditions under which the dimensionality of the
Pareto problem can be reduced: If there are K directions in the space RN of aggregate

2Other recent taxation studies under multidimensional heterogeneity include Kleven, Kreiner and Saez
(2009), Choné and Laroque (2010), Jacquet, van der Linden and Lehmann (2013), Scheuer (2014), Jacquet
and Lehmann (2014), Gomes, Lozachmeur, and Pavan (2014), and Golosov, Tsyvinski, and Werquin (2014).

3Multidimensional heterogeneity therefore only has non-trivial effects in our framework when there
are general equilibrium effects. Otherwise, a standard tax formula applies, as in the multidimensional
screening settings with linear technology considered in Jacquet and Lehmann (2014) and Hendren (2014).
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effort vectors in which there are neither relative return effects nor externalities, then the
outer problem collapses to an N � K-dimensional problem with N � K consistency con-
straints. The special cases in Rothschild and Scheuer (2013, 2014), where two-sector mod-
els can be solved with a single consistency constraint, are applications of this principle.

We then illustrate how the tools we develop here can be used to characterize optimal
tax schedules in several important applications, two of which extend our earlier work
and the rest of which are novel. First, we investigate how the results from the externality-
free environment with two sectors in Rothschild and Scheuer (2013) extend to more than
two sectors (Proposition 4) and show that the additional sectors can reinforce the regres-
sive adjustment to the standard Mirrleesian tax schedule, effectively moving the optimal
income tax closer to that in a model with fixed occupations, such as Stiglitz (1982).4

The second application adds aggregate externalities in the form of increasing or de-
creasing returns to scale to the two-sector model. In this case, the adjustment factor can
be transparently decomposed into a local and global component (Proposition 5). The first,
which depends on the income shares of the two activities at any given income level, has
the same regressive form as in the no externalities case, capturing relative return effects.
The second, uniform across income levels, accounts for the externalities and simply scales
all marginal tax rates up (down) under decreasing (increasing) returns to scale.

We then consider the case where aggregate technology exhibits constant returns to
scale but sectoral income shares are decoupled from marginal products, as motivated by
the credit-claiming example discussed above (Proposition 6). For instance, suppose the
relatively high-wage activity is overpaid, in the sense that its aggregate income share ex-
ceeds what would correspond to its marginal product. Then the Pigouvian correction
implies a more progressive income tax schedule than in a standard Mirrlees model. How-
ever, since the optimal correction (e.g.) exceeds the Pigouvian correction when an increase
in the marginal tax rate reduces the relative return to the overpaid activity—and thus in-
duces a beneficial shift of effort out of it—the optimal income tax schedule may be even
more progressive than under the Pigouvian benchmark.

Finally, we turn to two applications that we can fully characterize for general N,
namely the case where all returns depend only on the aggregate effort in one activity
(Proposition 7), and the case where the returns to all activities are fixed, except for one,
which depends on the aggregate efforts in all activities (Proposition 8). The first is a
generalization of Rothschild and Scheuer (2014), allowing for more than one traditional

4Naito (1999) examines commodity taxation and production efficiency in Stiglitz’s (1982) two-class econ-
omy. Gomes, Lozachmeur, and Pavan (2014) and Scheuer (2014) consider differential taxation of the sectors
and its implication for production efficiency, in contrast to our focus on optimal income taxation.
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activity and positive or mixed externalities, such as positive spillovers from research or
entrepreneurial activities onto other sectors, but within-sector crowding effects.

Our paper is part of the growing body of work discussed above that addresses the
design of the income tax in multi-activity economies. As a result, our approach crucially
differs from most of the literature on corrective taxation in the presence of externalities.5

The simple “principle of targeting” (Dixit, 1985) does not apply in our setting because
we rule out fine-tuned instruments that perfectly discriminate among specific activities.
This makes our analysis both theoretically interesting and practically relevant. We show
how, under imperfect instruments, the optimal correction diverges from the Pigouvian
tax, which would apply under perfect targeting, depending on relative return effects.

Our analysis is more related to Diamond (1973), although our motivation, framework,
and instruments are quite distinct. Most importantly, Diamond considers linear com-
modity taxes in the Ramsey tradition, while we work in a Mirrleesian, non-linear income
tax setting, which combines redistributive and corrective motives for taxation. He shows
that the optimal linear tax on an externality producing consumption good can be decom-
posed into a term that captures the direct effect of the tax on the demand for the good,
and another term that reflects the indirect effect of the changes in consumption of the
good induced by the direct effect. Our general equilibrium effects are very different, as
they result from effort choice along N intensive margins. Moreover, we are able to charac-
terize in which direction and by how much the optimal correction should deviate from the
Pigouvian tax rate as a function of simple properties of technology that could potentially
be estimated empirically (see e.g. Ales, Kurnaz and Sleet, 2014).

The paper is organized as follows. Section 2 introduces the model, provides some sim-
ple illustrations of its flexibility, and shows how the multidimensional screening problem
can be collapsed. Section 3 provides the general N-sector results, including the marginal
tax rate formula and the key optimality conditions for the outer problem. Section 4 pro-
vides a further characterization for N = 2, and Section 5 collects the discussion of the
applications. All proofs are relegated to Appendix A.

2 The Model

2.1 Setup

We consider an economy in which individuals can pursue N different activities, indexed
by i. Each agent is characterized by the N-vector q 2 Q ⌘ PN

i=1Qi of unobservable skills

5See Sandmo (1975), Sadka (1978), Cremer, Gahvari, and Ladoux (1998), and Kopczuk (2003).
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where the ith element qi 2 Qi = [qi, qi], with qi > 0, captures her skill in activity i. Skills
are distributed with a cdf F : Q ! [0, 1] and continuous pdf f (q).

Individual preferences are described by a continuously differentiable and concave
utility function over consumption c and the vector of efforts in each activity, e = (e1, ..., eN),
given by U(c, e) = u(c, m(e)) ⌘ u(c, l). We assume uc > 0, ul < 0, and that the effort
aggregator m(e) is increasing in all arguments, continuously differentiable, strictly quasi-
convex and homogenous of degree 1.6 We denote the consumption and vector of activity-
specific efforts of an individual of type q by c(q) and e(q) = (e1(q), ..., eN(q)), and the total
individual effort and utility by l(q) ⌘ m(e(q)) and V(q) ⌘ u(c(q), l(q)).

Aggregate output (and hence income) Y(E) consists of the aggregate incomes Yi(E)
attributed to each activity, so Y(E) = ÂN

i=1 Yi(E), where

Ei ⌘
Z

Q
qiei(q)dF(q) (1)

is the aggregate effective (i.e., skill-weighted) effort in activity i, and each Yi can depend
on the entire vector of aggregate efforts E ⌘ (E1, ..., EN). The income of an individual of
type q attributable to activity i is yi(q), and her total income from all activities is y(q) ⌘
ÂN

i=1 yi(q). Accordingly, aggregate total and sectoral incomes are Y(E) =
R

Q y(q)dF(q)
and Yi(E) =

R
Q yi(q)dF(q) for all i.

Since Y and Yi are arbitrary functions of E, our framework employs what is, to our
knowledge, the most general production technology considered heretofore in the Mir-
rleesian taxation literature. Our only substantive assumption is that each unit of effective
effort within a given activity is equally remunerated.7 Formally, for each activity i, there
exists some return ri(E) such that yi(q) = ri(E)qiei(q) for all q 2 Q. As a result, using (1),
Yi(E) = ri(E)Ei and

Y(E) =
N

Â
i=1

Yi(E) =
N

Â
i=1

ri(E)Ei.

The returns ri may deviate from ∂Y(E)/∂Ei, i.e., the marginal product of effort in activity
i, which allows for interesting linkages across sectors, as we now discuss.

2.2 Examples

A simple example occurs when Y(E) is a standard neoclassical production function with
ri(E) = ∂Y(E)/∂Ei for all E, so returns correspond to marginal products. For instance,

6Redefining u(c, l) ⌘ ũ(c, h(l)) allows for preferences ũ(c, m̃(e)) with any increasing and homothetic m̃
(equal to h(m(e)), for some increasing h(.) and linear homogeneous m(e)). A limiting case is m(e) = ÂN

i=1 ei,
wherein individuals specialize in their highest-return activity, as in Rothschild and Scheuer (2013).

7With arbitrary N, this is itself unrestrictive: activities with imperfectly substitutable effective effort can
be sub-divided until the assumption is satisfied.
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in the limiting case where m(e) becomes linear and individuals always specialize in one
of the N activities, Y(E) is a production function for a Roy (1951) model economy with
N complementary sectors or occupations i, as in Rothschild and Scheuer (2013) for N =

2. Ales, Kurnaz and Sleet (2014) simulate optimal income taxes for a similar economy
in which aggregate efforts in the activities (corresponding to occupations) are combined
through CES technology

Y(E) = A

"
N

Â
i=1

biE
#�1

#

i

# #

#�1

but skill heterogeneity is effectively reduced to a single dimension.8

When private returns coincide with social marginal products in all activities as in these
examples, technology must exhibit constant returns to scale (by Euler’s theorem). Our
general framework also allows us to consider tax policy when returns and marginal prod-
ucts are not aligned. A misalignment can arise first if Y exhibits non-constant returns to
scale, which implies positive or negative aggregate effort externalities.

Second, as emphasized by the recent policy debate, externalities can arise, even with
constant returns to scale, when some activities are over- or under-compensated relative to
their marginal product. For example, consider again the team production setting from the
introduction where individuals exert effort both to produce output (activity 2) and to get
credit (and compensated) for this output (activity 1). This can be captured by Y(E) = E2

and Y1(E) = a(E1)E2, Y2(E) = (1 � a(E1))E2, where a(E1) is some increasing function.
Here, activity 2 generates positive externalities as it increases the returns r1 = a(E1)E2/E1

to activity 1, and activity 1 imposes negative externalities on activity 2. For instance,
in Biais, Foucault and Moinas (2011), fast traders impose externalities on slow traders
through adverse selection from their information advantage. In Glode and Lowery (2012),
financial sector workers engage in both (unproductive) speculative trading and surplus
creation (e.g. from market making) with interlinked profits from both activities.

Another example for a pure zero-sum activity is a setting where activity 1 just takes
away output produced in activity 2 one-for-one (e.g. through bargaining), so that Y(E) =
Y(E2) and Y1(E1) = E1, Y2(E) = Y(E2) � E1. Here, both activities again generate ex-
ternalities, but only on the returns r2(E) = (Y(E2)� E1)/E2 to the productive activity 2
(the returns to activity 1 are fixed at 1, so it bears no externalities). The opposite special
case is considered in Rothschild and Scheuer (2014) (again for N = 2), where only one
(rent-seeking) activity imposes (negative) externalities on itself and all other activities, so

8In particular, there is an interval of types k 2 [0, 1] such that k’s skill in activity i is qk(i) and higher types
k0 > k have both absolute and relative advantage in higher activities i0 > i. This specifies a one-dimensional
curve in our N-dimensional skill space, ruling out overlapping wage distributions in the occupations.
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ri(E1) for all i and all ri are decreasing. This could capture negative externalities from
search activities with crowding effects, e.g. for profitable arbitrage opportunities in finan-
cial markets, or tournaments and races with winner-takes-all compensation in the arts,
entertainment, law or R&D. On the other hand, our general framework can also allow
for positive externalities, such as spillover effects from entrepreneurial and innovative
activities. We revisit the above and other examples in Section 5.

2.3 Income Tax Implementation

We first describe the set of feasible allocations using a Myersonian (1979) direct mecha-
nism and then link this to the implementation through an income tax schedule. In a direct
mechanism, individuals announce their type q and then get assigned observable con-
sumption c(q) and total income y(q), and unobservable fractions qi(q) ⌘ yi(q)/y(q) =

ri(E)qiei(q)/y(q) of incomes earned in each activity i. Let q(q) ⌘ (q1(q), ..., qN(q)) 2
DN�1 be the vector of these income shares, where DN�1 ⌘ {q 2 RN |ÂN

i=1 qi = 1, qi � 0}.
The incentive constraints that guarantee truth-telling of the agents are:

u
✓

c(q), m
✓

q1(q)y(q)
q1r1(E)

, ... ,
qN(q)y(q)
qNrN(E)

◆◆

� max
p2DN�1

⇢
u
✓

c(q0), m
✓

p1y(q0)
q1r1(E)

, ... ,
pNy(q0)
qNrN(E)

◆◆�
8q, q

0 2 Q, (2)

since each type q can imitate any other type q

0 by earning the income of type q

0 (and thus
getting assigned c(q0), y(q0)) using a continuum of effort combinations and hence income
shares p = (p1, ..., pN) in the N activities. (Note: we use ei = qiy/(qiri(E))).

The next result is useful for collapsing the incentive constraints (2) into the more stan-
dard set of incentive constrains for a screening problem with one-dimensional hetero-
geneity:

Lemma 1. In any incentive compatible allocation {c(q), y(q), q(q), E}, the ratio

w(q) ⌘ y(q)
l(q)

= max
p2DN�1

m
✓

p1
q1r1(E)

, ... ,
pN

qNrN(E)

◆�1
, (3)

with corresponding arg max q(q), is independent of (c(q), y(q)).

Lemma 1, which generalizes the result for N = 2 in Rothschild and Scheuer (2014),
establishes that, in any incentive compatible allocation, each type’s “wage” w(q) is fully
pinned down by the vector E. To make this explicit, we write wE(q) in the following.
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Figure 1: Determination of wages and income shares given E

Moreover, the vector of income shares q(q) is chosen so as to minimize the overall effort
m(e) subject to achieving a given amount of income: By (3) and linear homogeneity of m,

wE(q) = max
p2DN�1

ym
✓

p1y
q1r1(E)

, ... ,
pNy

qNrN(E)

◆�1
= max

e

y
m(e)

s.t.
N

Â
i=1

qiri(E)ei = y (4)

for any y. By homogeneity and strict quasiconvexity of m, the vector q(q) is unique
and only depends on E and the vector of skill ratios f ⌘ (q1/qN, ..., qN�1/qN) 2 F ⌘
(0, •)N�1. We therefore write qE(f) (or, with some notational abuse, qE(q)) henceforth.9

The following lemma, which follows from Berge’s Maximum Theorem, states the fact
that qE(·) and wE(·) are continuous functions of E, which will be useful later.

Lemma 2. qE(q) and wE(q) are continuous in E for all q.

Figure 1 illustrates the intuition underlying Lemma 1 for the case of two activities. By
(4), individuals choose their efforts e1 and e2 to minimize their overall effort m(e) subject
to achieving a given amount of income y. When the targeted amount of income changes
by a factor a, their optimal effort ratio e1/e2 remains unchanged, while m(e) increases by
the factor a. Hence, income shares q1 and q2 and wages y/m(e) are independent of y and
only depend on the slope q1r1(E)/q2r2(E) of the lines in Figure 1.10

All individuals with the same wage w have the same preferences over (c, y)-bundles
given by u(c, y/w). As is standard, we assume the single crossing property, i.e., that the

9Weakly quasiconvex m can be handled with additional notation as in Rothschild and Scheuer (2014).
10See Section 2.4 for an extension with additional heterogeneity in individuals’ preferences for work

in the various activities. Note that although homotheticity of m rules out within-individual interactions
between earnings and activity-based preferences (though not across individuals), it is perfectly consistent
with standard income effects (on the marginal rate of substitution between c and overall income y).
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marginal rate of substitution between y and c, �ul(c, y/w)/ (wuc(c, y/w)), is decreasing
in w. Then any incentive compatible allocation can be implemented with a non-linear in-
come tax T(y) by the taxation principle (Hammond, 1979, Guesnerie, 1981). As in Roth-
schild and Scheuer (2013), we can, and henceforth will, restrict attention to allocations
{c(w), y(w), E} that pool all same-wage individuals at the same (c, y)-bundle.

2.4 Additional Preference Heterogeneity

We briefly point out how the wages wE(q) can be interpreted more broadly. They are
defined via the ratio of income to the disutility-of-effort aggregator m. So, as is standard,
they can be interpreted either as a literal “dollar per hour” wage or as a measure of the
disutility of effort (or as an aggregation of both, as in Choné and Laroque, 2010, and Lock-
wood and Weinzierl, 2014). Indeed, since the function m is a general aggregator, it may
already incorporate different psychological or physical effort costs in different activities—
for example, costs that might arise from a taste or distaste for certain activities because
they are regarded as more or less prestigious, antisocial, etc., or come with other non-
pecuniary benefits and burdens. While the preceding formulation, with an individual-
independent function m, imposes some uniformity of such tastes across individuals, all
our analysis would go through if the function m was individual-dependent, for example,
if we had m(e; w), where w captures heterogeneous intrinsic tastes for different types of
work.

For concreteness, suppose individuals differ in both their skill vector q and another un-
observable vector w of intrinsic tastes for each activity. Consider an aggregator m(e; w) =

m(e1/w1, ..., eN/wN), so wi can be interpreted as a measure of the individual’s perception
of activity i’s social “prestige” (if wi > 1) or “gaucheness” (if wi < 1). Then Lemma 1 goes
through with effective wages

wE(q, w) = max
p2DN�1

m
✓

p1
q1w1r1(E)

, · · · ,
pN

qNwNrN(E)

◆�1
. (5)

For example, suppose N = 2 and consider two individuals (qa, w

a) and (qb, w

b) who
have the same skills q

a
1 = q

b
1 = q1 < q2 = q

a
2 = q

b
2 but who differ in how much they value

(or notice) the social implications of the two activities, with w

a
1 > 1 > w

a
2 and w

b
1 = w

b
2 =

1. That is, type a perceives activity 1 as prestigious and activity 2 as gauche whereas b
has purely pecuniary motives. Then (5) implies that type a will tilt her effort mix towards
activity 1 compared to type b even though both have the same skills. Moreover, suppose
that r2(E)q2 > r1(E)q1w

a
1 > r2(E)q2w

a
2, and that m(·) is sufficiently close to linear so that
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types a and b fully specialize in activities 1 and 2, respectively. Then type a’s effective
wage is higher than her monetary wage (by factor w

a
1) but lower than type b’s effective

and (equal) dollar wage. In equilibrium, despite the equal skills q of the two types, type
b will earn higher income because of her greater relative preference/tolerance for the
highly remunerated activity, while type a will specialize based on her “calling” for the
lower paid, prestigious activity. This demonstrates that our model can easily allow for
such patterns, which often affect activity choices in practice.

Adding heterogeneity in w implies pooling an even broader class of individuals at any
given effective wage w (and income level). Nevertheless, wE(q, w) remains a sufficient
statistic for preferences over (c, y)-bundles and all our analysis applies. In particular, all
the (distinct) individuals who earn the same income have the same preferences over c and
y (except, of course, at bunching points of the tax code).11

3 N Sectors

3.1 Definitions

We use general cumulative Pareto weights Y(q) defined over the N-dimensional Q-space,
with the corresponding density y(q), to trace out the set of Pareto efficient allocations.
The social planner maximizes

R
Q V(q)dY(q) subject to resource and self-selection con-

straints. The fact, per Lemma 1, that fixing the vector E determines wages wE(q) and
income shares qE(f) makes the problem tractable. Specifically, consider the E-conditional
cdf over (w, f)-vectors, given by

GE(w, f) ⌘
Z

{q|wE(q)w, qi/qNfi 8i=1,...,N�1}
dF(q),

with the corresponding density gE(w, f).12 All individuals who earn the same wage w,
located on the same iso-wage curve in q-space as drawn in Figure 2, are pooled in the
same allocation (c, y), and differ only in their relative skills f (so types are fully identified
by their (w, f)-combination conditional on E).

We denote the support of the wage distribution for any E by [wE, wE], where wE ⌘
wE(q1, ..., qN) and wE ⌘ wE(q1, ..., qN). The wage distribution for any given E is simply

11If this were not the case, the techniques developed in Jacquet and Lehmann (2014) could be adapted to
incorporate conditional-on-income heterogeneity in our setting.

12Extra dimensions of heterogeneity, like the w discussed in Section 2.4, would add arguments to the cdf,
which would subsequently be integrated out.
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Figure 2: Pooling along iso-wage curves in q-space conditional on E

FE(w) ⌘
Z

{q|wE(q)w}
dF(q) =

Z w

wE

Z

F
dGE(z, f)

with the corresponding density fE(w) =
R

F dGE(w, f). We also define the sectoral densi-
ties f i

E(w) ⌘
R

F qi
E(f)dGE(w, f); this can be interpreted as an average value of qi for all

wage-w individuals. Clearly, fE(w) = ÂN
i=1 f i

E(w) for all w 2 [wE, wE].13 Finally, given
any E, we can derive, in an entirely analogous manner, endogenous wage-based Pareto
weights over wages YE(w) and density and sectoral decomposition yE(w) = ÂN

i=1 y

i
E(w).

The measure Fi
E defined by the cdf Fi

E(w) ⌘
R w

wE
f i
E(z)dz is easily shown to be weakly

continuous in E, and analogously for Yi
E(w) ⌘

R w
wE

y

i
E(z)dz.

Lemma 3. As En ! E, Fi
En converges weakly to Fi

E and Yi
En converges weakly to Yi

E.

Finally, allocations {c(w), y(w), E} directly imply total effort and utility l(w) ⌘ y(w)/w
and V(w) ⌘ u(c(w), l(w)), respectively, as well as the optimal activity-specific efforts
ei(q) = qi

E(f)y(wE(q))/(qiri(E)).

3.2 Inner and Outer Problems for Pareto Efficiency

As in Rothschild and Scheuer (2013, 2014), we decompose the problem of finding Pareto
optimal allocations into two sub-problems. The first involves finding the optimal vector
of aggregate efforts E. We call this the “outer” problem. The second, which we call the
“inner” problem, involves finding the optimal resource-feasible and incentive-compatible

13In the limiting case with m(e) = ÂN
i=1 ei, (3) immediately implies qi

E(f) 2 {0, 1} almost everywhere,
and wE(q) = max{q1r1(E), ..., qNrN(E)}. Then f i

E(w)/ fE(w) can be interpreted as the share of i-sector
workers at w, whereas here it is the i-sector income share at wage w.

12



allocation for a given E. This inner problem is an almost standard Mirrlees problem; the
difference is that the induced vector of aggregate effective efforts has to be consistent with
the E that is fixed in the inner problem. For some given Pareto weights Y(q) (and induced
weights YE(w)), we therefore define the inner problem as follows, using c(V, l) to denote
the inverse u(c, l) with respect to c:

W(E) ⌘ sup
V(w),l(w)

Z wE

wE

V(w)dYE(w) (6)

subject to V0(w) = �ul(c(V(w), l(w)), l(w))
l(w)

w
8w 2 [wE, wE] (7)

Ei =
1

ri(E)

Z wE

wE

wl(w) f i
E(w)dw 8i = 1, ..., N (8)

Z wE

wE

wl(w) fE(w)dw �
Z wE

wE

c(V(w), l(w)) fE(w)dw. (9)

We employ the standard Mirrleesian approach of optimizing directly over allocations,
i.e., over effort l(w) and consumption or, equivalently, utility V(w) profiles. The social
planner maximizes a weighted average of individual utilities V(w) subject to three sets
of constraints. (9) is a standard resource constraint. The N constraints in (8) ensure that
aggregate effective effort in each sector i indeed sums up to Ei, as the right-hand-side is

1
ri(E)

Z wE

wE

y(w) f i
E(w)dw =

Z wE

wE

Z

F

y(w)qi
E(f)

ri(E)
gE(w, f)dfdw =

Z

Q
qiei(q)dF(q). (10)

Finally, the allocation V(w), l(w) needs to be incentive compatible, i.e.,

V(w) ⌘ u(c(w), l(w)) = max
w0

u
✓

c(w0),
l(w0)w0

w

◆
. (11)

It is a well-known result that under single-crossing, the global incentive constraints (11)
are equivalent to the local incentive constraints (7) and the monotonicity constraint that
income y(w) must be non-decreasing in w.14

We make two simplifying technical assumptions. First, we abstract from bunching
by dropping the monotonicity constraint. Second, we assume that for some sufficiently
high c̄ and ȳ, imposing the additional constraints c(w)  c̄ and y(w)  ȳ does not affect
the value of problem (6) to (9) for any relevant E. Both assumptions are easily checked
ex post in computational applications. The former eases the interpretation of the optimal
tax formulas we derive below; were it is violated, incorporating optimal bunching would

14See, for instance, Fudenberg and Tirole (1991), Theorems 7.2 and 7.3.
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be conceptually no more difficult than in standard Mirrleesian applications. The latter
is purely technical: it allows us to easily establish, per the following lemmas, that the
supremum in (6) is achieved and that W(E) is upper-semicontinuous in E. It is satisfied,
e.g., whenever there is a maximal l, i.e., a l̄ such that liml"l̄ u(c, l) = �•.

Lemma 4. Let c(V(w), l(w)) be the unique solution to u(c, l(w)) = V(w), and suppose the
constraint set {(7), (8), (9), and c(V(w), l(w))  c̄ and l(w)  ȳ/w} is non-empty. Then some
{V(w), l(w)} achieves the supremum in (6) over this set.

Lemma 5. W(E) is upper semi-continuous at any E⇤ for which there exists a neighborhood S of
E⇤ and some (c̄, ȳ) such that the value of problem (6) to (9) is unaffected on S by the imposition of
the additional constraints c(w)  c̄ and y(w)  ȳ.

The outer problem is then simply supE W(E). Since W(E) is upper semi-continuous
by Lemma 5 (under our technical assumption), the Weierstrass Theorem (viz Luenberger,
1969, p. 40) ensures that this supremum is achieved over any compact subset of E 2 RN+.
So, if there is a bounded set of feasible E values—for example, if each type’s total effort
and the returns ri(E) are bounded—then a solution to the outer problem also exists. In
the next two subsections, we characterize the solutions to the inner and outer problems.

3.3 Inner Problem

Solving the inner problem (6) to (9) for a given E yields the following:

Proposition 1. Given E, the marginal tax rate in any optimum without bunching is such that

1 � T0(y(w)) =

 
1 �

N

Â
i=1

xi
ri(E)

f i
E(w)

fE(w)

!✓
1 +

h(w)
w fE(w)

1 + #

u(w)
#

c(w)

◆�1
with (12)

h(w) =
Z wE

w

✓
1 � yE(s)

fE(s)
uc(s)

l

◆
exp

✓Z s

w

✓
1 � #

u(t)
#

c(t)

◆
dy(t)
y(t)

◆
fE(s)ds (13)

for all w 2 [wE, wE], where l is the multiplier on the resource constraint (9), lxi are the multi-
pliers on the N consistency constraints (8), lĥ(w) = lh(w)/uc(w) is the multiplier on the local
incentive constraint (7), and #

c(w) (#u(w)) is the (un)compensated wage elasticity of effort l.

These formulas closely mirror the formulas in a standard Mirrlees model (see e.g.
equations (15) to (17) in Saez, 2001). The term h(w) captures the redistributive motives
of the government and income effects from the terms in the exponential function. This
simplifies with quasilinear preferences u(c, l) = c � h(l), where income effects disappear,
as in Diamond (1998). Then uc(w) = l = 1 and #

u(w) = #

c(w) 8w, so that h(w) =
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YE(w)� FE(w). Hence the marginal tax rate is increasing in the degree to which YE(w)

shifts weight to low-wage individuals compared to FE(w).
The only difference from standard formulas is that, at each wage, the marginal keep

shares 1 � T0(y(w)) are adjusted by the factor 1 � ÂN
i=1( f i

E(w)/ fE(w))(xi/ri(E)). As we
will argue in the next Section 3.4, this factor is a local correction for the general equi-
librium effects and externalities caused by income earned by wage w-individuals. In
particular, the multiplier xi on the ith constraint (8) is the optimal correction on effective
effort in sector i—i.e., the correction taking general equilibrium effects into account. The
term ÂN

i=1( f i
E(w)/ fE(w))(xi/ri(E)) is therefore an income-share weighted average of the

general equilibrium corrections xi/ri on the incomes earned in the various activities.

3.4 Outer Problem

In this section, we characterize the optimal corrections xi using the conditions for an opti-
mal E from the outer problem. In particular, we are interested in the relationship between
the general equilibrium corrections xi/ri and the partial equilibrium Pigouvian taxes t

i
p

that would align the social and private marginal products of income earned in activity i,
defined by ri(E)(1 � t

i
p(E)) ⌘ ∂Y(E)/∂Ei.15

We derive necessary conditions for the outer problem using a Lagrange formulation.16

By the envelope theorem, changes in E have a direct welfare effect through the left-hand-
side of the consistency constraints (8) and through their effects on the (sectoral) wage
distributions in the resource constraint (9) (consistency constraints (8)) and objective (6).
These distributional effects are quite complex, and it is more fruitful to characterize (and
then integrate) the individual-level welfare effects of a change in E, effects which arise
because individuals’ wages and across-activity effort compositions change as the returns
ri(E) change.

Formally, we divide the marginal welfare effects of a small change dEi in Ei into four
classes: (i) the direct effect on the left-hand side of the ith consistency constraint (8) and
three other effects which capture the effect on any given type q. The change dEi changes
type q’s wage. We designate by (ii) the direct effects that this wage change has on (6) to
(9), holding fixed the type’s effort l(q) and utility V(q). We designate by (iii) the indi-
rect effects that this wage change has on q’s (l(q), V(q))-allocation as her wage change
induces her to moves along the fixed schedules (l(w), V(w)). Finally, since dEi changes

15
t

i
p would be the optimal correction on activity-i income if activity-specific instruments were available

(see Rothschild and Scheuer, 2014); thus, t

i
p is the standard Pigouvian tax under perfect targeting.

16This requires—and we assume—that W 0 exists and coincides with the derivative of the associated La-
grangian. Appendix B provides simple sufficient conditions under which this is generically true.
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the returns ri(E) to effort in the N activities, type q’s optimal across-activity allocation of
efforts ei(q) will change for any given total effort l(w). We designate by (iv) the welfare
effects (through the consistency constraint (8)) of this re-allocation.

One approach would be to compute these effects (in terms of the multipliers on the
constraints) using the envelope theorem and holding the schedules l(w), V(w) fixed. A
more useful alternative, pursued in the following, is to simultaneously vary the schedules
l(w), V(w) in way that undoes the change in average effort and utility at each w coming
from (iii). In particular, note that (4) can equivalently be written as

wE(q) = max
e

ÂN
i=1 qiri(E)ei

m(e)
s.t. m(e) = l. (14)

Using the envelope theorem and denoting the semi-elasticity of rj(E) w.r.t. Ei by

b

j
i(E) ⌘

∂rj(E)
∂Ei

1
rj(E)

,

the semi-elasticity of wages w.r.t. Ei is

∂wE(q)
∂Ei

1
wE(q)

=
ÂN

j=1 qjej(q)rj(E)b

j
i(E)

wE(q)l
=

N

Â
j=1

qj
E(f)b

j
i(E), (15)

i.e., the income-share weighted average of the return semi-elasticities. For an individual
with original wage w and original income share vector qE, the change in the wage induced
by a change dEi in E therefore causes a change l0(w)w ÂN

j=1 qj
b

j
i(E)dEi in l. The average

change in l for all types with original wage w is therefore

l0(w)w
N

Â
j=1

E
h

qj
E(f)

���w
i

b

j
i(E)dEi = l0(w)w

N

Â
j=1

f j
E(w)

fE(w)
b

j
i(E)dEi. (16)

where E[qj
E(f)|w] =

R
F qj

E(f)gE(f|w)df is the average of qj over the set {q|wE(q) = w}
of all wage-w individuals. We can “undo” this w-specific change in average effort l by
modifying the l schedule to l̃(w) = l(w)� l0(w)wd

i
E(w)dEi, where

d

i
E(w) ⌘

N

Â
j=1

f j
E(w)

fE(w)
b

j
i(E). (17)

Analogously, we can modify the V-schedule to Ṽ(w) = V(w)�V0(w)wd

i
E(w)dEi in order

to “undo” the w-specific change in average welfare V. Performing these modifications
jointly with dEi greatly simplifies the outer problem effects (iii) by removing any average
effort and utility effects for the set of types at each wage w. In fact, these modifications
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also ensure that average consumption is unchanged at each w.17 By the envelope theorem,
these schedule modifications have no welfare effects at the margin.

3.4.1 Redistributive Effects

The objective (6) changes because individuals’ changing wages move them along the
V(w) schedule (i.e., from effect (iii)). By analogy to (16), the effect of dEi for a given
schedule is simply V0(w)w ÂN

j=1 y

j
E(w)b

j
i(E)dEi. Adding this to the welfare effect of the

change in the V-schedule to Ṽ, namely �V0(w)wd

i
E(w)dEi, yields

N

Â
j=1

b

j
i(E)

Z wE

wE

V0(w)w

 
y

j
E(w)

yE(w)
�

f j
E(w)

fE(w)

!
yE(w)dwdEi ⌘ �l

N

Â
j=1

b

j
i(E)Rj(E)dEi (18)

with Rj(E) ⌘
Z wE

wE

V0(w)w
l

 
f j
E(w)

fE(w)
�

y

j
E(w)

yE(w)

!
yE(w)dw. (19)

Note that ÂN
j=1 Rj(E) = 0; intuitively: the Rj capture w-specific re-allocations of utility

across workers with different sectoral intensities q. For the same reason, each Rj disap-
pears in the natural benchmark with equal welfare weight on all individuals with the
same wage w (so that y

j
E(w)/yE(w) = f j

E(w)/ fE(w) for all j, w, as would result e.g. from
relative Pareto weights Y(q) = Ỹ(F(q))).18 Otherwise, if, e.g., dEi increases the relative
returns to activities in which workers with a high relative welfare weight earn much of
their income, the resulting re-allocation in utilities is welfare enhancing.

3.4.2 Incentive Constraint Effects

There are no incentive effects of dEi given the fixed schedules l and V (individuals move
along an incentive compatible schedule). The schedule modification to (l̃, Ṽ) is readily
shown to change V0(w)� ul(c(w), y(w))l(w)/w by �V0(w)wd

i
E
0
(w)dEi.19

Using (17) and integrating over all wages, the incentive effects from (iii) are therefore

�
N

Â
j=1

b

j
i(E)l

Z wE

wE

h(w)w
V0(w)
uc(w)

d
dw

 
f j
E(w)

fE(w)

!
dw ⌘ �l

N

Â
j=1

b

j
i(E)Ij(E), (20)

17To wit, dropping the common argument w and using (7) and (55) yields
c̃ � c = c(Ṽ, l̃)� c(V, l) = 1

uc
(Ṽ �V)� ul

uc
(l̃ � l) =

⇣
1
uc

V0 � ul
uc

l0
⌘

wd

i
E =

⇣
� ul l

wuc
+ ucc0+ul l/w

uc

⌘
wd

i
E = c0wd

i
E.

18In this benchmark, the planner only cares about wage inequality without inherent sectoral preferences.
19Use Ṽ0(w) = V0(w)� V0(w)w dd

i
E(w)
dw dEi � d(V0(w)w)

dw d

i
EdEi and

1
w
�
ul(c̃(w), l̃(w))l̃(w)� ul(c(w), l(w))l(w)

�
=

d(ul(c(w), l(w))l(w))
dw

d

i
EdEi =

d(V0(w)w)
dw

d

i
EdEi.
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Figure 3: Incentive constraint effects

where lĥ(w) = lh(w)/uc(w) is the multiplier on (7) and

Ij(E) ⌘
Z wE

wE

h(w)w
V0(w)
uc(w)

d
dw

 
f j
E(w)

fE(w)

!
dw. (21)

As with the Rj, ÂN
j=1 Ij(E) = 0. To interpret the terms Ij, suppose h(w) > 0 (i.e., down-

binding incentive constraints). Then dEi > 0 is welfare reducing (respectively, increasing)
if it increases (decreases) the returns to activities j with d

⇣
f j
E(w)/ fE(w)

⌘
/dw > 0, i.e., to

activities that are locally associated with high wages. This is because dEi makes the wage
distribution more (less) unequal in this case, which tightens (loosens) the local incentive
constraints. The effect is therefore a generalized version of the one pointed out by Stiglitz
(1982) for a two-type model with two sectors and fixed activity choice.

Figure 3 illustrates this for N = 2, so (20) becomes �l(b

1
i � b

2
i )I1. If sector 1 is the

high-wage sector and b

1
i � b

2
i < 0 (i.e., relative returns in activity 1 fall with Ei), then

dEi > 0 compresses the wage distribution. This is because higher wage individuals—who
on average have a greater effort intensity in activity 1—see their wages fall, on average,
relative to lower wage, activity 2-intensive individuals. This local wage compression is
welfare improving if downward-redistribution is desirable (i.e., h(w) > 0). The total
effect in (20) is the integral over all these local wage compression effects.
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3.4.3 Resource Constraint Effects

A wage change induced by dEi affects (9) in two ways. First, given l(w) and c(w), the
change in w directly affects (9) via the w appearing in the integrand (effect (ii) above).
Second, a change in w moves an individual along the l(w) and c(w) schedules. This
second effect is, by construction, exactly cancelled on average at each wage w by the
schedule variation to (l̃, Ṽ). Using (17), the overall effect from the first change is simply

l

Z wE

wE

d

i
E(w)wl(w) fE(w)dwdEi = l

N

Â
j=1

b

j
i(E)

Z wE

wE

y(w) f j
E(w)dwdEi. (22)

It is useful to write this in terms of the Pigouvian taxes ti
p(E), i = 1, ..., N, defined

by ri(E)� ti
p(E) ⌘ ∂Y(E)/∂Ei, i.e., as the tax on equivalent effort in sector i that fills the

wedge between the private and social returns to i-sector effort (the corresponding tax
on income in sector i defined above was t

i
p(E) = ti

p(E)/ri(E)). Note that ti
p(E) can be

expressed as an output-weighted sum of the corrections for the externalities from Ei:

ti
p(E) = �

N

Â
j=1

b

j
i(E)Yj(E). (23)

(If, e.g., activity i effort raises the returns to the various activities, it generates positive
externalities and the Pigouvian tax is negative.) Using (23) in (22) yields a resource con-
straint effect of simply �lti

p(E)dEi. That is: dEi increases (decreases) welfare through the
resource constraint if and only if it generates positive (negative) externalities.

3.4.4 Consistency Constraint Effects

Next, consider the effects of dEi on consistency constraint j. First, there is the direct effect
(i.e., (i)), which is lx j if i = j and 0 otherwise. Hence the sum over all constraints is simply
lxi. Second, there are various effects on the right-hand side of constraint j. These can be
written, compactly, as as sum of two terms. The first is

�lx j

N

Â
k=1

b

k
i (E)Ckj(E), (24)

where Ckj(E) ⌘ 1
rj(E)

Z wE

wE

w2l0(w)Cov
⇣

qj
E, qk

E

���w
⌘

fE(w)dw (25)

with Cov
�
qj, qk� ⌘ E

⇥
qjqk⇤� E

⇥
qj⇤E

⇥
qk⇤. The second is

� lx j Â
k

b

k
i (E)Skj(E) (26)
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Figure 4: Overall effort re-allocation effect

with Skj(E) ⌘ 1
rj(E)

Z wE

wE

y(w)
Z

F
Qj

k(xE(f))xk
E(f)dGE(w, f), (27)

where Qj
k(xE(f)), defined formally below, measures the change in a given type’s sector-j

income share that is induced by that type’s optimal adjustment of her sectoral effort ratios
in response to an increase in the returns to sector k.

For readers who wish to skip the formal derivation of these terms, which follows
below, we first provide some intuition. The term (25) is an effort reallocation effect. The
intuition is tightly linked to our chosen schedule change from l(w) to l̃(w). This zeroes out
the average change in aggregate effort l at any given w, but, of course, some individuals
originally pooled at wage w will see their wage, and hence their l, rise (if l0(w) > 0),
while others will see it fall. This re-allocates effort across individuals and therefore, since
different individuals at w have different effort intensities in the various activities, across
activities. If the activity-j income share qj is uncorrelated with this effort change at any
given w, then activity-j effort will also remain unchanged. If it is positively correlated,
however, then activity-j effort increases, and vice versa. In particular, if dEi > 0 increases
the returns to activities k, and if individuals who have a high income share in k also have a
high income share in j, then individuals with a high qj on average see their wage increase
more than proportionally. If l0(w) � 0, this effectively shifts effort towards activity j and
increases the RHS of consistency constraint j. Expression (24) will reflect this via Ckj > 0.

Figure 4 illustrates the effort reallocation effect for N = 2. Suppose dEi > 0 increases
the relative return to activity 1, as drawn in the figure, so b

1
i � b

2
i > 0. Individuals on

the iso-wage curve wE(q) = w and with a high ratio q1/q2 (and thus a high intensity q1

in activity 1) will experience a rise in their wage relative to those with a low q1/q2. If
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l0(w) � 0, then C11, C22 � 0, and the high (low) q1/q2 types will increase (decrease) their
efforts l. Effort will thus effectively flow out of sector 2 and into sector 1. Of course, if
every wage-w earner had the same q1 (so Var(q1|w) = 0), then the rotation shown in the
right panel would be without consequences and C11 and C22 would be zero.

The second term, (26), captures an activity shift effect. Intuitively, suppose dEi > 0
increases the returns rk to an activity k (so b

k
i (E) > 0). Such a change will lead each indi-

vidual to re-optimize her relative efforts across the various activities—certainly towards
k, but potentially also across other activities. By definition, Qj

k > 0 in those activities j
which experience a relative increase in effort. If Qj

k > 0 on average across all individuals,
then Skj > 0, and the effect of dEi on rk causes a net shift of effort into activity j and in-
creases the RHS of the j-th consistency constraint. This is illustrated in Figure 5 for N = 2:
If dEi > 0 increases the relative return r1/r2 to activity 1, individuals will shift their effort
allocation e1/e2 towards activity 1.

We now derive these two effects formally (the casual reader can skip directly to Sub-
section 3.4.5). For this derivation, it is useful to rewrite consistency constraint j following
(10) as Ej =

R
Q qjej(q)dF(q) and to note that

qjej(q) = l(wE(q))
qjej(q)

m(e(q))
= l(wE(q))

qj
ej(q)
eN(q)

m
⇣

e1(q)
eN(q) , ..., eN�1(q)

eN(q) , 1
⌘

by homogeneity of degree 1 of m and the fact that l = m(e). For the same reason and by
(4), the effort ratios z j ⌘ ej/eN only depend on the vector of relative returns

xE(f) ⌘
✓

f1
r1(E)
rN(E)

, ... , fN�1
rN�1(E)

rN(E)
, 1
◆

.

I.e., z ⌘ (z1, .., zN�1, 1) is homogenous of degree 0 in the return vector (q1r1(E), ..., qNrN(E)).
The effective effort integrated over on the RHS of consistency constraint j is

qjej(q) = l(w)qjWj(z(xE(f))) with Wj(z(xE(f))) ⌘
z j(xE(f))

m (z(xE(f)))
. (28)

The left-hand equation motivates a decomposition of the effect into the change in the
overall level of effort l(·) for each individual (part of (iii)), holding constant the cross-
sectoral allocation of efforts W, and second, changes in W, which reflect a re-allocation of
effort across sectors due to the change in the relative returns xE (effect (iv)). The former
will yield (24) and the latter (26).

Overall effort re-allocation effect. The direct effect on l(·) for type f individuals with
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Figure 5: Activity shift effect

wage w is wl0(w)ÂN
k=1 qk

E(f)b

k
i (E), and, using qjWj = qjej/l = wqj/rj, the effect on (28) is

wqj
E(f)

rj(E)
l0(w)w

N

Â
k=1

qk
E(f)b

k
i (E).

Averaging over the set {q|wE(q) = w} of all wage w individuals gives

1
rj(E)

N

Â
k=1

b

k
i (E)w2l0(w)E

h
qj

E(f)q
k
E(f)

���w
i

. (29)

Changing from l to l̃ changes the average l(·) at w by �wl0(w)ÂN
k=1 E

⇥
qk

E(f)
��w
⇤

b

k
i (E),

and so the average change in sector j equivalent effort in (28) is

� 1
rj(E)

N

Â
k=1

b

k
i (E)w2l0(w)E

h
qj

E(f)
���w
i

E
h

qk
E(f)

���w
i

. (30)

Adding (29) and (30) and integrating over all wages yields (24).
Activity shift effect. The effect of dEi through the change in the vector of effort ratios

z on (28) is,20

l(w)qj

N

Â
k=1

N

Â
l=1

∂Wj(z(xE(f)))

∂zl

∂zl(xE(f))
∂(qkrk(E))

∂qkrk(E)
∂Ei

. (31)

20Our assumptions on m ensure that zl(xE(f)) is continuous and differentiable almost everywhere—with
potential non-differentiabilities only at corners where zl(xE(f)) = 0.
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We can rewrite this using qj = rjqjWj/w and hence qj
E(f) = Zj(xE(f))Wj(z(xE(f))) with

Zj(xE(f)) ⌘
rj(E)qj

w
= xj

E(f) min
p2DN�1

m

 
p1

x1
E(f)

, ...,
pN�1

xN�1
E (f)

, pN

!
, (32)

where we used (3) and homogeneity of degree 1 of m. Define

Qj
k(xE(f)) ⌘ Zj(xE(f))

N

Â
l=1

∂Wj(z(xE(f)))

∂zl

∂zl(xE(f))
∂(rk(E)qk)

qNrN(E) (33)

and substitute into (31) to yield:

l(w)qj

N

Â
k=1

w
rj(E)qj

Qj
k(xE(f))

∂rk(E)qk
∂Ei

1
rN(E)qN

=
y(w)
rj(E)

N

Â
k=1

b

k
i (E)Qj

k(xE(f))xk
E(f).

Integrating over all wages and all f yields (26).
It is worth noting briefly that Qj

k is not the total change in qj induced by a change in
the returns to k. Indeed, qj

E(f) = Zj(xE(f))Wj(z(xE(f))), so a change in the returns to
k can be thought of as having two effects on qj: a mechanical effect through the changes
in returns Zj, and an activity shift effect through the change in Wj. Only the latter effect
appears in expression (33) for Qj

k and in the welfare effect formula (26).
Adding up. Per the preceding discussion, the Ckj and Skj effects can both be inter-

preted as across sector re-allocations. Formally, as the following lemma shows, the shifts
of incomes across sectors induced by those two effects have to sum to zero across all j—i.e.,
the rj-weighted rows sum to zero. The lemma also establishes the fact that the columns
of Ckj and Skj sum to zero.

Lemma 6. (i) ÂN
j=1 rj(E)Ckj(E) = ÂN

j=1 rj(E)Skj(E) = 0 for all k = 1, ..., N.
(ii) ÂN

k=1 Ckj(E) = ÂN
k=1 Skj(E) = 0 for all j = 1, ..., N.

The intuition for part (i) of Lemma 6 hinges on the fact that the rj(E)-weighted sum
of the right-hand sides of the N constraints in (8) is

R wE
wE

y(w) fE(w)dw, and the sectoral
composition of income at wage w is irrelevant for this sum. Indeed, both effects reflect
income shifts across activities in response to return changes and thus have to add up
to zero. The adding-up property in part (ii) of the lemma is a consequence of the fact
that proportional changes in all returns (a) do not affect individuals’ cross-sectoral effort
allocation since m is linear homogeneous, so there are no activity shift effects, and (b)
cause equi-proportional changes in the wages of all types q, and hence no cross-sectoral
re-allocation of overall effort l(w) at any wage.
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As a direct consequence of Lemma 6, (24) and (26) are non-zero only if a change in Ei

affects relative returns.

3.4.5 Putting All Together

To find the total welfare effect of a marginal change in Ei, we combine (18), (20), (22),
with (24), (26) and the direct effect xi. Moreover, because of the adding-up property in
Lemma 6 (ii) and the fact that Âj Ij = Âj Rj = 0, only relative return changes matter for the

effects (18), (20), (24) and (26), so we can equivalently write (18) as �l Âj(b

j
i � b

N
i )Rj and

analogously for the others. Defining Db

j
i(E) ⌘ b

j
i(E)� b

N
i (E) =

⇣
xj

E(f)
⌘�1

∂xj
E(f)/∂Ei

(i.e., the relative return semi-elasticity), we summarize the results from this subsection:

Lemma 7. At any Ei > 0, the welfare effect of a marginal change in Ei is

∂W(E)
∂Ei

= l

"
xi � ti

p(E)� Â
j

Db

j
i(E)

 
Ij(E) + Rj(E) + Â

k
xk
�
Cjk(E) + Sjk(E)

�
!#

,

with Rj(E), Ij(E), ti
p(E), Cjk(E) and Sjk(E) respectively given by (19), (21), (23), (25) and (27).

This makes clear that, if Db

j
i = 0 for all j, i.e., an increase in Ei has no effect on the

vector of relative returns x, then xi = ti
p(E) at the optimum. Any deviation of xi from

ti
p(E) is due to the relative return effects I, R, C and S.

3.5 Marginal Tax Rate Results and Outer Problem Dimensionality

We are now ready to characterize the optimal corrections xi in the marginal tax rate for-
mula (12) and compare them to the Pigouvian tax rates ti

p. Using Lemma 7, the N interior
optimality conditions ∂W/∂Ei = 0 can be written compactly as:

(IN � D�(C +S))~x =~tp + D�
⇣
~I + ~R

⌘
, (34)

where IN denotes the N ⇥ N identity matrix, D�, C, and S are the matrices with (i, j)th

elements Db

j
i(E), Cij(E), and Sij(E), respectively, and~I, ~R, ~x and~tp are the column vectors

with elements Ii(E), Ri(E), xi, and ti
p(E), respectively.

Let ~n denote the column vector with ith element ni = (1/ri(E))( f i
E(w)/ fE(w)) and

~n0 its transpose. Fix any wage w and consider a small change in the tax code at y(w)

such that wage-w individuals are induced to increase their earnings by a small amount
dy. Ignoring general equilibrium effects, dYi =

�
f i
E(w)/ fE(w)

�
dy is the induced change
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in sector-i income and dEi = (1/ri(E))
�

f i
E(w)/ fE(w)

�
dy = nidy the induced change in

aggregate activity-i effort. The vector~n thus denotes the (partial-equilibrium) directional
change in E that would be induced by a small variation in the tax code at y(w). The term
~n0D� denotes the relative return changes induced by such a variation.

If ~n0D� = 0, so this variation has no relative return effects, then left-multiplying (34)
yields~n0~

x = ~n0~tp, i.e.,
N

Â
i=1

f i
E(w)

fE(w)
xi

ri(E)
=

N

Â
i=1

f i
E(w)

fE(w)
t

i
p(E). (35)

The RHS of (35)—the income share-weighted average of the Pigouvian taxes on incomes
in the N activities—is the partial-equilibrium corrective tax. The LHS is the optimal cor-
rection in the income tax formula (12), i.e., the optimal general equilibrium correction. We
conclude that the general and partial equilibrium corrections coincide precisely at income
levels at which small changes in the marginal tax rate would induce no relative return ef-
fects. When there are relative return effects, and ~n0D� 6= 0, then the optimal correction,
per (12) and (34), will generically diverge from the partial equilibrium correction.

The following result provides a simple characterization of when the partial and gen-
eral equilibrium corrections coincide, and are both equal to zero, so the marginal tax rate
formula (12) is the same as in a standard Mirrlees model:

Proposition 2. Suppose Y(E) > 0. Then ~n0 is a direction of both no relative return effects and
no externalities, i.e.,~n0D� = 0 and~n0~tp = 0, if and only if it is a left-nullvector of �: ~n0� = 0.

(Here, � denotes the matrix with elements b

j
i(E).) Let N � K denote the rank of map-

ping E ! r(E) = (r1(E), ..., rN(E))0 and hence of �. Since the return vector r(E) is a
sufficient statistic for individual behavior, conditional on a given tax code, one might
hope to reduce the dimensionality of the outer problem when K > 0—i.e., whenever,
by Proposition 2, there exist directions ~n0 in which there are both no externalities and no
relative return effects.

An example is Rothschild and Scheuer (2013), where N = 2 and Y(E) has constant
returns to scale with ri(E) = ∂Y(E)/∂Ei, so that private returns equal marginal products.
Since the latter are homogeneous of degree zero, they are only a function of r ⌘ E1/E2,
and it is easy to verify that the second row of � is just �r times the first row. In other
words, � has rank N � K = 1 for all E, and, as shown by Rothschild and Scheuer (2013),
the outer problem can be written in terms of the single variable r and with a single con-
sistency constraint

r =

R wE
wE

wl(w)dF1
r

(w)/r1(r)
R wE

wE
wl(w)dF2

r

(w)/r2(r)
.
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Similar reductions in dimensionality can occur for N > 2. Suppose, for instance,
N = 3 and b

j
2(E) = ab

j
1(E) and b

j
3(E) = bb

j
1(E) for all j, where a and b are constants.

Here, E1, E2 and E3 have effects on the returns rj that only differ in magnitude (and
possibly sign). Then there is a two-dimensional plane with directions of no relative return
effects and no externalities spanned by the vectors (�a, 1, 0) and (�b, 0, 1). The vector
orthogonal to both is (1, a, b), so Ẽ1 = E1 + aE2 + bE3 is a sufficient statistic for the return
vector r(E). The outer problem can again be written with a single consistency constraint,
namely a weighted average of the three consistency constraints in (8).

In fact, the following proposition shows that the dimensionality of the outer problem
can be reduced with a proper choice of coordinates whenever the rank of � is less than N.

Proposition 3. Suppose that � has rank N � K in some open neighborhood of the optimum E⇤.
Then there exists an open neighborhood U 2 RN on which the Pareto problem can be written
as a function of the schedules l(w), V(w), and some r 2 RN�K and with N � K consistency
constraints, one for each component of r.

Finally, for the system of optimality conditions (34) to uniquely identify the vector ~x,
the matrix A ⌘ IN � D�(C + S) needs to be non-singular at the optimum. We assume
this in the following.

4 Two Sectors

If N = 2, the adding up properties of Lemma 6 can be used to solve the system of opti-
mality conditions (34) for ~x explicitly.

Lemma 8. At any Pareto optimum with N = 2,

~
x =~tp +

 
Db

1
1(E)

Db

1
2(E)

!
I1(E) + R1(E) +

⇣
t

1
p(E)� t

2
p(E)

⌘
(C(E) + S(E))

g2(E)
, (36)

where
C(E) ⌘

Z wE

wE

w2l0(w)Var(q1
E|w) fE(w)dw, (37)

S(E) ⌘
Z wE

wE

y(w)
Z

F
Q1

1(x1
E(f))x1

E(f)dGE(w, f), (38)

and

g2(E) = 1 +

 
Db

1
2(E)

r2(E)
�

Db

1
1(E)

r1(E)

!
(C(E) + S(E)), (39)
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Figure 6: Adjustment factor and directions of no and maximal relative return effects

The system (36) makes it easy to interpret the corrective term in the marginal tax
rate formula (12). As before, we obtain xi = ti

p(E) if Db

1
i (E) = 0, i = 1, 2, so that a

change in Ei has no relative return effects at the optimum. More generally, if the vector ~n
with elements f i

E(w)/(ri(E) fE(w)) is parallel to the direction of no relative return effects
(Db

1
2(E),�Db

1
1(E)), then the marginal tax rate formula (12) coincides with the weighted

sum of the partial equilibrium Pigouvian corrections, as discussed for the case of general
N in Section 3.5, so that ~n0~

x = ~n0~tp. For any other ~n, the correction term ~n0~
x will diverge

from the Pigouvian correction~n0~tp, with the magnitude of this divergence determined by
the magnitude of the second term in (36) and the angle between~n and the direction of no
relative return effects (Db

1
2(E),�Db

1
1(E)).21 This is illustrated in Figure 6, which shows

an iso-relative return curve in (E1, E2)-space as well as the (tangent) direction of no rel-
ative return effects, the (perpendicular) direction of maximal relative return effects, and
the projection of the vector~n on the latter, all starting from a Pareto optimum (E⇤

1 , E⇤
2).

By Propositions 2 and 3, the outer problem can be reduced, via an appropriate change
of variables, to a one-dimensional problem whenever the direction of no relative return
effects is also a direction of no externalities or, equivalently, whenever~tp is parallel to the
direction of maximal relative return effects: ~tp = c(Db

1
1, Db

1
2) for some c, as depicted in

Figure 6. Clearly, this is trivially the case when there are no externalities (so that c = 0, as
in Rothschild and Scheuer, 2013) or only one activity affects returns (so that Db

1
2 = t2

p = 0,
see Rothschild and Scheuer, 2014), as we will discuss in more detail below.

21The denominator g2(E) is the eigenvalue associated with the eigenvector (Db

1
1(E), Db

1
2(E))0 of A

(which is also the direction of maximal relative return effects), so it is non-zero by our assumption that
A is non-singular. Moreover, g2(E) > 0 if E is stable in the sense of Appendix C.
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5 Applications

In this section, we illustrate how our general framework can provide useful insights into
the shape of the optimal income tax schedule in a number of important applications.
These include standard constant returns to scale economies (CRS) with multiple sectors,
economies with increasing or decreasing returns to scale, CRS economies where returns
deviate from marginal products, and non-CRS economies where one of the N activities
generates or bears externalities, as discussed in Section 2.2.

5.1 No Externalities

We begin with the externality-free case where Y(E) has CRS and ri(E) = ∂Y(E)/∂Ei for
all i, so social and private returns coincide. Rothschild and Scheuer (2013) consider the
special case with N = 2. The tools from Section 3 can be used to investigate the novel
effects that arise when activity choice is along more than one margin. The simplest way
to shed light on this is to add a third, linear sector, leading to the production function
Y(E) = Ŷ(E1, E2) + E3, where Ŷ has CRS and ∂

2Ŷ/∂E2
i < 0, i = 1, 2. This is particularly

tractable as E3 has no effects on any returns and r ⌘ E1/E2 remains a sufficient statistic for
the wage distribution (as ri = ∂Y(E)/∂Ei). The general system of optimality conditions
(34) can be solved to obtain the following modified marginal tax rate adjustment factor.

Proposition 4. If N = 3, Y(E) = Ŷ(E1, E2) + E3, Ŷ is homogenous of degree 1 and ri(E) =

∂Y(E)/∂Ei, i = 1, 2, 3, then the numerator in the marginal tax rate formula (12) is

1 �
3

Â
i=1

f i
E(w)

fE(w)
xi

ri(E)
= 1 +

f 1
E(w) + f 2

E(w)

fE(w)

 
f 1
E(w)

f 1
E(w) + f 2

E(w)
� â(r)

!
x̂ (40)

with

x̂ = � 1
r1(1 � â)

b

1
1(I1 + R1) + b

2
1(I2 + R2)

1 � b

1
1(C11 + S11 � r(C12 + S12))� b

2
1(C21 + S21 � r(C22 + S22))

, (41)

where â(r) ⌘ Y1/Ŷ is the activity 1 share of the combined incomes of activities 1 and 2.

In the two-sector case where E3 and f 3
E(w) vanish, Lemma 6 implies C21 = �C11,

r1C12 = �r2C11, and r2C22 = r1C11, and analogously for the Sij terms. Similarly, I2 +

R2 = �(I1 + R1). Denoting by s(r) the substitution elasticity of Y(E) and by a(r) ⌘
Y1(E)/Y(E) the aggregate income share of sector 1, and using the definitions of C and S
in (37) and (38), the adjustment factor then collapses to the formula from Rothschild and
Scheuer (2013):
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Corollary 1. If N = 2, Y(E) is homogenous of degree 1 and ri(E) = ∂Y(E)/∂Ei then the
numerator in the marginal tax rate formula (12) is

1 �
2

Â
i=1

f i
E(w)

fE(w)
xi

ri(E)
= 1 +

 
f 1
E(w)

fE(w)
� a(r)

!
x with x ⌘ (I1 + R1) /s

a(1 � a)Y + (C + S) /s

. (42)

This corollary implies a regressive adjustment to standard Mirrleesian tax rates. Intu-
itively, lower taxes at wages where the high-wage activity (say activity 1) is prevalent will
encourage effort there. By complementarity, this increased effort increases the relative re-
turns to the low-wage activity, which is desirable under typical social preferences. This
effect is reflected in the re-distributional terms I1 and R1 in the numerator of x. The in-
crease in relative returns to the low-wage activity is partially counteracted, however, since
it induces individuals to shift effort out of the high-return activity into the lower-return
activity. This is captured by the reallocation effects C and S, which blunt the regressive
adjustment. The optimal tax schedule is therefore more regressive than in a Mirrlees
(1971) model with fixed wages, but less regressive than in an endogenous wage model
with fixed occupations, such as Stiglitz (1982).

The adjustment disappears at wage levels w where f 1
E(w)/ fE(w) = a, so that the local

and aggregate income shares coincide. This reflects the discussion in Section 3.5: at such
points,~n0 = ( f 1

E(w)/( fE(w)Y1), f 2
E(w)/( fE(w)Y2)) reduces to (E1/Y, E2/Y) and therefore

points in the direction (r, 1) in which there are zero relative return effects which, here, is
trivially also a direction of zero externalities.

When the third sector is active, the adjustment factor in (40) similarly vanishes when-
ever f 1

E(w)/( f 1
E(w) + f 2

E(w)) = â. The factor is now scaled down by the local share
( f 1

E(w) + f 2
E(w))/ fE(w) of income earned in sectors 1 and 2, however, reflecting the fact

that the relative return effects only operate through a fraction of the population. More-
over, the term x̂ in (41) will generally diverge from the term x̄ in (42). This is because, al-
though the formula for x̂ in (41) is the same in a two- and a three-sector model, the adding
up properties in Lemma 6 that pin down the relationship between the four Cij + Sij,
i, j = 1, 2 terms in a two-sector model are less informative with a third sector. Never-
theless, it is instructive to use Lemma 6 to re-write (41) as

x̂ ⌘ (I1 + R1) /ŝ + E1b

2
1(I3 + R3)

â(1 � â)Ŷ + Ĉ11+Ŝ11
ŝ

+ â

Ĉ13+Ŝ13
ŝ

+ â(1 � â)E1b

2
1

h
Ĉ31+Ŝ31

â

� Ĉ32+Ŝ32
1�â

i , (43)

where ŝ(r) is the substitution elasticity of Ŷ and Ĉij ⌘ rjCij, Ŝij ⌘ rjSij. Comparing with
(42) reveals an extra term in the numerator and two in the denominator.
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First, consider the extra term â(Ĉ13 + Ŝ13)/ŝ in the denominator. With two sectors,
any outflow �(Ĉ11 + Ŝ11) of sector 1 earnings (caused by the r1-decrease associated with
increased E1) is necessarily an inflow into sector 2; with a third sector, some of the outflow
will instead go to sector 3. Unlike flows into sector 2, however, sector 3 inflows do not
decrease r = E1/E2, and therefore do not blunt the indirect redistribution achieved by an
increase in E1. Relative to the two-sector model, the presence of the third sector, reflected
in this term, makes x̂ larger and the optimal tax more regressive.

Next, consider the second extra term in the denominator. With two activities, a pro-
portional increase in both r1 and r2 induces no activity shifts and hence has no effect on
r. With three activities, however, a proportional increase in r1 and r2 induces an income
shift out of activity 3 and into activities 1 and 2, which affects r insofar as a change in
r3 leads to unequal percentage changes in sector 1 and 2 incomes (which, by Lemma 6
(ii), implies the same for a proportional and simultaneous change in r1 and r2). This is
reflected in the factor in square brackets in (43) (and the fact that b

2
1 > 0). For example,

if (Ĉ31 + Ŝ31)/â < (Ĉ32 + Ŝ32)/(1 � â) < 0, activity 1 income changes by relatively more
than activity 2 income when r1 and r2 change proportionally. This means that the effects
of r1 outweigh the effects of r2, which again reinforces the regressive adjustment from the
preceding paragraph.

Finally, towards understanding the extra term in the numerator, ignore R3 and sup-
pose that sector 1 is the high income sector, so f 1

E(w)/ fE(w) is increasing in w. With two
activities, this would mechanically imply a decreasing f 2

E(w)/ fE(w). The wage changes
induced by an increase in E1 would then beneficially redistribute, by reducing r1 and in-
creasing r2, from the high income activity 1 to the low income activity 2. If there is a third
activity with increasing f 3

E(w)/ fE(w) (and hence I3 > 0), however, then sector 2 is even
more of a low income sector, and the indirect redistributional benefits of an increase in E1

are magnified—and so is x̂ and the regressive adjustment to the tax schedule.
In sum, under these conditions, the presence of a third sector makes the optimal in-

come tax schedule more regressive compared to a standard two-sector economy.

5.2 Increasing or Decreasing Returns to Scale

Taking N = 2, now consider any homothetic production function Y(E) = h(Ỹ(E)), where
h(Ỹ) is some increasing function with elasticity #h(E) ⌘ h0(Ỹ(E))Ỹ(E)/Y(E), and Ỹ(E)
has CRS as in the preceding subsection, with substitution elasticity s(r). Suppose the
total output Y is divided across sectors according to the Ỹ-income shares, i.e. r1(E)E1 ⌘
Y1(E) = a(r)Y(E) and r2(E)E2 ⌘ Y2(E) = (1 � a(r))Y(E), where r = E1/E2 and a(r) =
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Ỹ1(r)E1/
�
Ỹ1(r)E1 + Ỹ2(r)E2

�
. Using the x defined in (42), Lemma 8 yields the following:

Proposition 5. Suppose N = 2, Y(E) = h(Ỹ(E)) with Ỹ(E) linear homogeneous, and with
returns ri(E) = Ỹi(E1, E2)Y(E)/Ỹ(E). Then the optimal correction factor in (12) is

1 �
2

Â
i=1

f i
E(w)

fE(w)
xi

ri(E)
= 1 +

 
f 1
E(w)

fE(w)
� a(r)

!
x � (1 � #h(E)). (44)

The optimal adjustment in (44) can be transparently decomposed into two terms: a lo-
cal correction exactly as in Corollary 1, and a global correction 1� #h(E) which uniformly
scales up or down marginal keep shares 1 � T0(y). In particular, if #h(E) < (>)1, we
have decreasing (increasing) returns to scale and marginal tax rates are scaled up (down)
relative to an economy with CRS.

Note that unless #h = 1, the direction of no relative return effects in E-space, (r, 1),
and the direction of zero externalities, (�1/r1, 1/r2), are always distinct. By Proposition
2, � has full rank and both consistency constraints are needed in this example.

5.3 A Pure Resource Transfer Activity

The preceding subsection allowed for aggregate externalities but fixed the sectoral com-
position of incomes at the aggregate level via the CRS income shares a(r) and 1 � a(r).
Keeping N = 2, we now consider the opposite case where Y(E) exhibits CRS but the ac-
tivity 1 income share a(E) is not equal to a(r), so that one activity is underpaid—and the
other overpaid—relative to its marginal product.

Consider in particular the extreme example where Y(E) = E2 but a(E) = a(E1) is a
positive and increasing function. Then activity 1 is pure “stealing” of (or getting credit
for) output, which is produced exclusively in activity 2, as discussed in the introduction.22

Because activity 1 is purely extractive, the Pigouvian tax is t

1
p = 1, whereas activity 2

generates positive externalities by increasing the returns r1 = a(E1)E2/E1 to activity 1 and
therefore commands a Pigouvian subsidy t

2
p = �a/(1 � a). In contrast to the preceding

section, externalities are purely distributional; consequently, at

1
p + (1 � a)t2

p = 0, i.e.,
there is no Pigouvian correction in aggregate.

Defining the elasticity of a as #1(E1) ⌘ (∂a(E1)/∂E1)E1/a(E1) and using the defini-
tions of C and S from Corollary 1 yields the following result:

Proposition 6. If a(E) = a(E1) and Y(E) = E2, then
22In Appendix D, we provide general formulas for less extreme cases, with qualitatively similar results.
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2

Â
i=1

f i
E(w)

fE(w)
xi
ri

=
⇣

t

1
p � (1 � a � #1)x

⌘ f 1
E(w)

fE(w)
+
⇣

t

2
p + ax

⌘ f 2
E(w)

fE(w)
(45)

with x =
I1 + R1 + (C + S)/(1 � a)

a(1 � a)Y + (1 � #1)(C + S)
.

The numerator of x̄ is positive if the rent-seeking activity 1 is also the high income
activity—since then I1 > 0 if incentive constraints are down-binding, and R1 � 0 if Pareto
weights are (weakly) higher among same-wage earners with higher income shares in the
productive activity 2.23

The terms in parentheses in (45) are sums of the Pigouvian tax rates and relative return
effect adjustments. The latter are intuitive. For example, a subsidy on activity 2 raises E2

and thereby increases the relative returns to activity 1, which leads to a wasteful effort
shift towards activity 1. The optimum therefore involves an undercorrection relative to the
Pigouvian subsidy, as reflected by ax̄ in the second term of (45).

The relative return adjustment in activity 1 is ambiguous: it depends on #1 ? 1 � a.
This is because an increase in E1 has two offsetting effects: first, by increasing a(E1), it
increases the relative returns to activity 1. Second, it causes crowding in activity 1: the
earnings a(E1)E2 are spread over a larger effort E1. If #1 < 1 � a, then the latter effect
dominates, and taxes on activity 1 cause perverse flows of effort towards activity 1. The
optimal correction on activity 1-intensive parts of the income distribution is therefore
below the Pigouvian one when #1 < 1 � a (and above it when #1 > 1 � a).

As in the preceding example, this problem requires both consistency constraints, since
the no-externality direction (a/r1(E), (1 � a)/r2(E)) does not coincide with the direction
(a/r1(E), (1 � a � #1)/r2(E)) of zero relative return effects.

5.4 Externalities from One Activity

Next, suppose that returns depend only on aggregate effort in one activity, i.e., ri(E) =

ri(E1) for all i = 1, ..., N. Rothschild and Scheuer (2014) is a special case, with N = 2, in
which a rent-seeking activity 1 imposes negative externalities on both activities, so b

j
1 < 0,

while activity two imposes no externalities, so b

j
2 = 0. We treat here the case with general

N and general externalities generated by sector 1.
In particular, since b

j
i = 0 for all i = 2, ..., N and all j, the matrix � has rank one and, per

Proposition 3, the problem can be written with a single consistency constraint—namely
the constraint for E1. This leads to the following result:

23Lemma 9 in Appendix C shows that the denominator—and hence x̄ here—is positive when a natural
stability condition is met.
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Proposition 7. If ri(E) = ri(E1) for all i = 1, ..., N, then the numerator of the marginal tax rate
formula in (12) is 1 � x f 1

E(w)/ fE(w) with

x =
t

1
p + ÂN�1

j=1 Db

j
1(Ij + Rj)/r1

1 � ÂN�1
j=1 Db

j
1(Cj1 + Sj1)

. (46)

The corrective factor x is weighted by the local income share of activity 1 and deviates
from the Pigouvian correction t

1
p only if there are relative return effects—i.e., if Db

j
1 6= 0

for some j. These effects enter in an intuitive way. For instance, suppose activity 1 gener-
ates negative externalities, so t

1
p > 0. Then the denominator in (46) increases x relative to

t

1
p if an increase in E1 on average raises the relative returns to activities j with Cj1, Sj1 > 0,

and vice versa. In this case, the increase in E1 indirectly causes a reinforcing flow of effort
into activity 1. Conversely, a tax on sector 1 income directly and beneficially reduces E1

and indirectly leads to effort flows that further reduce E1. Such a tax is therefore even
more desirable than based on the purely Pigouvian motives.24

The second term in the numerator of (46) further increases x compared to t

1
p if the

activities whose relative returns increase in response to an increase in E1 are also high
income, low Pareto weight activities on average (i.e., if Db

j
1 is positively correlated with

Ij, Rj).25 Then an increase in the marginal income tax at wage levels where activity 1 is
prevalent lowers E1 and indirectly redistributes by raising returns to lower-wage, high
redistributive preference activities. Of course, analogous results can be obtained from
(46) when the tax leads to the opposite sectoral shifts or when activity 1 imposes positive
or mixed externalities.

For N = 2 we obtain the special case in Rothschild and Scheuer (2014), with

x =
t

1
p + Db

1
1(I1 + R1)/r1

1 � Db

1
1(C + S)/r1

,

and C and S given by (37) and (38). If l(w) is increasing, so that C > 0, and if we also
have I1, R1 > 0 (because the externality-causing activity 1 is also a high wage and low
redistributive preference activity), then an over- (under-)correction with x > (<)t1

p is
optimal if and only if Db

1
1 >(<)0. Our general framework shows that these results hold

for arbitrary forms of externalities generated by activity 1 (rather than just negative ones).

24Again, the denominator of (46) is positive if the optimum is stable per Lemma 9 in Appendix C.
25Since Âj Ij = Âj Rj = 0, Âj Db

j
1(Ij + Rj) is N times the across-j covariance Cov(Db

j
1, Ij + Rj).
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5.5 Externalities Targeted at One Activity

Finally, consider the case where r1(E) is general but ri(E) = ri are constants for all i =

2, ..., N—so that only the first activity bears any externalities. A simple example with N =

2 is another specification of a pure resource transfer activity, with Y(E) = Y(E1) and
Y1(E) = Y(E1) � E2 and Y2(E2) = E2. Here, all output is produced through activity 1,
and activity 2 takes away some of this output one-for-one, as discussed in Section 2.2.

Generally, b

j
i = 0 for all j 6= 1 and � again has rank one in this case, this time with all

columns being zero except for the first, which has elements b

1
i (and D� = �). Intuitively,

any movement in E-space that changes r1(E) generates both an externality and a relative
return change. Conversely, since ti

p = �b

1
i Y1 in this example, all the N � 1 dimensions

of RN orthogonal to the vector (b

1
1, b

1
2, ..., b

1
N) are directions of both no externalities and

no relative return effects because changes of E in these directions leave r1(E) unchanged.
Per Proposition 3, we need only one consistency constraint in the outer problem—a b

1
i -

weighted sum of the original N constraints (8).
By (34), xi/b

1
i = x1/b

1
1 for all i, which yields the following result:

Proposition 8. If ri(E) is fixed for all i 6= 1, then the optimal adjustment term in (12) is

N

Â
i=1

f i
E(w)

fE(w)
xi
ri

=
N

Â
i=1

f i
E(w)

fE(w)

b

1
i

ri
x with x =

�Y1 + I1 + R1

1 � ÂN
i=1 b

1
i (C1i + S1i)

. (47)

Since both the externalities and the relative return effects induced by a change in Ei

are scaled by the magnitude of b

1
i , the optimal correction (in terms of income) in each

dimension i is proportional to b

1
i /ri. Hence, the adjustment factor vanishes whenever the

vector of local income shares at w is orthogonal to the vector of these magnitudes, i.e.,
when Âi( f i

E(w)/ fE(w))(b

1
i /ri) = 0. Intuitively, this is a wage level at which a variation

in the marginal income tax rate leads to changes in E that leaves r1(E) unaffected, so the
optimal marginal tax rate is “as if” all returns were fixed locally.

Otherwise, the Y1 term in the numerator of x in (47) captures the Pigouvian taxes on
all activities that affect r1 (since t

i
p = b

1
i Y1/ri). The denominator and the second term

I1 + R1 in the numerator capture the deviation from this Pigouvian adjustment due to the
relative return effects from the increase in r1 induced by these taxes; the intuition for these
terms is the same as in the earlier examples.

6 Conclusion

We have developed a general framework for tax policy that applies to a wide range of
imperfect labor markets with rich heterogeneity and general equilibrium effects—effects
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which we believe are ubiquitous. As complementary work has shown, our tools can be
productively operationalized for quantitative optimal tax analyses in important special
cases. Most recently, Ales, Murnaz and Sleet (2014) have performed income tax simula-
tions based on a N-sector model similar to ours but with more restrictive assumptions on
individual heterogeneity and the economy-wide production function that allow them to
quantify the impact of technical progress between the 1970s and the 2000s on optimal tax
progressivity. In Rothschild and Scheuer (2013, 2014), we have computed optimal policies
for the special case with N = 2 and where no or only one activity generates externalities,
and shown how to empirically identify the underlying two-dimensional skill-distribution
under some assumptions. These studies demonstrate that general equilibrium effects can
be of considerable quantitative importance. We expect the flexible toolkit developed here
to be useful for further quantitative studies under less restrictive assumptions.

Our analysis also provides general insights into the type of empirical evidence needed
for calculating optimal taxes in the presence of externalities. For instance, in the pure
resource transfer example discussed in Section 5.3, the Pigouvian component of the cor-
rection would be entirely pinned down by the aggregate income share accruing to the
transfer activity. The optimal correction depends additionally on the elasticity of this in-
come share with respect to effort in the transfer activity: high elasticities imply an optimal
correction strictly greater than the Pigouvian component; low elasticities imply a sub-
Pigouvian correction. Thus, information on these income shares and elasticities would be
of direct use for optimal policy design. More generally, a high-level policy lesson is that
evidence on the source and magnitude of externalities are insufficient for designing tax
policy; information on where the externalities are borne is also critical.

Finally, we expect our methods to be useful for policy design in other important con-
texts, including general equilibrium effects from consumption externalities, status con-
cerns (through “keeping up with the Joneses” preferences or conspicuous consumption),
moral hazard in insurance, hidden savings and side trades, household labor supply, and
multitask problems in team production. We leave these for future research.
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A Appendix: Proofs

A.1 Proof of Lemma 1
Using (2) for q = q

0 and homogeneity of degree one of m, we have

q(q) 2 arg min
p2DN�1

m
✓

p1y(q)
q1r1(E)

, ... ,
pNy(q)

qNrN(E)

◆
= arg min

p2DN�1
m
✓

p1
q1r1(E)

, ... ,
pN

qNrN(E)

◆
.

The result in (3) follows from w(q) ⌘ y(q)/l(q) and l(q) ⌘ m(e(q)) = y(q)m
✓

q1(q)
q1r1(E) , ... , qN(q)

qNrN(E)

◆
.

A.2 Proof of Lemma 3
It suffices to show that

R
w h(w)dFi

En(w) converges to
R

h(w)dFi
E(w) for any continuous function h such that

supw |h(w)|  h̄ for some h̄. Using the definition of Fi
E and changing variables yields

Z

w
h(w)dFi

En(w) =
Z

w

Z

F
h(w)qi

En(j)dGEn(w, f)

=
Z

Q
h(wEn(q))qi

En(q)dF(q). (48)

The sequence h(wEn(q))qi
En(q) is bounded by h̄ and converges pointwise to h(wE(q))qi

E(q) by Lemma 2. The
dominated convergence theorem implies

R
w h(w)dFi

En(w) !
R

Q h(wE(q))qi
E(q)dF(q) =

R
w h(w)dFi

E(w).

A.3 Proof of Lemma 4
The proof closely follows Appendix B in Hellwig (2007), which considers a problem with changing, weakly
convergent wage distributions. This lemma considers a fixed E, and therefore a fixed type distributions,
so much of his apparatus is unnecessary here. We employ this apparatus because the same arguments will
apply to our proof of Lemma 5. To keep the discussion parallel to Hellwig’s proofs, we work with alloca-
tions described by c(w) and y(w) instead of V(w) and l(w). The idea is to construct a feasible allocation
(ĉ(w), ŷ(w)) which achieves the supremum in (6).

Start with a sequence (ck(w), yk(w)) of feasible allocations for which
R

u(ck(w), yk(w)/w)dYE(w) �
W(E) � 2�k. By a diagonalization argument (viz Hellwig’s Lemma B.3), and because c and y are, by as-
sumption, uniformly bounded, we can find a subsequence, indexed by kn, of allocations which converges
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pointwise to some (c̃(w), ỹ(w)) for each rational w. By (7), each of the allocations (ck(w), yk(w)), and there-
fore the (partial) allocation (c̃(w), ỹ(w)) are monotonic in w. The allocation (ĉ(w), ŷ(w)):

(ĉ(w), ŷ(w)) ⌘ lim
w0#w, w2Q

(c̃(w0), ỹ(w0)) (49)

is therefore well defined. Per the arguments in Hellwig’s Lemma B.4, (ĉ(w), ŷ(w)) satisfies (7). Per the
arguments in Hellwig’s Lemma B.5, and the fact that the type distributions Fi

E and YE are independent of
k, (ĉ(w), ŷ(w)) satisfies (8) and (9), and has

Z
u(ĉ(w), ŷ(w)/w)dYE(w) = lim

n!•

Z
u(ckn(w), ykn(w)/w)dYE(w) � lim

n!•
W(E)� 2�kn = W(E). (50)

A.4 Proof of Lemma 5
Take any sequence Ek ! E with a convergent limit W̄ = limk!• W(Ek). For each k, let {ck(w), yk(w)} be a
feasible and optimal allocation, which exists by Lemma 4. As in the proof of Lemma 4 above, we can find a
subsequence, indexed by kn, which converges pointwise to some (c̃(w), ỹ(w)) for each rational w, and then
define

(ĉ(w), ŷ(w)) ⌘ lim
w0#w, w2Q

(c̃(w0), ỹ(w0)). (51)

The allocation (ĉ(w), ŷ(w)) so defined satisfies (7). Per Lemma 3, Fi
E, FE and YE are weakly continuous in

E. Lemma B.1 in Hellwig (2007) therefore implies that (ĉ(w), ŷ(w)) also satisfies (8) and (9) (with the wage
distributions at E). It also implies

R
u(ĉ(w), ŷ(w)/w)dYE(w) = limn!• W(Ekn) = W̄. Hence, W(E) � W̄,

completing the proof.

A.5 Proof of Proposition 1
Putting multipliers l on (9), xil on the consistency constraints (8), and ĥ(w)l on (7), the Lagrangian corre-
sponding to (6)-(9) is, after integrating by parts (7),

L =
Z wE

wE
V(w)yE(w)dw �

Z wE

wE
V(w)ĥ0(w)ldw +

Z wE

wE
ul(c(V(w), l(w)), l(w))

l(w)
w

ĥ(w)ldw

+
N

Â
i=1

xil


Ei �

1
ri(E)

Z wE

wE
wl(w) f i

E(w)dw
�
+ l

Z wE

wE
(wl(w)� c(V(w), l(w))) fE(w)dw. (52)

This Lagrangian approach is valid (i.e. constraint qualification holds) generically by Theorem 3 in Clarke
(1976). Using ∂c/∂V = 1/uc and compressing notation, the first order condition for V(w) is

ĥ

0(w)l = yE(w)� l fE(w)
1

uc(w)
+ ĥ(w)l

ucl(w)
uc(w)

l(w)
w

. (53)

Defining h(w) ⌘ ĥ(w)uc(w), this becomes

h

0(w) = yE(w)
uc(w)

l

� fE(w) + h(w)
ucc(w)c0(w) + ucl(w)l0(w) + ucl(w)l(w)/w

uc(w)
. (54)
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Using the first order condition corresponding to the incentive constraint (11),

uc(w)c0(w) + ul(w)l0(w) + ul(w)
l(w)

w
= 0, (55)

the fraction in (54) can be written as �(∂MRS(w)/∂c)y0(w)/w, where M(c, l) ⌘ �ul(c, l)/uc(c, l) is the
marginal rate of substitution between effort and consumption and MRS(w) ⌘ M(c(w), l(w)), so (with a
slight abuse of notation) ∂MRS(w)/∂c stands short for ∂M(c(w), l(w))/∂c. Substituting in (54) and rear-
ranging yields

� ∂MRS(w)
∂c

l(w)
y0(w)
y(w)

h(w) = fE(w)� yE(w)
uc(w)

l

+ h

0(w). (56)

Integrating this ODE gives

h(w) =
Z wE

w

✓
fE(s)� yE(s)

uc(s)
l

◆
exp

✓Z s

w

∂MRS(t)
∂c

l(t)
y0(t)
y(t)

dt
◆

ds

=
Z wE

w

✓
1 � yE(s)

fE(s)
uc(s)

l

◆
exp

✓Z s

w

✓
1 � #

u(t)
#

c(t)

◆
dy(t)
y(t)

◆
fE(s)ds, (57)

where the last step follows from l(w)∂MRS(w)/∂c = 1 � #

u(w)/#

c(w) after tedious algebra (e.g. using
equations (23) and (24) in Saez, 2001).

Using ∂c/∂l = MRS, the first order condition for l(w) is

lw fE(w)

✓
1 � MRS(w)

w

◆
�lw

N

Â
i=1

xi
ri(E)

f i
E(w) = �ĥ(w)l


(�ucl(w)ul(w)/uc(w) + ull(w)) l(w)

w
+

ul(w)
w

�
,

which after some algebra can be rewritten as

w fE(w)

✓
1 � MRS(w)

w

◆
� w

N

Â
i=1

xi
ri(E)

f i
E(w) = h(w)

✓
∂MRS(w)

∂l
l
w

+
MRS(w)

w

◆
, (58)

where ∂MRS(w)/∂l again stands short for ∂M(c(w), l(w))/∂l. With MRS(w)/w = 1 � T0(y(w)) from the
first order condition of the workers, this becomes

1 �
N

Â
i=1

xi
ri(E)

f i
E(w)

fE(w)
= (1 � T0(y(w)))


1 +

h(w)
w fE(w)

✓
1 +

∂MRS(w)
∂l

l
MRS(w)

◆�
. (59)

Simple algebra again shows that 1 + ∂ log MRS(w)/∂ log l = (1 + #

u(w))/#

c(w), so that the result follows
from (57) and (59).

A.6 Proof of Lemma 6
(i) For Ckj, this follows from

N

Â
j=1

rj(E)Ckj(E) =
Z wE

wE
w2l0(w)

N

Â
j=1

Cov
⇣

qj
E, qk

E

���w
⌘

dw = 0
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because ÂN
j=1 Cov

⇣
qj

E, qk
E

���w
⌘
= Cov

⇣
ÂN

j=1 qj
E, qk

E

���w
⌘
= Cov

⇣
1, qk

E

���w
⌘
= 0 for all w. For Skj, we prove

the result by showing that ÂN
j=1 Qj

k(xE(f)) = 0 for all f 2 F. For this, use (32) and (33) to write

0 =
∂1

∂(qkrk(E))
=

N

Â
j=1

∂qj
E(f)

∂(qkrk(E))
=

N

Â
j=1

∂Zj(xE(f))

∂(qkrk(E))
Wj(z(xE(f))) +

1
qNrN(E)

N

Â
j=1

Qj
k(xE(f)) 8f.

Hence, showing that Âj Wj∂Zj/∂(qkrk(E)) = 0 will complete the proof. Using (32), we have

Zj(xE(f)) ⌘
rj(E)qj

w
= rj(E)qj min

p2DN�1
m
✓

p1
r1(E)q1

, ...,
pN

rN(E)qN

◆
, (60)

so
∂Zj

∂(rkqk)
=

dkj

w
� rjqjmk (e/y)

qk

(rkqk)
2 , (61)

where mk denotes the (homogeneous of degree zero) partial derivative of m w.r.t. its k-th argument. Note
that the first order conditions for the minimization in (60) are mk(e/y)/(rkqk) = mN(e/y)/(rNqN) for all
k = 1, ..., N, which implies

1
w

=
m(e)

y
= m (e/y) =

N

Â
k=1

mk(e/y)
qk

rkqk
=

mN(e/y)
rNqN

N

Â
k=1

qk =
mN(e/y)

rNqN
=

mk(e/y)
rkqk

8k, (62)

where the second equality uses linear homogeneity of m, the third uses Euler’s theorem, and the forth and
sixth the first order conditions. Substituting this in (61) and using Wj = ej/m(e) = ejw/y yields

Â
j

Wj
∂Zj

∂(qkrk)
= Â

j

ejw
y

 
djk

w
�

rjqj

w
qk

rkqk

!
= Â

j

ej

y

 
djk

rjqj

rjqj
� qk rjqj

rkqk

!
= Â

j

yj

y

 
djk

rkqk
� qk

rkqk

!

= Â
j

1
rkqk

⇣
qj

djk � qjqk
⌘
=

1
rkqk

⇣
qk � qk

⌘
= 0,

where the third equality uses djk/rjqj = djk/rkqk. The remaining steps are algebra and establish the result.

(ii) ÂN
k=1 Skj(E) = 0 follows from (27) and ÂN

k=1 Qj
k(xE(f))xk

E(f) = 0 for all f. To see the latter, use (33)
and

N

Â
k=1

∂zl(xE(f))
∂(rk(E)qk)

xk
E(f)rN(E)qN =

N

Â
k=1

∂zl(xE(f))
∂(rk(E)qk)

rk(E)qk = 0 8l

by the zero-homogeneity of z and Euler’s theorem. ÂN
k=1 Ckj(E) = 0 follows from (25) and an analogous

argument to part (i).

A.7 Proof of Proposition 2
From (23),~n0~tp = ~n0�~Y, where ~Y denotes the column vector of aggregate sectoral incomes Yi(E). By defini-
tion, D� = � (IN �ON ), where ON is matrix with (i, j)th element dNj (i.e., with ones in the last row and
zeros otherwise). The “if” is thus immediate. For “only if”, observe that the last column of IN �ON is zero
and let D denote the matrix whose first N � 1 columns coincide with IN �ON and whose Nth column is
~Y. Then ~n0D� = 0 and ~n0~tp = 0 only if ~n0�D = 0. Since ~Y � 0 with at least one strictly positive entry, D is
non-singular. Hence,~n0�D = 0 only if~n0� = 0.
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A.8 Proof of Proposition 3
Since wE(q) and qE(q) depend on E only through the returns vector r(E), this vector is a sufficient statistic
for individual decisions given any l(w) and V(w), and hence for the solution to the inner problem. � has the
same rank, N � K, as the matrix of partial derivatives Dr(·), as ln(·) is a diffeomorphism. By the Constant
Rank Theorem (Boothby, 1986, Theorem 7.1), there exist open neighborhoods UE ⇢ RN of E⇤ and Ur ⇢ RN

of r(E⇤) and diffeomorphisms G from UE onto a open subset of RN and H from Ur onto an open subset
of RN such that H(r(G�1(x1, · · · , xN))) = (x1, ..., xN�K, 0, · · · , 0). Defining r ⌘ (x1, · · · , xN�K), we have
r(G�1(r, xN�K+1, · · · , xN)) = H�1(r, 0, · · · , 0), so r is sufficient for r.

To find the consistency constraints associated with r, let E(r(E); l(·)) denote the vector of right-hand
sides of (8). Then the ith consistency constraint, i = 1, · · · , N � K is ri = Gi(E(H�1(r, 0, · · · , 0); V(·), l(·))),
i.e., the ith component of G(E) = G(E(r(E); l(·)), written in terms of r.

A.9 Proof of Lemma 8
Dropping the arguments E, the optimality conditions (34) can be written for N = 2 as

A~
x =~tp +

 
Db

1
1

Db

1
2

!
(I1 + R1). (63)

Since
�
Db

1
1, Db

1
2
�0 is an eigenvector of A, it is also an eigenvector of A�1 (with associated eigenvalue 1/g2),

and we can write (63) as

~
x = A�1~tp +

 
Db

1
1

Db

1
2

!
I1 + R1

g2
.

Moreover, defining the eigenbasis

B ⌘
 

r1 Db

1
1

r2 Db

1
2

!
and

 
a
b

!
⌘ B�1~tp,

we can write~tp = a

 
r1

r2

!
+ b

 
Db

1
1

Db

1
2

!
. Using this and

1
g2

= 1 � 1
g2

 
Db

1
2

r2
�

Db

1
1

r1

!
(C + S), we have

A�1~tp = A�1B

 
a
b

!
=

 
A�1

 
r1

r2

!
A�1

 
Db

1
1

Db

1
2

! ! 
a
b

!
= a

 
r1

r2

!
+

b
g2

 
Db

1
1

Db

1
2

!

= ~tp � b

 
Db

1
1

Db

1
2

!
+

b
g2

 
Db

1
1

Db

1
2

!
=~tp �

 
Db

1
1

Db

1
2

!
b

g2

 
Db

1
2

r2
�

Db

1
1

r1

!
(C + S).

Hence,

~
x =~tp +

 
Db

1
1

Db

1
2

!
I1 + R1 � b

�
Db

1
2/r2 � Db

1
1/r1

�
(C + S)

g2
. (64)

Finally, note that the second row of B�1 is (�1/r1, 1/r2)/
�
Db

1
2/r2 � Db

1
1/r1

�
, so

b = �
 

t1
p

r1
�

t2
p

r2

!, 
Db

1
2

r2
�

Db

1
1

r1

!
.
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Substituting in (64) yields the result.

A.10 Proof of Proposition 4
Observe first that b

3
i = 0 for all i, so the third row of D� is zero. Using this together with~tp = 0 in (34)

immediately implies x3 = 0. Straightforward calculations yield b

1
1(E) = �b

1
2(E)/r = Y0

1(r)/(E2Y1(r)),
b

2
1(E) = �b

2
2(E)/r = Y0

2(r)/(E2Y2(r)), Db

1
1(E) = �1/(E1ŝ(r)), and Db

1
2(E) = 1/(E2ŝ(r)), where

�1/ŝ(r) = r(Y0
1(r)/Y1(r) � Y0

2(r)/Y2(r)) is the substitution elasticity of Ŷ. Hence, the second row of
D� is �r times the first row, which implies x2 = �rx1. We can therefore use the first row of the sys-
tem (34) to solve for x1, which (using b

3
1 = 0) yields x1/r1 = �(1 � â)x̂ where x̂ is given in (41), and

x2/r2 = �rx1/r1 = âx̂. Finally, substituting these two and x3 = 0 in the adjustment term delivers (40).

A.11 Proof of Proposition 5
Tedious algebra yields

b

1
1(E)E1 = �1 � a(r)

s(r)
� a(r)(1 � #h(E)), b

1
2(E)E2 =

1 � a(r)
s(r)

� (1 � a(r))(1 � #h(E)),

b

2
1(E)E1 =

a(r)
s(r)

� a(r)(1 � #h(E)), b

2
2(E)E2 = � a(r)

s(r)
� (1 � a(r))(1 � #h(E)),

so Db

1
1(r)E1 = �Db

2
2(r)E2 = �1/s(r). Moreover, t

1
p(E) = t

2
p(E) = 1 � #h(E). Substituting in (36) yields

x1/r1 = 1 � #h(E)� (1 � a(r))x and x2/r2 = 1 � #h(E) + a(r)x, and using this in (12) yields (44).

A.12 Proof of Proposition 6
Proposition 6 is a direct Corollary of Proposition 9 in Appendix D for #2 = a = 0.

A.13 Proof of Proposition 7
We can use the first row of (34) to explicitly solve for x1, using xi = 0 for all i 6= 1:

x1 =
t1

p + ÂN�1
j=1 Db

j
1(Ij + Rj)

1 � ÂN�1
j=1 Db

j
1(Cj1 + Sj1)

where t1
p = �ÂN

j=1 b

j
1Yj and Cj1 and Sj1 are given in (25) and (27). This immediately yields the result.

A.14 Proof of Proposition 8
Using xi = x1b

1
i /b

1
1, we can use the first equation in the system (34) to solve for x1:

x1 =
⇣

t1
p + b

1
1(I1 + R1)

⌘, 
1 �

N

Â
i=1

b

1
i (C1i + S1i)

!
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Again using xi = x1b

1
i /b

1
1 and ti

p = t1
pb

1
i /b

1
1 delivers the result.

B Differentiability of W(E)
In this appendix, we provide a simple but standard example where differentiability of W(E) can be directly
established. Consider quasilinear and iso-elastic preferences u(c, l) = c � l1+1/#/(1 + 1/#). Then h(w) =

YE(w)� FE(w) and l = 1. Combining the wage w-worker’s first order condition with (12) yields

l(w)1/# = w(1 � T0(y(w))) = w

 
1 �

N

Â
j=1

x j

rj(E)
f j
E(w)

fE(w)

!
1 +

YE(w)� FE(w)
w fE(w)

✓
1 +

1
#

◆��1
. (65)

Substituting (65) into the consistency constraints (8), denoting by XE(w) the term in square brackets above
and considering the case with # = 1 yields

ri(E)Ei =
Z wE

wE
w2

 
f i
E(w)�

N

Â
j=1

x j

rj(E)
f i
E(w) f j

E(w)

fE(w)

!
XE(w)�1dw. (66)

Equivalently, in matrix notation, A(E)x̂ = b(E), where

Aij(E) =
Z wE

wE
w2 f i

E(w) f j
E(w)

fE(w)
XE(w)�1dw, bi(E) =

Z wE

wE
w2 f i

E(w)XE(w)�1dw � ri(E)Ei, and x̂ j = x j/rj(E).

If A(E) is invertible at E, this system has a unique solution x̂

⇤, which is continuous in E. The optimal
allocation (y(w), c(w)) is therefore unique and continuous in E. The envelope theorem then implies that the
partial derivatives of W(E) exist and coincide with the partial derivatives of the Lagrangian, as assumed in
Section 3.4. Since the space of singular (square) matrices is a lower-dimensional sub-manifold of the space
of square matrices, the approach used in Section 3.4 is valid for almost all E in almost all problems.26

C Eigenvalues and Stability
Holding the schedule l(w) fixed, the right-hand sides of the system of consistency constraints (8) defines a
mapping E ! E(E). An optimal E is obviously a fixed point of this mapping, and it is reasonable to assume
it is a stable fixed point, since otherwise we would have no reason to expect that it will be reached when
the government offers the optimal tax schedule T(y).

However, as discussed in detail in Section 3.4, (34) involves varying the schedule l(w) to l̃E(w), with cor-
responding mapping E ! Ê(E), where Ê(E) is the vector with elements Êi(E) =

R wE
wE

wl̃E(w) f i
E(w)dw/ri(E).

Stability of a fixed point of this mapping requires that all eigenvalues of the Jacobian of the dynamic system
Ėi = Êi(E)� Ei, i = 1, ..., N, have negative real parts. By our derivation of the consistency constraint effects
in section 3.4, this Jacobian is equal to �A. We therefore have:

Lemma 9. A fixed point E of the mapping E ! Ê(E) defined above is stable if and only if all eigenvalues of the
matrix A = IN � D�(C +S) in (34) have positive real parts.

26Moreover, if A(E) is singular, almost all b(E)-vectors will be such that there is no x̂ that solves A(E)x̂ =
b(E)—i.e., there will be no optimal allocation at such Es.

44



D General Sectoral Income Shares
Let Y(E) have constant returns to scale and Y1(E) = a(E)Y(E) and Y2(E) = (1 � a(E))Y(E), so that

r1(E) = a(E)Y(E)/E1 and r2(E) = (1 � a(E))Y(E)/E2. (67)

Defining #1(E) ⌘ ∂a(E)
∂E1

E1
a(E) and #2(E) ⌘ ∂(1�a(E))

∂E2

E2
1�a(E) yields:

Proposition 9. If N = 2, Y(E) has constant returns to scale and private returns are given by (67), then the
adjustment to the marginal tax rate formula in (12) is

2

Â
i=1

f i
E(w)

fE(w)
xi
ri

=

✓
a � a

a
� (1 � a � #1)x

◆
f 1
E(w)

fE(w)
+

✓
a � a
1 � a

+ (a � #2)x

◆
f 2
E(w)

fE(w)
,

x =
I1 + R1 +

a�a

a(1�a) (C + S)

a(1 � a)Y + (1 � #1 � #2)(C + S)
. (68)

The proof of Proposition (9) involves straightforward algebraic computations. The first terms in the two
brackets are simply the Pigouvian corrections for the two activities, since t

1
p = (a � a)/a and t

2
p = (a �

a)/(1 � a), weighted by the local income shares. In particular, if a > a, meaning that activity 1 is overpaid
relative to its social marginal product, then t

1
p > 0 and t

2
p < 0 (and as in Section 5.3, at

1
p + (1 � a)t2

p = 0).
The terms multiplied by x in the brackets capture the deviations from the Pigouvian corrections due to the
relative return effects of a variation in the marginal tax rate. The intuition, which relies on the crowding
effects captured by the elasticities #1 and #2, is identical to Section 5.3.

The formula is particularly transparent in the case where a is homogenous of degree zero, so a(r) with
r = E1/E2.

Corollary 2. If a(E) is homogeneous of degree zero (and x is given in (68)), then

2

Â
i=1

f i
E(w)

fE(w)
xi
ri

=
1

1 � a

 
f 1
E(w)

fE(w)
� a

!✓
a � a

a
� (1 � a � #1)x

◆
. (69)

The first bracketed term, which parallels the corresponding terms in (42) and (44), compares the local
income share from activity 1 to its aggregate income share a at each wage w. In parts of the income distribu-
tion where sector 1 dominates, the second bracketed term applies the Pigouvian correction for this sector,
t

1
p = (a � a)/a, adjusted by a term that accounts for the relative return effects. These now only depend on

#1 = a0(r)r/a(r) since the relative return effects of E1 and E2 are always opposite.
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