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can lead to asymmetric equilibrium outcomes. We calibrate the model for Los Angeles and 
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I Introduction

Does the spatial structure of a city affect labor markets outcomes? How do job-seekers

organize their search activity along the spatial dimension? What are the implications of this

activity on equilibrium unemployment rates and efficiency? These questions have already been

studied in monocentric cities (see Zenou, 2009, for an overview) or in the case of uniformly

distributed agents and jobs around the circle (see Marimon and Zilibotti, 1999; Hamilton et al.,

2000; Decreuse, 2008). Cities with similar population sizes are often believed to be comparable.

Fig. 1 illustrates that this is however not true for major cities.1 Paris and Shanghai have on

average 7.6 millions of people, yet the population density in Shanghai is 3.4 times higher than

in Paris. London and Moscow seem to have a more uniform population distribution compared

to Jakarta, Berlin or New York which are more populated in the center. In the U.S. Los

Angeles Metropolitan Statistical Area (MSA) has twice the population density of Chicago MSA.

Moreover for the U.S. the monocentric view seems outdated: “America changed from a nation

of distinct cities separated by farmland, to a place where employment and population density is

far more continuous” according to Glaeser (2007).

The aim of this paper is to better understand disparities in unemployment rates in metropoli-

tan areas, in particular in the U.S. We consider a densely populated city with two business dis-

tricts and a possibly non-uniform distribution of workers located along a line connecting them.

Each business district is a distinct labor market characterized by search-matching frictions. An

endogenous number of firms choose to set up in either of these centers. To capture that resi-

dential changes are typically much less frequent than transitions on the labor market, we set up

a two-stage model as in e.g. Zenou (2009c). Initially, individuals freely choose once and for all

where to reside. Next, the unemployed use their time endowment to look for vacant jobs in the

business districts. Firms freely decide where they open a vacancy. Employed workers commute

to the job center where they have been recruited until the match is exogenously destroyed.

In equilibrium, unemployed workers specialize their search in only one job center. The closer

a job-seeker resides to a job center, the lower are the commuting costs, so the higher is the total

surplus created if a firm located in this job center matches with this job-seeker. As we assume

individual Nash bargaining over the wage, commuting costs are shared between the employer

and the employee. Moreover, the vacancies open in a job center are generic in the sense of being

accessible to any job-seeker wherever she lives. The expected profit made in a job center is higher
1Fig. 1 presents a three dimensional perspective where the boundaries of a city are the result of overlaying

population density and built-up areas. For instance, London is limited to its 52 boroughs, Shanghai to “the
city proper” and Paris to the municipal area and “la petite couronne.” Jakarta is represented by the Jabotabek
area which is Jakarta municipality plus Tangerang, Bekasi, and Bogor. Moscow is limited to the area within its
municipal boundary.
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when those seeking a job there are concentrated in the neighborhood of this center. When an

additional individual joins the queue of job-seekers in a center, she ignores the consequences of

this decision on expected profits and hence on vacancy creation. This generates an externality.

If agents chose where they search in an efficient way (i.e. so as to maximize net output), the so-

called Hosios condition would be sufficient to internalize standard search-matching externalities.

This condition which is familiar in the search-matching literature expresses that agents’ shares of

the total surplus created by a match equal respectively the elasticities of the matching function

with respect to the stocks of buyers (vacant jobs) and sellers (job-seekers) in the labor market.

However, as the decisions of where to search a job is generically inefficient, the decentralized

economy is typically not efficient even if the Hosios condition is met.

Numerical analyses provide orders of magnitude of the impacts of changes in the shape of

the workforce distribution on unemployment rates and on efficiency. A first exercise considers a

uniformly distributed workforce of mass lower than one and a complementary mass of workers

located in the central business district (CBD). Letting this mass rise lowers the unemployment

rate everywhere. Yet, the decentralized economy is almost efficient. Next, we consider Los

Angeles and Chicago MSAs. We calibrate the model in both MSAs with census data for the

year 2000. Then, we develop several counterfactual exercises either interchanging the two work-

force distributions or replacing the actual ones by some standard parametric distributions. The

counterfactual assumptions we consider can cause changes in unemployment rates up to about

half a percentage point and in net output up to 5% when the workforce is more concentrated

far from the job centers. These are non-negligible effects.

Because of our focus on duocentric cities, this paper is mainly related to Coulson et al.

(2001).2 They show that, in the presence of heterogeneous commuting abilities, the equilibrium

unemployment rate is higher in the CBD where vacancy costs are by assumption higher. This

outcome holds despite a commuting flow of CBD residents to the job center in the suburbs (the

SBD), called “reverse commuting.” Although we are also interested in spatial unemployment

disparities, we depart from their approach in the following ways. First, while in Coulson et al.

(2001) workers are located only in the job centers, we spatially distribute the workforce between

the job centers (with total commuting costs increasing with distances). This assumption seems to

us more in accordance with the stylized fact described in Glaeser (2007)’s quote above. Second,

while Coulson et al. (2001) base all their analysis on the assumption of heterogeneous firms’

entry costs, we are agnostic about that. Instead we look at how the shape of the distribution
2In addition to the already-mentioned monocentric city and circular models, Rupert and Wasmer (2012) have

recently developed a new framework under the isotropy assumption according to which space looks the same
wherever an agent is located.
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of the workforce affects various spatial outcomes. Furthermore, simulations provide an order

of magnitude of these effects. Third, we develop a formal welfare analysis while Coulson et al.

(2001) only sketch it in their proposition 6. In our framework, after their initial choice of

residence, workers face high relocation costs and do not change residency, as assumed by Raphael

and Riker (1999), Brueckner and Zenou (2003), Zenou (2006, 2009a,c, 2013) among others.

Fig. 1. Spatial distribution of population in seven major metropolises, represented at the same
scale
Source: Bertaud (2008)

The next sections present the model and the welfare analysis. Section IV discusses two

numerical analyses. Section V concludes.
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II The model

We consider two job centers (indexed by j = {A,B}) in a densely populated area where

people are distributed along a straight line joining the two centers. The workforce is normalized

to unity and homogeneous in every sense, but their location, denoted x. The workforce is

distributed according to a continuous density function f : x ∈ [0, 1] 7→ f(x) ∈ R+
∗ , with CDF

F (·).

We build a model in steady state with three goods: a consumption good which serves as the

numéraire, labor, and housing. There are three types of agents: workers, firms, and absentee

landlords. We consider a two-stage model: first, workers decide once and for all the location

x ∈ [0, 1] where they live and pay rents R(x); second, the transactions occur in the labor

market in a continuous-time matching model. This two steps structure captures the idea that

transactions on the housing market are typically much less frequent than transitions between

employment and unemployment, especially when the labor market is very flexible as in the US.

This structure seems to us more realistic than the polar one where individuals would relocate

at no cost after each transition on the labor market.3 Risk-neutral and infinitely-lived agents

discount the future at a common rate r. Each job center presents a distinct labor market where

an endogenous number of firms choose to set up. Firms open job center specific vacancies.

Workers supply inelastically one unit of labor and demand one unit of housing in a single location.

Firms produce under perfect competition and constant returns to scale the consumption good

using only labor. Individuals are either unemployed or employed. Job-seekers spend their time

endowment looking for a job in A and in B. If employed, they can be occupied in either of the

job centers and commute at a unit cost τ > 0.4

The matching process is represented by a standard differentiable matching functionMj (Vj , Uj)

specific to each job center j ∈ {A,B}. This function yields the flow of matches per unit of time

in j, Mj , as a function of the stocks of vacant jobs in job center j, Vj , and the stock of unem-

ployed, Uj , in market j.5 As standard in the literature (Petrongolo and Pissarides, 2001), we

assume Mj to be increasing and concave in both of its arguments, exhibiting Constant Returns

to Scale. The rate at which a vacancy is filled in j is:

Mj

Vj
= Mj

(
1, Uj
Vj

)
= Mj

(
1, 1
θj

)
= µj(θj), with µ′j(θj) < 0

where θj ≡ Vj
Uj

is named the labor market tightness in j. A tighter labor market makes it more

difficult to recruit workers due to a congestion effect. Similarly, the rate at which a job-seeker
3Our approach follows e.g. Zenou (2009c).
4More precisely, τ denotes the pecuniary and time cost per unit of distance commuted to the job center.
5It should be noticed that by assumption firms in any center j do not open vacancies that are only accessible

to job-seekers in a specific location x. This realistic assumption plays a major role in the model.

4



finds a vacancy in j is:

Mj

Uj
= θjµj(θj) = ψj(θj), with ψ′j(θj) > 0.

A tighter labor market increases the rate at which job-seekers find a job (the so-called thick

market externality). As is standard, we assume the following Inada conditions:

lim
θj→0

ψj(θj) = lim
θj→+∞

µj(θj) = 0 and lim
θj→+∞

ψj(θj) = lim
θj→0

µj(θj) = +∞.

When a match is formed in job center j, yj units of output are produced.6 In the presence of

search-matching frictions, when a vacancy and a job-seeker have matched, a surplus is created.

For, if they separate, each partner has to start again a new search process. Let Υ(x) denote the

present-discounted value of the expected utility of an unemployed worker located in x. Wj(x)

has the same meaning for a worker employed in job center j. Let Πj(x) be the present-discounted

profit made on a job in j filled with a worker located in x. These functions verify the Bellman

equations introduced below. Under free entry of vacancies, the present-discounted expected

profit made on a vacant position is nil. So, the (total) surplus of a match in j with a worker

located in x, denoted Sj(x), is defined by:

Sj (x) = Πj (x) +Wj (x)−Υ (x) .

II.1 Wage formation

A contact between a worker and a vacancy leads to a contractual relationship whenever

the surplus Sj (x) is positive. Workers have then no incentive to quit. Jobs are destroyed at

an exogenous separation rate δj . In that case, both parties search for a new suitable partner.

Under free entry, Πj(x) verifies the following Bellman equation:

rΠj(x) = yj − wj(x)− δj Πj(x) (1)

where wj(x) is the wage of a worker living in x and occupied in j.7 Let zj(x) denote the worker’s

commuting distance to her workplace:

zj(x) =
{
x for j = A

1− x for j = B.

6We do not assume that commuting affects the productivity of workers. The average commuting time in the
U.S. is rather short according to Gobillon et al. (2007) and the latest American Community Survey by the U.S.
Census. If productivity was negatively affected by the time devoted to commuting (as suggested e.g. by van
Ommeren and i Puigarnau, 2011, for Germany), the model could be adapted by introducing a weakly decreasing
relationship between yj and the commuting distance x. The model developed below should then be adapted (in
particular Assumptions 1 and 2). However, the qualitative conclusions would remain unaffected.

7Zenou (2009b) (p. 24) summarizes the empirical evidence confirming that either firms reimburse their workers’
commuting costs or provide transport-related fringe benefits. Mulalic et al. (2014) exploit a Danish quasi-natural
experiment and conclude that a rise in commuting distance has a long-run effect on compensations.
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The inter-temporal value of having a job Wj(x) solves:

rWj(x) = wj(x)− τ zj(x)−R(x)− δj [Wj(x)−Υ(x)] (2)

Using Eqs. (1) and (2), the surplus writes:

(r + δj) Sj (x) = yj − τ zj (x)− r U (x) (3)

where we define:

r U(x) = rΥ(x) +R(x). (4)

Wages wj(x) are set through Nash bargaining. During the negotiation, agents take tightness

and Υ(x) as given. Wages are determined by:

wj (x) = arg max
w

[Wj (x)−Υ (x)]βj [Πj (x)]1−βj

where βj ∈ (0, 1) denotes the exogenous worker’s bargaining power. Then, the first-order con-

dition of this problem implies that the surplus accruing to the worker (resp., the employer)

verifies:

Wj (x)−Υ (x) = βj Sj(x) resp., Πj(x) = (1− βj) Sj(x). (5)

The wage equation is solved by plugging Eqs. (1) and (3) into Eq. (5):

wj (x) = βjyj + (1− βj) [τ zj (x) + r U(x)] . (6)

II.2 The search decision

The unemployed only commute from time to time for an interview. Hence, they incur

commuting costs that we neglect.8 Let Σj the expected returns to search in location j for a

worker located in x be defined by:

Σj = ψj(θj)
[
Wj(x)−Υ(x)

]
= βj ψj(θj)

yj − τ zj(x)− r U(x)
r + δj

(7)

where the second equality follows from Eqs. (3) and (5). The inter-temporal value in unemploy-

ment Υ(x) solves the following Bellman equation:

rΥ(x) = b−R(x) (8)

+ max
{

0, max
ε(x)∈[0,1]

[
ε(x) ΣA(θA, x), (1− ε(x)) ΣB(θB, x)

]}
⇔ r U(x) = b

+ max
{

0, ψA(θA) (WA(x)−Υ(x)) , ψB(θB) (WB(x)−Υ(x))
}

8Their main search activity is made from where they live or close to it via the reading of newspapers, surfing on
the web, visiting the nearest one-stop career center, sending out resumes, contacting friends and relatives, and the
like (for descriptive evidence, see Kuhn and Mansour, 2011, for the U.S. and Longhi and Taylor, 2011, for Great
Britain). The assumption of absence of commuting cost can easily be relaxed to the case where the unemployed
commute a non negligible amount of time, but anyway less than employed individuals (see e.g. Zenou, 2009).
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where b is the instantaneous value in unemployment. Eq. (8) tells that an unemployed has first

to decide whether she searches for a job or not. If she does, as in Coulson et al. (2001), she

optimizes the use of her unit time endowment to search for work in A and B. The rate at which

a job offer is found in A (respectively, in B) is ε(x)ψA(θA) (respectively, (1 − ε(x))ψB(θB)).

These rates are multiplied by the job center-specific gain of becoming employed, Wj(x)−Υ(x).

As the marginal returns to search in one location ψj(θj) (Wj(x)−Υ(x)) do not depend on

the share ε(x) of time spent searching in job center j, either the unemployed living in x search

only in job center A (i.e. ε(x) = 1), or they search only in job center B (i.e. ε(x) = 0), or they

do not search at all.

After substitution of rU(x) into (7), Σj is in general a function of θA, θB and x such that:

Lemma 1. For any location x ∈ [0, 1], ΣA(θA, θB, x) and ΣB(θA, θB, x) do not depend on rents

R(x), verify
∂ΣA

∂x
(θA, θB, x) 6 0 6

∂ΣB

∂x
(θA, θB, x) , (9)

with strict inequalities if the unemployed seek jobs. Moreover,

∂ΣA

∂θA
(θA, θB, x) > 0 = ∂ΣA

∂θB
(θA, θB, x)

if ΣA(θA, θB, x) > max[0,ΣB(θA, θB, x)]

and

∂ΣB

∂θB
(θA, θB, x) > 0 = ∂ΣB

∂θA
(θA, θB, x)

if ΣB(θA, θB, x) > max[0,ΣA(θA, θB, x)]

Proof. Three cases need to be distinguished.

Case (i): If ΣA(θA, θB, x) > ΣB(θA, θB, x) and ΣA(θA, θB, x) > 0.

As ε(x) = 1, combining Eqs. (7) and (8) yields:

r U(x) = βA ψA(θA)(yA − τ x) + (r + δA)b
r + δA + βA ψA(θA) (10)

which is decreasing in x conditional on tightness and independent on rents R(x). Now, consid-

ering Eq. (7) in A leads to

ΣA (θA, θB, x) = βA ψA(θA)SA(x) = βA ψA(θA) yA − τ x− b
r + δA + βA ψA(θA) (11)

which is decreasing in x (conditional on tightness) because the surplus of a match SA(x) is

decreasing. It is also independent on rents R(x). Then, substituting r U(x) into Eq. (7)
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evaluated in j = B yields:

ΣB (θA, θB, x) = βB ψB(θB)
(r + δB) (r + δA + βAψA(θA))

{
(yB − τ(1− x)− b) (r + δA)

+ βAψA(θA)(yB − yA − τ(1− 2x))
}
.

Therefore, in Case (i), we have the following property:

∂ΣA

∂x
< 0 < ∂ΣB

∂x
and ∂ΣA

∂θA
> 0 = ∂ΣA

∂θB
.

Case (ii) If ΣB (θA, θB, x) > ΣA (θA, θB, x) and ΣB (θA, θB, x) > 0.

As ε(x) = 0, combining Eqs. (7) and (8) yields:

r U (x) = βB ψB (θB) (yB − τ (1− x)) + (r + δB) b
r + δB + βB ψB (θB) (12)

which is increasing in x conditional on tightness and independent on rents R(x). Now, consid-

ering Eq. (7) in B leads to

ΣB (θA, θB, x) = βB ψB(θB)SB(x) = βB ψB(θB) yB − τ (1− x)− b
r + δB + βB ψB(θB) (13)

which is increasing in x (conditional on tightness) because the surplus SB(x) is increasing. It is

also independent on rents R(x). Then, considering Eq. (7) also in A yields:

ΣA (θA, θB, x) = βAψA(θA)
(r + δA) (r + δB + βBψB(θB))

{
(yA − τx− b) (r + δB)

+ βBψB(θB)(yA − yB + τ(1− 2x))
}
.

Therefore, in Case (ii), we have the following property:

∂ΣA

∂x
< 0 < ∂ΣB

∂x
and ∂ΣB

∂θB
> 0 = ∂ΣB

∂θA
.

Case (iii) If ΣA (θA, θB, x) < 0 and ΣB (θA, θB, x) < 0.

Then, the unemployed workers do not search and r U (x) = b, so (9) again applies.

According to Lemma 1, the expected surpluses of searching a job do not depend on rents

R(x). This is because employed and unemployed workers need both to pay rents where they

live.

Lemma 1 shows that conditional on the level of tightness in each center the expected return

to search in A (respectively, in B) shrinks (respectively, grows) as the distance to A rises (and

hence the one to B shrinks). These effects are entirely driven by the evolution of the surpluses,

which in turn vary as commuting costs do. Moreover, the relationships x 7→ Σj (θA, θB, x), for

j ∈ {A,B}, are differentiable except at the threshold x̃ such that ΣA (θA, θB, x̃) = ΣB (θA, θB, x̃),
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if any. To guarantee that the surplus is positive for all x and j, we henceforth rule out Case

(iii) by fixing an upper-bound on τ :9

Assumption 1. τ < min{yA, yB} − b.

According to Assumption 1, all jobless individuals are searching for a job. Lemma 1 then

implies the existence of a threshold location denoted x̃ that separates the pool of unemployed

searching a job in A to those searching a job in B.

Lemma 2. For any θA and θB, either

• there exists a unique x̃ ∈ [0, 1] such that

ΣA (θA, θB, x̃) = ΣB (θA, θB, x̃) (14)

• or ΣA (θA, θB, 1) > ΣB (θA, θB, 1) in which case all unemployed workers search in A

• or ΣA (θA, θB, 0) < ΣB (θA, θB, 0) in which case all unemployed workers search in B.

Henceforth, we concentrate on the case where x̃ ∈ [0, 1] verifies Eq. (14). Assumption 2

below will guarantee such a configuration.

II.3 The labor demand

We adopt a one-job-one-firm setting. Each vacancy can be either filled of vacant. Opening

a vacant job costs kj per unit of time. Under free-entry, firms open vacancies in j until the

expected cost of hiring a worker equals the expected profit made on a filled position. In job

centers A and B, this condition is respectively:10

kA =µA(θA)
∫ x̃

0
max{ΠA(x), 0} f(x)

F (x̃)dx, (15)

kB =µB(θB)
∫ 1

x̃
max{ΠB(x), 0} f(x)

1− F (x̃)dx.

9Relaxing this assumption would somewhat complicate the model as there would be a reservation distance
above which surplus in A would become negative and hence matches in A would not be formed and there would
be a reservation distance below which matches in B would not be formed for the same reason. This would not
add much insight into our analysis.

10We here consider that the spatial distribution of applicants coincides with the one of the labor force, i.e. is
given by the density f(x). This condition obviously holds at the steady state. It also holds along transitional
dynamics where the unemployment rate is initially uniform and then the threshold x̃ does not change. To see
this, let ut(x) denote the unemployment rate among individuals living in x at time t and u̇t(x) its time derivative.
The low of motion of this unemployment rate is given by:

u̇t(x) =
{
δA − (δA + ψA(θA,t))ut(x) if x 6 x̃

δB − (δB + ψB(θB,t))ut(x) if x > x̃

Therefore, if the unemployment rates are initially uniform and the threshold x̃ does not change, then all the
unemployment rates ut(x) for location below the threshold remain identical. The same holds above the threshold.
Consequently, the spatial distribution of job applicants remains identical to the one of the labor force.

9



The flow cost kj of opening a vacancy (on the left) equals the rate µj at which a vacancy meets

an applicant times the expected profit made on an applicant. Given the above-explained search

decisions, the latter is a conditional expectation, respectively Ex {max {ΠA(x), 0} | x 6 x̃} and

Ex {max {ΠB(x), 0} | x > x̃}. By Assumption 1 and the surplus sharing rule (5), Πj(x) is always

positive (j ∈ {A,B}). Let

ΓA (x̃) =
∫ x̃

0
x
f (x)
F (x̃) dx and ΓB (x̃) =

∫ 1

x̃
(1− x) f (x)

1− F (x̃) dx (16)

denote the conditional expected commuting distance respectively to job centers A and B. These

functions verify:

0 6 ΓA (x̃) 6 x̃ and Γ′A (x̃) = f(x̃)
F (x̃) (x̃− ΓA (x̃)) > 0 (17)

0 6 ΓB (x̃) 6 1− x̃ and Γ′B (x̃) = −f(x̃) (1− x̃− ΓB (x̃))
1− F (x̃) 6 0. (18)

Using Eqs. (1), (5) (11) and (13), the free entry conditions (15) become:

r + δj
1− βj

θj
ψj (θj)

+ βj
1− βj

θj = yj − τ Γj (x̃)− b
kj

, j ∈ {A,B}. (19)

Lemma 3. For any value of the threshold x̃, under Assumption 1, the equilibrium value of

tightness is unique. In j = A (respectively, j = B), tightness decreases (respectively, increases)

with the threshold x̃.

Proof. Under the matching functions’ Inada conditions, the left-hand side (LHS) of Eq. (19) is

increasing in θj from 0 to +∞. By Assumption 1, the RHS is positive for all values of x̃. Hence,

for any x̃ ∈ [0, 1] and any j ∈ {A,B}, Eq. (19) implicitly defines a unique level of tightness

θj = Θj (x̃) with Θ′A (x̃) < 0 and Θ′B (x̃) > 0.

A rise in x̃ raises the conditional commuting distance to job center A and hence reduces the

expected surplus of a match. This induces a decline in tightness in A. A similar phenomenon

applies in B with the opposite implication on tightness. A composition effect is at work. When

a firm decides whether to open a vacancy, it compares the expected cost to the expected profit

made when the position is filled. Since vacant jobs are specific to the job center, but accessible

to individuals located anywhere, and as workers’ commuting costs are partly reimbursed by

the employer, this expected profit shrinks when job-seekers living further away enter the queue

of unemployed in the job center.11 In other contexts, similar composition effects have been

emphasized by e.g. Decreuse (2008) and Albrecht et al. (2010).
11If, as in Gautier and Zenou (2010), the location of each worker is not observed or not verifiable, two cases can

occur. Either, the average commuting cost is common knowledge and firms compensate their employee for this
average. Then, the same qualitative effect on the expected profit would be observed. Or, there is no compensation
at all for commuting costs. Then, this effect disappears. However, as explained in Footnote 7, there is empirical
evidence that such compensations are present in reality.

10



II.4 The labor market equilibrium

The steady-state equilibrium can be defined recursively. First, we need to characterize the

3-tuple
{
θ̃A, θ̃B, x̃

}
. Second, the size of the population in unemployment and the number of

vacancies are then determined.

Definition 1. A steady-state equilibrium is 3-tuple
{
θ̃A, θ̃B, x̃

}
that verifies the free-entry con-

dition (19) on each labor market and search indifference condition (14).

Let us define

Sj (x̃) = Σj (ΘA (x̃) ,ΘB (x̃) , x̃) ,

that is the expected return to search in j at any value of the threshold x̃, in or out of equilibrium,

once the effect of commuting distance on tightness, Θj(x̃) implicitly defined by (19), is taken

into account. Figure 2 illustrates Lemma 4 and Proposition 1 introduced below.

Lemma 4. The expected return to search in market A, SA (x̃), decreases with the value of the

threshold x̃. The opposite is true in B.

Proof. Lemma 1 shows that ΣA (respectively, ΣB) is not affected by θB (resp., θA) in the interval

of the [0, 1] segment where job-seekers search in A (resp., B). From Lemmas 1 and 3,

∂Sj (x̃)
∂x̃

= ∂Σj

∂θj

∂Θj (x̃)
∂x̃

+ ∂Σj

∂x̃
< 0 if j = A, > 0 if j = B.

Taking the effect of the threshold on the level of tightness under free entry, the equilibrium

condition (14) becomes:

SA (x̃) = SB (x̃) (20)

which admits at most one solution. Hence, if an equilibrium exists, it is unique. To ensure

existence, one needs:

SA (0) > SB (0) and SA (1) < SB (1) . (21)

11
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Fig. 2. The equilibrium

Let us define ψ
A

= ψA (ΘA (1)) the exit rate to employment in job center A when everybody

on the segment [0, 1] seeks a job there since x̃ = 1. At the other extreme, we denote ψA =

ψA (ΘA (0)). Obviously, we have 0 < ψ
A
< ψA. Similarly in B, let ψ

B
= ψB (ΘB (0)), ψB =

ψB (ΘB (1)), with 0 < ψ
B
< ψB. From the definition of Sj and (7), Inequalities (21) are

equivalent to the following assumption:

Assumption 2. Parameter τ is such that:

τ > max
{
yA − b−

νB
νA

(yB − b), yB − b−
νA
νB

(yA − b)
}

where we define

νA = βAψA
r + δA + βA ψA

, νB = βBψB
r + δB + βB ψB

,

νA =
βAψA

r + δA + βA ψA
, νB =

βBψB
r + δB + βB ψB

.

Assumption 2 puts a lower bound on the commuting cost τ . Intuitively, if τ is too low and

SA (1) > SB (1) (resp. SB (0) > SA (0)), even workers located very close to B (resp. A) are

better off searching a job in A (B). Search costs should then be high enough to prevent that

a single labor market exists. It can be checked that Assumptions 1 and 2 can be incompatible

if the two marginal products yA and yB are too different.12 A direct consequence of the two

previous lemmas is:
12For instance, one can imagine that yA is so low compared to yB , so that: 0 < yA− b < yB − b− νA

νB
(yA− b) <

yB − b. In this example, if the marginal commuting cost τ verifies Assumption 1 (i.e. is lower than yA − b), it
can obviously not be compatible with Assumption 2 at the same time. In this example, SA (0) < SB (0), which
amounts to saying that job center A ceases to exist due to a lack of productivity compared to B. Henceforth, we
neglect such uninteresting cases where the two-center model collapses to a one-business-district setting.

12



Proposition 1. An equilibrium exists, is unique, and interior under Assumptions 1 and 2.

Knowing the steady-state equilibrium
{
θ̃A, θ̃B, x̃

}
, the wage in any location x on the left of

x̃ is obtained by plugging θ̃A in Eq. (6) (resp. θ̃B on the right of x̃.) The equilibrium population

sizes in each state and the number of vacancies are also easily computed. Let

Gj(x) =
{
F (x) for j = A

1− F (x) for j = B.
(22)

In job center j, the steady-state equilibrium numbers of unemployed Ũj , of employed L̃j , and of

vacancies are given by:

Ũj = δjGj(x̃)
δj + ψj(θ̃j)

, L̃j = Gj(x̃)− Ũj and Ṽj = θ̃j Ũj (23)

The equilibrium density of workers employed in job center A, (respectively, unemployed and

searching a job in job center B) in any location x is:

LA(x) =
ψA
(
θ̃A
)
f(x)

δA + ψA
(
θ̃A
) , (resp., UA(x) = δAf(x)

δA + ψA(θ̃A)

)
for x 6 x̃ (24)

LA(x) = 0, (resp., UA(x) = 0) for x > x̃

LB(x̃) =
ψB

(
θ̃B
)
f(x)

δB + ψB
(
θ̃B
) , (resp., UB(x̃) = δBf(x)

δB + ψB(θ̃B)

)
for x > x̃ (25)

LB(x̃) = 0, (resp., UB(x̃) = 0) for x 6 x̃

In segment (0, x̃) (respectively, (x̃, 1)), the equilibrium unemployment rate is constant:

δA

δA + ψA(θ̃A)
,

(
resp., δB

δB + ψB(θ̃B)

)
. (26)

II.5 Comparative static analysis

Conditional on x̃, the comparative statics of the model is fully standard (see e.g. Pissarides,

2000). From the free-entry conditions (19), for a given value of the threshold, firms post less

vacancies and hence equilibrium tightness falls in any job center after a marginal rise in the

cost of opening a vacancy, the job destruction rate or the workers’ bargaining power in this

center. The same holds if the instantaneous value in unemployment or the discount rate rises.

Moreover, a rise in the marginal product yj increases θj .

Turning to the comparative statics on the threshold x̃, Appendix A shows that the partial

effect of a rise in kj , δj , b or r or a decline in yj on the expected return of search in j, Sj (x),

reinforces the above-mentioned effect through equilibrium tightness (see the summary in Table

6 of this appendix). This is however not true for the bargaining power βj , for reasons explained

13



later on. Fig. 3 illustrates the total effect of parameters’ changes on the Σj (ΘA(x),ΘB(x), x)

(i.e. Sj(x)) schedules for any value of the threshold x when this effect has a clear sign.
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Fig. 3. Comparative statics

In Fig. 3, a rise in kA or in δA (or a decline in yA) shifts the whole curve SA (x) downwards

without affecting the same curve in B, so the equilibrium threshold declines (see x̃′). The

equilibrium value of θB then declines because Θ′B(x̃) > 0 and the ΘB(x) schedule is not directly

affected by changes in any of the parameters kA, δA or yA. On the contrary, the total effect on

equilibrium tightness in A is ambiguous for the direct effect of a rise in kA or in δA (or a decline in

yA) on tightness and the effect through the threshold x̃ go in opposite directions (see Appendix

I.3 for more explanations). The case where kB or δB rises (or yB declines) is symmetric. It

induces a rise in the equilibrium threshold value (see x̃′′ on Fig. 3). The equilibrium value of θA
then declines because Θ′A(x̃) < 0 and the ΘA(x) schedule is not directly affected by changes in

any of the parameters kB, δB or yB. Furthermore, opposite forces lead as above to an ambiguous

impact on equilibrium tightness in B.

We obtain ambiguous marginal impacts of the instantaneous value in unemployment and of

the interest rate on the equilibrium threshold value since both Sj (x) curves shift in the same

direction (namely downwards in Fig. 3). Then, the total effects on equilibrium tightness levels

are obviously ambiguous as well. The impacts of a change in the bargaining power depend on

the magnitude of this power. Rising the bargaining power in center j has a positive partial

effect on Σj (θA, θB, x) but, as we have seen at the beginning of this subsection, it also has a

negative direct effect on tightness θj for any x and hence a negative effect on the expectation Σj .

Appendix A shows that a rise in any bargaining power βj does not affect the Sj (x) curve when

14



the Hosios condition (i.e. βj = ηj ≡ −θjµ′j (θj) /µj (θj)13) is verified. In this particular case, the

positive partial effect and the negative induced effect through tightness cancel out. Therefore,

the threshold x̃ remains unaffected.14 Under the Hosios condition, a rise in workers’ bargaining

power in center j has therefore only a direct negative effect on equilibrium tightness in the same

center along (19) (and no effect in the other one). If now the workers’ bargaining powers are

both “too high” (i.e. βj > ηj , j ∈ {A,B}), a rise in βA lowers x̃ and a rise in βB increases x̃.

This occurs because the negative direct effect of a rise in βj on tightness outweighs the positive

partial effect on the expected return of search Σj . So, the latter curve shifts downwards. The

opposite effects are observed when the workers’ bargaining powers are both “too low.” The total

impact of rise in the workers’ bargaining power can sometimes be signed if the Hosios condition

does not apply. See Table 1.

Table 1: Comparative statics with respect to workers’ bargaining powers βj

ηA > βA ηA < βA ηB > βB ηB < βB

dx̃/dβA > 0 < 0 dx̃/dβB 6 0 > 0
dθA/dβA < 0 ? dθA/dβB > 0 < 0
dθB/dβA > 0 < 0 dθB/dβB < 0 ?

II.6 The housing market

We finally consider the stage 1 of our model where rents and workers’ locations are decided

once and for all on a perfectly competitive housing market. A unit mass of dwellings that are

identical in all aspects, but their locations is available. The housing supply is inelastically de-

termined by some spatial and institutional constraints on the building of new dwellings. Each

individual occupying a single dwelling, the endogenous density function f(x) describing the

distribution of workers along the space line [0, 1] is identical to the exogenous distribution of

dwellings in the economy. Initially, all workers are unemployed and bid for renting the dwellings.

They also have outside opportunities which yield an expected lifetime utility Υ. Workers be-

ing perfectly mobile at the initial housing stage, they must be indifferent across the different
13ηj is the elasticity of the matching function with respect to the stock of unemployment.
14Pissarides (2000) shows a related result in a setting without explicit spatial heterogeneity, but endogenous

participation decisions. The participation rate reaches a maximum when the Hosios condition is met. Then, a
marginal rise in the workers’ bargaining power does not modify participation decisions.
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locations. Therefore, the no-arbitrage condition on the housing market leads to:15

Υ(x) = Υ ⇔ R(x) = r (U(x)−Υ)

Using Eqs. (10) and (12), the rents are:

R(x) =


βA ψA(θA)(yA − τ x) + (r + δA)b

r + δA + βA ψA(θA) − rΥ if x 6 x̃

βB ψB(θB)(yB − τ(1− x)) + (r + δB)b
r + δB + βB ψB(θB) − rΥ if x > x̃

(27)

As rents cannot be negative, Υ cannot be too high. Rents perfectly compensate the unemployed

workers for leaving further away from the job center they might be working in.

They decrease with distance at pace τ βA ψA(θA)/(r + δA + βA ψA(θA)) until the threshold

x̃ and then increase at pace τ βB ψB(θB)/(r + δB + βB ψB(θB)) above x̃.

III The social optimum and its decentralization

Conditional on the available matching technology, the social planner has three instruments,

namely the two levels of tightness and the threshold value denoted x which directs the job-search

process towards job center A or B. We add a superscript ∗ to designate the efficient value of

these instruments. As is often the case in this literature, we limit the analysis to the case where

r 7→ 0.16 Then, the social welfare function maximizes aggregate net output in steady state

(ignoring the transitional dynamics). Aggregate net output Ω is defined as output produced net

of commuting costs plus the value of time in unemployment minus the cost of creating vacant

jobs (being transfers among agents, wages, and rents do not appear in Ω). Using (16) and (23),

Ω can be written as a function of the two levels of tightness and of the threshold x:

Ω (θA, θB, x) =
∑

j∈{A,B}
(yj − τΓj(x)) ψj(θj)Gj(x)

δj + ψj(θj)
+ b

δjGj(x)
δj + ψj(θj)

− kj Vj

= b +
∑

j∈{A,B}
Gj (x) Wj (θj , x) (28)

15 Let us verify that there exists an equilibrium transitional dynamics from the initial stage where all individuals
are unemployed along which the threshold x̃ and tightness values θj jump instantaneously to their steady-state
values. If this was the case, the expected surpluses Σj(θA, θB , x) would also jump instantaneously to their steady-
state values. Therefore, the threshold x̃ would do the same according to the indifference condition (14). Because
the threshold x̃ does not change and the unemployment rate is initially uniform, so do tightness levels through
the free-entry conditions, according to Footnote 10. Hence, our initial presumption would be verified. We can
then also conclude that the lifetime values of being unemployed Υ(x) are constant, and so do the rents.

16As explained e.g. by Cahuc and Zylberberg (2004) in the case of the basic matching model, the social planner
problem can be studied in two ways. First, in the more general approach, the planner solves a dynamic optimal
control problem subject to the law of motion of the unemployment rate. The second approach sets aside the
problem of dynamic optimization by looking directly at the maximization of net output in a steady state subject
to the equation characterizing the steady-state unemployment rate. Both approaches lead to the same equation
characterizing optimal tightness in steady state when r 7→ 0. In our setting, optimal control techniques cannot
be applied since we would have a continuum of law of motions (namely, one in each location x). So, unless the
threshold is set once for all and the unemployment rates are initially uniform (see Footnote 10), we would have
a continuum of state variables to manage, namely, one unemployment rate per location. We therefore adopt the
second approach and assume r 7→ 0.

16



where

Wj (θj , x) = ψj (θj)
δj + ψj (θj)

(yj − τ Γj (x)− b)− θj δj
δj + ψj (θj)

kj , (29)

designates the per capita surplus created in job center j. We proceed in three steps. First,

for any level of the threshold x, we determine the optimal values of tightness, θ∗A(x) and

θ∗B(x), in each job center. Second, we show that the Hosios condition is necessary to de-

centralize the optimal allocation. Third, we select the optimal threshold x∗ that maximizes

b+
∑
j∈{A,B}Gj (x) Wj

(
θ∗j (x), x

)
and conclude that the equilibrium threshold x̃ chosen in the

decentralized economy is typically inefficient. The first-order condition with respect to θj is:

δj
1− ηj(θ∗j (x))

θ∗j (x)
ψj(θ∗j (x)) +

ηj(θ∗j (x))
1− ηj(θ∗j (x))θ

∗
j (x) = yj − τ Γj (x)− b

kj
(30)

where ηj = ηj(θj) = − θjµ
′
j(θj)

µj(θj) ∈ (0, 1). In the standard matching literature, if the worker’s

bargaining power βj happens to be equal to elasticity ηj , the surplus sharing rule (5) internalizes

search-matching externalities. This equality is the already-mentioned Hosios condition (see

Hosios, 1990, and Pissarides, 1990). Put differently, the decentralized economy is efficient (i.e.

it maximizes net output) despite the presence of these externalities. In our setting, when the

threshold x is taken as given, the average commuting cost Γj(x) in each job center is fixed. The

problem of determining the optimal level of tightness in each market takes the same form as in

the basic matching model, with an additional cost that is exogenous. Therefore, as in the basic

matching model, the Hosios condition ensures that the decentralized equilibrium generates the

social optimal allocation. The next lemma - our second step - shows that the Hosios condition

is necessary to decentralize the optimal allocation {θ∗A, θ∗B, x∗}.

Lemma 5. The Hosios condition βj = ηj(θ∗j (x∗)), ∀j ∈ {A,B}, is necessary to decentralize the

optimal allocation, i.e. to guarantee that θ̃j = θ∗j and x̃ = x∗.

Proof. Let r 7→ 0. If the economy decentralizes the optimal allocation, then x̃ = x∗. The RHS of

Eqs. (19) and (30) being independent of tightness, they are identical. The unique decentralized

level of tightness θ̃j and the unique optimal one θ∗j can only be equal if the LHS of Eqs. (19)

and (30) are identical. This can only hold if the Hosios condition βj = ηj(θ∗j (x∗)), ∀j ∈ {A,B},

is verified.

The Hosios condition is only necessary and sufficient if the decentralized value of the threshold

x̃, which solves Eq. (20), equals the efficient one x∗. Otherwise, the RHSs of (30) and of (19)

are different. Consequently, we can get θ̃j 6= θ∗j even though the Hosios condition is met.
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Third, we turn to the optimality condition with respect to x. To this end, we get using (30):

kj = (yj − τ Γj (x)− b)
(1− ηj(θ∗j (x))) µj

(
θ∗j (x)

)
δj + ηj(θ∗j (x)) ψj

(
θ∗j (x)

)
so, from Eq. (29)

Wj

(
θ∗j (x), x

)
= (yj − τ Γj (x)− b)

ηj(θ∗j (x)) ψj
(
θ∗j (x)

)
δj + ηj(θ∗j (x)) ψj

(
θ∗j (x)

) . (31)

Remembering (8) and (11), this way of expressing Wj makes clear that under the Hosios con-
dition, βj = ηj

(
θ∗j (x)

)
, the product b +Wj

(
θ∗j (x), x

)
is the expected discounted utility of an

unemployed searching in j. The optimal threshold value x therefore maximizes the expected
utility of an unemployed,17 namely:

Ω (θ∗A(x), θ∗B(x), x) = b+
∫ x

0
(yA − τ ζ − b)

ηA (θ∗A(x)) ψA (θ∗A(x))
δA + ηA (θ∗A(x)) ψA (θ∗A(x)) f(ζ) dζ

+
∫ 1

x

(yB − τ (1− ζ)− b) ηB (θ∗B(x)) ψB (θ∗B(x))
δB + ηB (θ∗B(x)) ψB (θ∗B(x))f(ζ)dζ.

Let us define

Ej(θ) = δj

(δj + ηj(θ) ψj(θ))2
∂(η(θ) ψ(θ))

∂θ

∂θj
∂Γj

∣∣∣∣∣
Eq. (30)

< 0 (32)

the marginal change of ηj(θ∗j (x)) ψj(θ∗j (x))
δj+ηj(θ∗j (x)) ψj(θ∗j (x)) when Γj increases by one unit along Eq. (30). This

term is negative as a rise in average transportation cost Γj decreases tightness. Appendix B

shows that under the Hosios condition βj = ηj (θj(x∗)), the optimal threshold x∗ verifies:

ΣA(θ∗A(x∗), θ∗B(x∗), x∗) + IA(x∗) = ΣB(θ∗A(x∗), θ∗B(x∗), x∗) + IB(x∗) (33)

where Ij(x) = (zj(x)− Γj(x)) (yj − τΓj(x)− b) Ej
(
θ∗j (x)

)
, j ∈ {A,B}. Under the Hosios con-

dition, Σj (θ∗A(x), θ∗B(x), x) is nothing else than the expected return to search in location j in the

decentralized economy Σj(ΘA(x), ΘB(x), x) evaluated at the threshold x, where the Σj func-

tions were defined by respectively (11) and (13), and Θj(x) yields tightness under free entry for

any threshold x (see the proof of Lemma 3).

Each expression Ij(x∗), henceforth Ij for short, has no reason to be nil unless ηj 7→ 0,18

which is a degenerate case where the number of vacancies has no influence on the number of

hirings. If IA and IB happen to be equal, the Hosios condition is sufficient to guarantee the

equality between the decentralized and the optimal triple (θ∗A, θ∗B, x∗). This would be the case if

the two job centers were identical and the distribution of the population was uniform on [0, 1].

In general, IA and IB have however no reason to be equal and hence the Hosios condition is not

sufficient to guarantee that the steady-state equilibrium is efficient.
17As r 7→ 0, this is also the expected utility of a member of the labor force.
18When η 7→ 0 the term ∂(η(θ)ψ(θ))

∂θ
7→ 0 (see (32)), hence Ej(θ) 7→ 0.
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The negative effects Ij omitted by decentralized agents have a clear interpretation. In the

decentralized economy, the threshold location verifies Eq. (20), which expresses that the pri-

vate gains Sj(x) = Σj (ΘA(x),ΘB(x), x), of searching in A and in B are equal in equilibrium.

This indifference condition (20) overlooks that a change in the threshold affects the conditional

expected commuting distance, Γj , of all workers and thereby the expected surplus accruing to

employers. This in turn modifies the number of vacancies created in both job centers under

free entry and eventually the levels of tightness. Finally, this change in both levels of tightness

has an impact on the expected utility of all job-seekers. This externality is different from the

standard search-matching externalities that are internalized under the Hosios condition. At the

root of this additional externality, one finds the composition effect introduced in Subsection II.3.

Since vacant jobs are specific to the job center, but accessible to individuals located anywhere

and as workers’ commuting costs are shared through the wage bargain, the expected profit of

opening a vacancy shrinks when job-seekers further away enter the queue of unemployed seeking

an occupation in the job center. We henceforth talk about the composition externality. This

externality is made of two opposite effects IA < 0 and IB < 0. If IA < IB, Eq. (33) implies that

at a social optimum, the return to search of the pivotal job-seeker (i.e. someone located in x∗)

is higher in job center A than in B. Therefore, the social optimum needs to instruct some job

seekers to search in market B rather than in A. In other words, in the decentralized economy

too many job-seekers are searching for a job in business district A.

With a Cobb-Douglas matching function on each labor market, a popular functional form

used in the numerical analysis below, ηj becomes a parameter. Then, as explained in Appendix

B,

Ij(x) = −τ (zj(x)− Γj(x))
[

ψj(θ∗j (x))
δj + ψj(θ∗j (x)) −

ηj ψj(θ∗j (x))
δj + ηj ψj(θ∗j (x))

]
< 0. (34)

Ij is the opposite of the product of the positive difference between the marginal commut-

ing cost τ zj(x) and the (conditional) average one τ Γj(x) and a second positive difference,[
ψj(θ∗j (x))

δj+ψj(θ∗j (x)) −
ηj ψj(θ∗j (x))

δj+ηj ψj(θ∗j (x))

]
, which depends on tightness θ∗j (x) only. The latter difference is

decreasing in tightness if and only if √ηjψj(θ∗j (x)) > δj ,19 which corresponds to an unemploy-

ment rate lower than
√
ηj

1+√ηj . For ηj = 0.1, this ratio corresponds to an unemployment rate of

24%, while for ηj = 0.9, it corresponds to an unemployment rate of 48%. Therefore, as most

empirical analyses find a value of η ∈ [0.4, 0.7], we can take for granted that the latter difference

is decreasing in tightness. If x − ΓA(x) is increasing in x - which is not guaranteed - what we

here learn is that the LHS of (33) is decreasing in x. Then if 1− x− ΓB(x) is decreasing in x,
19The derivative of ψ

δ+ψ −
η ψ
δ+η ψ with respect to ψ is δ

(δ+ψ)2 − η δ

(δ+η ψ)2 . This term is negative whenever
(δ + η ψ)2 < η (δ + ψ)2 or √ηψ > δ.
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the RHS of (33) is increasing in x so that if (33) has a solution x∗ it is unique.

This section can be summarized as follows:

Proposition 2. The Hosios condition is necessary, but generically not sufficient to guarantee

that the decentralized equilibrium is efficient. The decentralized threshold x̃ can be lower or above

the efficient one x∗ depending on the relative strength of the composition externalities in the two

job centers.

As explained above, a counter-example where the Hosios condition is sufficient is the case

where the two centers are symmetric and the population is uniformly distributed.

IV Numerical analyses

In this section, we provide numerical simulations to quantify the effects found in the theo-

retical section. In particular, we illustrate how the shape of the distribution of the workforce

influences the decentralized allocation and we look at the gap between the efficient and the

decentralized allocations. In addition, we provide some evidence on the impacts of policies that

change the commuting cost and the cost of opening vacancies. In the first part, we look at a

uniform distribution combined with a parametrized mass of workers located in job center A.

Next, we look at two U.S. Metropolitan Statistical Areas (MSA), Los Angeles and Chicago, and

after calibrating the model for two major job centers of these MSAs we develop a counterfactual

analysis with respect to the distribution of the workforce.

We assume Cobb Douglas matching functions, Mj = mjV
1−ηj
j U

ηj
j , j ∈ {A,B}. The job

finding rate and the rate of filling a vacancy respectively are:

ψj (θj) = mjθ
1−ηj
j (35)

µj (θj) = mjθ
−ηj
j (36)

IV.1 A numerical illustration

In the first exercise we take symmetric job centers and we set the discount rate to zero. In

both business districts, productivity yj is normalized to 1, the value of leisure is normalized to

b = 0.4 (Shimer, 2005), the quarterly separation rate in 200020 is δA = δB = 0.03 (Shimer, 2012)

and we set mA = mB = 1. The vacancy costs kj are set to match unemployment rates of 6%.

We take the transportation cost τ = 0.4 (Zenou, 2009b, p. 40). The Hosios condition is assumed

by imposing βj = ηj = 0.5. The labor force is distributed according to a uniform distribution

whose total mass is 1 − αA and a mass point of αA ∈ [0, 1) is located at x = 0. So, the CDF
20 This data was constructed by Robert Shimer. For additional details, see Shimer (2007) and his webpage

http://sites.google.com/site/robertshimer/research/flows.

20

http://sites.google.com/site/robertshimer/research/flows


is F (x) = αA + (1 − αA)x, implying that as αA tends to 1, the population becomes more and

more concentrated at x = 0. The model is calibrated for αA = 0. The average commuting costs

towards job centers A and B for x ∈ (0, 1) respectively are,

ΓA(x) =
(1− αA)x2

2
αA + (1− αA)x, with ∂ΓA(x)

∂αA
< 0, and ΓB(x) = 1− x

2 .

The simulation results in Fig. 4 depict how the allocation at the decentralized equilibrium

(blue solid curves) and the optimal one (red dashed curves) are modified when the mass in job

center A, αA, exogenously increases from 0 to 1. The two allocations coincide when αA = 0 as

the two job centers are symmetric and the workforce is uniformly distributed. Then, we know

from the previous section that the Hosios condition guarantees efficiency. When the mass point

αA increases, vacant jobs in A have a larger probability of meeting job-seekers close to them.

So, for any threshold value x̃ the conditional expected commuting distance ΓA(x̃) decreases.

Therefore, the schedule ΘA(x̃) shifts upwards when αA rises and so does the expected returns

to search in A, SA(x̃), in Fig. 3. On the contrary, the schedule ΘB(x̃) and hence SB(x̃) are

unaffected by αA. From (20) and Fig. 3, x̃ has to rise with αA. The bottom left panel of Fig. 4

shows that this effect is however very small.

In the same panel, the optimal threshold x∗ slightly declines with αA. To see why, we need

to understand how changes in αA modify the Ij terms (34) in both job centers. Notice first

that because the schedule ΓA(x) shifts downwards when αA increases, the difference between

the marginal and the average commuting distance to job center A, x−ΓA(x), increases whatever

the value of x, while the corresponding term in B is not a function of αA. Furthermore, the last

term defining Ij shifts upwards for any x when αA increases (because the schedule ΘA(x) shifts

upwards) while, again the corresponding term in B remains unaffected. For these two reasons,

as αA rises, the schedule IA(x) shifts downwards while nothing changes in B. So, compared

to the decentralized equilibrium, the efficient threshold will be lower (more job-seekers should

search in B instead of A). This does not however explain why the efficient x∗ shrinks with αA.

Two opposite movements affect the left-hand side of (33): the one we have just explained and

the upward shift of the schedule SA discussed earlier. From the profile of x∗ in the bottom left

panel of Fig. 4, we deduct that the former slightly outweighs the latter. However, the difference

between x∗ and the the decentralized x̃ is not sizable.

As far as the decentralized equilibrium value of θ̃A is concerned, two forces are here also at

work. First, when αA rises, for the reason explained earlier, the ΘA(x̃) schedule shifts upwards,

inducing a rise in θ̃A for any threshold x̃. However, the decentralized x̃ increases a bit. This

in turn induces a decline in the decentralized value θ̃A since Θ′A(x̃) < 0. Fig. 4 shows that the

former effect dominates and triggers a sizable increase in θ̃A. In comparison, the gap between
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Fig. 4. Decentralized versus Optimal allocation

θ̃A and θ∗A looks negligible.

In job center B, only one mechanism is at work since the conditional expected commuting

distance to B, ΓB(x̃), is not affected by αA. As x̃ rises with αA, ΓB(x̃) declines and hence

the decentralized value θ̃B increases as well, but the impact is very small. For a symmetric

reason, the efficient value θ∗B somewhat declines because x∗ slightly declines with αA. Both the

decentralized and the efficient levels of the aggregate unemployment decrease with αA, from 6%

when αA = 0 to 5.5% when αA = 1. In sum, concentrating the population in job center A has

some sizable effects on the decentralized and the efficient allocations, but the gap between these

two is tiny.
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Fig. 6. Decentralized allocation when only kA rises (the continuous lines) and when both kj
grow in exactly the same way (the interrupted lines); αA = 0.5

We now consider the impacts on the decentralized equilibrium of policies financed by a tax

on rents (which has no allocative consequence in our framework). We set αA to 0.5, but keep

the other parameters at their calibrated values. Fig. 5 quantifies the effects when the unit

commuting cost τ varies between 0.3 and 0.5. As the calibrated value is 0.4, we illustrate what

happens when this cost is either subsidized or taxed. When τ rises, tightness declines in both job

centers, but less so in A because of the mass αA of workers who do not have to commute to A.

The impact on the threshold x̃ is negligible and the aggregate unemployment rate rises slightly

only.21 Finally, we look at the effects of changes of the costs of opening a vacancy around their

calibrated values (2.06). Fig. 6 displays the outcomes when the cost of opening a vacancy varies

only in job center A (the continuous lines) and when both costs grow in exactly the same way

(the dashed lines). Tightness θ̃A declines almost identically in the two scenarios. Conversely,

tightness θ̃B is only affected when the vacancy cost kB is also rising. The threshold x̃ is almost

unaffected when both kj ’s are growing and slightly declining when only kA rises. In both cases

the increase in the aggregate unemployment rate is non negligible.

In all these experiments, the two job centers were symmetric. Consider as an example the

following asymmetry: αA is set to 0.5, a change that favors job center A, and the marginal

product of labor in B rises (say by 25%), which favors this center instead. The most striking

implication is that the threshold x̃ shrinks to 0.18 while the aggregate unemployment rate

declines to 5.3%. Then, rising both kj ’s generates a pattern of adjustment that is qualitatively
21The latter conclusion is sensitive to the magnitude of αA. When this parameter is set to 0, a rise of the

commuting cost by 25% increases the aggregate unemployment rate by 0.2 percentage points.
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the same as in the previous figure. Hence, we do not report those simulations.

IV.2 Los Angeles and Chicago MSAs

This subsection focuses on the consequences of changing the shape of the distributions of

the workforce. Here, the two job centers will be asymmetric.

IV.2.a The data

In the second part of the numerical exercise we calibrate our model with data on MSAs in

the U.S. The leading MSAs, ranked by population, are also those with the highest mean travel

time to work i.e. New York (34 minutes), Los Angeles (29 minutes) and Chicago (31 minutes)

(see McGuckin and Srinivasan, 2003; Rapino et al., 2011). We calibrate the model using data

from the U.S. 2000 census.

We have access to data of the total workforce, the number of employed, unemployed, and

commuters at the zip code and county levels on the basis of the location of residence. Average

wages and the number of employees are available only at the county level on the basis of the

location of the job. We collect information for Los Angeles and Chicago MSAs,22 which we

respectively take as representative of “new” and “old” cities.23

(a) California
(b) Illinois

Fig. 7. Paid employees by county, 2000
(Thousands per sq mi)

Source: U.S. Census Bureau, Department of commerce.

We assume there is one job center per county and determine its size by the number of paid
22New York MSA’s configuration is out of the scope of this model since it presents four important job centers

on a row: New York, Queens, Nassau and Suffolk counties. San Francisco MSA is a multicentric MSA and hence
out of the scope of our model.

23Old cities used to be the ten most populated in 1900, i.e. New York, Chicago, Philadelphia, Detroit, Boston,
and San Francisco. In contrast, new cities like Los Angeles, Atlanta, Houston, Dallas, Miami, and Nassau-Suffolk
had much smaller populations during that century.
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employees per square mile.24 Fig. 7 depicts the states of California and Illinois by county and

each county’s size is measured by the height on the map. According to the U.S. 2000 Census

definition, Los Angeles MSA sprawls over the counties of Los Angeles, Orange, Riverside and

San Bernardino, that are colored on Fig. 7a. Two job centers exceed the others in size: Los

Angeles county (in red) and Orange county (in yellow) respectively account for 63% and 23% of

the total paid employees in Los Angeles MSA. Chicago MSA is made of a number of counties

that are colored on Fig. 7b.25 The largest job centers in Chicago MSA, see Fig. 7b, are in Cook

county (in red) with a share of 60% and DuPage county (in yellow) with 14% of paid employees.

Interestingly for our study the highway Route 5 links Los Angeles and Orange counties, see

Fig. 8. We only take into account the active population with residence along this highway. In

most cases Route 5 passes through a zip code, while in others it is at the border of two zip code

areas, in which case we average their populations. Job center A or CBD is assumed to be located

in Los Angeles city center and job center B or SBD in Santa Ana city center. They are separated

by 33.9 miles. In Chicago MSA, we only consider the active population with residence along

Routes 290 and 88, which connect Cook and DuPage counties, see Fig. 9. The CBD is assumed

to be located in Chicago city center and the SBD in Naperville city center. They are separated by

33.6 miles. The labor force in each zip code area located between the specified job centers forms

Fig. 8. California, job centers connected through Route 5
Source: http://www.zipmap.net/California.htm

a discrete workforce distribution, which we transform into a continuous density f(x) and CDF
24Data available only at the county level. Source: U.S. Census Bureau, Department of Commerce, 2000 and

the National Association of Counties.
25Chicago MSA spreads over the states of Illinois, Indiana (Lake and Porter counties) and Wisconsin (Kenosha

county). The counties included from the state of Illinois are: Cook, DeKalb, DuPage, Grundy, Kane, Kendall,
Lake, McHenry, Will and Kankakee. Metropolitan areas defined by the Office of Management and Budget, June
30th, 1999. Source: Population division, U.S. Census Bureau. Released online on July 1999.
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Fig. 9. Chicago, job centers connected through Route 88 and 290
Source: http://www.zipmap.net/Illinois.htm
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Fig. 10. Kernel distributions of the labor force

F (x) on the segment [0, 1]. For this purpose, for both MSAs, we estimate non parametrically

the density using a Kernel with bandwidth with smoothing factor 5 which yields a bandwidth

of 0.27 and 0.31 for Los Angeles and Chicago MSA, respectively.26 The densities are displayed

in Fig. 10. We denote x0 as the geographical boundary between the two counties. Now that we

have the continuous distribution F of the workforce with residence along the selected routes, we

can fix x0 such that F (x0) matches the observed share of the workforce living in the county on

the left (“LC” for short). Then of course, 1−F (x0) matches the share in the county to the right

(“RC” for short). In Los Angeles MSA, Los Angeles (resp. Orange) county spreads over the

segment [0, 0.51] (resp. (0.51, 1]). In Chicago MSA, Cook (resp. DuPage) county spreads over

the segment [0, 0.53] (resp. (0.53, 1]). In Los Angeles MSA, see Fig. 10a, the population density

is at its highest level on the border between counties, whereas at the extremes, i.e. x = 0 and

x = 1, we observe the lowest densities. In Chicago MSA, however, Fig. 10b, the distributed is

skewed to the right. We also observe an inverted-U-shape density within DuPage county. To

summarize these differences by two numbers, F (x0) = 0.5 in Los Angeles MSA while it is close

to 0.4 in the other one.
26We use a quadratic Kernel (Epanechnikov) k2(x) = 3

4

(
1− x2). We calculate the bandwidth using the

Silverman rule-of-thumb: h = 5 · σ̂2 · Cν(k) · N−1/(2ν+1) where the bandwidth h, equals the product of the
smoothing factor 5, times the sample standard deviation, σ̂2, a constant, Cν(k) = 2.34, the sample N , and the
order of the Kernel ν = 2.

26
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IV.2.b The calibration

The parameters of the model are: yj , δj , ηj , βj , mj for j = {A,B}, and r, b, and τ , the

unknowns being θ̃j and x̃. The reference year is 2000. We match the means of the unemployment

rates in the selected zip codes along the indicated connecting routes respectively within the left

and the right counties. Since average wages are only available for the year 2000 at the county

level, we also match the average wages respectively in the left and the right counties.27 We

use a quarter as the unit of time. The real interest rate in the U.S. in 2000 was 4%,28 thus

we take r = 0.98%. Following Petrongolo and Pissarides (2001) we choose an elasticity of the

matching function ηA = ηB = 0.5, and as common practice we assume the Hosios condition,

βA = βB = 0.5. Due to the small gap between unemployment rates in Los Angeles MSA we

assume the scale factor of the matching function to be equal across job centers (see Table 2).

Indeed, along Route 5, the average unemployment rate of the zip codes areas that belong to Los

Angeles (resp. Orange) county is 8% (resp. 7%). For Chicago MSA, where the unemployment

rate is 6 percentage points higher in Los Angeles County than in DuPage county, we assume

mA < mB (see Table 3). The unemployment insurance (UI) replacement rate in the states of

California and Illinois is around 0.5 (Taylor, 2011).

As we observe different unemployment rates across counties, it is natural to think that

different separation rates δj ’s might be part of the explanation. We do not have this information

at the county level for the year 2000. However, we have found more recent data about the

number of initial claims for UI at the county level (this includes new, additional, and transitional

claims).29 We select the year 200730 and compute the ratio between these initial claims in 2007

and employment in the same year for the counties under scrutiny. This proxy for separation

rates is not exactly what we need to calibrate separation rates. So, we do not use their levels in

each MSA. We only use the ratio between these proxies for the county to the right (RC) and the

county to the left (LC). We set the separation rate to 0.036 (Pissarides, 2009) for the LCs (Los

Angeles and Cook counties) and this ratio is only used to scale the separation rate in the RCs
27Wage estimates are calculated from data collected from employers in all industry divisions by Occupational

Employer Statistics (OES), Bureau of Labor Statistics. The information. Source for California: Employment
Development Department. Source for Illinois: The Workforce Information center.

28Source: Federal Reserve, Daily Treasury Real Long-Term Rates in 2000 (average).
29This data is provided by the State of California Employment Development Department and the Illinois

Department of Employment Security. A “new claim” is the first claim for a benefit year period (e.g. for the
regular UI program it is 52 weeks). An individual would only have one new claim during a benefit year period.
An “additional claim” is when another claim is filed during the same benefit year and there is intervening work
between the first claim and the second claim. An individual can have multiple additional claims during the same
benefit year if she meets the eligibility requirements. A “transitional claim” is when a claimant is still collecting
benefits at the end of their benefit year period and had sufficient wage earnings during that year to start up a
new claim once the first benefit year period ends.

30This is the first year where the relevant information is available. Moreover the years 2000 and 2007 share
similar economic conditions, both being characterized by an unemployment rate reaching a local minimum.
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(Orange and DuPage counties). In both MSAs, this leads to δB < δA (see Table 2 and Table 3).

Due to the importance of commuting by car,31 to calibrate τ we first use the mileage re-

imbursement rate for privately owned automobile (POA). This information is provided by the

U.S. General Service administration (GSA) and for the year 2000 it was calculated to be 0.325

USD/mile.32 Second, τ takes into account the opportunity cost of time spent commuting. We

find that the commuting times during peak hours between the two job centers are 60 and 53

minutes, respectively in Los Angeles and Chicago MSA. Since in Los Angeles (Chicago) MSA

the average hourly wage is 16 USD (21 USD), the opportunity cost component of the commuting

costs equals 27 USD (29 USD respectively). For the final commuting cost parameter we add the

mileage reimbursement and the opportunity cost, double it to take into account a round trip

and multiply it by 66 working days in a quarter.

Recall that for each MSA we aim to match in 2000 the average unemployment rates of the

zip codes areas that belong to a county to the left and to the right, denoted ūLC and ūRC , and

the corresponding average wages, denoted w̄LC and w̄RC .

Hence, for a given value of the threshold x̃, we have four unknowns: yA, yB, θ̃A and θ̃B. We

define a system of four equations according to the relative position of the boundary of the two

counties (x0) and the threshold (x̃). We equate the observed share33 of employed workers in LC

and respectively RC and the formulas coming from the model:

eLC = ψA
δA + ψA

F (x) + ψB
δB + ψB

(F (x0)− F (x)) (37)

eRC = ψA
δA + ψA

(F (x)− F (x0)) + ψB
δB + ψB

(1− F (x)) (38)

where ψj stands for ψj(θj), x = min{x0, x̃} and x = max{x0, x̃}. The system of four equations

is then:

w̄LC =
∫ x

0
wA(x) ψA

δA + ψA

f(x)
eLC

dx+
∫ x0

x
wB(x) ψB

δB + ψB

f(x)
eLC

dx (39)

w̄RC =
∫ x

x0
wA(x) ψA

δA + ψA

f(x)
eRC

dx+
∫ 1

x
wB(x) ψB

δB + ψB

f(x)
eRC

dx (40)

ūLC = ψA
δA + ψA

F (x)
F (x0) + ψB

δB + ψB

(F (x0)− F (x))
F (x0) (41)

ūRC = ψA
δA + ψA

(F (x)− F (x0))
1− F (x0) + ψB

δB + ψB

(1− F (x))
1− F (x0) (42)

where ψA
δA+ψA

f(x)
eLC

and ψB
δB+ψB

f(x)
eRC

are the conditional employed population density in LC and
31In 2000, in Los Angeles MSA around 86% of the labor force resident in the zip code zones around Route 5

commuted by car. In Chicago MSA, for the same year, 80% of the labor force resident in zip code zones around
Route 88 and 290 were car-commuters.

32It includes (i) gasoline and oil (excluding taxes), (ii) depreciation of original vehicle cost, (iii) maintenance,
accessories, parts, and tires, (iv) insurance and (v) state and Federal taxes.

33Since in the model the total labor force is normalized to one, we match the share and not the level of
employment.
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RC, respectively. Then, Eq. (6) is used to express wj(x) in terms of unknowns and parameters

(see Appendix C for more details).

We set the initial condition x̃ = x0
34 and then solve Eqs. (39) to (42). Next, we compute

the two expected returns to search Σj respectively locations A and B, and according to the sign

and the magnitude of the difference between the two Σj ’s, a new value of x̃ is computed and the

system Eqs. (39) to (42) is solved again. This iterative procedure is applied until equality (14)

is verified. Finally, we compute the cost of opening a vacancy, kj , using the free entry condition

(19).

From the calibration in Table 2, the threshold x̃ separating job seekers in two groups is very

close to the boundary, x0, between the two counties. We do not have data about commuters

for the zip codes we consider. Still, information at the county level is worth to look at. Accord-

ing to the U.S. Census Bureau, 97% of work-commuters in Los Angeles and Orange counties

travel within and between these counties.35 In line with the calibration property x̃ ≈ x0, the

commuters’ flow within each of these two counties is much higher than between them. The

share of inner-county commuters in Los Angeles and Orange counties in 2000 was 96% and 85%,

respectively. The higher average unemployment rate in Los Angeles county compared to Orange

county is the consequence of a bigger separation rate, despite a slightly higher productivity level

and lower unit cost of opening vacancies in job center A. All in all, tightness is higher in job

center A than in the job center B.

In the calibration for Chicago MSA, Table 3, the threshold x̃ separating job seekers in

two groups is again close to the boundary, x0, between the two counties. According to the U.S.

Census Bureau in 2000, 94% of work-commuters in Cook and DuPage counties travel within and

between these counties. A 93% of work-commuters in Cook county are inner-county commuters.

This is higher than in DuPage county where 65% of commuters travel to work within the county

and the rest go to work in Cook county. The average unemployment rate is considerably higher

in Cook county. This is first due to a higher separation rate. Next, a lower scale factor of the

matching function in job center A (Cook county) and a much higher vacancy cost lead to lower

tightness and lower probability of being recruited in job center A (Cook county) despite a higher

productivity than in job center B (DuPage county).
34We have however checked that the calibration is robust to changes in this initial condition.
35Data of commuting patterns in the state of California, at the county level (U.S. Census Bureau).
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Table 2: Calibration of Los Angeles MSA, quarterly data

Value Description Source/Target

1. Parameters

1.1. From the literature, data and assumptions
r 0.98 Interest rate (%) Federal Reserve
ηA = ηB 0.5 Matching fn. Elasticity Petrongolo and Pissarides (2001)
βA = βB 0.5 Workers’ bargaining power Hosios condition ηj = βj
b 4, 452 Unemployment Insurance Bureau of Labor Statistics
δA 0.036 Separation rate LC Pissarides (2009)
δB 0.023 Separation rate RC Data
mA = mB 0.5 Matching fn. scale factor of Unemployment rates

LC and RC
τ 3, 542 Commuting cost U.S. General Service Administration

(USD per unit of scaled distance) and hourly wage
x0 0.51 Boundary between Los Angeles - Orange counties Data
F (x0) 0.51 CDF for Los Angeles county Data
1.2. Computed by the model (USD/quarter)
yA 9, 322 Labor productivity LC Eqs. (39) - (42)
yB 9, 190 Labor productivity RC Eqs. (39) - (42)
kA 4, 825 Vacancy cost LC Eqs. (39) - (42)
kB 9, 340 Vacancy cost RC Eqs. (39) - (42)
2. Outcomes

2.1. Matched labor market outcomes
w̄LC 8, 964 Average wages Los Angeles county (USD/quarter) State of California EDD b

w̄RC 8, 843 Average wages Orange county (USD/quarter) State of California EDD b

ūLC 8.18 Average unempl. rate Los Angeles county (%) U.S. 2000 census
ūRC 7.31 Average unempl. rate Orange county (%) U.S. 2000 census
2.2. Endogenous variables computed by the model a

x̃ 0.52 Location of the marginal worker Eq. (14)
θ̃A 0.65 Market tightness LC Eq. (19)
θ̃B 0.33 Market tightness RC Eq. (19)
ψA
(
θ̃A
)

0.40 Exit rate of unempl. LC Eq. (35)
ψB
(
θ̃B
)

0.29 Exit rate of unempl. RC Eq. (35)
µA
(
θ̃A
)

0.62 Vacancy filling rate LC Eq. (36)
µB
(
θ̃B
)

0.87 Vacancy filling rate RC Eq. (36)
kA/µA

(
θ̃A
)

7, 801 Exp. cost of opening a vacancy in LC
kB/µB

(
θ̃B
)

10, 770 Exp. cost of opening a vacancy in RC
a Different initial values for x̃ do not affect the calibrated results.
b Employment Development Department. www.ca.gov
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Table 3: Calibration of Chicago MSA, quarterly data

Value Description Source/Target

1. Parameters

1.1. From the literature, data and assumptions
r 0.98 Interest rate (%) Federal Reserve
ηA = ηB 0.5 Matching fn. Elasticity Petrongolo and Pissarides (2001)
βA = βB 0.5 Workers’ bargaining power Hosios condition ηj = βj
b 5, 438 Unemployment Insurance Bureau of Labor Statistics
δA 0.036 Separation rate LC Pissarides (2009)
δB 0.024 Separation rate RC Data
mA 0.6 Matching fn. scale factor of Unemployment rate Cook county
mB 0.8 LC and RC Unemployment rate DuPage county
τ 3, 890 Commuting cost U.S. General Service Administration

(USD per unit of scaled distance) and hourly wage
x0 0.53 Boundary between Cook - DuPage counties Data
F (x0) 0.42 CDF for Cook county Data
1.2. Computed by the model (USD/quarter)
yA 11, 686 Labor productivity LC Eqs. (39) - (42)
yB 10, 841 Labor productivity RC Eqs. (39) - (42)
kA 11, 056 Vacancy cost LC Eqs. (39) - (42)
kB 4, 671 Vacancy cost RC Eqs. (39) - (42)
2. Outcomes

2.1. Matched labor market outcomes
w̄LC 11, 169 Average wage Cook county (USD/quarter) IDES b

w̄RC 10, 663 Average wage DuPage county (USD/quarter) IDES b

ūLC 8.96 Unemployment rate Cook county (%) U.S. 2000 census
ūRC 3.19 Unemployment rate DuPage county (%) U.S. 2000 census
2.2. Endogenous variables computed by the model a

x̃ 0.54 Location of the marginal worker Eq. (14)
θ̃A 0.37 Market tightness LC Eq. (19)
θ̃B 0.89 Market tightness RC Eq. (19)
ψA
(
θ̃A
)

0.37 Exit rate of unempl. LC Eq. (35)
ψB
(
θ̃B
)

0.75 Exit rate of unempl. RC Eq. (35)
µA
(
θ̃A
)

0.98 Vacancy filling rate LC Eq. (36)
µB
(
θ̃B
)

0.85 Vacancy filling rate RC Eq. (36)
kA/µA

(
θ̃A
)

11, 233 Exp. cost of opening a vacancy in LC
kB/µB

(
θ̃B
)

5, 506 Exp. cost of opening a vacancy in RC
a Different initial values for x̃ do not affect the calibrated values.
b Illinois Department of Employment Security. www.illinois.gov

IV.2.c The counterfactual simulations

In Table 4 (resp., 5) we take the calibrated parameters of Tables 2 (resp., 3) and simulate

the implications of substituting counterfactual distributions of the workforce. In Table 4 (resp.,

5), column (1) reproduces the key endogenous indicators of Table 2 (resp., 3). In column (2),

we swap the active population distribution between MSAs. Next, we look at the consequences

of a uniform distribution in column (3). Finally, in columns (4) to (6) we do the same for three

truncated normal distributions on a support [0, 1]: A symmetric density (N (0.5, 0.15)), a normal

distribution positively skewed because of the truncation (N (0.25, 0.5)), and a negatively skewed

(N (0.75, 0.5)). The latter density functions are illustrated in Fig. 11. As in the initial stage

of the model, rents equalize the lifetime discounted utility in unemployment wherever one lives

and since each individual occupies a dwelling whose size is normalized to unity, the driver of
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the above-mentioned changes in the distribution of the workforce is a modification in the (here

exogenous) supply of housing.

Table 4: Simulations for Los Angeles MSA, quarterly data

Counterfactual population distributions

Los Angeles MSA a Chicago MSA Uniform Normal N (mean, st.dev.) truncated at (0, 1)b

(From Table 2) unif(0, 1) N (0.5, 0.15) N (0.25, 0.5) N (0.75, 0.5)
(1) (2) (3) (4) (5) (6)

x0 0.51 0.51 0.51 0.51 0.51 0.51
F (x0) 0.51 0.40 0.51 0.53 0.63 0.40

w̄LC 8, 964 8, 964 8, 961 8, 988 8, 962 8, 969
w̄RC 8, 843 8, 837 8, 839 8, 865 8, 847 8, 838
ūLC 8.18 8.15 8.10 8.65 8.10 8.26
ūRC 7.31 7.21 7.23 7.72 7.36 7.23
eRC + eLC 92.25 92.41 92.32 91.78 92.18 92.36

x̃ 0.518 0.518 0.518 0.582 0.520 0.517
τ ΓA (x̃) 1, 002 967 918 1, 388 918 1, 062
τ ΓB (x̃) 933 833 853 1, 307 983 858
θ̃A 0.65 0.66 0.67 0.58 0.67 0.64
θ̃B 0.33 0.34 0.34 0.30 0.33 0.34
ψA
(
θ̃A
)

0.40 0.41 0.41 0.38 0.41 0.40
ψB
(
θ̃B
)

0.29 0.29 0.29 0.27 0.29 0.29
µA
(
θ̃A
)

0.62 0.62 0.61 0.66 0.61 0.62
µB
(
θ̃B
)

0.87 0.85 0.86 0.92 0.87 0.86
kA/µA

(
θ̃A
)

7, 801 7, 840 7, 894 7, 361 7, 895 7, 727
kB/µB

(
θ̃B
)

10, 770 10, 925 10, 894 10, 173 10, 692 10, 877

Ω
(
θ̃A, θ̃B , x̃

)
7, 749 7, 818 7, 825 7, 398 7, 781 7, 769

a Different initial values for x̃ do not affect the final results of the calibration.
b A normal distribution that is truncated at 0 on the left and at 1 on the right is defined in density form as f(x) = φ(x)I(x)

Φ(1)−Φ(0)
where φ (resp. Φ designates the Normal density (resp. cumulative density) function and I(0,1)(x) = 1 if 0 6 x 6 1,
I(0,1)(x) = 0 otherwise.
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Fig. 11. Distributions for simulations
Columns (4) to (6)

Substituting the counterfactual distribution of the workforce in Chicago into Los Angeles

MSA consists of concentrating more population around job center B. Comparing columns (1)

and (2) of Table 4 we observe that the threshold location x̃ does not change at the two-digit
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level. Tightness turns out to be higher in both job centers and net output is 1% higher when we

take the workforce distribution of Chicago MSA. This is due to a lower average commuting cost

towards both job centers. Therefore, firms get a higher surplus from a match and are induced to

post more vacancies. This explains 0.16 percentage points rise in the MSA’s employment rate

and a decline in both average unemployment rates, especially ūRC in Orange county.

Since the actual distribution of Los Angeles MSA’s workforce is not too far from uniform

(see Fig. 10a), it is natural to consider this assumption in column (3) of Table 4. The same

mechanisms as in column (2) are at work. Eventually, net output is 1% higher than in column

(1). The most dramatic change appears in column (4) where we assume that the labor force

is concentrated around the boundary between the two counties (N (0.5, 0.15)). The substantial

increase in τ Γj(x̃) in both counties eventually leads to a drop in tightness levels by more than

10% and of net output by 4.5%. Lower tightness levels cause a decline in the total employment

rate and a rise of both unemployment rates by nearly half a percentage point. Finally, the

distribution N (0.75, 0.5) is interesting because it looks similar to the actual distribution in

Chicago MSA. However, even if F (x0) is the same in both cases, the workforce near the CBD is

less important (e.g. F [0.25] = 0.18 in column (2) versus 0.15 in column (6)). In addition in the

RC (Orange county), the inversed-U shape profile of the workforce in the RC is more pronounced

in column (2) than in column (6). These differences are sufficient to induce that, compared to

the actual distribution in column (1), τ ΓA(x̃) rises in column (6) while it decreases in column

(2). In column (6), τ ΓB(x̃) is lower than in column (1), but the decline is less pronounced than

in column (2). These differences lead to lower tightness in job center A under the assumption

N (0.75, 0.5) while it rises with the counterfactual distribution of Chicago MSA. Additionally,

the average unemployment rate in the left county, ūLC , is higher than in column (1) while it was

lower with the Chicago distribution. So, limited differences in the distribution of the workforce

turn out to have opposite effects on the average unemployment rates in the LC.

Comparing columns (1) and (2) of Table 5 we observe that differences of the outcomes of the

model are small at the two-digit level (see x̃ and θ̃A). Substituting Los Angeles MSA workforce

distribution implies however a drop in average wages (4.3% for the LC and 1.6% for the RC)

and a rise in average unemployment rates (+0.15 percentage points in the LC and +0.08 in the

RC). Moreover, the aggregate employment rate falls by 0.8 percentage points and net output is

reduced by 0.6%. The more concentrated distribution around the boundary between counties

explains these differences. Hence, higher average commuting costs towards both job centers

diminish welfare. Comparing a uniform distribution with Chicago MSA’s actual distribution

of the active population, see Fig. 10b, one can expect a stronger effect in job center A since
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the workforce density of DuPage county is strictly below one. With equal density all along the

MSA the average commuting costs to job center A (B) fall (rise) by 5.6% (1.6%). However,

total employment rate and net output drop by 0.7 percentage points and 0.3%, respectively.

We observe larger differences particularly in unemployment rates once we introduce a normal

distribution positively or negatively skewed. The normal distribution of column (4) is specially

worth considering since commuting costs to both job centers rise substantially. Consequently,

net output shrinks by 4% and the average unemployment rate in the LC (resp., RC) is 0.6 (resp.

0.3) percentage points higher than in column (1). Finally, in column (6) net output drops by

0.6%. It should be noted that the changes in the distributions of the population introduced in

Table 5 do not deeply change the strong unemployment rate gap between the two counties.

Table 5: Simulations for Chicago MSA, quarterly data

Counterfactual population distributions

Chicago MSAa Los Angeles MSA Uniform Normal N (mean, st.dev.) truncated at (0, 1)b

(From Table 3) unif (0, 1) N (0.5, 0.15) N (0.25, 0.5) N (0.75, 0.5)
(1) (2) (3) (4) (5) (6)

x0 0.53 0.53 0.53 0.53 0.53 0.53
F (x0) 0.42 0.53 0.53 0.58 0.65 0.42

w̄LC 11, 169 11, 184 11, 177 11, 213 11, 176 11, 189
w̄RC 10, 663 10, 670 10, 666 10, 687 10, 676 10, 664
ūLC 8.96 9.11 9.01 9.57 9.00 9.19
ūRC 3.19 3.27 3.22 3.53 3.34 3.20
eRC + eLC 94.38 93.62 93.70 92.95 92.99 94.27

x̃ 0.540 0.540 0.541 0.537 0.542 0.539
τ ΓA (x̃) 1, 114 1, 146 1, 052 1, 569 1, 046 1, 220
τ ΓB (x̃) 879 979 893 1, 384 1, 028 902
θ̃A 0.37 0.37 0.38 0.34 0.38 0.36
θ̃B 0.89 0.87 0.89 0.79 0.86 0.88
ψA
(
θ̃A
)

0.37 0.36 0.37 0.35 0.37 0.36
ψB
(
θ̃B
)

0.75 0.75 0.75 0.71 0.74 0.75
µA
(
θ̃A
)

0.98 0.99 0.98 1.04 0.98 1.00
µB
(
θ̃B
)

0.85 0.86 0.85 0.90 0.86 0.85
kA/µA

(
θ̃A
)

11, 233 11, 193 11, 308 10, 667 11, 315 11, 103
kB/µB

(
θ̃B
)

5, 506 5, 442 5, 497 5, 176 5, 411 5, 491

Ω
(
θ̃A, θ̃B , x̃

)
9, 714 9, 660 9, 744 9, 278 9, 718 9, 660

a Different initial values for x̃ do not affect the final results of the calibration.
b A normal distribution that is truncated at 0 on the left and at 1 on the right is defined in density form as f(x) = φ(x)I(x)

Φ(1)−Φ(0)
where φ (resp. Φ designates the Normal density (resp. cumulative density) function and I(0,1)(x) = 1 if 0 6 x 6 1,
I(0,1)(x) = 0 otherwise.

V Conclusions

Because of job decentralization in many Western cities, this research about the causes of

unemployment fits in the literature about polycentric cities. Since the introduction of the spatial

mismatch hypothesis in the U.S., the duocentric case is a frequently used framework that we also

adopt. While the spatial mismatch hypothesis often focuses on the causes of the black and white

divide, our article analyzes how the shape of distribution of the workforce living between the

two job centers influences a number of equilibrium outcomes among which the unemployment
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rates. Apart from the location of residence, the workforce is here homogeneous.

We build a two-stage framework. First, perfectly mobile workers decide once and for all

their location of residence and location-specific rents verify an indifference condition. Second,

transactions occur on the labor market. During this second stage, jobs are perfectly mobile,

job-seekers decide where to search and employed workers commute to the job center where

they matched with a vacant position. This two-step structure seems to us less extreme than the

assumption that individuals reconsider their location of residence at each transition on the labor

market. We provide a sharp dynamic theoretical framework with a unique interior equilibrium

under a small number of assumptions about the commuting cost. The equilibrium allocation is

found by first solving the job-search problem and then characterizing the firms’ labor demand

choices. The search-matching frictions, the distribution of commuting distances and the wage

bargain shape the payoffs associated with these decisions. The comparative static analysis leads

to very intuitive intermediate results but, given the number of endogenous variables, the net

effects are often ambiguous.

This paper emphasizes that commuters create an externality on job creation. Because wages

compensate partly for commuting costs, the expected value of opening a vacancy in a job center

shrinks when the pool of job-seekers spreads over longer distances. When jobless people decide

where to seek jobs, they do not internalize that their decision affects job creation and hence has

an impact on all the unemployed. Because of this composition externality, we show that the

regional unemployment rates are typically inefficient even under the Hosios condition.

We conduct two numerical analyses. First, we assume symmetric job centers and impose

that the distribution of the workforce is a mixture of a uniform distribution and a mass of

workers located in one of the two job centers. We let this mass grow from 0 to 1 in order to see

the consequences of a progressive disappearance of the spatial dimension (the limit case being

a standard matching framework where jobs and workers are concentrated in a point in space).

Simulations show first that concentrating the population in a unique job center has sizable effects

on the decentralized and the efficient allocations (e.g. the aggregate unemployment rate shrinks

from 6 to 5.5% when the mass varies varies from 0 to 1). So, remarkably, with symmetric job

centers, different outcomes emerge from changing only the distribution of the workforce. Second,

the quantitative gap between these two allocations is tiny when the Hosios condition applies. As

a complement, we look at the impacts on the decentralized equilibrium of policies financed by a

tax on rents (which has no allocative consequence in our framework). A striking conclusion is

that subsidizing or taxing the commuting cost does not affect much the decentralized allocation.

For instance, a rise of the commuting cost by 25% does nearly not affect job-search decisions
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and increases the aggregate unemployment rate by at most 0.2 percentage points (the calibrated

value being 6%).

Second, we calibrate the model for Los Angeles and Chicago MSAs in 2000. We simulate

the impacts of substituting counterfactual distributions of the workforce. It turns out that

the location of the population has non-negligible effects on unemployment rates, wages, and

net output. Within the range of distributions we have considered for Los Angeles, changes in

unemployment rates (respectively, in net output) can reach half a percentage point (resp., 5%).

In Chicago, where unemployment rates were more heterogeneous, the order of magnitude is

similar. The range of population distributions considered in this article does however not deeply

affect the spatial disparities in unemployment rates.

With the assumed commuting costs, the bottom line of these numerical exercises is that

a reshaping of the distribution of the workforce has non-negligible effects on the equilibrium

allocations, but cannot be the unique explanation of a substantial spatial mismatch problem.

Moreover, under the Hosios condition, the composition externality is not a sizable source of

inefficiency.
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A Comparative statics

We define ψ′j (θj) = (1− ηj (θj))ψj (θj) /θj , where ηj is the elasticity of the matching rate

µj(θj) (i.e. ψj (θj) /θj) with respect to tightness.

I.1 Equilibrium tightness for a given level of the threshold x̃

For j ∈ {A,B} we can rewrite Eq. (19) as Fj (θj , x̃) = 0 where we define

Fj (θj , x̃) = θjkj
ψj(θj)

− (1− βj)
yj − τ Γj (x̃)− b
r + δj + βj ψj (θj)

Let ζj denote any of the parameters in {kj , δj , yj , βj , b, r}. Using the implicit function theorem,

∂θj
∂ζj

= −∂Fj/∂ζj
∂Fj/∂θj

(A.1)

where ∂θj/∂ζj can also be written ∂Θj (x̃) /∂ζj (see the proof of Lemma 3) and in which

∂Fj
∂θj

= kj
ψj (θj)

ηj (θj) (r + δj) + βjψj (θj)
r + δj + βjψj (θj)

> 0.

The sign of ∂θj/∂ζj is therefore given by the one of ∂Fj/∂ζj . So, along Fj (θj , x̃) = 0,

• ∂θj
∂kj

< 0, because ∂Fj
∂kj

= θj
ψj(θj) > 0.

• ∂θj
∂δj

= ∂θj
∂r < 0, because ∂Fj

∂δj
= 1

r+δj+βjψj(θj)
kjθj
ψj(θj) > 0.

• ∂θj
∂yj

> 0 > ∂θj
∂b , because

∂Fj
∂yj

= −∂Fj
∂b = − 1−βj

r+δj+βjψj(θj) < 0.

• ∂θj
∂βj

< 0, because ∂Fj
∂βj

= r+δj+ψj(θj)
(1−βj)(r+δj+βjψj(θj))

kjθj
ψj(θj) > 0.

I.2 Equilibrium threshold

By totally differentiating Eq. (20), on gets:

dx̃

dζj
=

dSB(x̃)
dζj

− dSA(x̃)
∂ζj

dSA(x̃)
dx̃ − dSB(x̃)

dx̃

(A.2)

where ζj denotes any of the parameters in job center j. By Lemma 4 the denominator of Eq.

(A.2) is negative, and
dSj

dζj′
= ∂Σj

∂ζj′
+ ∂Σj

∂θj

∂Θj

∂ζj′
(A.3)

is nil when j 6= j′ except for ζj′ ∈ {r, b}. By Lemma 1, we know that ∂Σj/∂θj > 0. So, in

order to study the sign of the numerator of Eq. (A.2) we need to sign the second term on the

right-hand side of (A.3):

• ∂Σj
∂kj

= 0.
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• ∂Σj
∂δj

= ∂Σj
∂r = −Σj

1
r+δj+βj ψj(θj) < 0.

• ∂Σj
∂yj

= −∂Σj
∂b = βj ψj(θj)

r+δj+βj ψj(θj) > 0.

• ∂Σj
∂βj

= Σj
r+δj

βj [r+δj+βj ψj(θj)] > 0.

The comparative static analysis is summarized in Table 6.

Table 6: Comparative statics

ζj′
∂SB
∂ζj′

= ∂ΣB
∂θB

∂ΘB
∂ζj′

+ ∂ΣB
∂ζj′

∂SA
∂ζj′

= ∂ΣA
∂θA

∂ΘA
∂ζj′

+ ∂ΣA
∂ζj′

∂SB
∂ζj
− ∂SA

∂ζj

dx̃
dζj

kA 0 + 0 0 − + − 0 + −
δA 0 + 0 0 − + − − + −
yA 0 + 0 0 + + + + − +
βA 0 + 0 0 ?† + − + ? ?
b − + − − − + − − ? ?
r − + − − − + − − ? ?
kB − + − 0 0 + 0 0 − +
δB − + − − 0 + 0 0 − +
yB + + + + 0 + 0 0 + −
βB ?† + − + 0 + 0 0 ? ?

† It can be checked that ∂Sj

∂βj
T 0⇔ ηj T βj .

Given that ∂Sj

∂βj
T 0 ⇔ ηj T βj , the signs of the partial derivatives with respect to the

workers’ bargaining power verify:

dx̃

dβA
T 0⇔ ηA T βA and dx̃

dβB
T 0⇔ ηB S βB.

So, an ambiguity remains for dx̃/db and dx̃/dr only.

I.3 Equilibrium tightness

The total effect of a marginal change in parameter ζj on equilibrium tightness in j is

dθj
dζj

= ∂θj
∂ζj

+ ∂Θj

∂x̃

dx̃

dζj
, j ∈ {A,B} (A.4)

where on the right-hand side, the first term is given by (A.1), the second one equals− (∂Fj/∂x̃) / (∂Fj/∂θj)

(negative for j = A and positive for j = B), while the third one is given by by (A.2). This total

effect (A.4) has an ambiguous sign for all parameters.
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B Efficient value of the threshold x∗

The first-order condition of the maximization of Ω (θ∗A(x), θ∗B(x), x) with respect to the

threshold x writes:

(yA − τx− b)
ηA (θ∗A(x)) ψA (θ∗A(x))

δA + ηA (θ∗A(x)) ψA (θ∗A(x)) + F (x)
f(x) Γ′A(x) IA (x, θ∗A(x)) (B.1)

= (yB − τ(1− x)− b) ηB (θ∗B(x)) ψB (θ∗B(x))
δB + ηB (θ∗B(x)) ψB (θ∗B(x)) −

1− F (x)
f(x) Γ′B(x) IB (x, θ∗B(x))

in which Ij

(
x, θ∗j (x)

)
= (yj − τΓj(x)− b) Ej

(
θ∗j (x)

)
. Under the Hosios condition and r 7→ 0,

the first terms on both sides of Eq. (B.1) equal Σj (θ∗A(x), θ∗B(x), x) with j = A on the LHS and

j = B on the RHS (See respectively (11) and (13)). Eq. (B.1) also depends on how sensitive

the conditional expected commuting distance Γj(x) is to the value of the threshold x and on

the mass of individuals F (x) (respectively, 1−F (x)). Remembering the value of the derivatives

Γ′j(x) in (17) and (18), the first-order condition (B.1) can be rewritten as:

ΣA (θ∗A(x), θ∗B(x), x) + (x− ΓA(x)) IA (x, θ∗A(x)) =ΣB (θ∗A(x), θ∗B(x), x) (B.2)

+ (1− x− ΓB(x)) IB (x, θ∗B(x))

Expression (B.2) can be reformulated as (33).

With a Cobb-Douglas matching function on each labor market, differentiating Eq. (30) gives:

∂θj
∂Γj

∣∣∣∣∣
Eq. (30)

= − τ

kj

1− ηj
ηj

ψj(θj)
δj + ψj(θj)

Using Eq. (30):

(yj − τΓj(x)− b)) ∂θj
∂Γj

∣∣∣∣∣
Eq. (30)

= −τ θj
ηj

δj + ηj ψj(θj)
δj + ψj(θj)

Hence, by (32), Ij(x, θ∗j (x)) can be rewritten as:

−τ
(1− ηj)δjψj(θ∗j (x))(

δj + ηjψj(θ∗j (x))
) (
δj + ψj(θ∗j (x))

) = −τ
[

ψj(θ∗j (x))
δj + ψj(θ∗j (x)) −

ηjψj(θ∗j (x))
δj + ηjψj(θ∗j (x))

]
.

This leads to (34).
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e:

w̄
L
C

=
∫ x 0

w
A

(x
)

ψ
A

δ A
+
ψ
A

f
(x

)
e L
C
d
x

+
∫ x 0 x

w
B

(x
)

ψ
B

δ B
+
ψ
B

f
(x

)
e L
C
d
x

=
1
e L
C

{
ψ
A

δ A
+
ψ
A

∫ x 0
w
A

(x
)f

(x
)d
x

+
ψ
B

δ B
+
ψ
B

∫ x 0 x
w
B

(x
)f

(x
)d
x

}

=
1
e L
C

{
ψ
A

δ A
+
ψ
A

[( β
A
y A

+
(1
−
β
A

)( b
+

β
A
ψ
A

(y
A
−
b)

r
+
δ A

+
β
A
ψ
A

)) F
(x

)+
(1
−
β
A

)(
r

+
δ A

)
r

+
δ A

+
β
A
ψ
A
τ

∫ x 0
x
f

(x
)d
x

]

+
ψ
B

δ B
+
ψ
B

[ ( β
B
y B

+
(1
−
β
B

)( b
+

β
B
ψ
B

(y
B
−
b)

r
+
δ B

+
β
B
ψ
B

)) (F
(x

0)
−
F

(x
))

+
(1
−
β
B

)(
r

+
δ B

)
r

+
δ B

+
β
B
ψ
B

τ

∫ x 0 x
(1
−
x

)f
(x

)d
x

]}

w̄
R
C

=
∫ x x

0
w
A

(x
)

ψ
A

δ A
+
ψ
A

f
(x

)
e R

C
d
x

+
∫ 1 x

w
B

(x
)

ψ
B

δ B
+
ψ
B

f
(x

)
e R

C
d
x

=
1
e R

C

{
ψ
A

δ A
+
ψ
A

∫ x x
0
w
A

(x
)f

(x
)d
x

+
ψ
B

δ B
+
ψ
B

∫ 1 x
w
B

(x
)f

(x
)d
x

}

=
1
e R

C

{
ψ
A

δ A
+
ψ
A

[ ( β
A
y A

+
(1
−
β
A

)( b
+

β
A
ψ
A

(y
A
−
b)

r
+
δ A

+
β
A
ψ
A

)) (F
(x

)−
F

(x
0)

)+
(1
−
β
A

)(
r

+
δ A

)
r

+
δ A

+
β
A
ψ
A
τ

∫ x x
0
x
f

(x
)d
x

]

+
ψ
B

δ B
+
ψ
B

[( β
B
y B

+
(1
−
β
B

)( b
+

β
B
ψ
B

(y
B
−
b)

r
+
δ B

+
β
B
ψ
B

)) (1
−
F

( x
))

+
(1
−
β
B

)(
r

+
δ B

)
r

+
δ B

+
β
B
ψ
B

τ

∫ 1 x
(1
−
x

)f
(x

)d
x

]}
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