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Abstract 

 
Experimental evidence on a range of interventions in developing countries is accumulating 
rapidly. Is it possible to extrapolate from an experimental evidence base to other locations of 
policy interest (from “reference” to “target” sites)? And which factors determine the accuracy of 
such an extrapolation? We investigate applying the Angrist and Evans (1998) natural 
experiment (the effect of boy-boy or girl-girl as the first two children on incremental fertility 
and mothers’ labor force participation) to data from International IPUMS on 166 country-year 
censuses. We define the external validity function with extrapolation error depending on 
covariate differences between reference and target locations, and find that smaller differences in 
geography, education, calendar year, and mothers’ labor force participation lead to lower 
extrapolation error. As experimental evidence accumulates, out-of-sample extrapolation error 
does not systematically approach zero if the available evidence base is naïvely extrapolated, but 
does if the external validity function is used to select the most appropriate reference context for 
a given target (although absolute error remains meaningful relative to the magnitude of the 
treatment effect). We also investigate where to locate experiments and the decision problem 
associated with extrapolating from existing evidence rather than running a new experiment at a 
target site. 

JEL-Code: C930, D040, D100, O120. 

Keywords: external validity, fertility, labor supply, experiments. 
 

  
  

Rajeev Dehejia 
Wagner Graduate School of Public Service 

295 Lafayette Street 
USA – New York, NY 10012 

rajeev@dehejia.net 
 

Cristian Pop-Eleches 
School of International and Public Affairs 

Columbia University 
420 W 118th Street 

USA – New York, NY 10027 
cp2124@columbia.edu 

 
Cyrus Samii 

Department of Politics 
New York University 

19 West 4th Street 
USA – New York, NY 10012 

cds2083@nyu.edu 
 
May 2015 
The authors thank: Morris Chow for excellent research assistance; Hunt Allcott, Joshua Angrist, Peter Aronow, 
Gary Chamberlain, Drew Dimmery, and Raimundo Undurraga for valuable comments and suggestions; and 
seminar participants at NEUDC 2014, NYU, Yale, the 2014 Stata Texas Empirical Microeconomics Conference, 
and the Stanford 2015 SITE conference for helpful feedback. 



	  

	  

1. Introduction 

The use of randomized controlled trials in economics is widespread. Indeed, in the field 

of development economics, it can be called a global phenomenon, with hundreds of 

experiments being run around the world. The initial emphasis on experiments was driven 

by the ability of randomized controlled trials to generate internally valid results, and by 

the concomitant failure of non-experimental methods to deliver a similar promise (e.g., 

Lalonde 1986). While a clean and careful experiment is never to be taken for granted, 

with the increased expertise and experience within economics in implementing large-

scale field experiments, internally valid results can reasonably be viewed as an attainable 

benchmark. 

 At the same time, the global scale of field experiments points to the less-

emphasized but central concern of external validity. In evaluating the external validity of 

a set of experiments, one poses the question, “to what population, settings, and variables 

can this effect be generalized?” (Campbell 1957).  In other words, external validity can 

be measured in terms of the error in prediction of treatment effects for new populations 

beyond those covered in the evidence base. With a single or handful of experiments, 

external validity is a matter of assumption. But with a large number of experiments it is 

reasonable to hope that researchers are accumulating knowledge, i.e., not just learning 

about the specific time and place in which an experiment was run but learning enough to 

predict what would happen if a similar intervention were implemented in another time or 

place. One could judge the success of an experimental research program in terms of the 

diversity of settings in which one can reliably predict the treatment effect, possibly 

obviating the need for further experimentation with that particular treatment.  This is the 
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issue we address in this paper. More specifically, assuming consistent experimental or 

internally valid evidence is available across a variety of settings, is it possible to predict 

the treatment effect in a new setting? Is it possible to understand how differences between 

actual and predicted treatment effects vary with differences between the setting of interest 

and the settings in which experimental evidence is available?  And if so which 

differences are more important: context-level (e.g., macro or institutional) variables or 

individual-level variables?  How might we judge whether an existing evidence base is 

adequate for informing new policies, thereby making another experiment with a given 

treatment unnecessary? 

 Our approach in this paper is to use a natural experiment for which data is, in fact, 

available for a wide variety of settings. In particular, we use the Angrist and Evans 

(1998) sex-composition variable (same sex of the first two children) as a natural 

experiment for incremental fertility (having a third child) and for mother’s labor supply 

and in the context of the Integrated Public Use Microdata Series - International (IPUMS-

I) data. Cruces and Galiani (2005) and Ebenstein (2009) have studied how the effects in 

this natural experiment generalize to Argentina and to Mexico and Taiwan, respectively.  

Our analysis extends this to all available IPUMS-I samples around the world going back 

to 1960, allowing for a very rich examination of both micro- and macro-level sources of 

heterogeneity.   

We discuss the strengths and weaknesses of this data in greater detail Section 4. 

But, briefly, it is important to acknowledge that Same-Sex is not a perfect experiment. At 

the same time, we would argue that, since even the best field experiments have their 

flaws, it is a not an unreasonable exercise in external validity. Furthermore, to the extent 
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that fertility choices could be viewed as especially culture and context specific, we 

believe we are setting a high bar for the exercise: if we are able to find a degree of 

external validity for a fertility natural experiment, then there is hope that it might be 

possible for other experiments as well. 

 The paper is both a methodological thought experiment and an empirical 

investigation.  As a thought experiment, we consider the rather fanciful situation of 

having replications of a randomized experiment across a wide variety of contexts that we 

can use to inform an extrapolation to an external setting. This is an idealized setting in 

certain respects, given the large number of experiments and also the homogeneity in 

treatments and outcomes.  At the same time, and in a manner that brings us back down to 

earth, we only have a limited amount of information that we can use to characterize effect 

heterogeneity.  Given such data, what statistical tools would we use to construct 

extrapolations to new contexts?  Our task in this paper is one of assessing the external 

validity potential of an evidence base in extrapolating to a new context. An evidence base 

consists of a set of experimental studies and its limitations are defined by the variety of 

contexts that it covers and, crucially, the measured covariates that it includes.  A 

complementary exercise, which we do not undertake in this paper, might be to use an 

evidence base to try to explain effect heterogeneity for the sake of theory development. 

We operate under the premise that working through this problem in the setting 

granted by our “global” experiments should prove useful for informing how experimental 

research programs should proceed.  Substantively, we are interested to understand how 

fertility decisions and associated labor outcomes vary beyond the well-studied United 



	  

 4 

States context (Angrist and Evans 1998). If one were to design fertility or labor policies 

outside the US, what kind of evidence should one use and how? 

 The topic of external validity has been gathering increasing attention in the 

economics literature.  Empirical assessments of external validity in economics include 

recent work by Allcott (2014), Pritchet and Sandefur (2013), and Vivalt (2014). Allcott 

(2014) tackles the question of site selection, and in particular whether the sites that select 

into an experiment can limit the ability to draw externally valid conclusions from 

internally valid experiments. He finds evidence that sites that opt in early into an 

experiment may be those more likely to benefit.  We sidestep this question in our 

analysis. While we do not directly address site selection into the IPUMS-I data, we will 

examine how external validity evolves over time, where our emphasis is on the 

accumulation of evidence from experimental data points.   

Using two examples from the education literature (class size effects and the gains 

from private schooling), Pritchett and Sandefur (2013) argue that estimates from 

observational (that is, non-experimental) studies within a context are superior to 

extrapolated experimental results from other contexts. They also argue that economy-

wide or institutional characteristics often trump the importance of individual 

characteristics when attempting to extrapolate. We view our efforts as complementary. 

We do not directly examine the bias tradeoff that is central to Pritchett and Sandefur 

(essentially the tradeoff between bias from failure of internal validity and bias from the 

failure of external validity). But with a large number of (natural) experiments in our data 

set (166 compared to the dozen or so studies they use in their analysis) we are able to take 

an empirical approach to some of their central questions. 
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 Vivalt (2014) uses a random effects meta-analysis to study sources of effect 

heterogeneity and extrapolation error for sets of development program impact 

evaluations.   She finds evidence of program effects varying by the implementing actor, 

with government programs tending to fare worse than non-governmental organization 

programs.  She also finds that with a small set of study-level characteristics (namely, 

implementer, region, intervention type, and outcome type), meta-regressions have only 

modest predictive power.  In our analysis, we consider a somewhat larger number of 

covariates both at the micro- and macro-levels and we do so in a set of experiments that 

is more homogenous in terms of treatments and outcomes. This allows us to isolate issues 

of extrapolation per se from questions of outcome and treatment comparability. 

 Our results show that there is considerable treatment effect heterogeneity in the 

effect of sex composition on fertility and labor supply across country-years, but that some 

of this variation can be meaningfully explained both by individual and context covariates. 

We define and estimate the “external validity function,” which characterizes how results 

from existing experiments may yield misleading predictions for a target setting, and show 

that in our application the estimated external validity function implies that increasing the 

covariate distance between experimental sites and a site at which one is trying to predict 

the treatment effect leads to increased prediction error. We examine the multivariate 

relationship between prediction error and individual and context covariates, and argue 

that both are potentially useful in reducing prediction error from external comparisons, 

although also discuss a case in which only context variables seem to matter. We also 

investigate the out of sample performance of prediction error models in selecting the best 
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comparison country for a target country of interest, and find that with enough 

experimental data points the quality of extrapolation increases considerably. 

 Finally, we present two applications of our approach. In the first, we use our 

estimated external validity function to determine the best location of an experiment. 

Specifically, choosing among our 166 country-year sites, we ask which location would 

minimize mean squared prediction error for the other sites? And given that choice of first 

site, which is the second-best site to add to the experimental sites, and so on. The thought 

experiment is to ask, given our full set of sites, what are the attributes of a good location 

for an experiment? In the second application, we ask when a policy decision maker 

should choose to run an experiment in a target context rather than use extrapolated 

estimates of the treatment effect from other sites.  

 The paper is organized as follows. In Section 2, we provide a brief review of the 

related literature, while in Section 3 we outline a simple analytic framework for our 

empirical analysis. In Section 4, we discuss our data and the sex composition natural 

experiment. In Section 5 we present a graphical analysis of treatment effect 

heterogeneity, and in Section 6 we perform the analogous hypothesis tests to reject 

homogenous treatment effects. In Section 7, we present non-parametric estimates of the 

external validity function for selected covariates of interest. In Section 8, we use 

multivariate regressions to examine the relative importance of individual and context-

level predictors in determining the external validity of experimental evidence. In Section 

9, we present evidence on the in-sample fit and out-of-sample predictive accuracy of the 

model, and in particular examine how external validity evolves with the accumulation of 
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evidence. Section 10 presents our two applications, the choice of experimental site and of 

whether or not to run an experiment to inform a policy decision. Section 11 concludes. 

 

2. Related methodological literature 

Our analysis follows on the call by Imbens (2010) to scrutinize empirically (rather than 

speculatively) questions of external validity.  Focused consideration of external validity 

goes back at least to Campbell (1957), whose approach is taken up in the text by Shadish 

et al. (2002).  This classical literature omits a formal statement of how external validity 

may be achieved, and so debates in the classical literature often confuse semantic issues 

with conceptual ones.  More recently, Hotz et al. (2005), Stuart et al. (2011), and 

Hartman et al. (2013) use the potential outcomes framework to characterize conditions 

necessary for extrapolation from a reference population for which experiments are 

available to a target population. These conditions are analogous to those required for 

identifying causal effects under “strong ignorability.” The difference is that the relevant 

conditional independence assumptions pertain to inclusion in the reference versus target 

population rather than in the treatment versus control group.  We review these conditions 

in the next section.  These authors apply various approaches to extrapolation, including 

matching, inverse probability weighting, and regression (see also Cole and Stuart 2010, 

on inverse probability weighting, and Imai and Ratkovic 2013, and Green and Kern 2012, 

on response surface modeling).  Crump et al. (2008) develop non-parametric methods, 

including sieve estimators, for characterizing effect heterogeneity. Our analysis combines 

these various methods.  Angrist (2004), Angrist and Fernandez-Val (2010), and Aronow 

and Sovey (2013) consider extrapolation from local average treatment effects identified 
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by instrumental variables to a target population.  This is an issue we avoid, as we focus 

only on reduced form or intention-to-treat effects. 

While conditions for identifying extrapolated effects are straightforward to 

express, the implications warrant some deeper reflection.  Heckman and Vytlacil (2007) 

and Pearl and Bareinboim (2014) discuss how these identifying assumptions require that 

structural relations between background characteristics and treatment effects are invariant 

as we move from the reference to the target population. Pearl and Bareinboim give a 

useful example of a case where there is only one variable that moderates effects, but it is 

measured via proxy.  If the distribution of the proxy measure differs across the reference 

and target contexts, then without additional invariance assumptions, we cannot know the 

consequences for identification.  The difference could be because the underlying 

moderator distribution differs or because the relationship between the moderator and the 

proxy differs.  By the same token, just because the proxy variables have the same 

distribution across contexts does not imply that contexts are comparable unless all 

relevant structural relations are invariant across context. Bareinboim and Pearl (2013) 

demonstrate how a set of reference experiments, each on its own inadequate for 

identifying an effect in a target setting, might be combined to identify the target effect.   

 Our analysis is also related to the meta-analysis literature (Glass, 1976; Hedges 

and Olkin, 1985; Sutton and Higgins, 2008).  Applications in economics include Card et 

al. (2010), Dehejia (2003), and Stanley (2001), as well as meta-analytic reviews that 

appear in the Journal of Economic Surveys.  What the meta-analysis literature lacks, 

however, is a general (i.e., non-parametric) characterization of the conditions required for 

extrapolating from reference to target contexts.  Classical approaches to meta-analysis 
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use meta-regression to determine correlates of effect heterogeneity---so called 

“moderator” analysis. The classical literature tends to leave unclear the purpose of such 

moderator analysis with some discussions suggesting that it is merely descriptive, with no 

claim of identifying an effect in a target population, and others suggesting the much more 

ambitious goal of trying to establish a full generative model of the conditional effect 

distribution (Greenland 1994; Rubin 1992). The work on non-parametric identification of 

extrapolated effects, which we use as the foundation of our analysis, is much clearer 

about the role of moderator analyses.1 

 

3. Analytical framework 

We are interested in using the results of existing randomized experiments to inform our 

expectations of what might happen in a new, external context.  This is an issue of external 

validity.  Following Hotz et al. (2005) suppose, formally, that we are interested in the 

effects of a treatment, T = 0,1. Define potential outcomes associated with this treatment 

as Y(1) and Y(0).  Let D=0,1 denote locations from which we have experimental data 

(D=0, the “reference” context) and to which we want to extrapolate (D=1, the “target” 

context), respectively.  By virtue of random assignment, experiments in the D = 0 

contexts are such that  

 

(C0) 𝑇  ___||   (𝑌 0 ,𝑌 1 )|𝐷 = 0.    

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 We sidestep altogether a few themes that are central to the classical meta-analysis literature, including the 
construction of standardized effect size metrics and evaluating publication bias or other “file drawer” 
problems.  See Slavin (1984, 1986) for a trenchant critique of how these methods have been applied in 
practice.  Related to the issue of publication bias are the issues of site selection and nonrandom study 
recruitment, which bias the distribution of effects that are available to synthesize relative to the underlying 
potential distribution of effects in a population (Olsen et al. 2012). 
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Define W as covariates necessary to satisfy an unconfounded location condition, that is  

 

(C1) 𝐷  ___||   (𝑌 0 ,𝑌 1 )|𝑊. 

 

We also define a common support condition, 

 

(C2) 𝛿 < Pr 𝐷 = 0 𝑊 = 𝑤 < 1− 𝛿,  

 

for 𝛿 > 0  and for all 𝑤 in the support of 𝑊over units in the D=1 target population.  

Conditions C1 and C2 imply that data on effects in context D=0 are sufficient to 

identify effects in context D=1 (Hotz et al. 2005, Lemma 1).2  That is, observed outcomes 

are given by  

 

(1)  Y = TY(1) + (1 – T) Y(0), 

 

and by C0-C2 we have 

 

(2a) E[Y(1) – Y(0)| D=1]  = EW|D=1[E[Y(1) – Y(0)| D=0, W]] 

(2b)    = EW|D=1[E[Y|T=1, D=0, W] – E[Y|T=0, D=0, W]] 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 In cases where random assignment is conditional (e.g., in situations resembling stratified random 
assignment or where assignment probabilities vary with some covariates), the situation is nearly identical 
—the only difference being that we need to incorporate the relevant covariates into the analysis. 
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where EW|D=d[.] denotes marginalizing over the W distribution in context D=d.  To 

extrapolate from one context to a new context, we compute the treatment effects for each 

value of W that appears in the new context and then marginalize over the distribution of 

W in the new context.   Consistent extrapolation requires that a third condition holds: 

(C3) There exists a consistent estimator for the covariate-specific effects as 

defined in 2b. 

 In typical applied settings, one assumes that conditions C0-C3 hold. What our 

data allow is a test of some of these conditions. We assume that gender composition of 

the first two children provides a valid natural experiment for having a third child, 

satisfying C0. As we discuss in the next section, there are a variety of reasons why this 

assumption might not hold. We think of the leading reasons for such a violation (e.g., sex 

selection or women’s labor force participation) as being context-specific covariates 

(elements of W). We use highly flexible estimation methods such that condition C3 is 

satisfied. Our covariate set is sufficiently parsimonious that C2 is also typically satisfied. 

As such, we are primarily concerned with testing C1, unconfounded location. 

 To carry out such tests, we define an “external validity function,” 𝜖 𝑊 ,  which 

takes expression (2b) and subtracts from it the target effect estimate in (2a): 

   

3         𝜖 𝑊 = 𝐸!|!!! 𝐸 𝑌 𝑇 = 1,𝐷 = 0,𝑊 − 𝐸 𝑌 𝑇 = 0,𝐷 = 0,𝑊                                                               

− 𝐸 𝑌 1 − 𝑌 0 𝐷 = 1

= 𝜏 𝑊 − 𝜏, 
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where the first term on the right-hand side of (3) is the extrapolated effect from the D=0 

context(s) and the second is the true treatment effect in the D=1 context. The external 

validity function is analogous to the bias function defined by Heckman et al. (1998), with 

the latter defined as the difference between the unobserved conditional control mean for 

treated units and the conditional mean for untreated units.  In applied settings 𝜖 𝑊  is 

only a hypothetical quantity since one does not know the true effect, 𝜏. The empirical 

exercise that we carry out is one where we actually have estimates of 𝜏 for the various 

country-years in the data-set.  We can then use these as benchmarks to assess 

extrapolations from other country-year contexts. 

Under C0-C3, 𝜖 𝑊 = 0. But in our empirical analysis, estimates of this quantity 

will tend to be non-zero. Such “prediction error” is due to the combination of random 

variation and bias resulting from failures of C0-C3. Random variation arises in our 𝜏 𝑊  

estimates as a result of sampling of units within the reference contexts and then treatment 

assignment in those contexts.  Random variation arises in our estimates of 𝜏 as a result of 

sampling of units in the target contexts and treatment assignment.3  

Much of our empirical analysis below focuses on the prediction error captured by 

estimates of 𝜖 𝑊 .4 We conduct both dyadic and cumulative analyses.  In the dyadic 

analysis, we pair each country-year in our sample to each other country-year, creating 

dyads consisting of target country and comparison country. Using a flexible linear 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 Our data satisfy random sampling of units, condition C0 for the reference contexts, and a similar random 
assignment condition in our target context. We work with linear least squares estimators for 𝜏 𝑊  and 𝜏.  
Thus, conditional on W, by standard arguments, our estimates of 𝜏 𝑊  and 𝜏 are statistically independent 
and asymptotically normal (e.g., Freedman 2008), in which case our estimate of 𝜖 𝑊  is also 
asymptotically normal.	  
4 Our use of the term “prediction error” connotes a presumption that our models of conditional treatment 
effects will be, inevitably, approximate due to imperfect knowledge of the conditional effect distribution as 
well as limitations in the covariate set that is available. 
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regression in the comparison country, we predict the treatment effect in the target country 

(the first expression on the right-hand side of (3)), which we then compare to the 

treatment effect from the (natural) experiment in the target country (the second 

expression on the right-hand side of (3)). Note that dyadic predictions between a given 

target and reference country-year pair are not symmetric, since prediction error will be 

different depending on which country-year is used as the reference and which as the 

target. For example, predicting the treatment effect in Cuba using US data is a very 

different exercise than the reverse. Each dyad gives us a vector of covariate differences 

between target and comparison country, and an estimated prediction error from the 

comparison.  The cumulative analysis examines how prediction error changes as we 

proceed forward in time, using all data from countries in previous years to predict the 

treatment effect in a country in a given year.  

Our analysis of prediction error begins by presenting local linear regressions of 

prediction error against a single dimension of the covariate difference between target and 

comparison country-years. We refer to this as the unconditional prediction error 

estimates; since we do not control for other covariate differences, prediction error 

associated with differences in a single variable (for example education) could be driven 

by any other correlated variable (for example GDP per capita). We then use these dyadic 

differences in a multivariate regression of prediction error on the covariate differences 

between the target and comparison country. We refer to these as conditional prediction 

error estimates, since we are able to examine the effect of the target-comparison 

difference in a covariate of interest on prediction error, conditional on all other target-

comparison covariate differences. We also use this multivariate regression approximation 
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of the external validity function to select the error-minimizing comparison for a target 

country of interest when we conduct our out-of-sample model checks.5 

 

4. A global natural experiment 

There are two main challenges for assessing directly methods for extrapolating causal 

effects. First is to find a randomized intervention or a naturally occurring experiment that 

has been implemented in a wide range of settings around the world. The second is to find 

data that is readily available and comparable across the different settings. 

 For the first challenge, we propose to use sibling sex composition to understand 

its impact on fertility and labor supply decisions. The starting point of our paper is 

Angrist and Evans (1998), who show, using census data from 1980 and 1990 in the US, 

that families have on average a preference to have at least one child of each sex. Since 

gender is arguably randomly assigned, they propose to use the sibling sex composition of 

the first two children as an exogenous source of variation to estimate the causal impact of 

fertility on labor supply decision of the mother.  

 For the second challenge, we make use of recently available data from the 

Integrated Public Use Microdata Series-International (IPUMS-I). This project is a major 

effort to collect and preserve census data from around the world. One important 

dimension of IPUMS-I is their attempt to harmonize the data and variables in order to 

make them comparable both across time and space. For our particular application, we 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 An alternative approach to characterize the external validity function is to use matching, for example to 
select a given country-year as the target and to use the remaining country-years as the reference setting, 
then to match individuals in the former to the latter (using for example propensity score matching or direct 
matching) and then to cycle through all possible country-years as targets. To explore the functional form of 
the extrapolation error associated with non-zero differences in covariates, we can impose prior constraints 
on the matches in the reference setting (e.g., constrain matches to given a level of education or some other 
covariate). Results using this method are similar to those presented below, but much more computationally 
intensive. 
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were able to use 169 country-year samples (with 66 unique countries) with information 

on fertility outcomes and 166 samples (and 61 unique countries) with information on 

labor supply decisions (although our sample size decreases to 142 and 128 country-years 

respectively when we merge in additional country-level covariates). 

 The use of the Angrist-Evans same-sex experiment on a global scale brings 

additional challenges, which were not faced in the original paper. In particular, sex 

selection for the first two births, which does not appear to be a significant factor in the 

United States (Angrist and Evans 1998), could be a factor in countries where son-

preference is a stronger factor than the US. We view sex selectivity as one of the context 

covariates, W, that could be controlled for when comparing experimental results to a new 

context of interest, or if not appropriately controlled for could undermine external 

validity. In our results below we pursue three approaches: not controlling for differences 

in sex selectivity and examining whether external validity still holds; directly examining 

its effect on the external validity; and excluding countries in which selection is known to 

be widely practiced. 

Another challenge is that, if the cost of children depends on sibling sex 

composition, then Same-Sex would violate the exclusion restriction that formed the basis 

of Angrist and Evans’s original instrumental variables approach, affecting fertility not 

only through the taste for a gender balance but also through the cost of additional 

children (e.g., with two same sex children hand-me-downs lower the cost of a third child 

and thus could affect not only fertility but also labor supply). Butikofer (2011) examines 

this effect for a range of developed and developing countries, and argues that this is a 

concern for the latter group. As a result, in this analysis, we use Same-Sex as a reduced-
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form natural experiment on incremental fertility and on labor supply, and do not present 

instrumental variables estimates. 

 For our empirical analysis, we implement essentially the same sample restrictions, 

data definitions, and regression specifications as those proposed in Angrist and Evans 

(1998).6 Since the census data that we use does not contain retrospective birth histories, 

we match children to mothers as proposed by Angrist and Evans (1998), using the 

harmonized relationship codes available through IPUMS-I, and we also restrict our 

analysis to married women aged 21-35 whose oldest child was less than 18 at the time of 

the census. In our analysis we define the variable Same-Sex to be equal to 1 using the sex 

of the oldest two children.  

As outcomes we use an indicator for the mother having more than 2 children (Had 

more children) and for the mother working (Economically active). These two outcomes 

correspond to the two reduced-form specifications of Angrist and Evans. While there is a 

natural link between Same-sex and Had more children, the link is less intuitive for 

Economically active. In the context of instrumental variables, the link is presumably 

through incremental fertility (and is assumed exclusively to be so). In our application, 

since no exclusion restriction is assumed, the effect can include not only incremental 

fertility but also, for example, the income and time effects of having two children of the 

same sex. As such, identification of the reduced-form effect of Same-sex on 

Economically active relies only on the validity of the experiment within each country-

year and on our identifying assumptions outlined in Section 3.  As we will see below, the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 The data and programs used in Angrist and Evans (1998) are available at: 
http://economics.mit.edu/faculty/angrist/data1/data/angev98 
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contrast between the two reduced form experiments is useful in thinking through issues 

of external validity. 

Next we discuss the choice of individual (micro) and context (macro) variables to 

be included in our analysis. In the absence of a well-defined theory for our specific 

context, the choice of individual level variables to explain effect heterogeneity is based 

on some theoretical notions based on related models and work (Angrist and Evans 1998; 

Ebenstein 2009). We use the education level of both the mother and the spouse, the age 

of the mother as well as the age at first marriage for the mother as our main individual 

level variables. For the case of context variables, the choice seems somewhat more 

difficult. One obvious candidate is a measure of female labor force participation as a 

broad measure of employment opportunities for women in a given country (Blau and 

Kahn, 2001). Since the choice of covariates is limited and imperfect, and the goal of our 

exercise is to achieve extrapolation and prediction, we include a number of macro 

variables that do not necessarily play a direct causal role in explaining fertility and labor 

supply decisions but rather have been shown to be important in explaining broad patterns 

of socio-economic outcomes across countries. The main variable is log GDP per capita, 

as a broad indicator of development, but also the legal origin of a country (La Porta et al., 

1998) and a measure of geography measured by latitude and longitude (Gallup, Mellinger 

and Sachs, 1998). To the extent that these variables pick up variation that we cannot 

measure directly it is useful to include them in the regression models. 

 Descriptive statistics for our 169 samples are provided in Table 1. On average 

60% of women have more than 2 children (Had more children), which is our main 

fertility outcome. Furthermore, 49% of women in our sample report being Economically 
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active, which is our main labor market outcome. Summary statistics for a number of 

additional individual level variables as well as country level indicators are also presented 

in Table 1 and they include the education of the woman and her spouse, age, age at first 

marriage, and log GDP per capita.  

 For our main empirical specification for each country-year sample, we examine 

the treatment effect of the Same-Sex indicator on two outcome variables (Had more 

children and Economically active), and control for age of mother, own education, and 

spouse’s education, subject to the sample restrictions discussed above. The country-year 

treatment effects are summarized in Appendix Table 1.  

 

5. Graphically characterizing heterogeneity 

To motivate our analysis, we start by providing a graphical characterization of the 

heterogeneity of the treatment effects in our data. Figure 1 is a funnel plot, which is a 

scatter plot of the treatment effect of Same-Sex on Had more children in our sample of 

142 country-year samples against the standard error of the treatment effect. The region 

within the dotted lines in the figure should contain 95% of the points in the absence of 

treatment-effect heterogeneity. Figure 1 clearly shows that there is substantial 

heterogeneity for this treatment effect that goes beyond what one would expect to see 

were it a homogenous treatment effect with mean-zero random variation. A similar, but 

less stark, picture arises in Figure 2, which presents the funnel plot of Same-Sex on 

Economically active in the 128 samples that have census information on this labor market 

outcome.  
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The next set of figures further investigates the heterogeneity of treatment effects. 

In particular, to the extent that Figures 1 and 2 document cross-country-year 

heterogeneity in the treatment effect, is any of it driven by heterogeneity in observable 

covariates? In Figures 3 and 4 we plot the size of the treatment effect of Same-Sex on 

Had more children (Figure 3) and Economically active (Figure 4) on the y-axis against 

the proportion of women with a completed secondary education based on data from 142 

census samples (on the x-axis). Figure 3 shows a positive linear relationship that suggests 

that the treatment effect is larger in countries with a higher proportion of educated 

mothers. The same figure also displays geographic heterogeneity by color-coding each 

point based on geographic region, which suggests small (or zero) effects in countries of 

Sub-Saharan Africa. The corresponding effects for Economically active in Figure 4 are 

suggestive of a negative relationship between the treatment effect size and the level of 

education in a country, without a strong geographical pattern. 

Finally, in Figures 5 and 6 we repeat the analysis from the previous two figures 

but instead we describe the heterogeneity with respect to log GDP per capita in a country. 

Figure 5 shows a striking linear pattern, suggesting the treatment effects of Same-Sex on 

Had more children increase with income per capita. Since the proportion of women with 

a secondary education and the log of GDP per capita are clearly correlated, it implies that 

Figures 3-6 are not informative of the relative importance of one covariate over another. 

Nonetheless, these graphs as well as the funnel plots presented earlier all provide 

suggestive evidence showing that there is substantive heterogeneity for both of our 

treatment effects.  
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6. Homogeneity tests 

The next step in our analysis is to quantify the heterogeneity described in the previous 

graphs. We start by presenting, in Table 2, the results of Q-tests for effect homogeneity, 

which quantify what is depicted in Figures 1 and 2 in terms of the heterogeneity in the 

observed effect sizes against what one would obtain as a result of sampling error if there 

were a homogenous effect. The resulting test statistics, which are tested against the Chi-

square distribution, are extremely large (and the resulting p-values are essentially zero) 

and confirm statistically the visual impression of treatment effect heterogeneity for both 

treatment effects from Figures 1 and 2. The results are similar when the unit of 

observation is the country-year-education group.  

Given that there is heterogeneity, for the second test we investigate if the effects 

are distributed in a manner that resemble a normal distribution. For this we have 

implemented an inverse-variance weighted Shapiro-Francia (wSF) test for normality of 

effect estimates. This test modifies the Shapiro-Francia test for normality (Royston 1993) 

by taking into account the fact that the country-year treatment effects are estimated with 

different levels of precision.  Our modification involves using an inverse-variance 

weighted correlation coefficient as the test statistic rather than the simple sample 

correlation coefficient. The test statistic is the squared correlation between the sample 

order statistics and the expected values of normal distribution order statistics. In our 

specific example, where the outcome is Had more children, we take the order sample 

values for our 142 country-year observations and look at the squared correlation between 

the ordered statistics from our sample and the expected ordered percentiles of the 

standard normal distribution. The results in Table 2 confirm that for both of our outcome 
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variables we can reject the hypothesis of normality (i.e. we can reject that the correlation 

is 1). This result is not surprising in light of the visual evidence presented in Figures 1 

and 2, which suggested that the distribution of our country-year effects is over-dispersed 

from what a normal distribution would look like. These findings are suggestive of over-

dispersion being driven by variation in covariates that are prognostic of the magnitude of 

the treatment effects.  

The rejection of homogeneity suggests the need to use available covariates to 

extrapolate to new contexts. In our example, the set of covariates is limited. At the micro 

level we have only the basic demographic characteristics included in the standardized 

IPUMS data.  The set of country-year covariates is larger, although for reasons discussed 

above we have little reason to believe that a more extensive set of country-year 

characteristics beyond basic development indicators and more specific indicators like 

female labor force participation would add much in terms of explanatory value.  We 

expect that such limits to available covariates would be typical of experimental evidence 

bases. With a limited set of covariates, using flexible and fairly agnostic methods for 

estimation best satisfies our goal of extrapolation with minimal prediction error.  In the 

applications that follow, we use flexibly specified regressions, although matching yields 

similar results7.  

 

7. Characterizing heterogeneity: unconditional external validity functions  

In this section we empirically characterize the unconditional external validity function. 

As discussed in Section 3, within each possible pair of target-comparison country-year 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7The number of available experiments limits the richness of the extrapolation model. In such cases, 
prediction may benefit from regularized methods such as the lasso, which we investigate in an appendix. 
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samples, we run separate regressions for Same-Sex=0 and 1 in the comparison country; 

the regressions include our main individual-level covariates (education, education of 

spouse, age of mother, year of census, and age at first marriage) as well as their 

interactions. We then predict what would have happened in the treatment and non-

treatment groups in the target country. For each target-comparison pair we observe the 

prediction error in the estimated treatment effect, where the prediction error is defined as 

the difference between the predicted treatment effect and the quasi-experimental 

treatment effect using the actual Same-Sex values within a target country. We perform 

this exercise for all the possible combinations of target-comparison country years, which 

produces close to 28,000 dyads of all possible pair-wise combinations of country and 

year. For each dyad, we record the prediction error and also the dyad-level differences in 

the covariates of interest, such as education, age, year of census, or GDP per capita. 

In this section, we characterize how prediction error changes with education 

levels, log GDP per capita and geographical distance, each considered individually (i.e. 

unconditionally, so for example prediction error arising from differences in education 

could be driven by correlated differences in GDP per capita). In order to do this, we run a 

local linear regression of prediction error at the dyad level on the covariate difference 

between the target and comparison countries associated with the prediction error.  

The unconditional external validity function estimates for education are presented 

in Figure 7. Three features are notable. Prediction error is approximately zero at zero 

education distance. Prediction error increases with increasing differences in education 

levels; for a one-point education difference (on a four point scale) bias increases by 

approximately 0.1 (relative to the world treatment effect of 0.04 in Figure 1). The figure 
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also plots the variance of the external validity function, which is relatively flat over the 

range of -1 to +1 educational differences, but increases considerably at greater 

differences.   

Figure 8 shows a similar pattern when we explore how the prediction error 

changes with GDP per capita. The error at zero GDP per capita distance is close to zero, 

and increases to about 0.1 for GDP per capita differences of $20,000. Unlike Figure 7, we 

note an increase in the variance of the error even for small increases in the GDP 

difference. In Figure 9 we focus on women's labor force participation differences and 

again we observe that any deviations in labor force participation distance are associated 

with higher prediction error. 

In Figure 10, we present external validity function estimates with respect to 

geographic distance, measured as the standardized distance in kilometers between the 

centroid of a target and comparison country (where a one standard deviation difference is 

approximately 4800 km). Geographic distance is presumed to proxy for various cultural, 

climactic, or other geographically clustered sources of variation in fertility.  Looking 

across all country-years, in Figure 10, panel a, we do not find a significant relationship 

between geographical distance and prediction error. Non-linear features of geographical 

distance, most notably oceans, complicate this relationship. To account for this, in Figure 

10, panel b, we present differences within contiguous regions (North and South America, 

Europe, Asia, and Africa). Again, we do not find any statistically significant relationship 

for distances less than 10,000 km. The estimated external validity function is positively 

sloped, so for distances in excess of approximately 10,000 km, there is a statistically 

significant increase in extrapolation error.  
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8. Characterizing heterogeneity: conditional prediction error regressions 

In this section we continue our characterization of heterogeneity using the dyadic 

prediction error regression approach outlined in Section 3 to evaluate how the prediction 

error changes with differences in a covariates of interest, controlling for other covariate 

differences. It is worth noting that our covariates of interest become country-year level 

averages, even if some of them, such as education or age, are constructed from census 

micro level variables.  

The results from this exercise are presented in Tables 3 and 4, where we 

standardize covariate differences. In order to interpret the coefficients it is useful to note 

that the standard deviation of the education variable is close to 1, for age it is about 3.5 

years, for census year it is 11 years, for log GDP per capita is about 10,000 dollars, and 

for distance it is about 4800 km.  

In columns 1-8 of Table 3, we run the prediction error regressions with only one 

covariate at a time, giving us essentially the unconditional prediction error. One can 

observe that most of our covariates (measured as the absolute differences between 

country pairs in education, education of spouse, year of census, log GDP per capita and 

labor force participation) are statistically significant.  

Maybe most interestingly, our prediction error regression framework allows us to 

include all covariates in the same regression in order to begin to run some meaningful 

“horse-races”. Three main conclusions could be drawn from the results from these 

regressions, which are in presented in Columns 9 and 10 of Table 3. First, given our 

sample sizes, many of our variables are statistically significant, although we note that log 
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GDP per capita loses its significance once the other controls are included. Second, the 

size of the prediction error is generally large given an average treatment effect in the 

sample of 0.04. Third, the actual magnitude of the prediction error generated by 

differences in these respective variables does not seem to be very different between micro 

and macro variables. For example in column 9 of Table 3, a one standard deviation 

difference in female labor force participation leads to an increase in absolute prediction 

error of about 0.024 in the effect of Same-Sex on Had more children. This effect is 

similar compared for example to the education of the mother, where a one standard 

deviation difference in education (which is essentially one educational category), creates 

an absolute prediction error of 0.03 in the effect of interest.  

The results in Table 4 for the effect of Same-Sex on Economically active show a 

similar picture. The age of the mother, log GDP per capita, geographic distance and labor 

force participation are important drivers of heterogeneity. Interestingly the education of 

the mother and spouse are not important explanatory variables.  

In columns 9 and 10 of Tables 3 and 4 it is noteworthy that differences in the sex 

ratio imbalance (which is the difference in the proportion of two boys vs. two girls among 

the first two children and is our proxy for the importance of gender prediction error at the 

country level) is not a significant predictor of prediction error. This suggests that, even if 

sex selection in the gender of the first two children remains a concern, it nonetheless is 

not a driver of prediction error at the country-year level. In column 11 of Tables 3 and 4 

we repeat the same analysis as in column 10 but drop sex-selecting countries from the 

analysis and note that the results are virtually unchanged when we perform this 
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robustness check (with one unexpected exception: the sex imbalance variable becomes 

significant in Table 4, column 11).  

While the results in Tables 3 and 4 allow us to compare the simultaneous 

importance of a range of covariates difference on prediction error, they do not allow us to 

judge the importance of micro vs. country-level covariates. Since dyads are formed at the 

country level, micro-level covariates differences are aggregated to that level. In order to 

get at this issue, we perform the following exercise for each country-year sample. We 

take a given country-year as the target country, and the other 165 countries are treated as 

experimental sites.  In the 165 experimental sites, we run a separate regression for the 

treated and the control observations, and we use these to predict the treatment and the 

control outcomes and the treatment effect in the target site. We consider four cases in 

terms of possible sets of regressors: (1) one without any covariates, which recovers the 

unadjusted estimates; (2) the individual micro covariates including age of the mother, a 

set of dummies on mother’s educational attainment, a set of dummies on the education of 

the spouse, age at first marriage, as well as all the possible interactions of these 

individual-level variables; (3) macro covariates consisting of log GDP per capita, labor 

force participation, dummies for British and French legal origin, as well as a variables for 

the latitude and longitude of a country; and (4) the combined covariates that consist of the 

union of micro (group 2) and macro variables (group 3).  

We use the difference between the actual treatment effect and the predicted 

treatment effect to generate the prediction error.  This exercise generates 166 data points 

for each of the four covariate sets, which we plot for the case of Had more children in 

Figure 11 and for Economically active in Figure 12. The four groups are unadjusted 
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(blue), micro variables only (red), macro variables only (green), and micro and macro 

variables together (gold). In panel A of each figure, we plot the density estimates of these 

prediction errors, while in panel B we plot the CDFs of the absolute prediction error.  

Looking at Figure 11, we observe that in the case of Had more children, both 

micro and macro variables are doing fairly well in terms of pushing prediction error 

towards zero. In panel B of the same figure where we plot the CDFs of the absolute 

prediction error, one can see that any set of covariates dominates the scenario of no 

covariates. At the same time, using both the micro and macro variables increase the mass 

of the distribution at lower levels of bias, although also pushes out the tails.  The results 

in Figure 12, which use Economically active as the outcome variable of interest, provide 

a rather different picture. In this case, micro variables do not seem useful in terms of 

reducing the prediction error, a finding that is in line with the arguments provided in 

Pritchet and Sandefur (2013). But equally remarkable is how well macro variables do in 

terms of reducing prediction error. The implication of these results, at least for the case of 

explaining variation in Economically active, is that a set of easily available cross country 

variables has the potential to be useful in analyzing of external validity.  

 Overall, our results suggest that both micro and macro level covariates are 

important drivers of prediction error, although the relative importance depends on the 

outcome of interest that is studied.  

 

9. The accumulation of evidence and prediction error 

Our results so far imply that while our covariates have some predictive power in 

explaining treatment effect heterogeneity, the magnitude of the prediction error remains 
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considerable. As a result we continue our analysis with an attempt to understand if and 

how the accumulation of experiments over time improves our ability to extrapolate to 

new settings.  

In Figure 13, we fit the model for the effect of Same-Sex on Had more children 

from Section 8 and Table 3 column 10 on the sample of country-year dyads available at 

each point in time, and then estimate the model’s prediction error for those country-years 

dyads. As an example, we take all the census country-year dyads available by 1980; fit 

the model to these dyads; and then estimate the treatment effect prediction error for this 

sample. In Figure 13, we plot the resulting average prediction error values over time. The 

pattern clearly shows that as we add more data to the model over time, our predictions 

have smaller average prediction error and eventually get closer to zero. The second 

striking pattern on the graph can be seen looking at the two standard deviation bounds of 

the average prediction error over time: our predictions not only have smaller prediction 

error but they also become more precise. The corresponding analysis for the effect of 

Same-Sex on Economically active is presented in Figure 14 and shows broadly consistent 

patterns with those described in Figure 13.  

The results so far imply that as we accumulate more experiments over time our 

ability to fit prediction error models from experiments to external environments 

improves. At the same time, Figures 13 and 14, depict in-sample predictive accuracy or 

model fit, and not an out-of-sample test of the accuracy of the model’s predictions. This 

is examined in Figures 15 and 16. 

For the target country-year samples in a given year on the x-axis (e.g., the U.S. in 

1980), we measure the prediction error from estimating the treatment effect for those 
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country-years using four different groups of country-year comparisons selected from 

country-years available up to that point in time (e.g., continuing the example, country-

year samples up to 1980, other than the U.S. in 1980). The four groups of comparison 

countries are: (1) all available country years (graphed as the red line); (2) the best 

comparison country-year as selected by our model (graphed as the blue line), where the 

prediction error model used to select the best comparison is fit using data from prior 

years (so in our example, estimated on data available prior to 1980); (3) the nearest 

country-year by geographical distance excluding own-country comparisons (graphed as 

the orange line); and (4) the nearest country-year by geographic distance, allowing own-

country comparisons (graphed as the green line). 

A number of interesting patterns arise from this exercise. First, the comparison of 

the first two groups of comparison countries (all available country-years in red versus the 

best comparison selected by the model in blue) confirms that when using our model we 

get much lower prediction error compared to using all the samples available. Second, the 

pattern over time of prediction error from using the best model-selected comparison 

country-year shows that the accumulation of more samples plays a modest but 

meaningful role in reducing the prediction error. Modest in the sense that the prediction 

error from the best comparison country-year suggested by the model hovers between 0.08 

and -0.05, suggesting that the model is reasonably accurate in making predictions even 

with a limited number of available samples, at least for this particular setting. But also 

meaningful in the sense that the prediction error tightens considerably (ranging between 

0.02 and -0.03) from 1985 onward.  
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Finally, and more speculatively, we are interested in how some simple rule-of-

thumb selection criteria perform. We start with the fourth comparison group that contains 

the nearest country in geographic distance (and can include the country itself from a prior 

time period). The prediction error is initially negative and becomes smaller over time, 

suggesting that with the addition of more experiments, the rule of thumb starts to perform 

well, likely because the geographically nearest match tends to be quite similar. In 

contrast, and somewhat surprisingly, the third comparison group that contains the nearest 

country-year by geographic distance but excludes own-country comparisons performs 

well over the entire period and arguably as well as our model-based approach.  

We would argue that this result illustrates the risks of rules of thumb compared to 

a model based approach. A priori, allowing own-country comparisons seems intuitive, 

but own country comparisons are usually at least 10 years apart and our model easily 

accommodates the optimal balance between these competing factors. This is underlined 

in looking at Figure 16, where the model outperforms both rules of thumb when the 

available comparison samples are sparse.8 

 

10. Applications 

In this section we consider two applications of the framework we have presented. While 

the natural experiment we have examined, the effect of Same-sex on fertility, clearly is 

not a intervention that could or would be implemented by a policy maker, as a thought 

experiment we treat it as such, and examine how our framework would be used to address 

two questions a policy maker could face:  (1) where to locate an experiment to minimize 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 In Figures 17 and 18 we repeat the analysis presented in Figures 15 and 16, but we drop the countries in 
our sample (China, India, Nepal, and Vietnam) that display sex selection at birth. The broad patterns are 
remarkably similar.   
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average prediction error over a set of target sites, and (2) when to rely on extrapolation 

from an existing experimental evidence base rather than running a new experiment in a 

target site of interest. 

 

10.1 Where to locate an experiment 

Imagine a policy researcher interested in the effect of an intervention around the world, 

but with limited resources to implement a randomized controlled trial. In this section we 

examine what the estimated external validity function implies for the best location of an 

experimental site. In particular, which site has the lowest mean squared prediction error 

for the treatment effect in other sites? And given the first choice, where would one locate 

a second experimental site?  

 At the country-year level, our estimates of the unconditional external validity 

function imply that a country with lowest average covariate distance to other country-

years should be the best predictor. The question then is determining how appropriately to 

weight different covariates. With knowledge of the conditional external validity function 

in Tables 3 and 4 one would weight each covariate by its conditional importance for 

external validity, or more directly one could also weight each covariate by its conditional 

influence on the country-year treatment effect. In Figure 19, we consider the exercise of 

using each country-year to predict the other country-years in our sample, where the x-axis 

plots each country-year by the percentile of its composite covariate, i.e., the sum of 

covariates weighted by their conditional predictive relevance for the treatment effect, and 

where the y-axis plots the associated mean error from predicting the treatment effect for 
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other country-years. We see immediately that the lowest average prediction error is 

indeed at the median, which turns out to be the United States in 1980. 

 The challenge in thinking of this prescriptively is that a policy maker will 

presumably not know the conditional importance of each covariate for external validity 

without first running the full set of experiments. In Figure 20, we consider an alternative 

that does not rely on knowledge of the treatment effect; namely, we compute the average 

Mahalanobis distance between each country-year and the other country-years. The figure 

plots average prediction error against average distance of a country-year from other 

country-years. Again, it is evident that the country-year with the lowest average distance 

to other country-years offers the lowest prediction error of the treatment effect; the 

relationship is also monotonic. 

 Carrying the thought experiment further, in Figures 21 and 22 we consider adding 

a second country-year, conditional on the first choice. Again, the lowest prediction error 

is associated with country-years that are in the middle of the covariate distribution or that 

have the lowest average covariate distance to other country-years, which in this case turns 

out to be Chile in 1982. 

 As one carries the thought experiment yet further, however, it is less evident that 

one would continue to select sites in the middle of the covariate space. For example, one 

could imagine the value of adding sites in the tails of the covariate distribution to more 

precisely estimate non-linearities. One could also imagine the value of including large, 

heterogenous country-years that are useful in predicting the treatment effect in a broad 

range of countries. 
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10.2 To experiment or to extrapolate? 

We consider a situation where a policy maker wants to make an evidence-based policy 

decision of whether or not to implement a program.  The policy maker has a choice 

between using the existing evidence base versus generating new evidence by carrying out 

an experiment in the target context.  That being the case, the choice is really between 

whether the existing evidence base can provide a reliable enough estimate of what would 

be found from the new experiment, thus making the new experiment unnecessary.  One 

might imagine different ways to characterize the loss function governing this decision.  

We develop an approach based on the assumption that a new experiment is only 

worthwhile if the existing evidence base is sufficiently ambiguous about the potential 

effects of the treatment in the target context. 

 Let the target context be characterized by an 𝑁!×𝐾 coefficient matrix, 𝑊!, that 

includes 𝐾 subject- and context-level attributes for 𝑁! subjects.9  We assume that the 

policy maker will decide that the existing evidence is sufficient to determine policy if a 

95% prediction interval surrounding the conditional mean prediction at 𝑋! is entirely on 

one or another side of some critical threshold, 𝑐∗. We also assume that the experiment 

that the policy maker could run in the target context is adequately well powered that she 

would find it worthwhile to run the experiment if the existing evidence is ambiguous.  For 

this analysis, we simply assert a decision based on 𝑐∗ and a 95% prediction interval. 

Figure 23 illustrates the decision problem graphically.  If the predictive interval 

resembles either of the solid-line distributions, then the evidence is certain enough to rule 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9 Alternative we could characterize the target context in terms of a joint distribution 𝐹! over the 𝐾 
dimensional covariate space.  Thinking in terms of a finite number of subjects simplifies the exposition. 
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out the need for an experiment.  If the interval resembles either of the dashed line 

distributions, then the existing evidence is too vague and a new experiment is warranted. 

This is a reduced-form characterization of any number of more fully-fledged 

analyses. A fully Bayesian decision analysis under a Normal model could begin with the 

premise that the policy maker implements the program if the posterior distribution for the 

program effect provides a specified degree of certainty that the effect will be above some 

minimal desirable effect value.  Then, 𝑐∗ and the relevant prediction interval could be 

defined as a function of the minimum desirable effect value, the level of certainty 

required, posterior variance, and the moments of the predictive distribution. With 𝑐∗ and 

the relevant prediction interval defined, the analysis would otherwise proceed as we 

describe here. 

For a covariate matrix 𝑊 recall that in expression (3) we defined a conditional 

effect estimate, 𝜏 𝑊 .  We consider this relative to the 𝑐-th draw from the effect 

distribution, 𝜏!.  Recall that for 𝜏!, the external validity function defines the prediction 

error as 

 

𝜖! 𝑊 = 𝜏 𝑊 − 𝜏! . 

 

At a given location in the covariate space, 𝑊, we have a distribution of effects, 𝜏, and so 

a distribution of prediction errors, 𝜖, given the effect estimate, 𝜏(𝑊).  Assume 

𝐶𝑜𝑣 𝜏 𝑊 , 𝜖 𝑊 𝑊 = 0.  For 𝑊 =𝑊!, we have, 

 

𝑉𝑎𝑟 𝜏 𝑊 =𝑊! =   𝑉𝑎𝑟 𝜏 𝑊 |𝑊 =𝑊!]+   𝑉𝑎𝑟[𝜖 𝑊 |𝑊 =𝑊! .  
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The first term on the right measures the estimation error given the existing evidence base, 

while the second measures the intrinsic variation in effects at 𝑊 =𝑊! regardless of the 

evidence base.  We will work under an assumption that  

 

𝜏|𝑊~𝑁 𝜇 𝑊 ,𝜎! 𝑊 , 

 

which is a substantive restriction that allows us to establish a reference distribution for 

constructing the prediction interval.  This is a restriction that ought to be tested in any 

applied setting; whether it is satisfied will depend in part on how one defines 𝑊.10  Then, 

the solution to the decision problem is to experiment if 

𝜏 𝑊! − 𝑡!.!"# 𝑉𝑎𝑟[𝜏|𝑊 =𝑊!] < 𝑐∗ < 𝜏 𝑊! + 𝑡!.!"# 𝑉𝑎𝑟[𝜏|𝑊 =𝑊!] 

and to accept the existing evidence otherwise, where 𝑡.!"# is the appropriate .025 quantile 

value for our approximation of the normalized conditional distribution of 𝜏.  These upper 

and lower bounds correspond to the upper and lower bounds of the 95% prediction 

interval for 𝜏!. 

 To implement these ideas, we use a flexible regression-based approach. We use 

OLS to fit a regression specified as follows, 

 

  𝑦!" = 𝛼 + 𝜏𝑇!" +𝑊!"
!′𝛽 + 𝜖!" , 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 A more flexible approach would be to use a sieve-type estimator that uses normality as a starting point 
but then allows for departures from normality based on the data.  However, for such an estimator to make a 
difference one would need more data on effect sizes than is typically available. 
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where 𝑖 indexes individuals in experiments indexed by 𝑐, and the covariate vector 𝑊!"
!  

contains a series of individual and context-level covariates centered on the means of the 

covariates as they appear in 𝑊! as well as interactions between these centered covariates 

and the treatment indicator, 𝑇!".11 The OLS estimate for 𝜏 provides our estimate of 𝜏 𝑊!  

and a cluster robust variance estimator (clustering by experiment) provides an 

asymptotically conservative approximation to 𝑉𝑎𝑟[𝜏(𝑊)|𝑊 =𝑊!] under random 

selection of experimental contexts and random assignment within the experiments 

(Abadie et al., 2014; Lin, 2013).  To estimate 𝑉𝑎𝑟[𝜖 𝑊 |𝑊 =𝑊!], we first generate 

𝜏 𝑊!  estimates for all experiments in our reference sample, indexed by 𝑐.  We also 

extract unbiased experimental estimates for each these contexts, 𝜏! for all 𝑐.  We then 

obtain 

 

𝜖! = 𝜏! − 𝜏 𝑊!  

 

for all 𝑐.  We use OLS to fit a regression specified as 

 

log 𝜖!! = 𝜃 +𝑊!!′𝛾 + 𝜈! 

 

where 𝑊!! is contains a series of covariate means centered on the means for the target 

context defined by 𝑊!.12  We take exp 𝜃  as our estimate for 𝑉𝑎𝑟[𝜖 𝑊 |𝑊 =𝑊!], with 

𝜃 being the OLS estimate for 𝜃.  This estimate will tend to be conservative 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
11 With dummy variable covariates and a saturated specification, this centered interaction model yields an 
estimate of 𝜏 𝑋!  that is algebraically equivalent to a matching estimator (Angrist and Pischke, 2009). 
12 A richer specification could consider other moments of the covariates in 𝑋!. 
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for  𝑉𝑎𝑟[𝜖 𝑊 |𝑊 =𝑊!], because exp 𝜃  is generated off of the 𝜏 values rather than the 

actual  𝜏 values. 

Finally, we use the 0.025 critical value for the standard normal distribution in 

place of 𝑡!.!"#; this will tend to understate the prediction dispersion in finite samples and 

therefore biases the analysis against running a new experiment.  A more conservative 

approximation could be used to shift the bias in favor of a new experiment.  

Table 5 shows the results of applying this approach to 79 of the country-year 

samples.  These 79 samples were chosen because we were able to obtain country-year 

covariates data for them from the Penn World Tables, measuring population density, log 

real GDP/per capita, government spending share of real GDP/capita, ethnic 

fractionalization, female labor force participation rate, and year.  These 79 samples were 

also recent enough such that there were enough pre-existing reference samples that allow 

for sufficient degrees of freedom to fit predictive models with the six country-year 

covariates (in addition to the micro-level covariates).  Table 5 shows the estimated 

prediction intervals for the 79 cases as well as the actual in-sample estimates (from 

Appendix Table 1).  We generated the prediction intervals using one-percent extracts 

from each of the country-year samples, rather than the entire sample, to facilitate 

computation.13  The coverage rate for the nominal 95% prediction intervals is 93.7%, 

suggesting reasonable calibration.   

Table 5 shows that intervals tend to shrink in size as the years move forward, but 

only when we have a rather large number of samples would we expect that decision 

makers begin to rely on the existing evidence base.  For targets during the 1970s and 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
13 For each prediction interval estimate, it is necessary to obtain not only an extrapolation estimate for the 
target country-year, but also to produce leave-one-out extrapolation for all reference country-years in order 
to properly model the conditional prediction error distribution. 
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1980s (22 target cases, drawing from a reference set of 19 samples starting in 1974 to 42 

by 1989), the interval width was on average about 0.303. This is an order of magnitude 

larger than the underlying effect sizes. By the 1999, the number of reference cases 

reaches 72, and during the 1990s, the interval width averages 0.170.  By the time we get 

to the 2000s, with between 80 to 100 reference cases available, the average interval width 

is 0.131.  At the same time, interval widths do not tighten uniformly over time.  Although 

the reference base grows richer as years move forward, it is also possible that a given 

country-year sample moves out to a sparsely covered area of the covariate distribution.  

The latter phenomenon would lead to wider prediction intervals, despite the availability 

of more reference cases.  

 

11. Conclusion  

This paper has examined whether, in the context of a specific natural experiment and a 

data context, it is possible to reach externally valid conclusions regarding a target 

country-year of interest using the available experimental evidence. We view this paper as 

having made six contributions to the literature. First, we provide and implement a simple 

framework to consider external validity. Second, we come up with a context in which it is 

possible, and meaningful, to ask and potentially to answer questions of external validity. 

While experiments are run globally, to our knowledge there is no one experiment that has 

been in run in as many countries, years, and geographical settings as the Same-Sex natural 

experiment. While it has challenges as a natural experiment, we view our exercise as a 

possibility result: is external validity – notwithstanding the challenges – possible? Third, 

using both parametric and non-parametric techniques, we present external validity 
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function results that directly answer the central question of external validity, namely the 

extent to which valid conclusions about a target context of interest can be drawn from the 

available experimental data. Fourth, we show that given the accumulation of sufficient 

experimental evidence it is possible to draw externally valid conclusions from our 

experimental evidence, but the ability to do so is meaningfully improved (over rule of 

thumb alternatives) by the modeling approach we adopt. Fifth, we show that prediction 

error can in general depend on both individual and context covariates, although in one of 

our applications (the effect of Same-sex on labor supply) only the latter reduced 

prediction error. Finally, we considered two applications for our approach, showing that 

experiments located near the middle of the covariate distribution tend to provide the most 

robust external predictions and that in some contexts it is possible that a policy maker 

may choose to extrapolate the treatment effect from an existing experimental evidence 

base rather than run a new experiment. 

 While our conclusions are cautiously optimistic, it is essential to underline the 

deductive nature of our exercise. Given the importance of the question and paucity of 

evidence, we believe even a single attempt to assess the external validity of experimental 

evidence is valuable, despite its flaws and limitations. A better understanding of our 

ability to learn from the rapidly accumulating experimental evidence base and to answer 

key policy and economic questions of interest will require further extensions and 

replications of the exercise we have begun here. 
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Appendix  

A1. Characterizing heterogeneity via the interaction function: the Mundlak 
estimator and lasso regression 
 

We characterize treatment effect heterogeneity with regressions that include individual 

(micro) level and country (macro) level predictors of heterogeneity. We use the Mundlak 

estimator, originally proposed by Mundlak (1978), and for our case, we include the 

country-year level means as well as the deviations from these means within country-year. 

The advantage of this approach is that the resulting coefficients on these micro level 

deviations from the means are the same as what one would obtain from a regression of 

the same micro level variables that includes country-year fixed effects. In addition, the 

coefficients on country-year level means account for the between country-year 

heterogeneity associated with those variables. Thus, it provides a direct way to evaluate 

the importance of micro versus macro level variation and their relative contribution to 

heterogeneity.  

As an example, if one were to end up with significant coefficients on only the 

micro level variables but not on the country level means, it would suggest that within a 

country, this micro level variation matters. But once one has accounted for that variation, 

there is nothing more to be said about between country variation beyond that. On the 

other hand if one were to still get significance on any of the country level means, it would 

imply that there is a country level moderating effect of differences in the individual 

profiles of the population.  

We explore the results in Table A2.  The first set of variables, which are at an 

individual level of aggregation, capture the micro-level variation, such as age and 
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education of the mother and her spouse. Next, there are a number of variables, which are 

at the country-year level of aggregation, that capture between-country heterogeneity. 

Finally, the last group of variables, which are at the country level of aggregation, capture 

country-level variables that are time invariant, such as the level of ethnic fractionalization 

or continent indicators. 

We implement a partial regression approach. More precisely we partial out all of 

the un-interacted covariates from terms that interact the treatment variable with the 

various covariates and from the outcome, and then we run the regression of those partial 

outcomes and partial interaction terms in order to obtain these moderator effects. As a 

result of this partial regression approach, the coefficients in Table A2 capture the 

interaction between the treatment effect and the variables, i.e., are showing us what 

variables explain treatment effect heterogeneity. 

The size and significance of the coefficients in Table A2 allow us to describe the 

drivers of heterogeneity. One can observe that education of the mother and the spouse, 

the continent fixed effects as well as the level of GDP per capita are large and statistically 

significant. Some of the other variables, including the decade fixed effects or the age of 

the mother are more marginal in terms of their significance. In contrast, when we instead 

focus on the effect of Same-Sex on Being economically active, we generally find that our 

covariates are not able to explain the heterogeneity in treatment effects.  

As a next step, we fit a lasso regression (Tibshirani 1996; see also Hastie et al., 

2009) to the same partial regression specification in order to rank these interaction terms 

in terms of the extent to which they explain heterogeneity. The lasso estimates a linear 

regression under an imposed constraint that the sum of the absolute value of the 
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regression coefficients is less than or equal to a penalty parameter. Imposing this penalty 

on standardized variables creates a non-subjective criterion to determine the relative 

economic significance of coefficients, and in particular forces less significant coefficients 

to zero. Given our sample size, this is useful since most coefficients in a fully interacted 

model will tend to pass standard tests of statistical significance. We use the least-angle 

regression algorithm (Efron et al. 2004) to trace the solution path to fitting the lasso. This 

allows us to see which variables are successively included as we progressively relax the 

penalty.  

The results in Tables A3 and A4 show a number of interesting patterns. As a start, 

if one wanted a model of just one variable to account for the treatment effect 

heterogeneity for the Had more children outcome, that variable would be log GDP per 

capita. Further, after having accounted for log GDP per capita, if one wanted to add one 

more variable it would be the country-year level mean of mothers’ ages. Table A3 traces 

out the entire solution path; in other words, the procedure ranks the variables in terms of 

their contribution to the predictive accuracy when accounting for the heterogeneity.  The 

third variable to enter is the country-year level average of mothers’ education (an 

indicator for secondary education). Other variables to enter in successive steps include 

region dummies and then, finally at the individual level, spouse’s education.  Table A4 

shows the same for the Economically active outcome.  Again, we find that country-year 

and country-level variation tends initially to contribute most to predictive accuracy.  In 

this case, the first few variables to enter include country-year mean education of spouses 

and mean mothers’ age followed by region dummies.  However, as anticipated by the 

regression results in Table A2, the inclusion of these variables, while doing the most to 
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boost predictive accuracy, only explain a negligible share of treatment effect 

heterogeneity as indicated by the extremely low R-squared values, which characterize 

variance explained in outcomes that have been residualized against the non-interaction 

terms. 

In conclusion, the analysis in this appendix suggests that at least in the context of 

our application, a number of macro level contextual factors, such as log GDP per capita, 

country-year and country-level mean education and age, and the region indicators as well 

as individual-level education and age variables are important drivers of treatment effect 

heterogeneity.  

 



Figure 1: Funnel Plot of Same-Sex and Having more children

Notes:'The'funnel'plot'in'this'figure'is'based'on'data'from'142'census'samples.'Source:'Authors''calculations'
based'on'data'from'the'Integrated)Public)Use)Microdata)Series>International)(IPUMS6I).
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Figure 2: Funnel Plot of Same-Sex and Being economically active

Notes:'The'funnel'plot'in'this'figure'is'based'on'data'from'128'census'samples.'Source:'Authors''calculations'
based'on'data'from'the'Integrated)Public)Use)Microdata)Series>International)(IPUMS6I).
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Notes:'The'graph'plots'the'size'of'the'treatment'effect'of)Same6Sex'on'Having)more)children'by'the'proportion'
of'women'with'a'completed'secondary'education'based'on'data'from'142'census'samples.'The'graph'also'
displays'heterogeneity'by'geographic'region.'Source:'Authors''calculations'based'on'data'from'the'Integrated)
Public)Use)Microdata)Series>International)(IPUMS6I).

Figure 3: Treatment effect heterogeneity of Same-Sex on Having more children by 
the proportion of women with a completed secondary education.
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Notes:'The'graph'plots'the'size'of'the'treatment'effect'of)Same6Sex'on'Being)economically)active'by'the'
proportion'of'women'with'a'completed'secondary'education'based'on'data'from'142'census'samples.'The'
graph'also'displays'heterogeneity'by'geographic'region.'Source:'Authors''calculations'based'on'data'from'the'
Integrated)Public)Use)Microdata)Series>International)(IPUMS6I).

Figure 4: Treatment effect heterogeneity of Same-Sex on Being economically 
active by the proportion of women with a completed secondary education.
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Notes:'The'graph'plots'the'size'of'the'treatment'effect'of)Same6Sex'on'Having)more)children'by'log'GDP'per'
capita'based'on'data'from'142'census'samples.'The'graph'also'displays'heterogeneity'by'geographic'region.'
Source:'Authors''calculations'based'on'data'from'the'Integrated)Public)Use)Microdata)Series>International)
(IPUMS6I).

Figure 5: Treatment effect heterogeneity of Same-Sex on Having more children by 
log GDP per capita
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Notes:'The'graph'plots'the'size'of'the'treatment'effect'of)Same6Sex'on'Being)economically)active'by'log'GDP'
per'capita'based'on'data'from'142'census'samples.'The'graph'also'displays'heterogeneity'by'geographic'region.'
Source:'Authors''calculations'based'on'data'from'the'Integrated)Public)Use)Microdata)Series>International)
(IPUMS6I).

Figure 6: Treatment effect heterogeneity of Same-Sex on Being economically 
active by log GDP per capita
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Figure 7: Unconditional external validity function: local linear regression of 
prediction error on standardized differences in education

Notes:	  The	  graph	  plots	  the	  local	  polynomial	  regression	  of	  the	  dyadic	  prediction	  error	  and	  its	  standard	  	  against	  
the	  standarized	  education	  difference	  between	  target	  and	  comparison	  country,	  where	  the	  education	  difference	  
is	  standardized	  by	  its	  standard	  deviation	  (0.83).	  	  The	  variables	  are	  further	  described	  in	  Table	  1.	  	  	  Source:	  
Authors'	  calculations	  based	  on	  data	  from	  the	  Integrated	  Public	  Use	  Microdata	  Series-‐International	  (IPUMS-‐I).
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Figure 8: Unconditional external validity function: local linear regression of 
prediction error on standardized differences in log GDP per capita

Notes:	  The	  graph	  plots	  the	  local	  polynomial	  regression	  of	  the	  dyadic	  prediction	  error	  and	  its	  standard	  against	  
the	  stanardized	  GDP	  difference	  between	  target	  and	  comparison	  country,	  where	  the	  GDP	  difference	  is	  
standardized	  by	  its	  standard	  deviation	  ($9680).	  	  The	  variables	  are	  further	  described	  in	  Table	  1.	  	  	  Source:	  
Authors'	  calculations	  based	  on	  data	  from	  the	  Integrated	  Public	  Use	  Microdata	  Series-‐International	  (IPUMS-‐I).
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Figure 9: Unconditional external validity function: local linear regression of 
prediction error on standardized differences in women's labor force participation

Notes:	  	  The	  graph	  plots	  the	  local	  polynomial	  regression	  of	  the	  dyadic	  prediction	  error	  and	  its	  standard	  	  against	  
the	  standardized	  labor	  force	  particiaption	  difference	  between	  target	  and	  comparison	  country,	  where	  the	  labor	  
force	  participation	  difference	  is	  standardized	  by	  its	  standard	  deviation	  (0.21).	  	  The	  variables	  are	  further	  
described	  in	  Table	  1.	  	  	  Source:	  Authors'	  calculations	  based	  on	  data	  from	  the	  Integrated	  Public	  Use	  Microdata	  
Series-‐International	  (IPUMS-‐I).
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Panel	  B:	  All	  within-‐region	  country-‐year	  dyads

Figure 10a: Unconditional external validity function: local linear regression of 
prediction error on standardized geographical distance

Notes:	  	  The	  graph	  plots	  the	  local	  polynomial	  regression	  of	  the	  dyadic	  prediction	  error	  and	  its	  standard	  against	  
the	  standardized	  geographical	  distancebetween	  target	  and	  comparison	  country,	  where	  the	  geographical	  
distance	  is	  standardized	  by	  its	  standard	  deviation	  (4800	  km).	  	  The	  variables	  are	  further	  described	  in	  Table	  1.	  	  	  
Source:	  Authors'	  calculations	  based	  on	  data	  from	  the	  Integrated	  Public	  Use	  Microdata	  Series-‐International	  
(IPUMS-‐I).

Notes:	  	  The	  graph	  plots	  the	  local	  polynomial	  regression	  of	  the	  dyadic	  prediction	  error	  and	  its	  standard	  	  against	  
the	  standardized	  geographical	  distance	  between	  target	  and	  comparison	  country,	  for	  within-‐region	  dyads	  
(where	  regions	  defined	  as	  North	  and	  South	  America,	  Europe,	  Asia,	  and	  Africa)	  and	  with	  the	  geographical	  
distance	  is	  standardized	  by	  its	  standard	  deviation	  (4800	  km).	  	  The	  variables	  are	  further	  described	  in	  Table	  1.	  	  	  
Source:	  Authors'	  calculations	  based	  on	  data	  from	  the	  Integrated	  Public	  Use	  Microdata	  Series-‐International	  
(IPUMS-‐I).

Panel	  A:	  All	  country-‐year	  dyads
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Panel A: Density estimate - prediction error

Panel B: CDF - absolute prediction error

Figure 11: Individual versus macro covariates for Having more children

Notes:'The'graph'plots'the'density'estmates'of'the'prediction'error'and'CDF'of'the'absolute'prediction'error'
based'on'the'procedure'described'in'Section'9'of'the'paper.''Source:'Authors''calculations'based'on'data'from'
the'Integrated'Public'Use'Microdata'SeriesKInternational'(IPUMSKI).
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Panel A: Density estimate - prediction error 

Panel B: CDF - absolute prediction error 

Figure 12: Individual versus macro covariates for Being economically active

Notes:'The'graph'plots'the'density'estmates'of'the'prediction'error'and'CDF'of'the'absoluteprediction'error'
based'on'the'procedure'described'in'Section'9'of'the'paper.''Source:'Authors''calculations'based'on'data'from'
the'Integrated'Public'Use'Microdata'SeriesKInternational'(IPUMSKI).
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Figure 13: Prediction error over time of Same-Sex on Having more children

Notes:'The'graph'plots'the'prediction'error'over'time'based'on'the'procedure'described'in'section'10'of'the'
paper.'The'variable'on'the'X<axis'refers'to'the'year'when'a'census'was'taken.'The'variables'are'further'
described'in'Table'1.'''Source:'Authors''calculations'based'on'data'from'the'Integrated)Public)Use)Microdata)
Series<International)(IPUMS6I).



Figure 14: Prediction error over time of Same-Sex on Being economically active

Notes:'The'graph'plots'the'prediction'error'over'time'based'on'the'procedure'described'in'Section'10'of'the'
paper.'The'variable'on'the'X=axis'refers'to'the'year'when'a'census'was'taken.'The'variables'are'further'
described'in'Table'1.'''Source:'Authors''calculations'based'on'data'from'the'Integrated'Public'Use'Microdata'
Series=International'(IPUMS=I).
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Figure 15: Prediction error with different comparison groups of Same-Sex on 
Having more children

Notes:'The'graph'plots'the'prediction'error'over'time'based'on'the'procedure'described'in'Section'10'of'the'
paper.'These'four'groups'of'comparison'countries'are:'(1)'all'the'available'country'years,'(graphed'as'the'red'
line),'(2)'the'best'comparison'country<year'as'predicted'by'our'model'(graphed'as'the'blue'line),'(3)'the'nearest'
country<year'by'distance'excluding'own<country'comparisons'(graphed'orange'line),'and'(4)'the'nearest'
country<year'by'distance,'allowing'own<country'year'comparisons.'The'variable'on'the'X<axis'refers'to'the'year'
when'a'census'was'taken.'The'variables'are'further'described'in'Table'1.'''Source:'Authors''calculations'based'
on'data'from'the'Integrated)Public)Use)Microdata)Series<International)(IPUMS6I).
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Figure 16: Prediction error with different comparison groups of Same-Sex on 
Being economically active

Notes:'The'graph'plots'the'prediction'error'over'time'based'on'the'procedure'described'in'Section'10'of'the'
paper.'These'four'groups'of'comparison'countries'are:'(1)'all'the'available'country'years,'(graphed'as'the'red'
line),'(2)'the'best'comparison'country<year'as'predicted'by'our'model'(graphed'as'the'blue'line),'(3)'the'nearest'
country<year'by'distance'excluding'own<country'comparisons'(graphed'orange'line),'and'(4)'the'nearest'
country<year'by'distance,'allowing'own<country'year'comparisons.'The'variable'on'the'X<axis'refers'to'the'year'
when'a'census'was'taken.'The'variables'are'further'described'in'Table'1.'''Source:'Authors''calculations'based'
on'data'from'the'Integrated'Public'Use'Microdata'Series<International'(IPUMS<I).
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Figure 17: Prediction error with different comparison groups of Same-Sex on 
Having more children, excluding sex-selecting countries

Notes:'China,'India,'Nepal,'and'Vietnam'are'excluded'from'the'analysis.'The'graph'plots'the'prediction'error'
over'time'based'on'the'procedure'described'in'Section'10'of'the'paper.'These'four'groups'of'comparison'
countries'are:'(1)'all'the'available'country'years,'(graphed'as'the'red'line),'(2)'the'best'comparison'country<year'
as'predicted'by'our'model'(graphed'as'the'blue'line),'(3)'the'nearest'country<year'by'distance'excluding'own<
country'comparisons'(graphed'orange'line),'and'(4)'the'nearest'country<year'by'distance,'allowing'own<country'
year'comparisons.'The'variable'on'the'X<axis'refers'to'the'year'when'a'census'was'taken.'The'variables'are'
further'described'in'Table'1.''''Source:'Authors''calculations'based'on'data'from'the'Integrated)Public)Use)
Microdata)Series<International)(IPUMS6I).
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Figure 18: Prediction error with different comparison groups of Same-Sex on 
Being economically active, excluding sex-selecting countries

Notes:'China,'India,'Nepal,'and'Vietnam'are'excluded'from'the'analysis.'The'graph'plots'the'prediction'error'
over'time'based'on'the'procedure'described'in'Section'2'of'the'paper.'These'four'groups'of'comparison'
countries'are:'(1)'all'the'available'country'years,'(graphed'as'the'red'line),'(2)'the'best'comparison'country<year'
as'predicted'by'our'model'(graphed'as'the'blue'line),'(3)'the'nearest'country<year'by'distance'excluding'own<
country'comparisons'(graphed'orange'line),'and'(4)'the'nearest'country<year'by'distance,'allowing'own<country'
year'comparisons.'The'variable'on'the'X<axis'refers'to'the'year'when'a'census'was'taken.'The'variables'are'
further'described'in'Table'1.'''Source:'Authors''calculations'based'on'data'from'the'Integrated'Public'Use'
Microdata'Series<International'(IPUMS<I).
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Figure 19: Mean prediction error on percentile of comparison 
country composite treatment-effect predictor, using one site to 
predict all others

Notes:''On'the'x,axis'each'country,year'is'ranked'based'on'its'percentile'of'a'composite'
treatment'effect'predictor.'The'composite'predictor'is'a'weighted'average'country,year'
covariates'weighted'by'their'effect'on'the'country,year'treatment'effect.'The'y,axis'show'
the'mean'prediction'error'from'using'the'site'on'the'x,axis'to'predict'all'other'country,
years.'Source:'Authors''calculations'based'on'data'from'the'Integrated'Public'Use'
Microdata'Series,International'(IPUMS,I).
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Figure 20: Mean prediction error on average Mahalanobis 
distance of the comparison country-year to all target country-
years

Notes:''On'the'x,axis'each'country,year'is'ranked'based'on'its'avearge'Mahalanobis'
distance'to'all'other'country,years.''The'y,axis'show'the'mean'prediction'error'from'using'
the'site'on'the'x,axis'to'predict'all'other'country,years.'Source:'Authors''calculations'
based'on'data'from'the'Integrated'Public'Use'Microdata'Series,International'(IPUMS,I).

.0
38

5
.0

39
.0

39
5

.0
4

.0
40

5

E
xt

ra
po

la
tio

n 
bi

as

0 .2 .4 .6 .8 1
Rank of average Mahalanobis distance to other country-years

Where to run experiments? First site
Local polynomial smooth of %ile rank of selected sites



Figure 21: Mean prediction error, given the first comparison site, 
on percentile of composite treatment-effect predictor covariate, 
using two sites to predict the others

Notes:''On'the'x,axis'each'country,year'is'ranked'based'on'its'percentile'of'a'composite'
treatment'effect'predictor.'The'composite'predictor'is'a'weighted'average'country,year'
covariates'weighted'by'their'effect'on'the'country,year'treatment'effect.'The'y,axis'show'
the'mean'prediction'error'from'using'the'site'on'the'x,axis'to'predict'all'other'country,
years.'Source:'Authors''calculations'based'on'data'from'the'Integrated'Public'Use'
Microdata'Series,International'(IPUMS,I).
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Figure 22: Mean prediction error, given the first comparison site, 
on average Mahalanobis distance of the comparison country-year 
to all target country-years, using two sites to predict others

Notes:''On'the'x,axis'each'country,year'is'ranked'based'on'its'avearge'Mahalanobis'
distance'to'all'other'country,years.''The'y,axis'show'the'mean'prediction'error'from'using'
the'site'on'the'x,axis'in'addition'to'the'first'selected'comparison'site'to'predict'all'other'
country,years.'Source:'Authors''calculations'based'on'data'from'the'Integrated'Public'Use'
Microdata'Series,International'(IPUMS,I).
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Notes:'Solid'line'='experiment'not'warranted.'Dashed'line'='experiment'warranted.'

Figure 23: To experiment or extrapolate? A graphical illustration 
of the decision problem

c*



Table 1: Summary Statistics

Mean S.D. Obs

Panel A: Individual level variables
Had more children 0.57 0.50 12,516,425
Economically active 0.45 0.50 12,504,095
First two children are same sex 0.50 0.50 12,516,425
Age 30.1 3.56 12,516,425
Education (own) 1.89 0.84 12,516,425
Education (spouse) 2.04 0.97 12,516,425
Age at first marriage 20.69 3.11 12,516,425
Difference in first two kids boys vs girls 0.024 0.02 12,516,425
Year 1994 12.27 12,516,425

Panel B: Individual level variables (weighted by sampling weights)
Had more children 0.60 0.49 549,696,649        
Economically active 0.49 0.50 549,696,649        
First two children are same sex 0.50 0.50 549,696,649        
Age 30.0 3.58 549,696,649        
Educaiton (own) 1.69 0.82 549,696,649        
Educaiton (spouse) 1.95 0.91 549,696,649        
Age at first marriage 20.54 2.96 549,696,649        
Difference in first two kids boys vs girls 0.505 0.24 549,696,649        
Year 1991 10.62 549,696,649        

Panel C: Country level variables
Real GDP per capita 9879 472 166
Education 1.91 0.56 169
Age 20.70 1.06 169
Labor force participation (women with one child) 0.51 0.21 169
Sex imbalance between boys and girls 0.02 0.02 169

Panel D: Dyadic differences between country pairs
Age 0.98 0.73 14,196
Education (own) 0.63 0.46 14,196
Education (spouse) 0.58 0.42 14,196
Real GDP per capita 10117 9635 14,196
Year 14 10 14,196
Geographic distance (km) 8179 4809 14,196

Notes:''Source:'Authors''calculations'based'on'data'from'the'Integrated'Public'Use'Microdata'Series<
International'(IPUMS<I).



Table 2: Heterogeneity tests

Outcome
Effect 

specification
N* Q-test statistic**

wSF-test 
statistic***

(p-value) (p-value)

13,998 0.9345
(<.0001) (<.0001)

15,573 0.9433
(<.0001) (<.0001)

224.26 0.948
(<.0001) -0.0002

586.26 0.8592
(<.0001) (<.0001)

Country-year-ed. 
category

477

Notes:'*Number'of'studies,'which'varies'over'the'two'outcomes'because'of'incomplete'data'over'available'
samples'for'the'economically'active'indicator.
**Q'test'of'effect'homogeneity.
***Inverse<variance'weighted'Shapiro<Francia'(wSF)'test'for'normality'of'effect'estimates.'The'test'statistic'is'
the'squared'correlation'between'the'sample'order'statistics'and'the'expected'values'of'normal'distribution'
order'statistics.

More kids

Economically active

Country-year 142

Country-year-ed. 
category

533

Country-year 128



Table 3: Bias regressions for Having more children - with covariates

Difference between 
country pairs in: Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias

Excluding sex 
selectors

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Education of mother 0.0484*** 0.0331*** 0.00956 0.0215
(0.0108) (0.0111) (0.0155) (0.0170)

Education of father 0.0617*** 0.0334** 0.0199
(0.0109) (0.0137) (0.0155)

Age of mother 0.0252 0.0118 0.0132 0.0180
(0.0360) (0.0359) (0.0356) (0.0366)

Census year 0.0149*** 0.0123*** 0.0117*** 0.00998***
(0.00390) (0.00376) (0.00366) (0.00354)

log GDP per capita 0.0240*** 0.00877 0.00906 0.0122*
(0.00749) (0.00665) (0.00659) (0.00722)

Sex ratio imbalance -0.00137 -0.00708 -0.00635 0.00383
(0.00460) (0.00543) (0.00535) (0.00885)

Labor force participaiton 0.0362*** 0.0237*** 0.0239*** 0.0222***
(0.00553) (0.00531) (0.00527) (0.00590)

Distance in KM 0.0650*** 0.0410*** 0.0387*** 0.0407**
(0.0154) (0.0138) (0.0144) (0.0153)

Distance squared -0.0173*** -0.0108*** -0.0101*** -0.0105***
(0.00382) (0.00338) (0.00351) (0.00373)

Constant 0.145*** 0.144*** 0.183*** 0.166*** 0.154*** 0.184*** 0.144*** 0.140*** 0.0809*** 0.0794*** 0.0723***
(0.0124) (0.0114) (0.00662) (0.0100) (0.00964) (0.00712) (0.00696) (0.0139) (0.0171) (0.0170) (0.0178)

Observations 28,561 28,561 28,561 28,561 27,556 28,561 28,561 28,561 27,556 27,556 24,025
R-squared 0.037 0.038 0.003 0.009 0.029 0.000 0.037 0.018 0.083 0.085 0.091

Notes:''The'table'shows'bias'regressions'as'described'in'Sections'3'and'9'of'the'paper.'Source:'Authors''calculations'based'on'data'from'the'Integrated'Public'
Use'Microdata'SeriesBInternational'(IPUMSBI).'Column'10'excludes'China,'India,'Vietnam,'and'Nepal.



Table 4: Bias regressions for Being economically active - with covariates

Difference between 
country pairs in: Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias Absolute bias

Excluding sex 
selectors

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Education of mother 0.00262 -0.00280 -0.0203 -0.00177
(0.00963) (0.00760) (0.0163) (0.00789)

Education of father 0.00318 0.0253
(0.00943) (0.0197)

Age of mother -0.0687** -0.0458** -0.0455** -0.0446**
(0.0325) (0.0201) (0.0196) (0.0199)

Census year 0.0222*** -0.00236 -0.00275 -0.00439
(0.00620) (0.00551) (0.00557) (0.00518)

log GDP per capita -0.00599 -0.0244*** -0.0240*** -0.0247***
(0.00577) (0.00387) (0.00377) (0.00346)

Sex ratio imbalance 0.0240* 0.0218 0.0221 0.0506***
(0.0129) (0.0142) (0.0141) (0.0115)

Labor force participaiton 0.175*** 0.172*** 0.173*** 0.169***
(0.0137) (0.0106) (0.0109) (0.0106)

Distance in KM 0.105*** 0.0374*** 0.0357*** 0.0434***
(0.0246) (0.0131) (0.0131) (0.0146)

Distance squared -0.0149*** -0.00332 -0.00286 -0.00554
(0.00530) (0.00313) (0.00321) (0.00349)

Constant 0.230*** 0.230*** 0.228*** 0.207*** 0.238*** 0.218*** 0.0435*** 0.116*** 0.00956 0.00812 -0.00300
(0.00738) (0.00861) (0.00857) (0.00775) (0.00744) (0.0104) (0.0132) (0.0234) (0.0240) (0.0246) (0.0230)

Observations 29,486 29,486 29,486 29,486 29,486 29,486 29,486 29,486 29,486 29,486 26,069
R-squared 0.000 0.000 0.013 0.010 0.001 0.005 0.502 0.081 0.549 0.550 0.541

Notes:	  	  The	  table	  shows	  bias	  regressions	  as	  described	  in	  Sections	  3	  and	  9	  of	  the	  paper.	  Source:	  Authors'	  calculations	  based	  on	  data	  from	  the	  Integrated	  Public	  
Use	  Microdata	  Series-‐International	  (IPUMS-‐I).



Table 5: To experiment or to extrapolate? Prediction interval estimates for effects on "more kids"

In-sample In-sample
Country Year Lower bound Upper bound estimate Country Year Lower bound Upper bound estimate
Argentina 1980 -0.0160 0.0378 0.0412 Malaysia 1980 -0.1812 0.1927 -0.0110
Argentina 1991 -0.0430 0.1400 0.0427 Malaysia 1991 -0.1073 0.1740 -0.0105
Argentina 2001 -0.0052 0.1016 0.0217 Malaysia 2000 -0.3416 0.3896 0.0088
Bolivia 1992 -0.0067 0.0531 0.0097 Mali 1987 -0.1861 0.1159 0.0151
Bolivia 2001 -0.0149 0.0541 0.0082 Mali 1998 -0.2015 0.1798 -0.0036
Brazil 1980 -0.3850 0.4455 0.0222 Mexico 1990 0.0049 0.1016 0.0245
Brazil 1991 -0.0468 0.1271 0.0303 Mexico 1995 0.0106 0.0675 0.0467
Brazil 2000 0.0058 0.0695 0.0361 Mexico 2000 0.0121 0.0580 0.0332
Chile 1982 -0.2452 0.2944 0.0487 Nepal 2001 -0.0276 0.0271 0.0269
Chile 1992 0.0088 0.0922 0.0349 Panama 1980 -0.1796 0.2050 -0.0133
Chile 2002 0.0186 0.0862 0.0264 Panama 1990 -0.1393 0.2463 0.0439
Colombia 1985 -0.0565 0.0880 0.0406 Panama 2000 0.0099 0.0725 0.0187
Colombia 1993 -0.0074 0.0953 0.0343 Peru 1993 -0.0058 0.0563 0.0183
Colombia 2005 -0.0154 0.0956 0.0404 Peru 2007 -0.0002 0.0750 0.0435
Costa Rica 1984 -0.0083 0.1406 0.0195 Philippines 1990 -0.0510 0.0859 0.0257
Costa Rica 2000 0.0183 0.0817 0.0029 Portugal 1981 -0.0827 0.0355 0.0391
Ecuador 1974 -0.0432 0.0280 0.0274 Portugal 1991 -0.0562 0.1696 0.0339
Ecuador 1982 -0.0384 0.0660 0.0261 Portugal 2001 0.0184 0.0887 0.0605
Ecuador 1990 0.0025 0.0628 0.0128 Rwanda 2002 -0.0567 0.0916 0.0403
Ecuador 2001 -0.0188 0.0673 0.0211 Senegal 1988 -0.0837 0.0688 0.0038
France 1975 -0.0409 0.0712 0.0316 Senegal 2002 -0.0909 0.0943 -0.0150
France 1982 -0.1378 0.2024 0.0313 South Africa 1996 -0.0326 0.0895 0.0244
France 1990 0.0438 0.1066 0.0380 South Africa 2001 -0.0121 0.0785 0.0209
France 1999 -0.1220 0.2424 0.0394 South Africa 2007 -0.0487 0.1319 0.0139
Ghana 2000 -0.0365 0.0460 0.0046 Spain 1991 -0.0280 0.1343 0.0629
Greece 1981 -0.0173 0.0970 0.0676 Spain 2001 -0.0394 0.1548 0.0300
Greece 1991 0.0277 0.1201 0.0585 Switzerland 1980 0.0230 0.1502 0.0554
Greece 2001 -0.0221 0.1659 0.0546 Switzerland 1990 -0.0957 0.2861 0.0603
Guinea 1983 -0.4256 0.3858 0.0209 Switzerland 2000 0.0391 0.1420 0.0416
Guinea 1996 -0.0957 0.0808 -0.0131 Tanzania 1988 -0.2844 0.4007 -0.0077
India 1987 -0.4052 0.4404 0.0290 Tanzania 2002 -0.0511 0.0650 0.0089
India 1993 -0.1041 0.1516 0.0300 Uganda 1991 -0.0622 0.0601 0.0099
India 1999 -0.0725 0.1164 0.0333 Uganda 2002 -0.0511 0.0460 0.0050
Iraq 1997 -0.0206 0.0574 0.0113 United States 1980 -0.0055 0.0775 0.0609
Israel 1995 -0.0182 0.1257 0.0002 United States 1990 0.0320 0.1023 0.0647
Italy 2001 -0.0092 0.1582 0.0273 United States 2000 -0.0347 0.1904 0.0598
Jordan 2004 -0.0224 0.1187 0.0203 United States 2005 0.0382 0.1201 0.0570
Kenya 1989 -0.1169 0.1254 0.0002 Venezuela 1981 -0.0171 0.0684 0.0413
Kenya 1999 -0.0616 0.0561 0.0037 Venezuela 1990 -0.1013 0.1939 0.0236

Venezuela 2001 0.0124 0.0755 0.0852

Prediction Interval Prediction Interval

Notes: Prediction interval estimates were produced from least squares estimates of regression models for 
conditional means and variances, using micro-level data from one-percent extracts of the census samples and 
country-year level covariates from the Penn World Tables.  Micro-level covariate include gender of first born 
child, age of mother and spouse, age of first and second child, whether first born were twins, and educational 
attainment of mother and spouse. Country-year level covariates include population density, log real GDP/per 
capita, government spending share of real GDP/capita, ethnic fractionalization index, female labor force 
participation rate, and year.



Country Year of Treatment effect for Standard error for Treatment effect for Standard error for
census Having more kids Having more kids Economically active Economically active

Argentina 1970 0.0347 0.0213 0.0048 0.0159
Argentina 1980 0.0412 0.0080 -0.0033 0.0065
Argentina 1991 0.0427 0.0065 -0.0004 0.0069
Argentina 2001 0.0217 0.0095 -0.0008 0.0096
Armenia 2001 0.1222 0.0207 -0.0157 0.0239
Austria 1971 0.0369 0.0171 -0.0031 0.0170
Austria 1981 0.0531 0.0174 -0.0258 0.0194
Austria 1991 0.0364 0.0172 -0.0043 0.0200
Austria 2001 0.0297 0.0186 -0.0371 0.0219
Belarus 1999 0.0228 0.0118 -0.0194 0.0149
Bolivia 1976 0.0208 0.0172 -0.0221 0.0145
Bolivia 1992 0.0097 0.0149 -0.0046 0.0174
Bolivia 2001 0.0082 0.0146 -0.0127 0.0165
Brazil 1960 0.0135 0.0065 0.0018 0.0039
Brazil 1970 0.0145 0.0052 -0.0009 0.0036
Brazil 1980 0.0222 0.0050 0.0049 0.0044
Brazil 1991 0.0303 0.0043 -0.0023 0.0042
Brazil 2000 0.0361 0.0044 -0.0020 0.0046

Cambodia 1998 0.0311 0.0102 0.0018 0.0101
Chile 1970 0.0410 0.0131 -0.0041 0.0095
Chile 1982 0.0487 0.0125 0.0041 0.0093
Chile 1992 0.0349 0.0112 -0.0139 0.0091
Chile 2002 0.0264 0.0128 -0.0057 0.0125
China 1982 0.0671 0.0035 -0.0032 0.0028
China 1990 0.1243 0.0035 -0.0013 0.0026

Colombia 1973 0.0113 0.0082 -0.0056 0.0060
Colombia 1985 0.0406 0.0077 -0.0098 0.0079
Colombia 1993 0.0343 0.0074 0.0004 0.0069
Colombia 2005 0.0404 0.0074 0.0063 0.0062
Costa Rica 1973 -0.0337 0.0266 -0.0042 0.0203
Costa Rica 1984 0.0195 0.0244 -0.0193 0.0183
Costa Rica 2000 0.0029 0.0219 0.0193 0.0186

Cuba 2002 0.0567 0.0132 -0.0107 0.0164
Ecuador 1974 0.0274 0.0143 0.0089 0.0107
Ecuador 1982 0.0261 0.0128 0.0019 0.0108
Ecuador 1990 0.0128 0.0122 0.0104 0.0117
Ecuador 2001 0.0211 0.0125 0.0039 0.0123

Appendix Table 1: Treatment effects and standard errors by country-year



Country Year of Treatment effect for Standard error for Treatment effect for Standard error for
census Having more kids Having more kids Economically active Economically active

Egypt 1996 0.0403 0.0041 -0.0040 0.0032
France 1962 0.0259 0.0099 -0.0012 0.0083
France 1968 0.0319 0.0097 0.0092 0.0088
France 1975 0.0316 0.0090 0.0073 0.0094
France 1982 0.0313 0.0085 -0.0026 0.0093
France 1990 0.0380 0.0101 0.0044 0.0110
France 1999 0.0394 0.0106 -0.0123 0.0121
Ghana 2000 0.0046 0.0108 -0.0067 0.0100
Greece 1971 0.0519 0.0139 -0.0172 0.0142
Greece 1981 0.0676 0.0125 -0.0061 0.0119
Greece 1991 0.0585 0.0127 0.0131 0.0146
Greece 2001 0.0546 0.0145 0.0168 0.0188
Guinea 1983 0.0209 0.0190 -0.0122 0.0211
Guinea 1996 -0.0131 0.0133 -0.0207 0.0147

Hungary 1970 0.0561 0.0187 NA NA
Hungary 1980 0.0481 0.0155 NA NA
Hungary 1990 0.0370 0.0165 -0.0355 0.0194
Hungary 2001 0.0176 0.0223 -0.0308 0.0253

India 1983 0.0126 0.0131 0.0263 0.0142
India 1987 0.0290 0.0130 -0.0349 0.0134
India 1993 0.0300 0.0143 -0.0204 0.0151
India 1999 0.0333 0.0143 -0.0256 0.0146
Iraq 1997 0.0113 0.0073 0.0043 0.0050

Israel 1972 0.0345 0.0224 -0.0021 0.0217
Israel 1983 0.0097 0.0190 NA NA
Israel 1995 0.0002 0.0196 0.0154 0.0211
Italy 2001 0.0273 0.0107 -0.0090 0.0143

Jordan 2004 0.0203 0.0137 0.0102 0.0104
Kenya 1989 0.0002 0.0098 0.0185 0.0112
Kenya 1999 0.0037 0.0095 -0.0097 0.0101

Kyrgyz Republic 1999 0.0607 0.0162 0.0039 0.0181
Malaysia 1970 -0.0173 0.0237 -0.0114 0.0308
Malaysia 1980 -0.0110 0.0257 -0.0503 0.0286
Malaysia 1991 -0.0105 0.0192 -0.0047 0.0200
Malaysia 2000 0.0088 0.0190 -0.0226 0.0200

Mali 1987 0.0151 0.0129 -0.0224 0.0155
Mali 1998 -0.0036 0.0111 0.0143 0.0135

Appendix Table 1 continued: Treatment effects and standard errors by country-year



Country Year of Treatment effect for Standard error for Treatment effect for Standard error for
census Having more kids Having more kids Economically active Economically active

Mexico 1970 0.0078 0.0139 0.0079 0.0099
Mexico 1990 0.0245 0.0040 -0.0063 0.0032
Mexico 1995 0.0467 0.0196 -0.0054 0.0209
Mexico 2000 0.0332 0.0037 -0.0073 0.0035

Mongolia 1989 0.0449 0.0230 NA NA
Mongolia 2000 0.0720 0.0243 0.0238 0.0268

Nepal 2001 0.0269 0.0066 -0.0041 0.0075
Pakistan 1973 0.0127 0.0095 -0.0030 0.0042
Pakistan 1998 0.0117 0.0029 NA NA
Palestine 1997 0.0142 0.0167 0.0019 0.0101
Panama 1960 -0.0416 0.0506 0.0459 0.0435
Panama 1970 -0.0100 0.0288 0.0515 0.0263
Panama 1980 -0.0133 0.0265 -0.0090 0.0270
Panama 1990 0.0439 0.0268 -0.0146 0.0250
Panama 2000 0.0187 0.0261 0.0211 0.0241

Peru 1993 0.0183 0.0085 0.0064 0.0078
Peru 2007 0.0435 0.0089 0.0082 0.0089

Philippines 1990 0.0257 0.0045 -0.0093 0.0047
Philippines 1995 0.0372 0.0044 NA NA
Philippines 2000 0.0287 0.0045 NA NA

Portugal 1981 0.0391 0.0200 0.0358 0.0228
Portugal 1991 0.0339 0.0203 0.0048 0.0248
Portugal 2001 0.0605 0.0230 -0.0177 0.0283

Puerto Rico 1970 0.2339 0.0724 NA NA
Puerto Rico 1980 0.0599 0.0316 NA NA
Puerto Rico 1990 0.0370 0.0331 -0.0288 0.0334
Puerto Rico 2000 0.0801 0.0362 0.0129 0.0377
Puerto Rico 2005 NA NA NA NA

Romania 1977 0.0502 0.0097 NA NA
Romania 1992 0.0284 0.0094 -0.0103 0.0093
Romania 2002 0.0403 0.0100 0.0161 0.0126
Rwanda 1991 0.0014 0.0120 -0.0081 0.0050
Rwanda 2002 -0.0019 0.0136 0.0100 0.0102

Saint Lucia 1980 NA NA NA NA
Saint Lucia 1991 NA NA NA NA

Senegal 1988 0.0038 0.0124 -0.0205 0.0131
Senegal 2002 -0.0150 0.0124 0.0150 0.0137

Appendix Table 1 continued: Treatment effects and standard errors by country-year



Country Year of Treatment effect for Standard error for Treatment effect for Standard error for
census Having more kids Having more kids Economically active Economically active

Slovenia 2002 0.0161 0.0294 0.0254 0.0372
South Africa 1996 0.0244 0.0094 0.0010 0.0098
South Africa 2001 0.0209 0.0096 -0.0011 0.0097
South Africa 2007 0.0139 0.0216 -0.0133 0.0231

Spain 1991 0.0629 0.0106 -0.0050 0.0115
Spain 2001 0.0300 0.0128 0.0094 0.0174

Switzerland 1970 0.0299 0.0270 0.0068 0.0239
Switzerland 1980 0.0554 0.0244 -0.0246 0.0263
Switzerland 1990 0.0603 0.0268 -0.0204 0.0295
Switzerland 2000 0.0416 0.0291 -0.0508 0.0357

Tanzania 1988 -0.0077 0.0077 0.0077 0.0063
Tanzania 2002 0.0089 0.0063 -0.0192 0.0063
Thailand 1970 0.0129 0.0125 NA NA
Thailand 1980 0.0694 0.0188 NA NA
Thailand 1990 0.0705 0.0189 NA NA
Thailand 2000 0.0543 0.0165 NA NA
Uganda 1991 0.0099 0.0088 0.0024 0.0104
Uganda 2002 0.0050 0.0066 0.0073 0.0086

United Kingdom 1991 0.0646 0.0212 -0.0497 0.0239
United States 1960 0.0384 0.0098 0.0024 0.0083
United States 1970 0.0462 0.0095 0.0029 0.0095
United States 1980 0.0609 0.0043 -0.0116 0.0047
United States 1990 0.0647 0.0044 -0.0144 0.0048
United States 2000 0.0598 0.0048 0.0055 0.0052
United States 2005 0.0570 0.0116 -0.0035 0.0129

Venezuela 1971 0.0206 0.0107 0.0052 0.0091
Venezuela 1981 0.0413 0.0101 -0.0128 0.0093
Venezuela 1990 0.0236 0.0093 -0.0018 0.0080
Venezuela 2001 0.0852 0.0093 -0.0121 0.0090
Vietnam 1989 0.0300 0.0065 0.0042 0.0060
Vietnam 1999 0.0638 0.0075 -0.0007 0.0069

Appendix Table 1 continued: Treatment effects and standard errors by country-year

  Source: Treatment effect and standard errors by country-year of Same-Sex on Having more children and 
Being economically active. Source: Authors' calculations based on data from the Integrated Public Use 
Microdata Series-International (IPUMS-I).



Interaction term Interaction term
coefficient for having SE for having coefficient for SE for

Level of aggregation Variable more children  more childrem economically active Econ. active
Individual Age mother 0.0010 (0.000)** 0.0000 0.0000
Individual Age father 0.0000 (0.000) 0.0000 0.0000
Individual Age mother second born 0.0000 (0.000)* 0.0000 0.0000
Individual Age mother first born 0.0000 (0.000) 0.0000 (0.000)**
Individual First born is twin -0.0030 (0.010) 0.0020 (0.0050)
Individual Education mother level2 0.0110 (0.002)** 0.0000 (0.0010)
Individual Education mother level3 0.0160 (0.002)** 0.0000 (0.0020)
Individual Education mother level4 0.0060 (0.002)* 0.0030 (0.0020)
Individual Education spouse level2 0.0060 (0.001)** 0.0010 (0.0010)
Individual Education spouse level3 0.0110 (0.002)** 0.0000 (0.0010)
Individual Education spouse level4 0.0110 (0.002)** 0.0010 (0.0020)

Country-Year Age mother 0.0070 (0.003)* -0.0020 (0.0020)
Country-Year Age father 0.0010 (0.001) 0.0010 (0.0010)
Country-Year Age mother second born 0.0020 (0.001) -0.0010 (0.0010)
Country-Year Age mother first born -0.0010 (0.002) 0.0010 (0.0010)
Country-Year First born is twin -0.0120 (0.032) 0.0080 (0.0150)
Country-Year Education mother level2 0.0300 (0.030) 0.0280 (0.0170)
Country-Year Education mother level3 -0.0590 (0.036) -0.0250 (0.0230)
Country-Year Education mother level4 0.0390 (0.071) 0.0460 (0.0340)
Country-Year Education spouse level2 -0.0210 (0.033) -0.0320 (0.0180)
Country-Year Education spouse level3 0.0630 (0.039) 0.0260 (0.0240)
Country-Year Education spouse level4 -0.1190 (0.093) -0.0380 (0.0400)

Country Population density 0.0000 0.000 0.0000 (0.000)**
Country-Year log GDP per capita 0.0090 (0.002)** 0.0000 (0.0020)

Country rssnat_kg (?) 0.0000 (0.000) 0.0000 0.0000
Country Ethnic fractionalization 0.0000 (0.000) 0.0000 0.0000
Country Region 2 -0.0160 (0.007)* 0.0080 (0.0040)
Country Region 3 -0.0120 (0.010) 0.0090 (0.0060)
Country Region 4 0.0120 (0.013) 0.0020 (0.0070)
Country Region 5 -0.0170 (0.008)* -0.0060 (0.0060)
Country Region 6 -0.0230 (0.007)** 0.0050 (0.0040)
Country Region 7 -0.0180 (0.010) 0.0060 (0.0060)
Country Decade 1970 0.0010 (0.003) -0.0020 (0.0020)
Country Decade 1980 0.0100 (0.004)* 0.0000 (0.0020)
Country Decade 1990 0.0070 (0.004) -0.0010 (0.0020)
Country Decade 2000 0.0010 (0.004) 0.0010 (0.0030)

Cosntant 0.0000 (0.003) 0.0000 (0.0100)
R-Squared 0.00 0.00

Number of obs. 8169580 6934850

Table A2: Mundlak estimation interaction term coefficients

Notes:  The table shows coefficients on interactions between the listed variable and the "same sex" treatment indicator 
from Mundlak regression described in Appendix 2 of the paper. Source: Authors' calculations based on data from the 
Integrated Public Use Microdata Series-International (IPUMS-I).
* p <.05, ** p <.01, *** p<.001 in tests using heteroskedasticity robust standard errors.



Step Cp R-squared Level of variable Variable

1 4625.279 0.0000 (intercept)
2 2498.716 0.0003 Country-Year log GDP per capita
3 2350.882 0.0003 Country-Year Age mother
4 1584.965 0.0004 Country-Year Education mother level3
5 1376.348 0.0004 Individual Education mother level3
6 1363.203 0.0004 Country Region 5
7 1300.660 0.0004 Individual Education spouse level3
8 982.563 0.0004 Individual Education mother level2
9 984.033 0.0004 Country Region 6

10 880.924 0.0005 Country-Year Age mother second born
11 878.040 0.0005 Individual Education spouse level4
12 834.695 0.0005 Country Region 4
13 787.947 0.0005 Individual Age mother
14 788.196 0.0005 Country Decade 1980
15 731.651 0.0005 Country Region 7
16 701.073 0.0005 Country-Year Education spouse level3
17 681.351 0.0005 Individual Education spouse level2
18 541.294 0.0005 Country Decade 1970
19 489.224 0.0005 Country Decade 1990
20 456.303 0.0005 Individual Age mother second born
21 288.558 0.0005 Individual Education mother level4
22 222.202 0.0005 Country-Year Education mother level2
23 180.748 0.0005 Country Population density
24 155.622 0.0006 Country Region 3
25 146.025 0.0006 Country Ethnic fractionalization
26 146.285 0.0006 Individual Age father
27 141.768 0.0006 Individual First born is twin
28 134.628 0.0006 Country Region 2
29 83.319 0.0006 Country-Year Education spouse level4
30 62.811 0.0006 Individual Age mother first born
31 62.097 0.0006 Country-Year Age father
32 63.022 0.0006 Country-Year First born is twin
33 57.906 0.0006 Country-Year Education mother level4
34 52.194 0.0006 Country Government consumption share
35 41.047 0.0006 Country-Year Education spouse level2
36 36.183 0.0006 Country-Year Age mother first born
37 37.000 0.0006 Country Decade 2000

Number of obs. 8169580

Table A3: Lasso regression solution path for Having more children

Notes:  The table shows the solution path using the least angle algorithm to fit the lasso to the Mundlak 
regression as described in Appendix 2 of the paper. Source: Authors' calculations based on data from the 
Integrated Public Use Microdata Series-International (IPUMS-I).



Step Cp R-squared Level of variable Variable

 more childrem  more childrem
1 156.232 0.0000 (intercept)
2 136.994 0.0000 Country-Year Education spouse level4
3 128.846 0.0000 Country-Year Age mother
4 122.448 0.0000 Country Region 5
5 105.865 0.0000 Country Region 4
6 101.807 0.0000 Individual Age mother second born
7 97.879 0.0000 Country-Year Age father
8 79.261 0.0000 Country Region 2
9 70.851 0.0000 Country Region 6
10 71.677 0.0000 Country Population density
11 67.411 0.0000 Individual Education mother level4
12 65.604 0.0000 Country Decade 1970
13 45.665 0.0000 Country Decade 2000
14 43.180 0.0000 Country Region 3
15 30.642 0.0000 Individual Education spouse level4
16 26.652 0.0000 Country-Year First born is twin
17 26.758 0.0000 Individual Education spouse level2
18 28.009 0.0000 Country Government consumption share
19 28.826 0.0000 Individual Age father
20 28.031 0.0000 Country-Year Education spouse level2
21 29.632 0.0000 Individual Age mother
22 30.859 0.0000 Individual First born is twin
23 29.847 0.0000 Country Ethnic fractionalization
24 29.974 0.0000 Individual Age mother first born
25 30.202 0.0000 Country-Year Age mother first born
26 31.884 0.0000 Individual Education spouse level3
27 32.108 0.0000 Country-Year Education spouse level3
28 33.936 0.0000 Country Region 7
29 35.914 0.0000 Country-Year Decade 1990
30 37.716 0.0000 Individual Education mother level3
31 35.905 0.0000 Country-Year Education mother level2
32 37.253 0.0000 Country-Year Education mother level4
33 35.150 0.0000 Country-Year Age mother second born
34 36.404 0.0000 Country-Year Education mother level3
35 36.277 0.0000 Country Decade 1980
36 35.162 0.0000 Country log GDP per capita
37 37.000 0.0000 Individual Education mother level2

R-Squared 0.00
Number of obs. 6934850

Table A4: Lasso regression solution path for Economically active

Notes:  The table shows the solution path using the least angle algorithm to fit the lasso to the Mundlak regression as 
described in Appendix 2 of the paper. Source: Authors' calculations based on data from the Integrated Public Use 
Microdata Series-International (IPUMS-I).
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