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Optimal Energy Taxation in Cities

by

Rainald Borck and Jan K. Brueckner*

1. Introduction

In step with growing concerns about the impact of global warning, urban research has

increasingly focused on the energy consumption of cities. This research reflects the recognition

that residential and commercial land-uses are important generators of greenhouse gas (GHG)

and particulate emissions along with the transportation and industrial sectors. Their impor-

tance is seen in Table 1, which shows energy use by sector, with emissions from electricity

generation “distributed” according to the final users of the electricity. As can be seen, when

their electricity use is taken into account via the distribution method, the residential and com-

mercial sectors each account for an appreciable 16.9% of total emissions, with their 33.8% total

exceeding the shares of industry and transportation. Therefore, economic analysis of policies

designed to control GHG emissions should ideally include these two real-estate sectors in its

focus along with other sources.

In advancing this goal, some researchers have studied the relationship between a building’s

energy use and its structural characteristics, with notable contributions by Costa and Kahn

(2011), Chong (2012) (who also draws a link to climate), and Kahn, Kok and Quigley (2014).

Using a hedonic approach, Eichholtz, Kok and Quigley (2010) ask whether the market values

green buildings, finding that energy-efficient commercial structures indeed command higher

rents. Glaeser and Kahn (2010) extend the focus beyond residential energy use to include

emissions from driving and public transit, generating a ranking of US cities according to their

overall carbon footprints. Zheng, Wang, Glaeser and Kahn (2011) extend this approach to

Chinese cities.

In parallel with these empirical efforts, other researchers have imbedded energy usage into

the familiar monocentric-city model of urban economics, with the ultimate goal of appraising
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the effect of urban policy interventions on GHG emissions. These studies, which rely on

numerical simulations of realistically calibrated urban models, include Larson, Liu and Yezer’s

(2012) study evaluating the energy-use impacts of higher gasoline taxes, better vehicle fuel

efficiency, urban greenbelts, and housing density restrictions. Larson and Yezer (2015) ask

how such policy impacts vary with city size, while Borck (2015) explores the effect of building-

height limits on urban GHG emissions. Tscharaktschiew and Hirte (2010) study the impact of

emissions taxes and congestion on emissions from commuting.

Although this second group of studies has greatly increased our understanding of the links

between urban spatial structure, energy use, and GHG emissions, an important set of questions

remains unanswered. In particular, no study has analyzed optimal urban form when housing

and commute trips generate GHG emissions. Moreover, while a carbon tax offers the simplest

way to regulate GHG emissions, no study has asked whether the levels of existing urban taxes

could be altered so as to achieve the same optimal outcome.1 The present paper remedies both

these omissions. We add energy use and GHG emissions to the housing sector of the standard

urban model, doing so in a novel and realistic fashion, while also recognizing the GHG emissions

from commuting. With emissions assumed to reduce consumer utilities, the analysis then

develops the conditions that characterize the optimal city, which embody a trade-off between

the environmental gains from lower emissions and the losses from achieving them. The form

of these optimality conditions reveals how existing urban taxes (real estate taxes and gasoline

taxes) can be used to generate the optimum. With this theoretical foundation, numerical

simulation analysis then derives the changes in urban form that follow from imposition of

the optimal taxes. The simulation results thus show how urban spatial structure responds to

optimal energy taxation.

More specifically, the model relies on principles from the engineering and architecture

literatures by assuming that residential energy use from heating and cooling depends on a

building’s exposed surface area, reflecting heat transfer through exposed surfaces. According to

Ching and Shapiro (2014), a building’s energy use per square foot of floor space is proportional

to its surface area per square foot of floor space, with surface area including the sides of the

building along with the roof. Since the roof area stays constant as the height of the building
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increases, surface area increases less rapidly than floor space as height grows. The result is

energy economies from building height, with energy use per square foot of floor space falling

as height increases, a pattern seen in the empirical results of Larson et al. (2012).

If a building’s total energy use (and hence its total GHG emissions) just depended on

its square footage of floor space, the appropriate residential energy tax would just be a tax

per square foot of space. But with surface area mattering instead, the analysis shows that

residential energy taxes should include a tax per square foot of floor space along with a tax on

the building’s footprint, which captures energy usage that depends on the roof area (equal to

the footprint). When buildings completely cover the land, as in the standard urban model, the

footprint tax is just a tax on the entire land input, hence a land tax. By raising the land cost

to the developer, this land tax encourages the construction of energy-efficient tall buildings.

Note that the land tax adds to the tax burden on land already inherent in the housing tax.2

In addition to these taxes on residential land-use, the model prescribes a commuting tax

per mile to address GHG emissions per mile driven. This prescription emerges from a model

without traffic congestion, in contrast to the work of Larson et al. (2012) and Larson and Yezer

(2014), where congestion is realistically modeled.

We calibrate the model in the most realistic possible fashion and then use it to predict

the impact on urban spatial structure from imposing the optimal taxes on floor space, land,

and commuting. The numerical results thus allow a comparison of the optimal city, where the

GHG externality is addressed, to the laissez-faire city, where no intervention is undertaken.

With emissions generated by housing consumption and commuting, the expectation is that

optimal energy taxation will reduce the levels of both activities, leading to a city that is more

spatially compact than a city without such taxes. The simulations show whether this broad

conjecture is confirmed while illustrating the details of the city’s adjustment to taxation.

In addition, by relying on three separate taxes rather than a carbon tax to generate the

social optimum, we are able to ask some interesting second-best questions and provide numer-

ical answers. In particular, we set one or two of the taxes equal to zero and find the optimal

value(s) of the remaining tax(es), showing the characteristics of the resulting second-best city.

In one exercise, for example, the optimal value of the commuting tax is computed when the
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housing and land taxes are constrained to be zero, with the effects on urban structure then

shown. In this case, the commuting tax has to do the work of three separate taxes in restraining

emissions, with suboptimal results.

As is well known, welfare analysis in urban economics is best carried out by focusing on a

fully-closed city, where resources leakages are absent (see Pines and Sadka (1986)). The rental

income from land in such a city accrues to the residents rather than leaking to absentee owners,

and tax revenue is also redistributed to the residents in lump sum fashion, eliminating another

potential leakage. The city simulated in the paper has both these features.

One of the paper’s innovations is its modeling of energy economies from building height,

and this feature’s connection to previous work should be noted. The models of Larson et al.

(2012) and Larson and Yezer (2014) include a similar feature, although in a discrete fashion.

In particular, energy use per square foot is assumed to decrease discontinuously as building

height passes through several discrete critical points, in contrast to the present continuous

formulation. The model of Borck (2015), by contrast, includes no energy benefits from tall

buildings. His exercise of imposing building-height limits therefore generates no sacrifice on this

dimension, but the resulting supply restriction, by raising the price of floor space throughout

the city, reduces residential emissions by shrinking individual dwelling sizes. The urban sprawl

created by height limits, however, has an offsetting effect on emissions from commuting. The

present paper borrows from Borck’s (2015) approach while incorporating height economies.

The plan of the paper is as follows. Section 2 presents the theoretical analysis. Section

3 explains the setup of the simulation model, and Section 4 presents the simulation results.

Section 5 offers conclusions.

2. Model

2.1. The setup

The model is based on the standard model of a monocentric city, adapted to include energy

use. In addition, the surface area of buildings, previously not an issue in urban modeling, plays

a prominent role, as explained above. To incorporate surface area, suppose that buildings are

square, occupying a land area of ` and completely covering that land, as in the standard
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urban model.3 Structural density (capital per unit of land) is S and floor space per unit of

land is given by h(S). The h function is the intensive form of a constant-returns floor-space

production function, and it satisfies h′ > 0 and h′′ < 0. Since floor space per unit of land is the

most natural index of building height, h(S) can also be viewed as the height of the building.

Therefore, each of the four sides of the building has area h(S)
√
` (height × width), and the

area of the roof is `. Surface area is then

4h(S)
√
` + `. (1)

Letting e denote energy use per unit of surface area, the building’s energy use is e times (1).

Energy use per unit of land is then given by

(4h(S)
√
` + `)e

`
=

4h(S)e
√
`

+ e. (2)

The second term is energy use per unit of land due to heat transfer through the building’s

roof, while the first term captures heat transfer through the sides. It is clear from (2) that

a building occupying more land has greater energy efficiency per unit of land, which would

prompt the developer to increase `, an incentive that is absent in the standard urban model

(where ` is matter of indifference).4 To abstract from this issue, we fix `, and for convenience

set the value at 16 by choice of units of measurement, so that energy use per unit of land

becomes

h(S)e + e. (3)

Again, the last term captures energy use due to heat transfer through the roof (whose area

matches the lot size), while the first term captures energy use from heat transfer through the

building’s sides, a transfer that is proportional to the floor space it contains. Note that the

presence of the additive e term in (3) means that energy use increases less rapidly than floor

space, implying energy economies from building height. Equivalently, dividing (3) by square

footage (h(S)) shows that energy use per square foot is e + e/h(S), an expression that is
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smaller in a taller building. Each unit of residential energy use generates ψ units of emissions,

so that (using (3)) residential emissions per unit of land are given by ψ(h(S)e + e).

Let the cost per unit of energy be normalized to unity, and assume that the developer

bears the building’s energy cost. In addition, let p denote the price per square foot of housing,

r denote rent per unit of land, and i denote the price per unit of capital. Then, using (3), the

developer’s profit per unit of land is

ph(S) − iS − r − energy cost per unit of land = (p− e)h(S) − iS − e − r. (4)

In the absence of taxes, the developer would choose S to satisfy

(p− e)h′(S) = i, (5)

and land rent r would be determined by the zero-profit condition:

r = (p− e)h(S) − iS − e. (6)

The form of both conditions is familiar from the standard urban model (see Brueckner (1987)).

Energy is also used as workers commute to the CBD. Let the cost per mile of commuting

(on a round-trip basis) be denoted t, so that commuting from a residence x miles from the

CBD costs tx per period. The parameter t includes private energy costs, as reflected in the

cost of fuel. Suppose that emissions per round-trip mile of commuting are given by γ, so that

the energy used in commuting from a distance x generates γx worth of emissions.

Several other sources of residential energy use have been omitted from the model: kitchen

appliances, such as refridgerators and stoves, and hot-water heaters. These sources can be

viewed as generating a fixed amount of energy use that does not increase proportionally with

the physical size of the dwelling.5 This fixed usage presumably accounts for empirical findings

showing that residential energy use per square foot of floor space falls as dwelling size rises (see,

for example, Larson, Liu and Yezer (2012)). Since a city’s aggregate energy use from household
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appliances will thus be roughly proportional to the number of dwellings but unaffected by urban

form, we omit it from the analysis.

2.2. Emissions and energy taxes

Let µ denote the social damage from each unit of emissions. Then, the taxes needed to

support the social optimum can be derived from the model. These taxes are as follows:

• A tax of τq = µψe per square foot of floor space, addressing emissions from energy
use due to heat transfer through the sides of a building

• A tax of τ` = µψe = τq per unit of land, addressing emissions from energy use due
to heat transfer through a building’s roof

• A tax of τt = µγ per mile of commuting, addressing emissions due to energy use in
commuting

To demonstrate the need for these taxes analytically, let utility be given by v(c, q, G),

where c is consumption of a nonhousing good, q is consumption of housing floor space, and

G gives the level of emissions affecting the city’s residents. Two equivalent approaches to

the planning problem are possible, following the past literature. Under the first approach, the

planner minimizes the city’s resource consumption, subject to several constraints: achievement

of a fixed utility level u for its residents, the requirement that the city fits its population, and a

condition giving total emissions G.6 Under the second approach, which is dual to the first, the

planner maximizes the common utility level of urban residents subject to a resource constraint,

the population constraint, and the G condition. Since the first approach is somewhat simpler,

the present analysis follows it.

To start, observe that the fixed-utility constraint, which can be written v(c, q, G) = u for

some constant u, implies c = c(q, G), with the derivatives of this function equaling minus

the marginal rates of substitution: cq = −vq/vc < 0 and cG = −vG/vc > 0 given vG < 0

(subscripts denote partial derivatives). Using the c(q, G) function and letting x denote the

distance to the city’s edge and ra denote the opportunity cost of land (agricultural rent), the

city’s resource consumption is given by

∫ x

0

2πx

[
iS +

h(S)

q
(c(q, G) + tx) + h(S)e + e + ra

]
dx. (7)
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In (7), the choice variables S and q are implicitly functions of x. The first term in the integrand

captures capital usage, the second term equals c consumption plus commuting cost per person

at distance x multiplied by the population at x. That population equals the area 2πxdx of the

ring at x times h/q, where h/q gives population density (housing square footage per unit of

land divided by square feet per dwelling). The remaining terms capture building energy use

and the opportunity cost of land.

Letting L denote the city’s fixed population, the population constraint is written

∫ x

0

2πx
h(S)

q
dx = L, (8)

and the multiplier associated with this constraint is λ. Total emissions G satisfy

∫ x

0

2πx

(
ψ[h(S)e+ e] + γ

h(S)

q
x

)
dx = G, (9)

where 2πx(xh(S)/q)dx gives total commute miles for consumers living in the ring at x. The

multiplier associated with this constraint is µ > 0, the social damage from an extra unit

of emissions. While the formulation based on eq. (9) is most easily interpreted under the

assumption that emissions affecting the city are all locally generated, the model can also

incorporate the intercity pollution externalities underlying the global-warming process with

some simple redefinitions.7

The planner chooses values of G and x and values of S and q at each distance to minimize

(7) subject to (8) and (9). After forming a Lagrangean expression using (7)–(9), the optimality

conditions for S and q are generated by differentiating inside the integrals, while the condition

for x comes from differentiating with respect to the limits of integration. After a modest

amount of manipulation (see the Appendix), these conditions reduce to equations that identify

the taxes required to support the optimum. The first equation is

c(q, G) + q
vq

vc
+ (t+ µγ)x = −λ, (10)

8



Recognizing that the consumer will set vq/vc equal to the price p per square foot of housing,

the first two terms correspond to total consumption expenditure in a decentralized equilibrium.

The tx term is the money cost of commuting, but (10) shows that this cost must be supple-

mented by a tax of µγ ≡ τt per mile traveled, as in the third bullet point above. The term

−λ is constant over x and corresponds to the common income of consumers in a decentralized

equilibrium. Note that, ignoring differences in automobile fuel efficiency, the commuting tax

has the same form as the gasoline taxes levied throughout the world.

The next condition is
(
vq

vc
− e− µψe

)
h′(S) = i. (11)

Comparing to the profit-maximization condition (5) and recognizing vq/vc = p, (11) implies

that the net price received by the developer per unit of floor space should be reduced below

p− e by the amount µψe ≡ τq, an emissions tax per square foot of floor space (as in the first

bullet point above).

The laissez-faire equilibrium condition determining the distance x to the edge of the city

would set r evaluated at x equal to ra, and using (6), this condition is written

(p− e)h(S) − iS − e = ra, (12)

where p and S are the p and S values at x. By constrast, the optimality condition for x reduces

to
(
vq

vc
− e− µψe

)
h(S) − iS − e − µψe = ra, (13)

where vq/vc is also evaluated at x. Comparing (12) and (13) indicates that, in addition to

the tax of τq = µψe per square foot of housing floor space, a tax per unit of land equal to

µψe ≡ τ` = τq is also needed, which reduces land rent by that amount (as in the second

bullet point above). With these two taxes subtracted in the equilibrium condition, it then

corresponds to the optimality condition.

Note that the housing tax corresponds to a standard property tax (levied, however, as an

excise tax instead of an ad-valorem tax), while the land tax matches taxes of this type levied
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in some cities (in excise not ad-valorem form, however). Observe also that the property tax,

if levied in ad-valorem fashion, is equivalent to separate ad-valorem taxes levied at a common

rate on land and housing capital (see Brueckner and Kim (2003)). An additional ad-valorem

land tax on land would add to the tax burden, with the combined taxes equivalent to a split-

rate tax structure that taxes land and capital at different rates (see Oates and Schwab (1997)).

While the excise form of the current housing and land taxes disrupts this simplicity, it remains

true that the land tax adds to the tax burden on land already present in the housing tax.

Recall that the multiplier µ appearing in the tax terms equals the marginal social damage

from emissions. From the first-order condition for G, the multiplier equals

µ = −

∫ x

0

2πx
h(S)

q

vG

vc
dx > 0. (14)

The integral weights the MRS between G and c by population and sums across distance to

yield the social damage from an extra unit of G.8

It is important to note that, because the planning problem portrays a city where the cost

of land is the agricultural opportunity cost and where taxes are absent from the objective

function, the corresponding decentralized city must have several features. First, the rental

income generated in the city must accrue to its residents. In particular, the city must be “fully

closed” in the sense of Pines and Sadka (1986), with differential land rent (the amount in

excess of ra) earned as income by the residents. The residents are thus viewed as owning a

corporation that acquires the city’s entire land area from its outside owners at a rental price ra,

with the land then rented to the residents themselves in a competitive market. The residents

thus share the aggregate rental income net of ra generated by the city, in effect paying rent

to themselves. Second, since tax revenue is absent from the planning problem, the revenue

from the energy taxes must be redistributed to the residents on an equal per capita basis.

With these two requirements, the differential rent and tax revenue generated in the city stays

within it, as envisioned in the planning problem. The ensuing numerical analysis imposes both

requirements.
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2.3. Predicting the impact of energy taxation

A main goal of the numerical analysis presented in section 3 is to illustrate the impact on

the spatial structure of the city from levying optimal energy taxes. In principle, these effects

might be predictable in advance through an appropriate comparative-static analysis, relying

on Pines and Sadka’s (1986) extension of Wheaton’s (1974) comparative-static analysis to the

present context of a fully closed city.

Unfortunately, however, the required comparative statics cannot be inferred from Pines

and Sadka’s results. Imposition of the land tax, for example, can be viewed as equivalent

to an increase in the agricultural rent ra, which Pines and Sadka (1986) analyze. However,

the present tax change corresponds to an increase in ra combined with an increase in income

equal to the rebated per capita land-tax revenue, whose impact cannot be inferred from the

results they present. A similar point applies to the effects of the commuting tax. Moreover,

as mentioned above, the tax on housing square footage is similar to a standard property tax,

whose effects are analyzed by Brueckner and Kim (2003). While they show that the property

tax causes the city to shrink spatially when the elasticity of substitution between housing and

c does not exceed unity (as under the Cobb-Douglas preferences imposed below), Brueckner

and Kim’s model is not fully closed, nor does it incorporate redistribution of tax revenues.

The previous literature thus cannot be used directly to predict the separate effects of

the three taxes in the current model, and the need to predict their combined effects makes

the prediction task even more daunting. Hence, in the next section, we present results from

numerical simulations.

3. Simulation Setup

3.1. Preliminaries

To evaluate the effect of imposing the optimal energy taxes, we numerically compare the

urban equilibrium without any taxes to the equilibrium where the taxes are imposed, relying

on the optimal tax formulas. The approach thus shifts from the orientation of the planner,

whose goal was to minimize the city’s resource consumption, to analysis of equilibria, knowing

that an equilibrium where taxes are imposed according to the optimal formulas is efficient.
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We impose specific functional forms in order to simulate the model numerically. Parameters

are taken partly from published sources and partly calibrated to replicate key features of

American cities. The utility function is assumed to take the following form:

v(c, q, G) ≡ (1 − α) log c + α log q − νG, (15)

where 0 < α < 1 and ν > 0 is the marginal damage from emissions. While the first two terms

correspond to standard Cobb-Douglas preferences over c and q, total emissions G appears in

the third linear term, which is not logged. Using data from US metropolitan areas (MSAs),

Davis and Ortalo-Magné (2011) show that the expenditure share of housing is remarkably

constant across MSAs and over time, so that the Cobb-Douglas assumption seems justified.

They estimate an average expenditure share of housing of α = 0.24, which is the value we use.

The parameter ν is set at 0.05. This value is chosen to generate a plausible reduction in total

emissions in moving to the first best (about 1/3).

In the consumer budget constraint, income is set equal to the 2011 US value of median

household income, equal to $51,324. Commuting costs per mile are made up of monetary and

time costs of commuting and are set at t = $521.77 per mile per year (see the Appendix for

details). City population is set at L = 750, 000 households.9

As in Bertaud and Brueckner (2005), housing production is assumed to be Cobb-Douglas,

which yields the intensive production function h(S) = ρSβ, where β < 1. Ahlfeldt and

McMillen (2014) use data from several cities to estimate the elasticity of substitution between

land and capital and find that it is close to one, which supports the Cobb-Douglas assumption.

In the simulation, we set ρ = 0.00005 and β = 0.745. Agricultural land rent ra is set at $58,800

per square mile (see the Appendix).

Based on calculations in the Appendix, we set γ, annual CO2 emissions per mile of com-

muting, at 147.521 kg. To get this value, total commuting distance is multiplied by 500 (to

get round-trips on 250 workdays) and then by a conversion factor that converts person-miles

of commuting (assuming an average mix of commuting modes) into CO2 equivalents.

As explained in the appendix, we set emissions ψ per kilowatt-hour of residential energy

use at 0.2964. This ψ value is then multipled by energy use e per square foot of building surface
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area to get emissions per square foot of surface area. The computation of e is unfamiliar and

closely tied to the model, and it proceeds as follows. For a square k-story building with floor

space of q, surface area is Ak = 4kH
√
q/k + q/k, where H is the height of one story (the

first term is the area of the sides and the second the area of the roof, assumed flat). The

Residential Energy Consumption Survey (RECS) provides q values for detached single-family

homes of 1, 2, and 3 stories, and assuming H = 12 feet, the previous formula can be used to

compute Ak, k = 1, 2, 3. The resulting median surface-area value across the three types of

houses is given by A = 8, 458.82. Next, we use the RECS to get median energy use for space

heating and air conditioning across all detached single-family houses (with different numbers

of stories), which equals 60,444 thousand BTUs or 17,714.38 kwh. We associate this median

value with the median single-family surface area A, which allows us to divide 17,714.38 kwh by

A = 8, 458, 82 to get a value for energy use per square foot of surface area. This value equals

e = 1.985 kwh, and it can then be applied to buildings of all heights.10

Although the exposition of the model assumes for simplicity that all land is used for

housing, we assume in the simulations that a fraction 0.75 of each annulus is available for

residential use. Finally, it should be noted that, while the chosen value of t reflects the

existing level of gasoline taxes, the model and its calibration does not reflect existing real

estate taxes, which are in effect assumed to be zero. For the property tax, this assumption

is appropriate given that the distortionary nature of tax means that it would not be present

at the social optimum. By contrast, since the gasoline tax component of t can be viewed as

a nondistortionary road user fee, its presence in the calibrated model is not inconsistent with

efficiency.

3.2. Solution procedure

In analysis of the standard urban model, the consumer maximizes utility, and the require-

ment that the maximized value equals a spatially invariant utility level u then determines

the housing price p as a function of u and the other variables of the model (see Brueckner

(1987)). This function is found by substituting the budget constraint c + pq = y − tx (y is

income) into v(c, q) from (15) with G suppressed, yielding v(y − tx − pq, q). The first-order

condition vq/vc = p for choice of q is then solved simultaneously with the condition v(c, q) = u
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to determine p and q as functions of the remaining variables. The resulting p solution, denoted

p(x, y, t, u), gives the price per square foot of housing that allows a utility-maximizing con-

sumer living at distance x and earning income y to reach utility u. Under the Cobb-Douglas

preferences in (15) (with ν = 0), p(x, y, t, u) ≡ B(y− tx)1/αu−1/α, where B is a constant. The

function q(x, y, t, u) gives the solution for housing consumption as a function of these same

variables.

With p determined, the housing developer’s profit maximization problem then yields the

conditions (5) and (6), with e = 0 holding in the standard model. These conditions give

solutions for S and r as functions of the same variables that determine p: S(x, y, t, u) and

r(x, y, t, u). Finally, population density, given by D = h(S)/q, also can be written in the same

fashion making use of the solutions for S and q: D(x, y, t, u).

The arguments of these functions are modified in the current framework. Since u in the

standard model comes from consumer maximization over just c and q, the utility argument

must be replaced by u+ νG in the current framework (see (15)). In addition, commuting cost

per mile t is replaced by t + τt to capture the tax on commuting. Finally, letting R denote

total differential land rent and T denote total tax revenue, the income y must be replaced by

y+(R+T )/L to capture redistribution of equal per capita shares of total differential land rent

and taxes.11 Therefore, p is now written as p(x, y + (R+ T )/L, t+ τt, u+ νG).

In addition, the S and r functions now depend on this same new list of arguments along

with e and τq. These dependencies of S can be seen in (11), where µψe = τq and the MRS

expression is replaced by the modified p function. The S that satisfies the equation then

depends on the arguments of p and on e and τq. The r dependencies can be seen from the LHS

of (13). Land rent r is given by the LHS expression in (13) with p in place of the MRS and

the bars removed, so that r depends on the arguments of p along with e and τq.

To solve the model, the first step is to set land rent at x equal to agricultural rent ra plus

the land tax τ`, with the condition written as

r(x, y + (R + T )/L, t+ τt, u+ νG, e, τq) = ra + τ`. (16)

This condition is used to solve for utility u as a function of the remaining variables (which
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include x and ra). The u solution is then substituted back into the r function and into the S

function and theD function, which has the same arguments as r and S. When this substitution

is made, G drops out as a determinant of r, S and D, but all three variables now depend on

x and ra + τ`. Letting the new functions giving this dependence be denoted r̂, Ŝ and D̂, the

set of equilibrium conditions that need to be solved can be written down.

The condition analogous to (8) stating that the city fits its population is written

∫ x

0

2πx D̂(x, y + (R + T )/L, t+ τt, e, τq, x, ra + τ`)dx = L. (17)

The condition stating that differential land rent integrates to R is

R =

∫ x

0

2πx [r̂(·) − ra]dx. (18)

where the arguments of r̂ are suppressed. Note that R appears on both sides of this condition.

The condition giving total tax revenue is

T = τt

∫ x

0

2πxD̂(·)xdx + τq

∫ x

0

2πxh(Ŝ(·))dx + τ`

∫ x

0

2πxdx, (19)

where the arguments of Ŝ and D̂ are suppressed. Note that, since T appears in these arguments,

it is present on both sides of this condition.

Finally, using (14), the condition giving µ, the marginal social damage from emissions, is

given by

µ = −

∫ x

0

2πxD̂(·)M̂RS(·)dx, (20)

where M̂RS(·) is the function corresponding to vG/vc = −ν/vc, which has the same list of

arguments as D̂.

Since all the taxes depend on µ (recall τt = µγ and τq = τ` = µψe), the taxes that appear

in (17)–(19) are endogenous, depending on the endogenous µ from (20). But since (20) also

involves the endogenous variables R, T , x (with µ also appearing on the RHS via the taxes), the
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entire set of conditions (17)–(20) constitutes a simultaneous equation system that determines

solutions for the four endogenous variables R, T , x, and µ, with the µ solution then yielding

the optimal taxes.

The solution for G is given by a modified version of (9), where S in the first term is replaced

by Ŝ(·) and h/q is replaced by D̂(·). Since G does not appear in the arguments of Ŝ and D̂,

the modified (9) thus gives G in terms of the other endogenous variables, whose values are

determined by (17)–(20).

It should be noted that endogeneity of the taxes would be eliminated if the MRS expression

in (20) (and in the original equation (14)) were a constant. This case emerges, for example, if

preferences over c and q in (15) take the Leontief form, making vc a constant, denoted φ. With

vG equal to the constant ν, the MRS is then µ/φ and (20) gives µ = Lµ/φ, yielding exogenous

taxes via the tax formulas.

To solve equations (17)–(20), we use an iterative procedure. It starts with guesses for

initial values of R, T and µ. Given these values, the population condition (17) is solved for

x. With the solution in hand, the integrals in (18)-(20) then are computed, using the initial

guesses of R, T and µ in evaluating the integrands. The integrals then give updated values of

the variables R, T and µ, which are substituted in (17), yielding a new solution for x. The

process continues until convergence is achieved, which occurs after relatively few iterations.

The equilibrium value of G is then computed from the modified (9).

4. Simulation Results

4.1. No-tax equilibrium

We first solve for the no-tax equilibrium. The procedure is to set τt = τq = τ` = 0 and then

to solve (17) and (18) for x and R. Figures 1–5 show the spatial contours of p, q, r, h(S),

and D in the no-tax city, represented by the gray curves, and Table 2 gives the central (CBD)

values of these variables. The solution gives x = 29.59, which implies an average commuting

distance of 14.35 miles, slightly longer than the average commute for workers in MSAs of 1–3

million inhabitants (13.74 miles, from National Household Travel Survey (NHTS)). Units of q

are chosen such that the average dwelling size is 2,196 square feet, with q rising from 1,498.85
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at the CBD to 4,340.35 at the city border x.12 The housing price p falls from $8.67 per square

foot at the CBD to $2.14 at x, while land rent r falls from $14.2 million per square mile to

$58, 880 = ra. Building height h(S) falls from 23.69 at the CBD to 0.397 at x, and population

(dwelling) density falls from 4290.27 dwellings per square mile to 24.87 (average density is

272.68).13 Despite the presence of rent redistribution and the emissions externality, these

spatial patterns are familiar from the standard urban model. Total CO2 emissions G in the

city are 2.489 × 109 kg (2.49 million metric tons), and per-capita emissions equal 3318.72 kg.

Residential energy use is responsible for 54% of total emissions, with commuting responsible

for the balance of 46%.

4.2. The first-best equilibrium

We now turn to the model solution when emissions taxes are levied. The optimal taxes

are given by τ ∗q = τ ∗` = $0.72 per square foot and τ ∗c = $179.90 per mile (recall that these are

annualized values). On average, the housing tax corresponds to an ad valorem tax of 10.1%

on housing rent, the land tax amounts to 7.5% of land rent, and the commuting tax to 34.5%

of commuting costs. Note that the average rates of the housing and land taxes are given by

τq/p and τl/r averaged across the city’s x values, while the rate of the commuting tax, which

is just τt/t, is spatially invariant.

Table 2 gives the central values of p, q, r, h(S), and D in the taxed city, and Figures 1–5

show the spatial contours of these variables, which are represented by the black curves. The

figures show that, relative to the no-tax city, the p, r, h(S), and D contours rotate clockwise,

while the q contour rotates counterclockwise.

In response to the optimal taxes, the city shrinks spatially, with the urban boundary lying

at x = 18.03. Compared to the no-tax case, the spatial extent of the city thus shrinks by 30

percent. This finding confirms the expectation that energy taxation makes cities more com-

pact by discouraging long commutes, reducing housing consumption, and increasing building

heights. In the taxed city, dwelling size q rises from 1241.59 square feet at the CBD to 2763.33

at the new x. Average dwelling size is 1717.18 square feet, 22% lower than in the no-tax

equilibrium. The housing price p falls from $10.95 per square foot at the CBD to 3.82 at x,

while land rent r falls from $27.1 million per square mile to ra = 58, 880. Building height h(S)
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falls from 38.50 at the CBD to 1.18 at x, while population density falls from 8,415 dwellings

per square mile to 115.9 (average density is 735).

Total emissions G in the taxed city are 1.69 × 109 kg and per-capita emissions equal

2257.78 kg, with both values naturally smaller than in the untaxed city (the reduction is

32%). Residential energy use is now responsible for 52% of total emissions, with commuting

responsible for the balance of 48%.

The compensating variation associated with the welfare gain in moving to the first best

can be computed. It equals the reduction in income needed to restore the no-tax utility level

when all the endogenous variables are held at the levels prevailing in the first-best city. The

compensating variation is close to 1.5% of income, a relative modest level similar to the gains

from correcting other externalities in a monocentric city (Brueckner’s (2007) computed gain

from correcting unpriced congestion is 0.7% of income).

The contour rotations in Figures 1–5 are similar to the effects of an increase in the

commuting-cost parameter t in the closed-city version of the standard model. While a higher

commuting cost per mile is a consequence of the present model’s commuting tax, partly ac-

counting for this similarity of effects, many additional forces are at work in generating them.

These forces include responses to the land tax τ`, which tends to raise the cost of land and

thus encourages developers to economize on land in production of housing, tending to raise S

and building height h(S). But since the housing tax τq (which is analogous to a property tax)

is a tax on output of housing floor space, it tends to depress S and h(S), offsetting the effect of

the land tax. The housing tax also tends to reduce the dwelling size q as consumers substitute

toward nonhousing consumption. The tax’s effects on h(S) and q, both being negative, have

an ambiguous effect on population density (h/q), as discussed in detail by Brueckner and Kim

(2003). These varied tax effects are mediated by the impacts of redistribution of differential

land rent and tax revenue, adding to the complex interplay of forces affecting urban form in

the taxed city. Interestingly, though, this interplay yields qualitative impacts similar to the

effects of increase in commuting cost in the standard model.

To get a sense of the magnitudes of the optimal taxes, consider first a comparison of the

average housing and land-tax rates to actual US property-tax rates, expressed as a percentage
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of rent rather than value. Recall that a standard ad-valorem property tax is absent from

the model, with the rate set to zero. Letting κ denote the property-tax rate on value and θ

denote the discount rate, the property-tax rate expressed as a percentage of rent is given by

κ/(κ+ θ).14 Assuming θ = 0.04 and using a representative 1.5% property-tax rate,15 so that

κ = 0.015, this expression reduces to 0.27, indicating that the existing property tax claims

about 25% of rent. The average housing and land-tax rates of 10.1% and 7.5% from the model

are well below this value.

The model’s value of the commuting cost parameter t includes the gasoline tax, and the

optimal commuting tax can be generated by increasing this tax. To judge the magnitude of

the required increase, the 34.5% rate of the commuting tax can be converted into a required

increase in the tax per gallon of gasoline, as follows. The annual t value of $521.77 per mile is

based on an overall money and time cost of $0.83 per mile, with a money cost of $0.55 per mile

(see the Appendix). The 34.5% commuting tax rate (equal to τt/t) implies a $0.29 increase in

this $0.83 overall cost per mile. With an average US gasoline tax of $0.487 per gallon16 and

an average light-vehicle fuel economy of about 20 miles per gallon,17 the gasoline tax per mile

is 0.487/20 = 0.024/mile. Achieving the required $0.29 increase in commuting cost per mile

thus requires a $0.29 increase in the gasoline tax per mile, or a 20 × 0.29 = $5.80 increase in

the gasoline tax per gallon, to a value of $6.287. Imposing the optimal commuting tax would

therefore require a roughly 12-fold increase in the gasoline tax. The resulting tax per gallon

is about 50% higher than the highest European gasoline taxes, which are around $4.00 per

gallon.18

This gasoline tax is much higher than the optimal value computed by Parry and Small

(2005), who derive an optimal $1.01 US tax per gallon, taking into account emissions along

with accident and congestion externalities. Our much higher value depends on the structure

and calibration of the model, particularly the assumed value of the emissions parameter ν in

the utility function, and it would be reduced with a smaller ν, as seen in the sensitivity analysis

below.

4.3. Second-best optima

Instead of solving the equation system (17)–(20), the equilibrium in a city with optimal
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emissions taxes can be found in a different, equivalent manner. Under this approach, the taxes

are treated as parameters, with (17)–(19) solved for x, R, T conditional on τt, τq and τ`. Then,

the value of u conditional on the taxes is determined by (16). The optimal values of the taxes

(the ones that maximize u) can then be determined by a search procedure. Note that this

procedure makes no use of the optimal tax formulas, and thus does not require computation

of a value for µ, the marginal social damage from emissions.

This approach gives the same numerical answers as the original approach and thus need

not be used in finding the first-best equilibrium. But use of the approach is necessary in

investigating the properties of second-best optima, which are utility-maximizing equilibria

with one or two of the three taxes constrained to equal zero. With some taxes set at zero, the

utility-maximizing value(s) of the remaining tax(es) can be found using a search procedure.19

First, we constrain the commuting tax to be zero. The resulting optimal housing and land

taxes are much higher than in the first-best case, while no longer being equal. The second-best

optimal taxes are τ` = 1.972 and τq = 1.046, with the housing tax now amounting to 14.5% of

housing rents and the land tax to 22.9% of land rents, on average. The second-best city’s x

value, equal to 17.22, is about 5% smaller than the first-best value of 18.03. When commuting

is not taxed, setting the housing and land tax at their first-best levels would lead to a city that

is too spread out, since commuting costs are below social costs. Hence, both the housing tax

and land tax must be raised, making the city more compact, even more so than the first best

city. Interestingly, this second-best city has a density contour that lies between the relatively

flat one of the no-tax city and the steep contour of the first-best city, as seen in Figure 6 (the

second-best contour is dashed). The same observation applies to the building-height contour,

while the p contour rotates counterclockwise relative to the first best contour, showing the

reduced value of access to the CBD in the absence of the commuting tax (the q contour rotates

clockwise). Table 2 gives the central values D, h(S), q, p and r in the second-best city along

with emissions per capita.

When the housing tax is set to zero, the second-best optimal land and commuting taxes

are τ` = 0.996 and τt = 233.873 (the average rates are 9.7% and 44.8%). Again, both taxes

are set higher than the first-best rates. These taxes lead to a spatial city structure similar to
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that of the first-best city. The boundary distance x is 17.83, 98.8% of the first-best value. The

absence of a housing tax leads to larger dwellings (and a lower p) at all distances relative to the

first-best city, tending to increase the city’s spatial area, but this effect is partly countered by

the higher taxes on land and commuting. The increased land tax in particular leads to taller

buildings at all distances, so that the pattern of population density is very similar to that in

the first-best city. Table 2 again provides central data for this second-best city.

Next, we set the land tax to zero. The optimal second-best housing and commuting taxes

are τq = 0.879 and τt = 223.027, implying average tax rates of 10.7% and 42.7%. In this

case, the urban boundary is x = 20.42, which is 13% above the first-best level. The absence

of the land tax thus causes the city to expand far beyond the efficient size. The increases in

the housing and commuting taxes partially compensate for the absent land tax. But dwellings

are larger at all distances than in the first-best city (p is lower), and buildings are shorter

everywhere. As a result, population density is lower at all distances out to the first-best

boundary, accounting for the larger x. See Table 2 for further information.

Finally, we set both housing and land taxes at zero, so that the commuting tax is the

only second-best tax. Its optimal value is then τt = 316.819 or 60.7% of average commuting

costs. The urban boundary is x = 21.76, which is 21% above the first-best level. As in the

previous exercise, the absence of taxes on housing and land causes dwellings to be too large

and buildings to be too short. While the commuting tax increases strongly to counteract this

tendency, the city is much larger than optimal and population density is inefficiently low in the

center. See Table 2 for more information. As would be expected, the compensation variations

associated with all of these second-best tax schemes are smaller than the first-best value (the

values are well below 1% of income).

If policy makers were to consider use of existing urban taxes to counteract a city’s GHG

emissions, it would be natural for them to focus on the gasoline tax, not heeding this paper’s

prescription for additional taxes on land and housing. The second-best optimal commuting-tax

rate of 60.7% requires a $0.50 increase in the baselineline $0.83 commuting cost per mile, which

translates (using the previous procedure) into a $10.00 increase in the gasoline tax, to a value

of $10.487 (more than a 20-fold increase).
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4.4. Sensitivity analysis

This subsection provides sensitivity analyses. One by one, we vary some of the more

interesting parameters, increasing (or in one case, decreasing) each of the parameters by 50%

of the benchmark value. The results of these exercises are shown in Table 3.

First, we vary the marginal disutility of emissions, ν. In addition to exploring the issue

just discussed, this exercise is important because, in the economics of climate change, there is

considerable controversy regarding discount rates, uncertainty, tipping points and so on. These

factors would affect the marginal social damage from emissions and hence, optimal taxes.

Therefore, we decrease ν by half to ν = 0.025. While the no-tax equilibrium is obviously

unaffected, the optimal taxes fall by 48% each, to τq = τ` = 0.347 and τt = 87.133. As a

result, x is 23% larger and emissions per capita are 18% higher than in the previous first-best

city. Emissions are reduced by 20% compared to the no-tax city, rather than by 32%, as in the

previous first-best case.20 The new τt value leads to a commuting tax rate of 17%, requiring

a $0.14 increase in the baseline $0.83 cost per mile. This increase requires a $2.82 increase in

the gasoline tax per gallon to a level of $3.31, less than the maximum European level.

Conversely, when ν increases by 50% to ν = 0.075, emissions are reduced by 14% and

x shrinks by 17% relative to the previous first-best city. The optimal taxes rise by 54%.

Compared to the no-tax city, emissions are reduced by 41%.

Second, we increase income by 50% from the benchmark value of $51,324, to $76,986. This

value corresponds to the household income in very rich metro areas such as San Francisco

or Boston. In the standard urban model, such an increase leads to higher average housing

consumption, longer commutes, and urban sprawl. Obviously, these effects increase CO2 emis-

sions. In the first-best city, the income increase leads to a 39% increase in x and a 57%

increase in emissions per capita relative to the benchmark first-best city. Interestingly, the

optimal taxes each fall by about 2%. The apparent intuition is that the emissions externality

affects utility linearly, so that when income rises, the ‘distortionary’ effects of taxation in the

housing market weigh more strongly than the increased emission damage.

Next, we increase population from L = 750, 000 to 1,125,000. Comparing first-best cities,

the population increase leads to a 10% percent decrease in x. Emissions increase by 25%
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while emissions per capita decrease by 17%, matching a pattern observed by Larson and Yezer

(2015).21 Each of the taxes increases by 57% percent. The result that optimal city size with

larger population is smaller in the presence of optimal emissions taxes is striking. This outcome

is due to the fact that, in the absence of taxes, the city expands spatially by a modest 6%

while emissions increase strongly, by 41%. As long as the emissions damage is large enough, the

increase in optimal taxes is so large that the optimal city shrinks, relative to the benchmark.

If we reduce the value of ν sufficiently, this result is reversed, with the optimal city expanding

spatially when population increases.

A further exercise is to increase annual commuting cost t to $782.65 per mile. Comparing

first-best cities, the commuting-cost increase leads to a 20% decrease in x and a 21% decrease in

emissions per capita, with both changes partly reflecting the higher private cost of commuting.

Despite this improvement in incentives, each tax increases by 3%.

Finally, we vary the energy efficiency of buildings, e, and the emissions intensity γ of

commuting. Comparing first-best cities, an increase in e (which could also be caused by a

change in the local temperature) reduces x by 10% and raises emissions per capita by 17%.

The x change appears to partly reflect greater private incentives to reduce housing consumption

in the face of lower residential energy efficiency. In response to the higher e, τq and τ` rise

by 53%, while τt rises by 2%.22 Again comparing first-best cities, an increase in γ reduces

x by 7% and raises emissions per capita by 14%. Since the γ change generates no private

commuting-cost increase, the x change mostly reflects the 51% increase in τt. The housing and

land taxes rise by only 1%.

5. Conclusion

This paper has presented the first investigation of the effects of optimal energy taxation

in an urban spatial setting. Rather than exploring the effects of a carbon tax, our approach

is to derive the supplements to existing real estate and gasoline taxes needed to support the

social optimum, analyzing their effects on urban spatial structure. This exercise is carried

out using a model that incorporates emissions economies from tall buildings. Since emissions

are generated by housing consumption and commuting, optimal taxation reduces the levels of
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both activities, generating a more-compact city with a lower level of emissions per capita. In

response to optimal taxation, the distance to the urban boundary shrinks by 30%, the city’s

central building height rises by 62% (helping to raise central population density by 96%), and

emissions per capita fall by 32%.

The paper also carries out second-best exercises, with the most instructive being an exercise

where the housing and land taxes are set at zero, so that the commuting tax must do all the

work in limiting emissions from both residences and commute trips. In this case, the second-

best optimal commuting tax would correspond to a gasoline tax of more than $10 per gallon,

a twenty-fold increase over the current US average tax. While this increase partly reflects the

assumed value of the individual utility loss from emissions, it also reflects the expanded role

of the commuting tax.

Future research could add detail to the model, especially on the commuting side, following

the lead of Larson et al. (2012). Their model includes traffic congestion that in turn affects

travel speed, along with a realistic relationship between speed and emissions. Adding such

features could improve the accuracy of the commuting tax levied in the current model while

incorporating the overall connection between traffic congestion and urban spatial structure. In

conjunction with the incorporation of congestion, a further extension could add public transit

along with household heterogeneity in the valuation of commute time.
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Appendix

A1. Planning-problem derivations

The Lagrangean expression for the planning problem is generated by subtracting the RHS

expressions in (8) and (9) from the left-hand sides, multiplying the resulting expressions by

the multipliers λ and µ, and adding (7). The first-order conditions for S, q, G and x are

S : i +
h′(S)

q
[c(q, G) + tx] + h′(S)e + λ

h′(S)

q
− µψh′(S)e − µγ

h′(S)

q
x = 0

(a1)

q : −
h(S)

q2
[c(q, G) + tx] −

h(S)

q

vq

vc
− λ

h(S)

q2
+ µγ

h(S)

q2
x = 0 (a2)

G : −

∫ x

0

2πx
h(S)

q

vG

vc
dx + µ = 0 (a3)

x : iS +
h(S)

q
[c(q, G) + tx] + h(S)e + e + ra + λ

h(S)

q
− µψ[h(S)e+ e]

− µγ
h(S)

q
x = 0. (a4)

Rearranging (a2) yields (10), and (a3) is the same as (16). Solving (a2) for λ and sub-

stituting in (a1) yields (11) after rearrangement, and substituting in (a4) yields (13) after

rearrangement.

A2. Data sources and calibration calculations

Income y is set at the 2011 value of median household income in the US, which is $51,324.

The source is Household Income: 2012, American Community Survey Briefs, By Amanda

Noss, U.S. Department of Commerce Economics and Statistics Administration, U.S. Census

Bureau, September 2013 (https://www.census.gov/prod/2013pubs/acsbr12-02.pdf).

To compute commuting cost per mile, t, we follow Bertaud and Brueckner (2005). We use

the median hourly wage of $17.09 (from Bureau of Labor Statistics,

http://www.bls.gov/oes/current/oes nat.htm) and value it at 50% (Small (2012)) to get
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an hourly time cost of commuting $8.545. Assuming that rush hour traffic moves at 30 miles per

hour, the implied time cost per mile of commuting is $0.28. Adding a money cost of automobile

operation equal to $0.55/mile (the current Federal allowance), total commuting cost per mile

is then $0.83. Multiplying by 1.25 workers/household, by 250 work days/year and again by 2

to convert to a round-trip basis, annual commuting cost per mile is $521.771/year.

The computation of agricultural rent ra again follows Bertaud and Brueckner (2005). We

take the average value of farm real estate per acre in 2011, $2300 (the source is United States

Department of Agriculture (2015), Land Values: 2015 Summary,

http://www.usda.gov/nass/PUBS/TODAYRPT/land0815.pdf). To convert this number to an-

nual rent, we use a discount rate of 4% to get a rent per acre of $2, 300/0.04 = $92, yielding a

land rent per square mile of ra = $58, 880.

To get a value for γ, CO2 emissions per mile of commuting, we use data from the Carbon

Trust to find following conversion factors for commuting (see Carbon Trust, Conversion factors:

Energy and carbon conversions 2011 update

http://www.carbontrust.com/media/18223/ctl153 conversion factors.pdf). For cars,

we use the value for average petrol for cars (0.3358 kg CO2/mile); for public transport, we

use 1/2 × value for bus [0.1488 kg per passenger-km] + 1/2 × value for subway [0.0736 kg

per passenger-km], which gives 0.1112 kg per passenger-km or 0.1789 kg per passenger-mile;

for cycling/walking we use a value of 0. These values are then weighted by modal shares

(82%/11%/7%) to get the value of 0.279 kg CO2/mile. We then multiply by 250 workdays per

year and by 2 to get an annual round-trip value of 139.347 kg CO2/mile. Note that, although

our t value pertains to automobile commuting because it is then easily computed, the γ value

embraces all commuting modes.

For emissions from residential energy use, we again use data from Carbon Trust. The con-

version factors for heating and cooling are 0.5246 kg CO2/kwh for electricity, 0.1836 for natural

gas, and 0.2674 for fuel oil. We weigh these values by the percentage shares of households us-

ing the three energy sources (35, 52, 7, from RECS, http://www.eia.gov/consumption/

residential/) to get a conversion factor of ψ = 0.2978 kg CO2/kwh.
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Table 1: 2013 Emissions by Sector
(millions of metric tons CO2 equivalent)

Electricity-generation emissions

are distributed to final user

implied sector volume percentage

Industry 1922.6 30.0%

Transportation 1810.3 27.1%

Residential 1129.1 16.9%

Commercial 1126.7 16.9%

Agriculture 646.4 9.7%

Total 6673.0 100%

Columns do not sum since emissions from
US Territories are excluded. Source is

Environmental Protection Agency (2015, Table ES-7)
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Table 2: City Characteristics

No-tax First best Second best Second best Second best Second best
τt = 0 τq = 0 τ` = 0 τ` = τq = 0

city border x 29.59 18.03 17.22 17.83 20.42 20.76

emissions per capita 3318.72 2257.78 2362.05 2316.77 2238.44 2382.87

central density D 4290.27 8415.71 5742.55 8549.1 7847.33 9780.53

central bldg. height h(S) 23.69 38.50 27.76 40.65 36.40 45.27

central dwelling size q 1498.85 1241.59 1312.2 1290.54 1259.03 1256.18

central housing price p 8.67 10.95 10.20 10.43 10.92 10.82

central land rent r 14.2 m 21.1 m 17.0 m 29.1 m 25.3 m 33.9 m

commuting tax τt 0 179.896 0 233.873 223.027 316.820
(34.5%) (44.8%) (42.7%) (60.7%)

housing tax τq 0 0.717 1.046 0 0.879 0
(10.1%) (14.5%) (10.7%)

land tax τ` 0 0.717 1.972 0.996 0 0
(7.5%) (22.9%) (9.7%)
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Table 3: Sensitivity Analysis

(percentage change in first-best value relative to benchmark first-best value)

ν falls ν rises y rises to L rises to t rises to e rises ψ rises
to 0.025 to 0.075 $76,986 1,250,000 $782.65/mile by 50% by 50%

city border x +23% −17% +39% −10% −20% −10% −7%

emissions per capita +18% −14% +57% −17% −21% +17% +14%

commuting tax τt −48% +54% −2% +57% −3% +2% +51%

housing tax τq −48% +54% −2% +57% −3% +53% +1%

land tax τ` −48% +54% −2% +57% −3% +53% +1%
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Figures

Figure 1: Dwelling size in the first best (dark red/black) and no-tax city
(light blue/gray)

Figure 2: Housing price in the first best (dark red/black) and no-tax city
(light blue/gray)
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Figure 3: Land rent in the first best (dark red/black) and no-tax city (light
blue/gray)

Figure 4: Building height in the first best (dark red/black) and no-tax city
(light blue/gray)
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Figure 5: Population density in the first best (dark red/black) and no-tax
city (light blue/gray)

Figure 6: Population density in the first best (dark red/black), second best
(τt = 0, dashed) and no-tax city (light blue/gray)
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Footnotes

∗We thank Howard Chong for steering us toward the engineering/architecture literature on
residential energy use, and we are grateful to Sofia Franco, Georg Hirte Tatsuhito Kono,
Will Larson, and Tony Yezer for detailed comments and to Ben Leard and other conference
participants for additional comments. Any shortcomings in the paper, however, are our
responsibility.

1In similar fashion, Fullerton and West (2002) show that, in treating automobile emissions, a
carbon tax can be replaced by taxes with other features that acheive the same outcome (i.e.,
a gas tax that depends on fuel type, engine size, and installed pollution control equipment,
or a vehicle tax that depends on mileage).

2For additional analysis where adjustment of building heights serves to amerliorate an ex-
ternality, see Joshi and Kono (2009). With unpriced traffic congestion, population in a
monocentric city is insufficiently concentrated, and this paper shows that a second-best
best remedy is building-height regulations that impose a minimum near the center and a
maximum in the suburbs.

3Among buildings with a given footprint area, square buildings have the smallest surface area
(see below).

4Taken literally, the model implies that developers should construct buildings with the biggest
possible footprint, limited only by the city’s street grid.

5Energy use from appliances may, of course, show a modest increase with dwelling size (from
larger refridgerators and hot-water heaters or additional televisions), but omission of this
effect is acceptable as an approximation.

6See Fujita (1989) for another use of this approach.

7In particular, suppose that a fraction ω of total emissions G is particulate matter that
creates local pollution while the remainder is GHG. The GHG component affects residents
of other cities, while the GHG created in those cities affects residents of the given city.
Let the economy contain n identical cities, and let η and ξ denote the disutilities per unit
of particulates and GHG, respectively. Then, the emissions term in the utility function is
ηωG+ξ(1−ω)G+(n−1)ξ(1−ω)G = [ηω+nξ(1−ω)]G, so that G remains the appropriate
utility-function argument. In the simulation model below, where G is assumed to enter
linearly in preferences, its coefficient ν can be viewed as equal to ηω+nξ(1−ω). Under this
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formulation, the planner would face n cities with identical populations, and would choose
common values of G and the other variables to minimize global resource consumption (n
times (7)) subject to the constraints (8) and (9). See Borck and Pflger (2015) for a related
analysis of global emissions in a framework with two cities, as well as Gaigné, Riou and
Thisse (2012).

8The dual version of the planning problem starts by deriving income-compensated demand
functions for c and q conditional on G, denoted by c(p,G, u) and q(p,G, u). In (7)–(9), the
first function is substituted in place of c(G, u) and the second is substituted in place of q.
Then, (7) is set equal to I , which gives the economy’s total endowment of c. Finally, u is
maximized subject to the three modified constraints, with p, G, and x treated as choice
variables along with u. The optimality conditions in (10), (11) and (13) again emerge. See
Pines and Sadka (1986) for another use of this approach.

9With an average household size of 2.6, the city would then have 1.95 million inhabitants.

10By ignoring the possible irregular shapes of single-family houses, this calculation may lead
to a biased value of e, but the result is acceptable as an approximation.

11In reality, tax revenues might be used to subsidize energy-efficient public transit or building
modifications designed to reduce energy use. Analysis of these options would require a more
detailed model.

12We solve the model, and then rescale the resulting q values by multiplying by a factor ξ that
makes the average value in the city equal to 2,196 square feet. This average value is given
by 1/N times the integral of q, weighted by population density, over x. Then, the p solution
at each x is divided by ξ, as is the floor space tax. This procedure follows Bertaud and
Brueckner (2005).

13This population density is similar to that of Buffalo-Niagara Falls, NY, or Dallas-Fort Worth-
Arlington, TX, according to the 2010 Census [www.census.gov]. In all MSAs with popu-
lation between 1.5 and 2.5 million, the average population density is 540 people, or 208
households, per square mile.

14To derive this expression, note that property value P is determined by the relationship
P = (p − κP )/θ, with P equaling the discounted value of the flow of rent minus taxes.
Solving yields P = p/(κ + θ), so that the tax liability as a percentage of rent is given by
[κp/(κ+ θ)]/p = κ/(κ + θ).

15See, for example, Song and Zenou (2006).
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16See the following webpage from the American Petroleum Institute: http://www.api.org/

oil-and-natural-gas-overview/industry-economics/fuel-taxes/gasoline-tax.

17US Department of Transportation data at the following link show miles per gallon for the US
fleet of cars and light trucks of 23 and 17, respectively. With light trucks constituting about
40% of the overall light vehicle fleet (White (2004)), average miles per gallon is around 20.
(http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/
national transportation statistics/html/table 04 23.html)

18See the following webpage from US Department of Energy: http://www.afdc.energy.gov/
data/10327.

19As mentioned earlier, Borck (2015) studies building-height limits as a different second-best
tool for combating global warming. The intuition is that, by tightening housing supply, lower
building heights may depress housing consumption, thus reducing emissions. However, the
population-density contour in a city with building-height limits is too flat, compared to a
city with first-best taxation.

20Using results from Nordhaus’ (2013) DICE model, the reduction of CO2 emissions in 2020
is 19% in his optimal taxation case, 34% if the goal is to limit global warming to 2 degrees
centigrade, and 57% with low discounting, as in the Stern Review.

21This result emerges when the population increase is caused by an exogenous increase in
amenities in an open-city context.

22This analysis also applies to the effects of a change in ψ, emissions per unit of residential
energy usage.

38


	CESifo Working Paper No. 5711
	Category 10: Energy and Climate Economics
	January 2016
	Abstract



