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1 Introduction

Relational incentive contracts with non-contractible effort have proved insightful for
analysing a variety of economic relationships. For applications, see Malcomson (1999)
on employment and Malcomson (2013) on supply relationships. In many of these rela-
tionships, agents of different types are pooled in groups, with those in each group per-
sistent over time and all treated the same despite differences between them. Employees
are placed in grades, with those in a grade all paid the same. Toyota, as described by
Asanuma (1989), places its suppliers into a small number of categories that receive dif-
ferential treatment. This paper shows that persistent pooling is fundamental to relational
incentive contracts with privately-observed, continuous and persistent agent types.

Pooling of such types arises from the ratchet effect in dynamic models of procure-
ment, see Laffont and Tirole (1988). There it occurs when a principal is legally con-
strained from committing to contract terms for future periods, even those conditioned
only on outcomes that can be contracted on when those future periods arrive, and makes
“take it or leave it” offers that extract all future rent if the agent’s type is revealed. Be-
cause a more productive agent receives an informational rent from pretending to be a
less productive one, full separation of types is not possible. The constraint on com-
mitting to future contract terms is appropriate for sovereign bodies that cannot commit
their successors, and for regulators who are not permitted to do so. But it is less ap-
propriate for private sector principals. Pooling of privately-observed, continuous but
non-persistent types arises from dynamic enforcement in the hidden information rela-
tional incentive contract model of Levin (2003). With a relational contract, parties make
payments conditioned on non-contractible outcomes only if their payoffs from having
the relationship continue are sufficient to make that worthwhile, which imposes a con-
straint on rewards. Full separation of privately-observed types is still possible but is
sub-optimal if efficient effort for all types is not attainable. Because types are iid draws
each period, there is no systematic persistence of a particular agent in a particular pool.

The present paper combines insights underlying the ratchet effect and dynamic en-
forcement to show that full separation of continuous, privately-observed agent types
that are unchanging over time is not possible in a relational incentive contract when the
parties cannot commit themselves to behave sub-optimally in the future. In the model,
agent type affects the cost of supplying non-contractible effort to the principal. It is
unchanging over time and privately observed by the agent. This framework extends
Shapiro and Stiglitz (1984) to private information about the agent worker’s disutility of
effort and to continuous, not just binary, effort choice, as in MacLeod and Malcomson
(1989). The inability to commit to future contract terms is purely informational. Thus,
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the result does not depend on legal constraints on committing to future contract terms
that are in principle contractible and so is just as applicable to private as to public sector
principals. It also does not depend on the principal making “take it or leave it” offers. It
depends only on efficient effort being unattainable and future payoffs if the agent’s type
is revealed being on the feasible Pareto frontier. It thus significantly extends the set of
circumstances under which persistent types are necessarily pooled.

Other related papers include Yang (2013), who considers persistent types that are
private information, but allows for just two for which full separation is possible. Ken-
nan (2001) and Battaglini (2005) also analyse revelation of two persistent types that
are private information but without non-contractible effort. Athey and Bagwell (2008)
analyse a model of collusion between firms in an oligopoly in which cost shocks are
both private information and persistent. But collusion between firms has very differ-
ent characteristics from employment or supply relationships. In particular, only one
side of the market participates in the relational contract and monetary payments are not
used because they make breach of antitrust rules more apparent. Finally, MacLeod and
Malcomson (1988) analyse relational incentive contracts with a continuum of persis-
tent, privately-observed agent types that are partitioned into separate pools. That paper,
however, imposes restrictions on rewards and punishments that are not imposed here.

The structure of the paper is as follows. Section 2 sets out the model. Section 3
derives incentive compatibility conditions for the agent and the principal in a relational
contract. Section 4 derives equilibrium conditions for relational contracts and char-
acterises optimal continuation equilibria following full revelation of the agent’s type.
Section 5 establishes that full separation of all agent types is not possible when future
actions attain the feasible Pareto frontier. Section 6 discusses the related literature in
more detail, Section 7 extension to agent types that may change over time. Section 8
contains concluding remarks. Proofs of propositions are in an appendix.

2 Model

A principal uses an agent to perform a task in each of a potentially infinite number of
periods. The principal’s payoff in period t if matched with the agent is et �wt , where
et 2 [0,e] is the agent’s effort and wt the payment to the agent in period t. Effort et

cannot be verified by third parties, so a legally enforceable agreement for performance
is not possible. The principal’s payoff for a period not matched with the agent is v � 0.

The agent’s payoff in period t if matched with the principal is wt � c(et ,a), where
c(et ,a) is the cost of effort et to agent type a 2 [a,a], with a observed privately by the
agent. Agent type is distributed F(a), with dF(a)> 0 everywhere. The agent’s payoff
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Figure 1: Timing of events in period t

for a period not matched with the principal is u � 0, with u+v > 0. Principal and agent
have the same discount factor d . The function c has the following standard properties.

Assumption 1 For all a 2 [a,a]: (1) c(0,a) = 0; (2) for all ẽ 2 [0,e], c(ẽ,a) is twice

continuously differentiable, with c1(ẽ,a)> 0, c2(ẽ,a) 0 with strict inequality for ẽ 2
(0,e], c11(ẽ,a)> 0, and c12(ẽ,a)< 0; and (3) c1(0,a)< 1 and c1(e,a)> 1. Moreover,

c(ẽ,a)> ẽ� (u+ v) for all ẽ 2 [0,e].

The timing of events in period t is shown in Figure 1. In the first period of the
relationship (t = 1), the parties first decide (at stage 0a) whether to agree a relational
contract (to be formally defined shortly) and, if they do, make initial payment w0. Then
the agent (at stage 0b) observes a. The other stages are the same for all t. At stage 1, the
agent either incurs effort et or ends the relationship. At stage 2, the principal observes
et , pays the agent and decides whether to continue the relationship.

As in MacLeod and Malcomson (1989) and Levin (2003), payment has a fixed
component wt conditioned only on the relationship being continued by both parties
for period t (and not on effort at t). It also has a bonus component wt �wt that can be
conditioned on the agent’s effort in period t but is not legally enforceable because effort
is unverifiable. The magnitude and sign of wt are unrestricted (negative wt requires the
agent to pay the principal) but, to avoid a decision by the agent at stage 2 of whether to
accept the bonus, wt �wt is restricted to being non-negative. (This restriction does not
restrict the set of payoffs attainable with equilibrium relational contracts.)

Let ht = ht�1 [ (et�1,wt�1), for t � 2, with h1 = {w0}, denote the commonly ob-
served history at stage 1 of period t conditional on the relationship not having ended
before then. At that stage, the agent can condition actions on (a,ht). A strategy
sa for the agent consists of a decision rule for whether to accept w0, a decision rule
gt(a,ht) 2 {0,1} for each t for whether to continue the relationship at stage 1, and an
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effort choice et(a,ht) for each t conditional on continuation. At stage 2 of period t, the
principal can condition actions on (ht ,et). A strategy s p for the principal consists of
a decision rule for whether to pay w0, a decision rule bt(ht ,et) 2 {0,1} for each t for
whether to continue the relationship at stage 2, and a payment choice wt(ht ,et) for each
t conditional on continuation. Formally, a relational contract is a w0, a wt(ht) for each
ht and t, and a strategy pair (s p,sa). To avoid the measurability details that can arise
with mixed strategies when action spaces are continuous (see Mailath and Samuelson
(2006, Remark 2.1.1)), attention is restricted to pure strategies.1

The joint payoff gain to the principal and the agent from being matched in period t

conditional on a is s(et ,a) = et �c(et ,a)� (u+ v). Efficient effort e⇤(a) maximises this
joint gain. Under Assumption 1, e⇤(a) 2 (0,e) for all a and is uniquely given by

s1(e⇤(a) ,a) = 0. (1)

3 Incentive compatibility

Consider first incentive compatibility for the agent. Let At(ht) denote the set of agent
types a with history ht at t. For a best response effort, the payoff gain Ut(a,ht) to agent
type a 2 At(ht) from continuing the relationship at stage 1 of period t given history ht is

Ut(a,ht) = max
ẽ2[0,e]

⇢

�c(ẽ,a)�u+wt(ht)+bt(ht , ẽ)


wt(ht , ẽ)�wt(ht)

+ d max
n

0,Ut+1(a,(ht , ẽ,wt(ht , ẽ)))
o

��

. (2)

(Explicit dependence of payoff gains on the contract is suppressed to avoid cumbersome
notation.) The interpretation is as follows. Agent type a who continues the relationship
for period t and chooses effort ẽ incurs cost of effort c(ẽ,a), forgoes utility u avail-
able if not matched with the principal, and receives payment wt(ht). For bt(ht , ẽ) = 1,
the principal continues the relationship and pays the bonus wt(ht , ẽ)�wt(ht). In that
case, the agent receives payoff gain from the future of Ut+1(a,(ht , ẽ,wt (ht , ẽ))) if this
is non-negative, so continuing is worthwhile. For bt(ht , ẽ) = 0, the principal ends the
relationship, in which case paying a bonus is never a best response.

With c2  0, Ut(a,ht) is non-decreasing in a, so there is a lowest agent type at(ht)2
1The timing used here has each party make decisions at only one stage in each period, which simplifies

the analysis by avoiding having to keep track of the parties’ payoffs at other stages within a period. A
party’s payoff from continuing the relationship is, however, at its lowest at its decision stage, so allowing
a party to end the relationship at other stages would not affect individual rationality. Having the principal
make the stay or quit decision simultaneously with the agent would make mutual quitting always a best
response pair but would not affect the maximum sustainable effort or the set of equilibrium payoffs.

4



At(ht) that continues the relationship for period t given history ht which satisfies

Ut(at(ht) ,ht)� max [0,wt(ht)�u] , for all ht , t,

Ut(a,ht) 0, for a < at(ht) , all ht , t, (3)

at(ht) = mina 2 At(ht) , if wt(ht)> u.

The last of these is because, if wt(ht)> u, all agent types in At(ht) can guarantee payoff
gain wt(ht)� u > 0 by continuing the relationship at t, setting et = 0 and quitting at
t +1. For notational convenience define, for a given relational contract,

A+
t (ht) = {a | a 2 At(ht) ,a � at(ht)} , for all ht , t. (4)

Ũt
�

a0,a,ht
�

=�c
�

et
�

a0,ht
�

,a
�

�u+wt(ht)+bt
�

ht ,et
�

a0,ht
��



wt
�

ht ,et
�

a0,ht
��

� wt(ht)+d max
�

0,Ut+1
�

a,
�

ht ,et
�

a0,ht
�

,wt
�

ht ,et
�

a0,ht
���� 

�

,

for all a,a0 2 A+
t (ht) , all ht , t. (5)

A+
t (ht) is the set of a with history ht who continue the relationship at t, Ũt(a0,a,ht) the

maximand in (2) for agent type a choosing effort for type a0, so ẽ = et(a0,ht).

Proposition 1 Necessary conditions for decision rules for agent types a 2 At(ht) in a

relational contract to be best responses are, for all t,

gt(a,ht) =

(

1, if a � at(ht) ,

0, otherwise;
(6)

Ũt(a,a,ht)�Ũt
�

a,a0,ht
�

�Ut(a,ht)�Ut
�

a0,ht
�

� Ũt
�

a0,a,ht
�

�Ũt
�

a0,a0,ht
�

, for all a,a0 2 A+
t (ht) . (7)

These conditions are also sufficient if the continuation contracts following deviation

to et 6= et(a0,ht) for any a0 2 A+
t (ht) are the same as the continuation contract for

et = et(at(ht) ,ht) except that (1) the principal pays no bonus at t (wt(ht ,et) = wt(ht))

and (2) the payment wt+1(ht [ (et ,wt(ht))) is such that agent type at(ht) would receive

non-positive payoff gain from continuing the relationship at stage 1 of period t + 1
(Ut+1(at(ht) ,ht [ (et ,wt(ht))) 0).

That (6) defines a best response follows from the specification for at(ht) in (3).
The other results in Proposition 1 are related to results familiar from mechanism de-
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sign for one-period models. A one-period model corresponds to d = 0 so, from (5),
the left-most and right-most terms in (7) become just c(et(a,ht) ,a0)� c(et(a,ht) ,a)

and c(et(a0,ht) ,a0)� c(et(a0,ht) ,a), respectively. For that case, it is standard to di-
vide all terms in (7) by a0 � a and take the limit as a0 ! a to get a condition on the
derivative c2(et(a,ht) ,a) that is used to construct the difference between the payoffs
of different types and also, given c12 < 0, to establish the requirement that et(a,ht) is
non-decreasing in a. Here the additional terms in Ũt(a0,a,ht) take account of the future
consequences from t + 1 on of agent type a choosing the effort corresponding to type
a0 at t. The derivative formulation is less useful here because, for relevant continuation
contracts, the additional terms in Ũt(a0,a,ht) are not differentiable in a at a0 = a.

If the agent’s performance were verifiable, deviation to effort that is not on the
equilibrium path for any agent type could be deterred by a sufficiently large monetary
penalty. With unverifiable performance (as here), the worst penalty that can be imposed
on the agent is zero payoff gain following such a deviation because the agent can always
quit. As in Abreu (1988), this penalty gives the largest set of equilibria. Conditions (6)
and (7) are then not only necessary for best responses but also sufficient. Ending the
relationship is, however, inefficient when a mutually beneficial relationship is possi-
ble. In Levin (2003), the same penalty is achieved without the relationship ending by
a continuation contract following deviation the same as that with no deviation except
that the agent pays the principal just enough to give the agent zero payoff gain from
continuation. Money payments provide transferable utility with no efficiency loss. That
approach is more complicated here because the principal may not know the agent’s
type and so the payment required to give the agent zero payoff gain from continuation
following deviation is not common knowledge. Proposition 1, however, shows that a
weaker requirement suffices to ensure that conditions (6) and (7) are sufficient, specif-
ically that the payment following deviation at t by an agent with history ht is such that
the lowest agent type with that history continuing the relationship (formally at(ht)) re-
ceives zero payoff gain from continuation. With this continuation contract, higher a

continue to receive a strictly positive payoff gain from continuation following deviation
but that is not sufficient to make deviation worthwhile.

For the principal, let Pt(a,(ht ,et)) denote the payoff gain from continuing the rela-
tional contract with agent type a at stage 2 of period t given history (ht ,et), conditional
on paying the bonus wt(ht ,et)�wt(ht).

Proposition 2 Suppose the continuation contracts following the principal’s deviation

to wt 6= wt(ht ,et) are the same as that for wt = wt(ht ,et) except that the payment

wt+1(ht [ (et ,wt)) is such that the principal receives non-positive payoff gain from con-
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tinuing the relationship at stage 2 of period t when paying wt = wt(ht). Then best

response decision rules for the principal are, for all ht , et and t,

bt(ht ,et) =

(

1, if Ea|ht,et [Pt(a,(ht ,et))]� 0,

0, otherwise;
(8)

if wt(ht ,et)� wt(ht) > 0, pay wt(ht ,et) if and only if bt(ht ,et) = 1; otherwise, pay

wt(ht ,et) = wt(ht).

Most of this result follows directly from the definition of Pt(a,(ht ,et)). The principal
does not deviate to a bonus smaller than specified in the relational contract because
that would trigger a continuation contract with a fixed wage component in the next
period leaving the principal no gain from the deviation. Because the principal’s type is
common knowledge, the payment required for this is also common knowledge.

For stage 0a of the first period of the relationship, neither party has information
about the agent’s type beyond its initial distribution. The agent starts a relational con-
tract only if the initial payoff gain U0 satisfies

U0 ⌘ w0 +
Z a

a1(h1)
U1(ã,h1)dF(ã)� 0. (9)

The principal starts a relational contract only if the expected payoff gain from starting
the relationship given the initial distribution of a, denoted P0, satisfies P0 � 0.

4 Equilibrium relational contracts

4.1 Equilibrium concept

A natural minimum equilibrium requirement for a strategy pair in this game is that it is
a perfect Bayesian equilibrium. The contracting literature for finite horizons typically
also imposes that contracts are renegotiation-proof, in the sense that it is not possible for
the parties to renegotiate a contract at any stage to one that both prefer. But the standard
renegotiation-proofness concepts in the literature on infinite horizon games are defined
only for games without private information about types. The approach adopted here is,
therefore, to require renegotiation-proofness only for continuation equilibria that follow
full revelation of the agent’s type, at which point there is no longer private information.
As standard in that literature, conditions for renegotiation-proofness are specified as
part of the equilibrium concept rather than derived from an explicit renegotiation game.
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Definition 1 An equilibrium with optimal continuation is a perfect Bayesian (PB) equi-

librium in pure strategies for which equilibrium-path continuation equilibria following

full revelation of the agent’s type have payoffs at stage 1 of each period on the Pareto

frontier of subgame perfect equilibria of the full information game for that agent type.

Two requirements underlie Definition 1. First, for a the only agent type in At(ht),
the principal interprets any action from t on not on the equilibrium path for type a as
a deviation by type a rather than revise his belief about the agent’s type. This corre-
sponds to the condition NDOC (“Never Dissuaded Once Convinced”) in Osborne and
Rubinstein (1990, p. 96). It ensures that, from t on, the parties are engaged in a game
of perfect information. Second, the continuation equilibria from t on have payoffs on
the Pareto frontier of subgame perfect equilibria of that perfect information game.

The motivation for this second requirement is the following. If payoffs are on the
Pareto frontier, one party must lose from renegotiation. Thus the requirement is suffi-
cient for there to be no alternative continuation equilibrium that both prefer. Moreover,
for any continuation equilibrium not on the Pareto frontier, there exists a continuation
equilibrium on the Pareto frontier that both parties prefer. Thus the requirement is also
necessary for there to be no alternative continuation equilibrium both prefer.2

For the concepts of renegotiation-proofness in Farrell and Maskin (1989), contin-
uation equilibria are required to themselves be renegotiation-proof, not just subgame
perfect as in Definition 1. That restricts the “off the equilibrium path” punishments
used to sustain continuation equilibria. For the game here, the difference is actually im-
material. It follows from an argument in Goldlücke and Kranz (2013, Section 4.3) that
the same set of equilibrium-path payoffs can be sustained with punishment payoffs that
are also on the Pareto frontier at each subsequent decision node and hence correspond
to strong perfect equilibria (and so also strong renegotiation-proofness in the sense of
Farrell and Maskin (1989)). Thus the same conclusions hold with both minimal and
maximal reasonable restrictions on “off the equilibrium path” continuation equilibria.

Definition 1 imposes no renegotiation-proofness requirement when the agent’s type
has not been fully revealed. To demonstrate the non-existence of equilibria with full
revelation of types this is an advantage. No decision node following full revelation of
the agent’s type can be followed by one with private information about that type. Thus
any concept of renegotiation-proofness imposed on continuation equilibria with private
information about type cannot expand the set of equilibria under Definition 1. So, if no
equilibrium with full revelation of types exists under Definition 1, none exists with any

2If the parties were able to commit to a sub-optimal continuation equilibrium, that would in general
affect the extent of separation possible in previous periods. But such commitment seems inappropriate
for parties who, as here, cannot commit not to renegotiate.
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additional restriction on continuation equilibria with private information about types.
For simplicity, when only one agent type has history ht at t in an equilibrium with

optimal continuation, the continuation equilibrium for that history is referred to as an
optimal continuation equilibrium for ht . Also, in describing equilibria, the history
argument is omitted where that does not result in ambiguity; for pure strategy equilibria,
ht at each t is fully determined by the relational contract and the agent’s type.

4.2 Equilibrium conditions

In equilibrium, the parties’ payoffs must be consistent with the total output produced.
Let Si

t(a) denote the joint gain to the principal and the agent (also called the surplus)
from continuing the relationship at stage i = 1,2 of period t for type a for a given
relational contract. These two measures can be defined recursively as

S1
t (a) = et(a)� c(et(a) ,a)�u� v+bt(et(a))S2

t (a) , for all a, t; (10)

S2
t (a) = dgt+1(a)S1

t+1(a) , for all a, t. (11)

The joint gain to starting a relational contract is

S0 =
Z a

a1
S1

1(a)dF(a) . (12)

A necessary condition for a relational contract to start is that S0 � 0. Moreover, provided
S0 � 0, there is always a w0 such that the agent’s and the principal’s initial payoff gains
U0, given by (9), and P0 are both non-negative. Equilibrium requires that the agent
receives that part of the joint gain not received by the principal. It follows from (2) that

Ut(a) =�c(et(a) ,a)�u+wt +bt(et(a))
⇥

S2
t (a)�Pt(a)

⇤

, for all a, t. (13)

This condition is the budget balance constraint from which the dynamic enforcement
constraint in Levin (2003) is derived.

4.3 Optimal continuation equilibria

Proposition 3 Suppose agent type a is the only agent type with history ht at t .

1. There exists a subgame perfect continuation equilibrium for ht for which the

relationship continues if

max
ẽ2[0,e]

[d ẽ� c(ẽ,a)]� d (u+ v) . (14)
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2. For a satisfying (14), an optimal continuation equilibrium for ht has, for all t � t ,

stationary effort et(a) = e(a) that satisfies

de(a)� c(e(a) ,a)�d (u+ v)� 0. (15)

Moreover, for any continuation payoff gains Pt(a) � 0 and Ut(a) � 0 for t � t
consistent with the budget balance constraint (13) and independent of t, there ex-

ists an optimal continuation equilibrium for ht with wt(e(a)) and wt independent

of t that has those continuation payoff gains.

3. If (14) is satisfied for type a but efficient effort e⇤(a) does not satisfy (15), an

optimal continuation equilibrium for ht has effort e(a) the highest that satisfies

(15) with equality, Pt(a) = 0, Ut(a) = wt �u � 0 and

c(e(a) ,a) = S2
t (a) , for all t � t. (16)

Part 1 of Proposition 3 gives a condition for continuation of a relationship with
known type a to be an equilibrium. Part 2 shows that effort in an optimal continuation
equilibrium is stationary and satisfies (15). Stationary effort follows essentially from
Levin (2003, Theorem 2) that, if an optimal contract exists, there are stationary contracts
that are optimal. Necessity of (15) can be seen as follows. When the principal and
agent type a continue the relationship at each date along an equilibrium path, gt(a) =

bt(e(a)) = 1 for all t � t from (6) and (8). Then, from (10) and (11),

S2
t (a) =

d
1�d

[e(a)� c(e(a) ,a)�u� v] , for all t � t. (17)

Combined with the budget balance constraint (13), this gives

de(a)�c(e(a) ,a)�d (u+ v)= (1�d )
h

Ut(a)+u�wt +Pt(a)
i

, for all t � t. (18)

With the agent’s type revealed to be a, continuation of the relationship requires Ut(a)�
max [0,wt �u] and Pt(a) � 0 from (3) and (8), so the right-hand side of (18) must be
non-negative. Thus (15) is necessary. Part 2 of Proposition 3 also establishes that, for
any stationary effort e(a) that can be sustained as an optimal continuation equilibrium,
there exist payments that distribute the joint gain in any way consistent with individual
rationality. The reason can be seen from (18), which wt(e(a)) enters only through
the payoff gains Ut(a) and Pt(a) and cancels out in their sum. By changing wt(e(a)),
these payoff gains can, for given e(a), range from Ut(a) = wt �u to Pt(a) = 0 without
changing the value of the square bracket on the right-hand side. Moreover, wt can be
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set equal to u, so Ut(a) = 0 is also possible.3

Efficient effort for a is e⇤(a) defined by (1). If this satisfies (15), any continuation
equilibrium on the Pareto frontier has efficient effort because that maximizes the joint
gain to be distributed between the parties. If efficient effort does not satisfy (15), the
Pareto frontier is obtained with e(a) at the highest level that does, in which case (15)
holds with equality, as specified in Part 3 of Proposition 3. Denote by â the lowest a

for which (14) is satisfied. It follows that, for any a � â the only type with its history,
effort in an optimal continuation equilibrium is4

ê(a) =

(

e⇤(a) , if e⇤(a) satisfies (15);
maxe(a) that satisfies (15) with equality, otherwise;

for a 2 [â,a] . (19)

Part 3 of Proposition 3 also establishes that, when efficient effort is not attainable,
the bonus is set to make Pt(a) = 0. A higher bonus makes it possible to induce higher
effort. So, when efficient effort is unattainable, it is optimal to have the bonus at the
highest level consistent with the principal continuing the relationship. That requires
the principal’s future payoff gain from continuing the relationship by paying the bonus
to be zero. The agent’s payoff gain is Ut(a) = wt � u. This is the lowest payoff gain
consistent with the agent incurring the required effort because the agent can guarantee
payoff gain of at least wt � u by putting in no effort at t and ending the relationship in
period t + 1 even when the principal pays no bonus. With any greater payoff gain, it
would be possible to induce higher effort. The shares of the joint gain are determined
by wt . For wt � u = S1

t (a), Ut(a) = S1
t (a), so the agent receives all the joint gain at

stage 1 of period t. For lower wt , the principal receives some of the joint gain at that
stage (even though Pt(a), which is measured at stage 2 of period t, is zero). For wt = u,
the principal receives all the joint gain. Because the joint gain can be shared in any

3To see why Proposition 3 is robust to the changes in timing discussed in footnote 1, let Pt(a) be mea-
sured at stage 1 of period t. Then the budget balance constraint (13) becomes, for bt(e(a)) = gt+1(a) = 1,

Ut(a) =�c(et(a) ,a)�u+wt +
⇥

S2
t (a)+wt(e(a))�wt �dPt+1(a)

⇤

.

For et(a) = e(a) and with (17), which is unaffected by the change in timing, this changes (18) to

de(a)� c(e(a) ,a)�d (u+ v) = (1�d )


Ut(a)+u�wt +dPt+1(a)� (wt(e(a))�wt)

�

.

With this timing, continuation of the relationship requires Ut(a) � max [0,wt �u] and also dPt+1(a) �
wt(e(a))�wt because otherwise the principal will not pay the bonus wt(e(a))�wt . So, by the same
argument as for the timing in the text, (14) and (15) apply to the revised timing. The only change to the
proposition under the revised timing is to Part 3, for which Pt+1(a) = [wt(e(a))�wt ]/d . This change
does not affect the results that follow.

4Critical for separating optimal effort from distribution is that the possibility of monetary payment
makes the game one of transferable utility. But monetary payments are central to the model. Without
them, the agent would never incur effort, so the only equilibrium would have the relationship never start.
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proportions in this way, it is in the interests of both parties to choose a continuation
equilibrium for ht that satisfies (19), independently of how the additional joint gain is
divided between them (and hence of relative bargaining power).

5 Separation of continuing types

This section establishes the central result that there exists no equilibrium with opti-
mal continuation that separates all types for whom a mutually beneficial relationship is
possible. The next result is a first step.

Proposition 4 Consider period t of an equilibrium relational contract with optimal

continuation for which [at ,at ]✓ A+
t (ht) and ê(a)< e⇤(a) for a 2 [at ,at ].

1. For a,a0 2 [at ,at ] with a > a0 both fully separated from all other types in [at ,at ]

at t, lima!a0 [et(a,ht)� et(a0,ht)] is bounded below by some e > 0.

2. The equilibrium relational contract does not separate all a 2 [at ,at ] at t.

Proposition 4 considers relational contracts with optimal continuation that separate
at t agent types in an interval with the same history at t (including t = 1 when all agent
types necessarily have the same history) for which efficient effort is not attainable in
the continuation equilibrium. Part 1 establishes that, to separate type a from type a0 < a

in period t, the effort of type a at t must be discretely greater than that of a0 as a ! a0.
It follows that, as established in Part 2, it is not possible to separate at t all types in an
interval [at ,at ] who have the same history ht because a monotone function defined on
an interval cannot have a continuum of jumps.

Why does full separation require a discrete jump in effort? Fully separating a from
a0 < a for given et(a0,ht) requires finding an effort ě such that, if et(a,ht) is set equal
to ě, a prefers ě and a0 prefers et(a0,ht). For a and a0 both fully separated under the
conditions of the proposition, et(a,ht) = ê(a) < e⇤(a) and et(a0,ht) = ê(a0) < e⇤(a0)

for t > t. By Proposition 3, this implies payoff gain Ut(a) = wt �u � 0 for all t > t.
But a0 < a choosing ě in period t can guarantee the same payoff gain wt+1�u at t+1 as
a by continuing the relationship for t + 1 (so forgoing outside opportunity with payoff
u) and collecting the fixed wage wt+1, but delivering no effort (so receiving no bonus at
t+1) and quitting for t+2.5 So the difference in payoff between a and a0 if both choose
ě at t is just the difference in payoff in period t itself, c(ě,a0)� c(ě,a). In contrast, by

5Allowing negative bonuses would not alter this conclusion because type a0 < a would not pay a
negative bonus in period t +1 if intending to quit for t +2.
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imitating a0 from t on, a can obtain an additional payoff gain over a0 amounting to
c(ê(a0) ,a0)� c(ê(a0) ,a) for each period from t + 1 on, in addition to the difference in
the cost of effort in period t, c(et(a0,ht) ,a0)� c(et(a0,ht) ,a). From (7) in Proposition
1, a necessary condition for a and a0 both to choose separation at t is then that ě satisfies

c
�

ě,a0
�

� c(ě,a)

�Ut(a,ht)�Ut
�

a0,ht
�

� c
�

et
�

a0,ht
�

,a0
�

� c
�

et
�

a0,ht
�

,a
�

+
d

1�d
⇥

c
�

ê
�

a0
�

,a0
�

� c
�

ê
�

a0
�

,a
�⇤

. (20)

(When the principal continues the relationship, bt(.) = 1.) Now consider a ! a0 for
given et(a0,ht). By Assumption 1, c(ẽ,a) is differentiable, and hence continuous, in a,
so the expressions in (20) before the first inequality and after the last inequality both
go to zero as a ! a0 and thus lima!a0�Ut(a,ht) = Ut(a0,ht). For ě to be such that a

marginally above a0 prefers ě, but a0 prefers et(a0,ht), when the difference in payoff
goes to zero as a goes to a0, the derivative with respect to a of the expression before the
first inequality in (20) must be no less than the derivative of the expression after the last
inequality when both are evaluated at a0. Thus ě must satisfy

�c2
�

ě,a0
�

��c2
�

et
�

a0,ht
�

,a0
�

� d
1�d

c2
�

ê
�

a0
�

,a0
�

. (21)

By Assumption 1, c2 (ẽ,a) < 0 for ẽ 2 (0,e] and c12 (ẽ,a) < 0. Applied to (21), the
former implies c2(ě,a0) more negative than c2(et(a0,ht) ,a0) by a discrete amount. The
latter then implies ě = et(a,ht) greater than et(a0,ht) by a discrete amount. Because (7),
and hence (20), are necessary conditions for a best response choice between actions that
are on the equilibrium path for some agent type with history ht , the only “off the equi-
librium path” beliefs on which Proposition 4 depends are those underlying Definition 1
concerning optimal continuation for a fully separated type.6

Critical to this argument is that an optimal continuation equilibrium for a, if fully
separated, is on the Pareto frontier because it is this that requires Ut+1(a) = wt+1 � u.
When efficient effort is unattainable, effort is necessarily below the efficient level so
to be on the Pareto frontier requires effort at the highest level consistent with dynamic
enforcement. The critical constraint for this is that the required effort must not make
the agent worse off than continuing the relationship for t + 1 (so forgoing outside op-
portunity with payoff u) and collecting the fixed wage wt+1, but delivering no effort (so

6A referee has asked whether it makes a difference if minimal effort is e > 0 with positive cost that
is decreasing with type. That adds the term d [c(e,a0)� c(e,a)] to the left-hand side of (20) and hence
�dc2(e,a0) to the left-hand side of (21). The conclusion still follows because, with c2(ẽ,a) ,c12(ẽ,a)< 0,
�c2(e,a0)<�c2(ê(a0) ,a0)/(1�d ).
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receiving no bonus at t +1) and quitting for t +2, thus obtaining payoff gain wt+1 �u

at t +1. If sticking to the contract gives payoff gain Ut+1(a)> wt+1 �u, a higher level
of effort would have been consistent with dynamic enforcement, so the continuation
equilibrium would not have been on the Pareto frontier. But a lower type a0 < a taking
the action for a at t can also attain payoff gain wt+1 � u at t + 1 by continuing the re-
lationship for t + 1, delivering no effort and quitting for t + 2. Thus type a separating
fully at t receives no higher payoff from t + 1 on than a0 < a would by imitating a at
t. This applies however the future gain from being on the Pareto frontier is divided
between principal and agent. The division of that gain is determined by wt+1 — chang-
ing the value of this traces out the whole Pareto frontier. In particular, agent type a is
not restricted to zero payoff gain from continuing the relationship because wt+1 can be
strictly greater than u.

Also critical to the argument is that, with lower cost of effort, a > a0 choosing the
effort for a0 at t obtains a higher payoff than a0 in every future period by continuing to
choose the effort for a0 — an informational rent. To induce a, but not a0, to prefer the
effort for a at t, the difference in payoff between them from that effort must be sufficient
to offset the informational rent. Money is equally valuable to both, so payments at t do
not generate a difference in payoff from choosing the same effort. Thus the difference
in payoff must come through effort at t, which has lower cost for a than for a0 < a.
Specifically, the effort for a at t must be sufficiently much higher than that for a0 that a

prefers the effort for a to that for a0 but a0 does not. That is what (20) ensures.
The remaining step in the argument is that, to separate all types on an interval,

the conditions for separation must be satisfied as a approaches a0. As that happens, the
difference in payoffs between them must approach zero (an implication of (20)) because
the cost of effort is continuous in type and so a0 would not choose a different effort from
a for a close enough to a0 if there was a discrete jump in payoff between the efforts.
Thus, to ensure a prefers the separating effort ě, but a0 does not, as a increases above
a0, the difference in payoffs between a and a0 from choosing ě must increase faster with
a than that from choosing et(a0,ht). That corresponds to the expression before the first
inequality in (20) increasing faster with a than the expression after the last inequality.
The former increases with just the difference in current period effort cost because a0

receives the same future payoff as a from choosing ě. The latter increases not just with
the difference in current period effort cost but also with the future informational rent.
This gives condition (21) on the derivatives with respect to a evaluated at a0. With a
cost of effort function that has continuous derivatives, the inequality can be satisfied
only with a discrete upward jump in effort between a0 and a.

Proposition 4 applies to an interval of pooled agent types and hence to all agent
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types in the first period of a relationship. The next result extends Proposition 4 to the
whole relationship.

Proposition 5 If there is more than one agent type a 2 [a,a] for which a mutually ben-

eficial relational contract is possible, there exists no equilibrium with optimal continu-

ation that continues the relationship for all those types and fully separates them.

When there is more than one agent type for which a mutually beneficial relational
contract is possible, Assumption 1 ensures that there is an interval of agent types a for
which efficient effort does not satisfy (15) and, hence, ê(a)< e⇤(a). By Proposition 4,
it is not possible to separate in one period all such agent types with the same history.
That applies for any number of periods as long as the continuation equilibrium retains
an interval of types with the same history. Such equilibria are not, however, the only
possible continuation equilibria with pooling. Laffont and Tirole (1988) describe, in the
context of a two-period procurement model, continuation equilibria that exhibit infinite
reswitching in which actions that generate the same outcome are chosen by different
types, but never by neighbouring types. That is, for any two types choosing the same
action, there is always some intermediate type that chooses an action that generates
a different outcome. Sun (2011) shows that, in the two-period procurement model,
such continuation equilibria are not optimal. In the relational contract model used here,
contracts with infinite reswitching are no more effective at achieving full separation
with optimal continuation than are contracts with intervals of types that are pooled. So,
as stated in Proposition 5, not all agent types for which a mutually beneficial relational
contract is possible can be separated. The only restriction on continuation equilibria
used to derive this result is that, conditional on full revelation of type a, effort for that
type is ê(a) thereafter. No restriction is imposed on effort in continuation equilibria for
types that remain pooled.

6 Relationship to the literature and further discussion

With the ratchet effect in the dynamic procurement model of Laffont and Tirole (1988),
it is also not possible to fully separate all of a continuum of privately-observed, per-
sistent agent types. There, as here, agent type a receives future payoff no higher than
a0 < a from choosing an action designed to reveal a’s type. But there the reason is that
the principal makes a “take it or leave it” contract offer in the subsequent period that
gives a the same future payoff as quitting and a0 could obtain that same future payoff by
taking the action for a at t and actually quitting. Thus the mechanism is fundamentally
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different. With the ratchet effect, it is that the principal has all the bargaining power
and so receives all the future gains from continuing the relationship once the agent’s
type is revealed. With the relational contract model of this paper, it is not the result of
bargaining power. As already explained, it applies whatever the division of the future
gain from continuing the relationship.

In the hidden information model in Levin (2003), types are iid draws each period,
so all types are pooled at the start of each period and revelation of type does not affect
future payoffs. An implication is that the second term after the right-hand inequality
in (20) is zero — with type an iid draw, the agent receives no future informational rent
from t + 1 on from concealing type at t. Then (20) is satisfied by any effort function
that is non-decreasing and, as a result, full separation is always possible. Pooling arises
only when full separation is not optimal, so the reason for pooling is fundamentally
different than with persistent types. The same applies to the one-period version of the
procurement model of Laffont and Tirole (1988), where pooling occurs only when the
distribution of agent types makes full separation not optimal. Full separation may not be
optimal in Levin (2003) because dynamic enforcement restricts the spread of bonuses
that are incentive compatible. That, in turn, restricts the spread of incentive compati-
ble efforts that are available for separating types and pooling the most productive types
is the optimal way to restrict the spread of efforts. That is different from the role of
dynamic enforcement in the model of the present paper. Here dynamic enforcement
ensures type a receives no higher future payoff from separation when the continuation
equilibrium is on the Pareto frontier than a0 < a could obtain by imitating a. That is
because, to induce the highest possible effort when incentives are limited by dynamic
enforcement, an agent type that has been fully revealed receives payoff no higher than
from choosing zero effort, which a0 can also achieve with zero effort. It is this mecha-
nism that replaces the principal’s “take it or leave it” offers in Laffont and Tirole (1988).

In the present model, effort ě required by (21) to induce a to separate is bounded
above by ê(a) defined in (19). It follows that separation is more easily achieved with
lower et(a0,ht) and with lower ê(a0). The former illustrates the benefits of starting a
relationship "small", as in Watson (1999) and Watson (2002). The latter illustrates a
limitation that arises from the parties being unable to commit themselves to inefficient
actions in the future. If the parties could commit to sub-optimal effort for type a0 in
period t +1, separation of types at t would be easier to achieve.

Proposition 4 applies to agent types for which efficient effort cannot be achieved
following full revelation. Assumption 1 does not rule out efficient effort being attainable
for some types. For them, effort in an optimal continuation equilibrium following full
revelation is efficient. Moreover, it may not require the agent’s payoff gain to equal that
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from zero effort so, for such types, the argument used to establish Proposition 5 does
not go through.7 But this is never the case for all types for which a mutually beneficial
relational contract is possible. The following example illustrates the range of productive
types for which efficient effort is unattainable.

Example 1 Consider c(et ,a) = e2
t /(2a). Efficient effort defined by (1) is then e⇤(a) =

a, so this specification identifies agent type with its output when effort is efficient. Once

type is revealed, the lowest agent type for which a continued relational contract is

feasible is that for which the maximum value on the left-hand side of (14) just equals the

right-hand side and this type produces output 2(u+ v). For d > 1/2, the lowest type for

which efficient effort is feasible is (u+ v)2d/(2d �1), which is also its output. Thus

the ratio of the output at the upper end of the range for which a relational contract

is feasible but not efficient to that at the lower end is d/(2d �1). For d = 0.9, that

implies output at the upper end of the range is 12.5% higher than that at the lower

end. As d ! 1/2, efficient effort becomes infeasible for any type even for a ! •.

For empirical applications, d corresponds to the pure time-discount factor multiplied

by the probability that the relationship does not end for exogenous reasons and by

the probability that deviation by the agent is detected by the principal, so it may be

considerably smaller than the pure time-discount factor.

With Proposition 5 establishing that full separation of all agent types is not possible,
an obvious question is what pattern of pooling is optimal. Two things in particular make
the answer complicated. First, for at least minimal consistency, one needs to impose a
renegotiation-proofness requirement for continuation equilibria with pooling of types.
The complication with this is that the standard renegotiation-proofness concepts in the
literature on infinite horizon games are defined only for games without private infor-
mation about types and it is not obvious how to extend them appropriately to games
with private information. Second is the sheer variety of possible patterns of separation.
Changing the pattern in any one period in general affects more than one type and in a
way that is not differentiable, so evaluating changes is not straightforward. Moreover,
changing the pattern of separation in one period affects the possibilities for separation
in subsequent periods, so what is optimal has to be considered over this dimension too.
One thing is clear, however — the optimal pattern of separation is going to be sen-
sitive to the distribution of types, so general results that apply to all the distributions
experienced in practice are unlikely to be available.

7The conclusion still holds if the principal receives all the joint gain following separation at t, as a
result of which Ut+1(a) = 0. But the reason is then the same as with the ratchet effect.
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7 Changing agent types

The preceding analysis assumes that the agent’s type is observed at stage 0b of the first
period of the relationship and remains fixed thereafter. A natural question is whether
similar results apply if the agent’s type may change during the course of the relationship.
This section considers agent type changes of the following form.

Assumption 2 The agent’s cost of effort et at t is c(et ,at) where, with probability 1�p
for p 2 [0,1), at = at�1 and, with probability p , at is a random draw from the distribu-

tion F(a) with support a 2 [a,a].

The cases in which the principal observes, and does not observe, whether the agent’s
type has changed are both discussed below. The only change to the timing in the model
in Figure 1 is that the agent observes at for period t immediately before deciding effort
et at stage 1 of period t. The definition of an equilibrium with optimal continuation also
needs to be extended to this case. The following is a natural extension of Definition 1.

Definition 2 An equilibrium with optimal continuation with changing agent type is a

perfect Bayesian (PB) equilibrium in pure strategies for which equilibrium-path con-

tinuation equilibria following full revelation of agent type at at t have payoffs at stage

2 of period t on the Pareto frontier of perfect Bayesian continuation equilibria for the

principal and agent type at .

The difference from Definition 1 is that continuation equilibria immediately follow-
ing full revelation of the agent’s type are required to be on the Pareto frontier of perfect
Bayesian continuation equilibria, not just of subgame perfect continuation equilibria.
Because this applies at a node at which the agent’s type has been fully revealed, the
relevant Pareto frontier is that between the principal and a known agent type at a node
with symmetric, but incomplete, information. As with Definition 1, Definition 2 does
not restrict continuation equilibria off the equilibrium path. Nor does it restrict contin-
uation equilibria conditional on the agent’s type changing at t+1. Thus it imposes only
a rather weak additional requirement on perfect Bayesian continuation equilibria.

The implications of Assumption 2 and Definition 2 are discussed here informally.
Critical to the argument in Section 5 that full separation is not possible when agent type
is fixed is that type a0 < a taking an action intended to fully separate a at t can attain
the same payoff as a at t + 1. This property arises because, for optimal continuation
for type a fully revealed at t to yield a future joint payoff on the Pareto frontier, effort
for a at t + 1 must be at the highest feasible level if efficient effort cannot be attained.
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That requires a to be indifferent between choosing the required effort and choosing zero
effort. But a0 can then attain the same payoff as a at t +1 by choosing zero effort.

Under Assumption 2, type at fully revealed at t may change at t + 1, so a continu-
ation equilibrium at t +1 will in general specify a menu of equilibrium-path efforts for
t +1 from which the agent chooses conditional on type at t +1. But type a0 < at taking
an action intended to fully separate at at t can still attain the same payoff as at at t +1
if Definition 2 requires effort for type at fully revealed at t to be the maximum feasi-
ble conditional on type not changing at t +1, no matter what the outcome if type does
change at t+1. The reason is as follows. Conditional on type not changing at t+1, type
a0 imitating at receives the same payoff as at would for the same reason as when type is
fixed. Conditional on type changing at t +1, type a0 imitating at also receives the same
payoff as at because they are the same current type with the same history observed by
the principal. Under Assumption 2, each possible type change occurs with the same
probability for a0 as for at . Thus the expectation of future payoffs at the beginning of
t + 1 is the same for a0 as for at . Moreover, at imitating the action for a0 < at still re-
ceives an informational rent unless type changes (so with effective discount factor now
d (1�p)). Thus the arguments used in Section 5 can be applied.

Moreover, provided the relationship is sufficiently productive given full revelation
of type at , there certainly exists a perfect Bayesian continuation equilibrium with effort
at t + 1 for type at fully revealed at t the maximum feasible conditional on type not
changing at t + 1. Consider, for example, a continuation in which, for t > t, types
at 2 [a,at) either choose zero effort or end the relationship (in the former case, the
principal may end the relationship if the probability of agent type rising to at least at

is sufficiently low), and all types at 2 [at ,a] choose effort ê(at ,p) that is the maximum
sustainable by at given the actions of agent types at 2 [a,at) and the principal. With
at preferring effort ê(at ,p) to zero effort, types at 2 [at ,a] do so too because they have
lower cost of effort. Moreover, with ê(at ,p) the maximum effort feasible for at , it is a
best response for types at 2 [a,at) to either choose zero effort or end the relationship
because of their higher cost of effort.

When efficient effort for at is not attainable, the only reason the Pareto frontier
at stage 2 of period t might be attained by effort conditional on type not changing
that is below the maximum feasible for at would be if this permitted a higher joint
payoff conditional on type changing. If, when agent type changes at t +1, the principal
receives a signal to that effect (though not of what type changes to), there is no need to
reduce effort conditional on type not changing in order to get the highest joint payoff
conditional on type changing. Then certainly to be on the Pareto frontier at stage 2 of
period t as required by Definition 2 requires the agent’s effort conditional on type not
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changing to be the highest feasible.
The case in which the principal receives no such signal is trickier. Let S(et+1,at ,p)

denote the maximum joint payoff gain attainable at t +1 conditional on type changing
at t + 1 for given et+1 for fully-revealed type at . Also let êt+1(at ,p) < e⇤(at) for all
p  p⇤, with p⇤ > 0, denote the highest feasible effort conditional on type not changing
given the joint payoff gain S(êt+1(at ,p) ,at ,p) conditional on type changing. (It need
not be for the stationary continuation equilibrium described in the previous paragraph.)
Now consider the joint payoff gain at stage 2 of period t from deviating to et+1 =

êt+1(at ,p)�D, for D > 0, conditional on type not changing. Because s(e,a) is strictly
concave in e, that joint gain is strictly less than

d
n

�(1�p)s1(êt+1(at ,p) ,at)D+p
h

S(êt+1(at ,p)�D,at ,p)�S(êt+1(at ,p) ,at ,p)
io

.

Even if the expression in square brackets is positive, it is certainly bounded, so the
second term in this expression approaches zero as p approaches zero. The first term
is strictly negative for êt+1(at ,p) < e⇤(at) and D > 0 by the specification of e⇤(at)

in (1). So the whole expression is strictly negative for p < p⇤ sufficiently close to
zero. If the maximum value function S(et+1,at ,p) satisfies local left-sided Lipschitz
continuity in et+1 at êt+1(at ,p) for all p < p⇤, the joint payoff gain is thus certainly
always increased by reducing D for sufficiently small p . Because S(et+1,at ,p) is an
integral of the joint payoff gain functions over all types for a distribution F(a) with no
mass points, local left-sided Lipschitz discontinuity in the joint payoff gain function at
êt+1(at ,p) for isolated types is not a problem for this. To determine when the maximum
value function S(et+1,at ,p) satisfies local left-sided Lipschitz continuity (for which it is
sufficient that it is continuously differentiable, like maximum value functions for some
stochastic dynamic programming problems, see Stokey and Lucas (1989)) is beyond the
scope of this paper. But when it is, the conclusion is that, even if the principal does not
know that type has changed, an equilibrium with optimal continuation with changing
agent type has effort for a revealed type at the maximum sustainable for that type when
p is sufficiently small. The arguments used in Section 5 can then still be applied.

The essential argument here is that, when efficient effort is not attainable, reducing
effort conditional on type not changing below the maximum feasible results in a first-
order loss in joint payoff conditional on type not changing. To incur that loss for a
bounded potential gain conditional on type changing is thus never worthwhile if the
probability of type changing is sufficiently small. But then, as with unchanging types,
some lower type choosing the effort at t intended to fully reveal a higher type achieves
the same payoff at the beginning of t +1 as that higher type. Given that the higher type
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obtains a strictly positive informational rent from imitating the lower type, there has
to be a discrete upward jump between their efforts to induce revelation by the higher
type. But there cannot be a discrete upward jump between efforts for all types on a
continuum, which means full revelation of all types is not possible.

8 Conclusion

This paper combines insights from the ratchet effect in the literature on procurement
and dynamic enforcement in the literature on relational incentive contracts to analyse
relational incentive contracts when the agent’s type is privately known by the agent and
persistent over time. It differs from the relational contract models of Levin (2003) and
MacLeod (2003), in which the agent’s type is an iid random draw each period. Applied
to employment, it generalizes the models of Shapiro and Stiglitz (1984) and MacLeod
and Malcomson (1989) to private information about workers’ disutility of effort. It also
differs from the ratchet effect model of Laffont and Tirole (1988) in which the parties are
legally constrained from committing to future contract terms and the principal makes
“take it or leave it” contract offers.

The central result shown here is that, with continuous privately-observed agent types
that are unchanging over time, relational contracts for which future actions are optimal
(that is, are at any point on the Pareto frontier) once the agent’s type is fully revealed
cannot fully separate all types because full separation requires a discrete jump in effort
between neighbouring types. This result extends to sufficiently persistent types under
certain conditions. Thus, the ratchet effect result that some pooling of agent types is
unavoidable applies even though the parties are not legally constrained from committing
to future contract terms and the principal does not have the power to make “take it or
leave it” contract offers. This result significantly extends beyond the traditional ratchet
effect the set of circumstances under which full separation of types is not possible.

Appendix: Proofs

Proof of Proposition 1. That (6) defines a best response continuation rule follows from
the specification of at(ht) in (3).

Effort function et(a,ht) may not be a best response at t because agent type a prefers
to deviate to either (1) ẽ = et(a0,ht) 6= et(a,ht) for some a0 2 A+

t (ht) or (2) ẽ 6= et(a0,ht)

for any a0 2 A+
t (ht). Incentive compatibility to the first type of deviation requires
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Ut(a,ht) = Ũt(a,a,ht). That in turn requires

Ut(a,ht)� Ũt
�

a0,a,ht
�

=Ut
�

a0,ht
�

+Ũt
�

a0,a,ht
�

�Ũt
�

a0,a0,ht
�

, 8a,a0 2 A+
t (ht) ,

and, with the roles of a and a0 interchanged,

Ut
�

a0,ht
�

� Ũt
�

a,a0,ht
�

=Ut(a,ht)+Ũt
�

a,a0,ht
�

�Ũt(a,a,ht) , 8a,a0 2 A+
t (ht) .

These two conditions imply that (7) is necessary. They also imply (7) is sufficient to
deter deviation to ẽ = et(a0,ht) 6= et(a,ht) for a0 2 A+

t (ht).
Now consider deviation to ẽ 6= et(a0,ht) for any a0 2 A+

t (ht). Let

h0t+1 = ht [ (et(at(ht) ,ht) ,wt(ht ,et(at(ht) ,ht))) .

(This is the history at t+1 conditional on the agent choosing effort et(at(ht) ,ht) and the
principal paying the corresponding bonus.) With the specified continuation contracts,
bt(ht , ẽ) = 1, wt(ht , ẽ) = wt(ht) and

wt+1(ht [ (ẽ,wt(ht)))�
⇥

Ũt+1
�

at(ht) ,at(ht) ,h0t+1
�

�wt+1
�

h0t+1
�⇤

. (A.1)

The payoff gain at stage 1 of period t to a � at(ht) continuing the relationship while
deviating to ẽ would, given (A.1), be

� c(ẽ,a)�u+wt(ht)

+d
⇥

Ũt+1
�

at(ht) ,a,h0t+1
�

�wt+1
�

h0t+1
�

+wt+1(ht [ (ẽ,wt(ht)))
⇤

�c(ẽ,a)�u+wt(ht)+d
⇥

Ũt+1
�

at(ht) ,a,h0t+1
�

�Ũt+1
�

at(ht) ,at(ht) ,h0t+1
�⇤

.

Choice of ẽ affects only the first term, so this payoff gain cannot be greater than for
ẽ = 0 so that c(ẽ,a) = 0. Thus, not deviating to ẽ is a best response if

Ut(a,ht)��u+wt(ht)+d
⇥

Ũt+1
�

at(ht) ,a,h0t+1
�

�Ũt+1
�

at(ht) ,at(ht) ,h0t+1
�⇤

,

for all a 2 A+
t (ht) . (A.2)

For a0 = at(ht), (7) implies

Ut(a,ht)� Ũt(at(ht) ,a,ht)�Ũt(at(ht) ,at(ht) ,ht)+Ut(at(ht) ,ht) ,

for all a 2 A+
t (ht) . (A.3)

So, if the right-hand side of (A.3) is greater than that of (A.2), (7) is sufficient to deter
a 2 A+

t (ht) from deviating to ẽ 6= et(a0,ht) for any a0 2 A+
t (ht).
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Type a � at(ht) imitating at(ht) at t cannot receive a lower payoff than from con-
tinuing to imitate at(ht) at t +1. So, from (2) and (5),

Ũt(at(ht) ,a,ht)��c(et(at(ht) ,ht) ,a)�u+wt(ht)+wt(ht ,et(at(ht) ,ht))

�wt(ht)+dŨt+1
�

at(ht) ,a,h0t+1
�

, for all a � at(ht) ,

and this holds with equality for a = at(ht). Thus

Ũt(at(ht) ,a,ht)�Ũt(at(ht) ,at(ht) ,ht)

��c(et(at(ht) ,ht) ,a)+ c(et(at(ht) ,ht) ,at(ht))

+d
⇥

Ũt+1
�

at(ht) ,a,h0t+1
�

�Ũt+1
�

at(ht) ,at(ht) ,h0t+1
�⇤

, for all a 2 A+
t (ht) .

With c2(ẽ,a)< 0 for ẽ 2 (0,e], (A.3) therefore implies

Ut(a,ht)� d
⇥

Ũt+1
�

at(ht) ,a,h0t+1
�

�Ũt+1
�

at(ht) ,at(ht) ,h0t+1
�⇤

+Ut(at(ht) ,ht) , for all a 2 A+
t (ht) ,

and so, because (3) requires Ut(at(ht) ,ht)� wt(ht)�u, (A.3) implies (A.2).

Proof of Proposition 2. From the definition of Pt(a,(ht ,et)), the principal does
at least as well by continuing the relationship (bt(ht ,et) = 1) and paying the bonus
wt(ht ,et)�wt(ht) as by ending it if Ea|ht,et [Pt(a,(ht ,et))] � 0. Moreover, if ending the
relationship at t (bt(ht ,et) = 0), the principal clearly cannot gain by paying a bonus at
t. Suppose the principal were to continue the relationship at t (bt(ht ,et) = 1) but pay
wt 6= wt(ht ,et) when wt(ht ,et)�wt(ht)> 0. Under the specified continuation contract,
the principal would receive non-positive payoff gain from continuation and so, given
(8), would not make a greater payoff gain than from paying wt(ht ,et).

Definition 3 A stationary pooling continuation contract for ht has the continuation

contracts following deviation in Propositions 1 and 2 and, with the definition a�t (a) =

at(ht) for a 2 A+
t (ht):

1. every agent type a 2 A+
t (ht) choose the same effort et = e(a�t (a)) at t � t ,

2. the principal continue the relationship at t � t if et = e(a�t (a)).

Lemma 1 The following apply to stationary pooling continuation contracts for ht :

1. There exists a stationary pooling continuation contract for ht that is a PB con-

tinuation equilibrium for ht if and only if

de
�

a�t (a)
�

� c
�

e
�

a�t (a)
�

,a
�

�d (u+ v)� 0, for all a 2 A+
t (ht) , (A.4)
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or, equivalently,

S2
t�1

�

a�t (a)
�

� c
�

e
�

a�t (a)
�

,a�t (a)
�

, for all a 2 A+
t (ht) and t � t. (A.5)

2. Consider continuation payoff gains Pt(a�t (a))� 0 and Ut(a�t (a))� 0 consistent

with (13) and independent of t � t . If e(a�t (a)) satisfies (A.4) and either A+
t (ht)=

At(ht) or Ut(a�t (a)) = 0, there exists a stationary pooling continuation contract

for ht with wt(e(a�t (a))) and wt independent of t � t that is a PB continuation

equilibrium for ht with those continuation payoff gains.

3. To be a PB continuation equilibrium for ht , any stationary pooling continuation

contract for ht for which e(a�t (a)) satisfies (A.4) with equality for a = a�t (a) has

Pt(a�t (a)) = 0, Ut(a�t (a)) = wt �u � 0 and

c
�

e
�

a�t (a)
�

,a�t (a)
�

= S2
t�1

�

a�t (a)
�

, for all t � t. (A.6)

Proof. Part 1: Necessity. For stationary pooling continuation contracts for ht ,
S2

t�1(a) is stationary, and gt(a) = bt(e(a)) = 1, for all a 2 A+
t (ht) and all t � t . Then,

from (10) and (11),

S2
t�1(a) =

d
1�d

[e(a)� c(e(a) ,a)�u� v] , for all a 2 A+
t (ht) and t � t. (A.7)

Used to substitute for S2
t (a) in the budget balance constraint (13), this gives

de(a)� c(e(a) ,a)�d (u+ v)

= (1�d )
h

Ut(a)+u�wt +Pt(a)
i

, for all a 2 A+
t (ht) and t � t. (A.8)

All a 2 A+
t (ht) have the same history for t � t , so Pt(a) is the same. Thus, from (8),

continuation of the relationship requires Pt(a)� 0 for a 2 A+
t (ht) and t � t . Moreover,

from (3) and Proposition 1, continuation by agent types a 2 A+
t (ht) implies

Ut(a)� max [0,wt �u] , for all a 2 A+
t (ht) and t � t. (A.9)

Together with (A.8), these imply that, for e(a�t (a)) to be a PB continuation equilibrium
at t for all a 2 A+

t (ht), it must satisfy (A.4). (A.7) for a = a�t (a) implies that (A.5)
is equivalent to (A.4) for a = a�t (a). That and c2 (ẽ,a) < 0 for ẽ > 0 imply (A.4) is
satisfied for all a � a�t (a) if it is satisfied for a�t (a), so (A.5) and (A.4) are equivalent.

Sufficiency. Suppose e(a�t (a)) satisfies (A.4) and consider the stationary pool-
ing continuation contract for ht that has et(a) = e(a�t (a)), gt(a) = bt(e(a�t (a))) = 1,
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wt(e(a�t (a))) = w, and wt = w for all a 2 A+
t (ht) and t � t for some w and w with

w � w. Under this continuation contract, payoff gains are stationary. It follows from
(2) for the agent, and a corresponding calculation for the principal, that

Ut(a) =
�c(e(a�t (a)) ,a)�u+w+(w�w)

1�d
, for all a 2 A+

t (ht) , t � t, (A.10)

Pt(a) =
�(w�w)+d [e(a�t (a))� v�w]

1�d
, for all a 2 A+

t (ht) , t � t. (A.11)

With (A.4) satisfied, there certainly exist w � w such that U(a) � max [0,w�u] and
P(a)� 0 for all a 2 A+

t (ht), specifically when

c
�

e
�

a�t (a)
�

,a�t (a)
�

+u�w  w�w  d
⇥

e
�

a�t (a)
�

� v�w
⇤

(A.12)

because, with c2 (ẽ,a) < 0 for ẽ > 0, c(e,a) is decreasing in a. With the continuation
contracts for deviation to ẽ 6= e(a�t (a)) in Proposition 1, the only conditions for agent
types a�t (a) to continue the relationship for t � t are those in (A.9). With Ut(a) nec-
essarily non-decreasing in a, this is sufficient to ensure that (A.9) is satisfied for all
a 2 A+

t (ht) and, by Proposition 1, do not deviate to ẽ 6= e(a�t (a)). That and the condi-
tion in (8) for it to be a best response for the principal to continue the relationship are
thus satisfied for the specified stationary pooling continuation contract. Moreover, with
the continuation contracts for deviation to wt 6= w in Proposition 2, it is a best response
for the principal to pay w. Thus the specified stationary pooling continuation contract
for ht is a PB continuation equilibrium for ht .

Part 2. The stationary pooling continuation contract specified in the proof of suffi-
ciency for Part 1 has wt(e(a�t (a))) and wt independent of t � t . Consider w = u. Then
w satisfies (A.12) if

u+ c
�

e
�

a�t (a)
�

,a�t (a)
�

 w  u+d
⇥

e
�

a�t (a)
�

� v�u
⇤

.

By choosing w appropriately between the upper and lower bounds in this, Ut(a�t (a))

and Pt(a�t (a)) specified by (A.10) and (A.11) can take on any non-negative values in-
dependent of t � t that are consistent with (A.8) and thus (A.4). That establishes the
result for A+

t (ht) = At(ht). For A+
t (ht)⇢ At(ht), it may need to be that Ut(a�t (a)) = 0

for a 2 A+
t (ht) for a /2 A+

t (ht) not to continue the relationship.
Part 3. For (A.4) to hold with equality for a = a�t (a), the right-hand side of (A.8)

must be zero for a = a�t (a). With Pt(a)� 0 and (A.9), that requires Pt(a�t (a)) = 0 and
Ut(a�t (a)) = wt �u � 0. (A.6) follows from the equivalence of (A.4) and (A.5).

Proof of Proposition 3. The proof is in two steps. Step 1 shows that, if (14) is satis-
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fied for a, there exists a subgame perfect continuation equilibrium for ht and establishes
the proposition for continuation equilibria restricted to the class with stationary effort.
Step 2 establishes that no continuation equilibrium with non-stationary effort can do as
well, so any optimal continuation equilibrium for ht must have stationary effort.

Step 1. For a the only type in A+
t (ht), a stationary continuation contract for ht is

a stationary pooling contract for ht with just one type in the pool, so Lemma 1 applies
with subgame perfection substituted for Bayesian perfection. If (14) is satisfied for a,
there exists e(a) that satisfies (15) and thus satisfies (A.4) for a�t (a) = a. By Part 1 of
Lemma 1, (A.4) is sufficient for there to exist a stationary continuation contract for ht

that is a subgame perfect continuation equilibrium for ht . That establishes Part 1.
By Part 1 of Lemma 1, (A.4) is also necessary. Thus, a continuation equilibrium for

ht optimal in the class with stationary effort must satisfy (15), as specified in Part 2. To
be on the Pareto frontier, it must also maximise S1

t(a) subject to (15). With gt(a) = 1,
maximising S1

t(a) corresponds to maximising S2
t�1(a) in (11). S2

t (a) for t � t � 1,
given by (A.7), is a continuous function of e(a) to be maximised by choice of e(a) from
the compact set defined by (15), so an optimal e(a) certainly exists. It is, moreover,
independent of wt(e(a)) and wt . Because A+

t (ht) = At(ht) for a the only type with
history ht , Part 2 of Lemma 1 suffices to complete the proof of Part 2 of the proposition
for the class of stationary continuation contracts for ht .

If efficient effort e⇤(a) satisfies (15), clearly that maximises S2
t�1(a) subject to (15).

If not, S2
t�1(a) is maximised by the highest effort ê(a) that satisfies (15) with equality.

It then follows from Part 3 of Lemma 1 with a�t (a) = a that a continuation contract for
ht optimal in the class with stationary effort has Pt(a) = 0 and Ut(a) = wt � u � 0 for
all t � t , and has effort ê(a) that satisfies (16) for all t � t . That establishes Part 3 of
the proposition for this class of continuation contract for ht .

Step 2. Now consider whether it is possible to achieve as high or higher S2
t�1(a)

with a continuation equilibrium that has non-stationary effort. It cannot be if efficient
effort e⇤(a) is attainable because efficient effort is stationary, non-stationary effort must
depart from efficient effort for some t � t and that must lower S2

t�1(a). Consider, there-
fore, a continuation equilibrium that is optimal from the class with stationary effort and
that has ê(a) < e⇤(a) and joint payoff gain Ŝ2(a) for t � t � 1. From Levin (2003,
Theorem 2), no non-stationary continuation equilibrium can achieve S2

t (a)> Ŝ2(a) for
t � t �1, so any optimal continuation equilibrium must satisfy the budget balance con-
straint (13) with S2

t (a) = Ŝ2(a). To achieve S2
t (a) = Ŝ2(a) with non-stationary effort, it

must be that et(a) > ê(a) for some t � t . By step 1, an optimal continuation equilib-
rium with stationary effort ê(a)< e⇤(a) has Pt(a) = 0 and Ut(a) = wt �u for all t � t .
It is thus not possible to satisfy (13) with S2

t (a) = Ŝ2(a), Pt(a) � 0, Ut(a) � wt �u (as
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required by (3)) and bt(ê(a)) = 1 for all t � t with et(a) > ê(a) for any t � t . Thus,
any optimal continuation equilibrium for ht must have et(a) = ê(a) for all t � t .

Proof of Proposition 4. Part 1. With optimal continuation for a and a0 fully sepa-
rated at t, their efforts from t+1 on are ê(a) and ê(a0) respectively, with a’s payoff from
t +1 on wt+1 (ht ,et(a,ht),wt(ht ,et(a,ht)))�u by Part 3 of Proposition 3. By choosing
effort et(a,ht) at t, a0< a could attain payoff at least wt+1 (ht ,et(a,ht),wt(ht ,et(a,ht)))�
u from t +1 on by setting et+1 = 0 and quitting from t +2. By choosing the effort for
a0 from t on, a > a0 could attain payoff from t +1 on

Ũt+1
�

a0,a,ht+1
�

= Ũt+1
�

a0,a0,ht+1
�

+
1

1�d
⇥

c
�

ê
�

a0
�

,a0
�

� c
�

ê
�

a0
�

,a
�⇤

.

With these future payoffs, the necessary condition (7) for a to prefer et(a,ht) and a0 to
prefer et(a0,ht) at t becomes

c
�

et(a,ht) ,a0
�

� c(et(a,ht) ,a)

�Ut(a,ht)�Ut
�

a0,ht
�

� c
�

et
�

a0,ht
�

,a0
�

� c
�

et
�

a0,ht
�

,a
�

+
d

1�d
⇥

c
�

ê
�

a0
�

,a0
�

� c
�

ê
�

a0
�

,a
�⇤

. (A.13)

By Assumption 1, c(ẽ,a) is continuously differentiable. So, by the Mean Value Theo-
rem, there exist a1,a2,a3 2 (a0,a) such that

c(et(a,ht) ,a)� c
�

et(a,ht) ,a0
�

= c2(et(a,ht) ,a1)
�

a�a0
�

c
�

et
�

a0,ht
�

,a
�

� c
�

et
�

a0,ht
�

,a0
�

= c2
�

et
�

a0,ht
�

,a2
��

a�a0
�

c
�

ê
�

a0
�

,a
�

� c
�

ê
�

a0
�

,a0
�

= c2
�

ê
�

a0
�

,a3
��

a�a0
�

.

Use of these in (A.13) and division by a�a0 > 0 gives, in the limit as a ! a0,

�c2
�

et(a,ht) ,a0
�

��c2
�

et
�

a0,ht
�

,a0
�

� d
1�d

c2
�

ê
�

a0
�

,a0
�

(A.14)

because a1,a2,a3 2 (a0,a). By Assumption 1, c2 (ẽ,a)< 0 for ẽ 2 (0,e] and c12 (ẽ,a)<

0. It follows from (A.14) that et(a,ht) must have an upward jump discontinuity at
a = a0.

Part 2. From Part 1, for full separation et(a,ht) must have an upward jump dis-
continuity at every a 2 [at ,at ]. It must, therefore, be monotone. But for a monotone
function defined on an interval, the set of jump continuities is at most countable, which
results in a contradiction because the set of a 2 [at ,at ] is uncountable.

Proof of Proposition 5. Under Assumption 1, if there is more than one agent
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type for which a mutually beneficial relational contract is possible, there exists a non-
degenerate interval of such types [a�,a+], with a+ > a�, for which ê(a)< e⇤(a) for all
a 2 [a�,a+]. Proposition 4 shows that no optimal continuation equilibrium for ht can
fully separate at t all types a in a non-degenerate interval [at(ht) ,at(ht)]✓ [a�,a+] with
history ht . This necessarily applies to t = 1. It also applies to any subsequent period in
which an interval of types has the same history. The other possibility is that, at some t,
a 2 [at(ht) ,at(ht)] are separated into pools that do not include an interval of types, so
every pooled type is separated from its immediate neighbours, with full separation oc-
curring only in some later period. A necessary condition for a,a0 2 [at(ht) ,at(ht)] to be
separated into different pools at t is that there exists an optimal continuation equilibrium
for ht with et(a,ht) 6= et(a0,ht) for which (7) is satisfied. Let k(a) denote the number of
periods after t for which a has payoff gain along an optimal continuation equilibrium
path strictly greater than wt(ht)� u for t < t  t + k(a), which must be finite if a is
eventually to be fully separated because, by Part 3 of Proposition 3, the payoff gain to a

once fully separated at t is wt(ht)�u. Consider the deviation for a0 of imitating a > a0

until t + k(a), putting in no effort at t + k(a)+1 and quitting in t + k(a)+2. Similarly,
consider the deviation for a of imitating a0 indefinitely. For these deviations by any
a,a0 2 [at(ht) ,at(ht)] not to yield greater payoffs than the equilibrium path, (7) requires

�
k(a)

Â
i=0

d i ⇥c(et+i(a) ,a)� c
�

et+i(a) ,a0
�⇤

�Ut(a,ht)�Ut
�

a0,ht
�

��
k(a0)

Â
i=0

d i ⇥c
�

et+i
�

a0
�

,a
�

� c
�

et+i
�

a0
�

,a0
�⇤

� d k(a0)+1

1�d
⇥

c
�

ê
�

a0
�

,a
�

� c
�

ê
�

a0
�

,a0
�⇤

,

for a,a0 2 [at(ht) ,at(ht)] ,a > a0, (A.15)

By Assumption 1, c(ẽ,a) is continuously differentiable in a. So, by the Mean Value
Theorem, there exist at+i,a0t+i,a

00 2 (a0,a) such that

c(et+i(a) ,a)� c
�

et+i(a) ,a0
�

= c2(et+i(a) ,at+i)
�

a�a0
�

c
�

et+i
�

a0
�

,a
�

� c
�

et+i
�

a0
�

,a0
�

= c2
�

et+i
�

a0
�

,a0t+i
��

a�a0
�

c
�

ê
�

a0
�

,a
�

� c
�

ê
�

a0
�

,a0
�

= c2
�

ê
�

a0
�

,a00
��

a�a0
�

.

Use of these in (A.15), division by a�a0 > 0, and re-arrangement gives the requirement

�
k(a)

Â
i=0

d ic2(et+i(a) ,at+i)+
k(a0)

Â
i=0

d ic2
�

et+i
�

a0
�

,a0t+i
�
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��d k(a0)+1

1�d
c2
�

ê
�

a0
�

,a00
�

, for a,a0 2 [at(ht) ,at(ht)] ,a > a0. (A.16)

For a0 to be separated from its immediate neighbours at t, (A.16) must hold in the limit
as a ! a0. With at+i,a0t+i,a

00 2 (a0,a), in the limit as a ! a0, (A.16) becomes

� lim
a!a0

k(a)

Â
i=0

d ic2(et+i(a) ,a)+
k(a0)

Â
i=0

d ic2
�

et+i
�

a0
�

,a0
�

�� lim
a!a0

d k(a)+1

1�d
c2
�

ê
�

a0
�

,a
�

.

(A.17)
Define

h(a) =�
k(a)

Â
i=0

d ic2(et+i(a) ,a) .

Then (A.17) implies

lim
a!a0

h(a)�h
�

a0
�

�� lim
a!a0

d k(a)+1

1�d
c2
�

ê
�

a0
�

,a
�

. (A.18)

Because c2(ẽ,a) < 0 for ẽ > 0, the right-hand side of (A.18) is strictly positive for
k(a) finite, so h(a) must have an upward jump discontinuity at a0. But for all agent
types to be separated from their immediate neighbours, (A.18) must hold for all a0 2
(at(ht) ,at(ht)]. Thus, for full separation to occur, h(a) must have an upward jump
discontinuity at every a 2 (at(ht) ,at(ht)]. Such a function is certainly monotone, so
the set of such continuities is at most countable, a contradiction because the set of a in
(at(ht) ,at(ht)] is uncountable.
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