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Abstract 
 
In accordance with Basel Capital Accords, the Capital Requirements (CR) for market risk 
exposure of banks is a nonlinear function of Value-at-Risk (VaR). Importantly, the CR is 
calculated based on a bank’s actual portfolio, i.e. the portfolio represented by its current 
holdings. To tackle mean-VaR portfolio optimization within the actual portfolio framework 
(APF), we propose a novel mean-VaR optimization method where VaR is estimated using a 
univariate Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) volatility 
model. The optimization was performed by employing a Nondominated Sorting Genetic 
Algorithm (NSGA-II). On a sample of 40 large US stocks, our procedure provided superior 
mean-VaR trade-offs compared to those obtained from applying more customary mean-
multivariate GARCH and historical VaR models. The results hold true in both low and high 
volatility samples. 
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1. Nomenclature 

1.1. Acronyms  

Actual Portfolio Framework, APF; Capital Requirements, CR; Conditional Value-at-Risk, 

CVaR; Dynamic Conditional Correlation Model, DCC; Evolutionary algorithm, EA; Expected 

Shortfall, ES; Fixed Weights Approach, FWA; Generalized AutoRegressive Conditional 

Heteroscedasticity, GARCH; Linear Programming, LP; Multi-objective Evolutionary 

Algorithm, MOEA; Maximum Likelihood Estimation, MLE; Nondominated Sorting Genetic 

Algorithm, NSGA-II (NSGA-III); Pareto Envelope-based Selection Algorithm, PESA; Process 

Time, CPU Time; Pareto Archived Evolutionary Strategy, PAES; Quadratic Programming, 

QP; Standard and Poor’s 100 stock market index, S&P 100; Strength Pareto Evolutionary 

Algorithm, SPEA; Value-at-Risk, VaR. 

 

1.2. Notation  

Raw return at time t, rt; conditional expected return, μt ; conditional variance, σt
2
; residual 

(innovation) term, zt; portfolio, p; probability, ρ; dollar portfolio value at time t, Vp(t); 1-day 

ahead conditional volatility estimate at time t, σt+1; cumulative distribution function of returns, 

F(α); significance level, α; time horizon, h; degrees of freedom, d; 1-day ahead conditional 

variance-covariance matrix of returns, Ht+1; vector of portfolio weights at time t, wt; return on 

portfolio, rp(w); GARCH VaR of a portfolio, VaR(rp(w)); expected return on portfolio, 

E(rp(w)); price of shares in company i at time t, Pi(t); portfolio holdings, ni; actual portfolio 

return at time t, rp(t).  
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2. Introduction  

Value-at-Risk (VaR) is defined as the loss associated with the low (typically first or fifth) 

percentile of the return distribution.
1
 The Basel II Capital Accord codifies VaR as the de-facto 

industry standard for the banking and insurance industries alike (see, BIS [3, 4, 5]. In 

particular, for the market risk exposure of banks, a bank’s internal VaR estimates 

corresponding to the actual portfolio, i.e. the portfolio represented by its current holdings, 

translate directly into the regulatory capital charge (see Hendricks and Hirtle [6]). Motivated 

by this regulatory feature, we utilized the actual portfolio framework (APF) to determine a set 

of portfolios characterized by the optimal trade-off between the expected return and VaR (i.e. 

Pareto-optimal frontier). We further proposed a mean-univariate Generalized AutoRegressive 

Conditional Heteroscedasticity (GARCH) VaR portfolio optimization model. We assumed that 

portfolio returns, standardized by time varying volatility, have a conditional Student’s t 

distribution, while conditional variance follows а GARCH (1, 1) process.
2
 The Student’s t 

distribution efficiently captures the fat tails of standardized asset returns (see Christoffersen 

[9], Huisman et al. [10]) whilst the GARCH model addresses issues related to volatility 

clustering observed in the data.
3
 To the best of our knowledge, this is the first paper that 

studies mean-VaR portfolio optimization using the actual portfolio approach and also the first 

paper that uses the univariate GARCH VaR model in this context. 

Previous studies on mean-VaR optimization implicitly assumed fixed weights (i.e. fractions of 

assets) over the observed time period.
4
 Since prices change over time, maintaining the fixed 

portfolio weights (FWA) requires frequent trading and leads to changes in the number of 

shares of each asset in a portfolio. Regulatory capital charges, however, are determined by the 

VaR of an actual portfolio where the number of shares of an asset (rather than its weighting) is 

fixed over the observed period. It is, therefore, APF, rather than FWA, that is more relevant 

for asset managers facing regulatory VaR limits. To illustrate the effectiveness of our APF 

approach and univariate GARCH model, we compared our results with two benchmarks. Our 

first benchmark is the mean-historical VaR approach developed in Rockafellar and Uryasev 

[20, 21] and Krokhmal et al. [22]. These authors mapped conditional VaR (CVaR) 

optimization into a linear programming problem and argued that the mean-CVaR efficient 

                                                           
1
 For classification and comparison of risk measures see [1] and [2], among others.  

2
 GARCH was introduced in Engle [7] and GARCH (1, 1) in Bollerslev [8].  

3
 For more on superiority of GARCH VaR compared to historical VaR see [11], [12], [13], [14], [15], among 

others.  
4
 For example, [16], [17], [18], [19], [20], [21]. 
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frontier provided near-optimal solutions in the context of the mean-historical VaR trade-off.
5
 

We referred to this benchmark as the Linear Programming (LP) model. The second point of 

comparison for our approach is the mean-multivariate GARCH VaR optimization that can be 

mapped into the Quadratic Programming (QP) problem (see Santos et al. [26]).  

Use of the univariate GARCH approach for VaR modeling, however, makes the mean-VaR 

optimization problem rather complex. Previous literature documented that Multi-Objective 

Evolutionary Algorithms (MOEA) could reliably and efficiently be applied in complex 

portfolio optimization problems.
6 

For example, Anagnostopoulos and Mamanis [31] studied 

the effectiveness of different MOEA (e.g. Nondominated Sorting Genetic Algorithm (NSGA-

II), Strength Pareto Evolutionary Algorithm (SPEA2), Pareto Envelope-based Selection 

Algorithm (PESA), etc.) in solving various complex mean-variance optimization problems. 

They reported the best NSGA-II and SPEA2 average performance in terms of hypervolume 

indicators, while PESA performed best in terms of the proximity to the Pareto-optimal 

frontier. The same authors (see [32]) also examined the mean-variance, mean-ES, and mean-

VaR optimization problem with quantity, cardinality and class constraints. They showed that 

NSGA-II, SPEA2 and PESA performed efficiently and their performance was independent of 

the risk measure used.
7
 Deb et al. [34] reported NSGA-II’s advantages over the Pareto 

Archived Evolutionary Strategy (PAES) and SPEA. Deb et al. [35] developed a hybrid NSGA-

II procedure for handling a mean-variance portfolio optimization problem with the cardinality 

constraint and lower and upper bounds as investment criteria. The authors provided evidence 

of NSGA-II’s superiority over classical quadratic programming approaches. Branke et al. [36] 

considered the mean-variance problem with the maximum exposure constraint. The authors 

generated mean-variance Pareto-optimal frontiers by using a hybrid algorithm that combined 

NSGA-II with the critical line algorithm.  

In this study we used the NSGA-II algorithm. Our choice was motivated by the above studies, 

whose results highlighted the advantages of NSGA-II in tackling complex portfolio 

                                                           
5
 CVaR (or Expected Shortfall, ES) is the expected loss, conditional that loss is higher than VaR. Thus, CVaR and 

VaR are closely related risk measures. The LP model is widely used in CVaR and VaR optimization literature 

(see [23], [24], [25], among others). 
6
 For comprehensive surveys of MOEA applications in portfolio optimization, see [27], [28], [29], [30].  

7
 Anagnostopoulos and Mamanis also showed that NSGA-II, SPEA2, and PESA provide a good approximation of 

risk-return trade-offs in a 3 objectives optimization problem (see [33]). 
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optimization problems.
8
 NSGA-II was first introduced by Deb et al. [34] and subsequently 

developed in Deb et al. [37]. Recently, a new version of NSGA (NSGA-III) was developed by 

Deb and Jain [38] and also Jain and Deb [39]. NSGA-III is better suited to many-objective 

optimization problems (three and more objectives) and offers the ability to define the desired 

part of a solution space defined by reference points.
9
 Here, we prefer NSGA-II to NSGA-III, 

since we consider only two objectives and are interested in the entire Pareto-optimal frontier. 

Knowledge of the entire frontier of the risk-return trade-offs is particularly useful for asset 

managers in banks and other financial institutions in order to comply with different in-house 

and regulatory requirements.  

For our numerical tests we selected 40 of the largest US stocks in the Standard and Poor’s 

stock market index (S&P 100) for which sufficient data was available. First, we determined 

the mean-historical VaR Pareto-optimal frontier, in the APF framework, using the NSGA-II 

algorithm and compared it to the LP Pareto optimal frontier. The comparison showed that 

NSGA-II produced better mean-historical VaR trade-offs compared to the LP optimization 

approach, in both Low and High volatility samples. Second, we compared our mean-

univariate GARCH VaR Pareto-optimal frontier with the frontiers obtained by the two 

benchmarks (mean-historical VaR and mean-multivariate GARCH VaR). In comparison with 

the two benchmarks, the proposed univariate GARCH VaR procedure provided actual 

portfolios with better mean-univariate GARCH VaR trade-offs, in both Low and High 

volatility samples. 

Previous portfolio optimization studies typically neglect the differences between using 

portfolios with fixed weights and portfolios with fixed holdings of assets. We contribute to 

portfolio optimization literature by addressing recent real world regulatory changes which 

impose VaR based on actual portfolio holdings. The rare MOEA portfolio optimization studies 

that measured risk by using VaR tend to use historical rather than analytical VaR (see 

Anagnostopoulos and Mamanis [33], Hochreiter et al. [41], Soler et al. [42], Rankovic et al. 

                                                           
8
 NSGA-II algorithm is also the most widely used MOEA in portfolio optimization literature. According to the 

number of studies reviewed in [30], NSGA-II was used in twice as many studies compared to second most 

popular method (SPEA2). 
9
 The number of the Pareto optimal solutions could also be reduced by combination of NSGA-II with Data 

Envelopment Analysis (see [40]). 
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[43]).
10

 We therefore also contribute to MOEA literature by examining the mean-VaR 

optimization problem with analytical univariate GARCH VaR instead of historical VAR. 

The remainder of this paper is organized as follows. In Section 3 we introduce historical and 

GARCH VaR models. The optimization problem is introduced in Section 4. MOAE and 

implementation details are discussed in Section 5. Section 6 contains sample descriptive 

statistics. Results of mean-historical VaR optimization are presented in Section 7. Results of 

our univariate and multivariate mean-GARCH VaR optimization are presented and discussed 

in Section 8. We conclude in Section 9. 

 

3. VaR Models 

3.1. Traditional (historical) VaR 

For a given portfolio, significance level α and time horizon h, portfolio VaR is a loss that will 

be exceeded, on average, only α100 percent of the time. If expressed in terms of portfolio 

value, VaR is the α-quantile of profit and loss distribution (cash VaR), while if expressed in 

terms of portfolio return r, it is the α-quantile of the return distribution (relative VaR or, 

simply, VaR). We focused on the α-quantile of the return distribution. Consider time horizon 

of h=1 day and return rα such that probability ρ(r<rα) =α. In that case, 1-day VaR with 

significance level α is: 

 VaR r    (1) 

The minus sign is needed since VaR is defined as a loss. Given the cumulative distribution 

function of returns F(α), the α-quantile is calculated as rα=F
-1

(α). The main reason for the 

popularity of this method is ease of its implementation and the fact that it makes no 

assumptions about the parametric form of return distributions. On the other hand, the 

historical VaR often slowly reacts to abrupt changes in market conditions (see Alexander 

[11]). 

 

                                                           
10

 Only 4.27% of MOEA studies use VaR as one of the objectives in the portfolio optimization problem (see 

[27]). 
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3.2. Analytical VaR 

A popular alternative to historical simulation is provided by analytical (or parametric) VaR 

models. These models take a stand on the shape of the return distribution and capture the 

following stylized facts about asset returns (see Christoffersen [9]). First, asset returns are 

difficult to predict based on their past realizations. Second, volatility of daily returns 

dominates their mean. Third, unlike returns, the variance of daily returns tends to exhibit 

clustering over time. Namely, days with highly volatile returns are likely followed by days 

with highly volatile returns and vice versa. Fourth, after periods of high or low asset volatility, 

volatility tends to return toward a stable long run level. Fifth, even though asset returns are 

often modeled using a normal distribution, an unconditional return distribution usually has 

much heavier tails than predicted by a normal distribution.
11

 Using the first two conditional 

moments of distribution, the portfolio return can be presented in the form: 

 t t t tr z    (2) 

where rt is the raw return at time t, μt is the conditional expected return, σt is conditional 

volatility of the return, and zt is the residual (innovation term) of the process. It is assumed 

that zt are independently and identically distributed and follow a known theoretical 

distribution D with zero mean and unit variance D (0, 1).  

To specify the analytical VaR model we specified the volatility updating model, as well as the 

shape of the conditional return distribution D (0, 1). A commonly applied class of conditional 

volatility models that captures all of the above stylized facts of returns is the GARCH model.
12

 

In estimating GARCH parameters on daily data, we have taken into account that the mean 

value of daily returns is dominated by the standard deviation of returns (see Christofferson 

[9], Pritsker [15], Alexander [44]).
13

 This implies: 

 t t tr z
 (3) 

We took into account non-normality of standardized asset returns by assuming they follow a 

standardized Student’s t distribution (with zero mean and unit variance) with d degrees of 

                                                           
11

 Although this is partially rectified when returns are standardized by time-varying volatility, some residual non-

normality still remains. 
12

 GARCH process was first applied to VaR modeling in [14]. 
13

 Alternatively, one can apply the same model to mean-adjusted returns. 
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freedom t (d). The degree of freedom parameter is an additional parameter estimated jointly 

with the other model parameters using Maximum Likelihood Estimation (MLE) method. The 

1-day ahead analytical VaR estimate with significance level α, calculated at time t, is obtained 

as follows:  

 1

1 1 ( )t tVaR t d

 

    (4) 

where σt+1 is the 1-day ahead conditional volatility estimate at time t obtained by applying the 

proposed model, d are degrees of freedom of the estimated Student’s t distribution of 

standardized portfolio returns, and tα
-1

(d) is α-quantile of the standardized Student’s t 

distribution with d degrees of freedom. 

Conditional portfolio volatility can be modeled directly using the time series of portfolio 

returns (we referred to this method as the Univariate GARCH approach). Alternatively, one 

can estimate conditional volatility using the conditional variance-covariance matrix estimated 

via the multivariate GARCH model. We referred to this method as the multivariate GARCH 

approach.  

3.2.1. Univariate GARCH VaR  

Consider the (univariate) time series of portfolio returns and denote by tr  the realization of 

portfolio return at time t. The simplest and by far the most popular GARCH model of 

conditional volatility, commonly referred to as GARCH (1, 1), has the following form (see 

Bollerslev [8]): 

 
1

2 2 2

t ttr   

    (5) 

Here, α, β >0 and α+β<1.
14

 Thus, the univariate GARCH VaR is: 

    
1/2

2 2 1

1 tt tVaR r t d

   

      (6) 

 

 

                                                           
14

 The second condition assures stationarity of the conditional volatility process. 
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3.2.2. Multivariate GARCH VaR 

In a multivariate GARCH modeling framework, the 1-day ahead portfolio conditional 

volatility can be estimated as a function of the constituents’ returns as follows:
15

  

 2

1 1t t t t  
 w H w  (7) 

where Ht+1 is N×N conditional variance-covariance matrix of returns of individual assets, and 

wt is the vector of portfolio weights at time t.
16

 Importantly, the multivariate GARCH 

implicitly assumes a fixed portfolio weights approach (FWA).
 17

 The portfolio weights are 

thus fixed at    i iw t w T  for all, 𝑡 ≤ 𝑇, where T denotes optimization date. Thus, the 

multivariate GARCH VaR is: 

  
1/2 1

1 1 ( )t tVaR t d





 
  w H w  (8) 

 

4. Optimization problem 

4.1. Mean-univariate GARCH VaR optimization (APF approach) 

The problem we are trying to solve has the following general form: 

       
1/2

2 2 1min p T TVaR r r t d      w  (9) 

   max pE r w  (10) 

 
1

subject to 1
N

i

i

w


  (11) 

 0 1, 1,...,iw i N    (12) 

Here, w denotes the vector of portfolio weights at optimization date t=T, its components are 

wi, rp(w) is the return on the portfolio, VaR(rp(w)) denotes the portfolio risk measure that we 

try to minimize, and E(rp(w)) is the expected return on the portfolio. tα
-1

(d) here refers to a 

                                                           
15

 See, for example, [26] and [45]. 
16

 Boldface denotes matrices and vectors. Matrices are in upper case, whereas vectors are in lower case. 
17

 As discussed in [46], the fixed weights assumption further implies continuous portfolio rebalancing. 
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quantile of a univariate Student’s t distribution with d degrees of freedom. Equation (11) 

describes the standard budget constraint which requires that weights sum up to 1. Equation 

(12) states that no short sales are allowed.
18

 

To calculate actual portfolio VaR and the corresponding expected return, a time series of 

portfolio returns with fixed asset holdings is needed. We determined asset holdings at the 

optimization date by adopting an arbitrary dollar portfolio value (set, without loss of 

generality, to 1). Thus, we assumed that, at optimization date t=Т, dollar portfolio value 

Vp(t=T)=1. Portfolio holdings ni at time T were determined based on weights at t=T: 

 
 

   
i p i

i

i i

wV t T w
n

P t T P t T


 

 
 (13) 

Here Pi(t) denotes the price of shares in company i at time t. In the actual portfolio approach, 

holdings are held fixed over time. The actual portfolio return at time 𝑡 ≤ 𝑇 is, therefore, 

determined as follows:  

  
 

 

 

 

1

1

1 1
1

1

N

i i
p i

p N

p
i i

i

n P t
V t

r t
V t

n P t





   







 (14) 

Vp(t) denotes the dollar portfolio value at time t. The actual portfolio mean-VaR optimization 

problem simply means that we used equation (14) when determining input returns for the 

above optimization problem.  

In the actual portfolio approach, portfolio weights at time 𝑡 ≤ 𝑇, are given by the expression: 

  
 

 
1

i i

i N

i i

i

n P t
w t

n P t





 (15) 

Equations (14) and (15) imply that: 

                                                           
18

 Short sale prohibition is a common constraint imposed on large institutional investors such as mutual or 

pension funds. 
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      
1

1
N

p i i

i

r t w t r t


   (16) 

where  ir t  is simple return on asset i at time t.  

4.2. Mean - multivariate GARCH VaR optimization (FWA approach) 

The portfolio optimization problem (Eq. (9) – (12)) can be specified as follows: 

     
1/2 1

1min ( )p TVaR r t d




 w w H w  (17) 

 subject to Pr w μ  (18) 

 
1

subject to 1
N

i

i

w


  (19) 

 0 1, 1,...,iw i N    (20) 

where HT+1 denotes the conditional variance-covariance matrix of individual returns estimated 

at the time of optimization t=Т, μ vector of expected returns of individual assets and Pr  

denotes the expected portfolio return.  

A portfolio return for an arbitrary,𝑡 ≤ 𝑇, is given by the expression: 

      
1

N

p i i

i

r t w T r t


  (21) 

Quantile tα
-1

(d) refers to a quantile of a multivariate Student’s t distribution with d degrees of 

freedom. Here, d does not depend on a portfolio composition. Namely, d and, thus, quantile tα
-

1
(d) depend solely on the choice of constituent return series and not on the way in which they 

are combined into a particular portfolio. HT+1 and d are obtained using the Dynamic 

Conditional Correlation (DCC) model of Engle [47].
19

  

DCC decomposes conditional variance-covariance matrix Ht+1 into conditional standard 

deviations and correlations, that is: 

                                                           
19

 We used ‘rmgarch’ package [48] within software R [49]. For fitting GARCH model we used ‘dccfit’ method. 

For the 1-day ahead estimation of conditional covariance matrix we used ‘dccforecast’ method. 
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 1 1 1 1t t t t   H D R D  (22) 

where Dt+1=diag(𝜎1,𝑡+1,..., 𝜎𝑁,𝑡+1). Here diag (*) is the operator transforming a N×1 vector 

into a N×N diagonal matrix. We assume that conditional variances σ
2

i,t+1, i = 1,..., N, follow a 

standard univariate GARCH (1,1) model.  

Matrix Rt+1 is a symmetric positive definite conditional correlation matrix defined as: 

    
1/2 1/2

1 1 1 1t t t tdiag diag
 

   R Q Q Q  (23) 

where Qt+1 is a proxy process which is assumed to follow GARCH-type dynamics: 

  1 1 T

t t t t        Q Q z z Q  (24) 

Vector zt=(z1,t,...,zN,t)
T
 has elements zi,t=ri,t/σi,t (standardized unexpected returns or 

innovations), 𝐐̅ is the N×N covariance matrix of zt and α and β are non-negative scalar 

parameters satisfying α+β<1. 

Since tα
-1

(d) is constant, the optimization problem (Eq. 17) is equivalent to a problem 

represented by quadratic programming formulation (referred to as QP model):
20

 

 1min T
w H w  (25) 

It should be emphasized that quantile tα
-1

(d) in this approach is constant and therefore not 

portfolio specific. Thus, the multivariate GARCH approach is more restrictive compared to 

the univariate GARCH approach where the degrees of freedom of the estimated standardized 

Student’s t distribution (and therefore quantile tα
-1

(d)) were portfolio specific.  

4.3. Summary of assumptions 

4.3.1. General 

i) Short sales are not allowed (Eqs. (12) and (21)); 

ii) The standard budget constraint which requires that weights must sum up to 1 (Eqs. (11) 

and (20)). 

 

                                                           
20

 This problem is of the standard Markowitz type (see [50]) with added short sales constraints. 
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4.3.2. Mean-univariate GARCH VaR optimization  

i) Portfolio returns, standardized by time varying volatility, follow a conditional standardized 

Student’s t distribution (with zero mean and unit variance); 

ii) Conditional variance follows GARCH (1, 1) process, 
1

2 2 2

t ttr   

   , (Eq. 5); 

iii) In estimating GARCH parameters on daily data, the mean value of daily returns is 

dominated by the standard deviation of returns and that rt ≈ σt zt, (Eq. 3);  

iv) At optimization date t=Т, without loss of generality, dollar portfolio value Vp(t=T) =1. 

 

4.3.3. Mean-multivariate GARCH VaR optimization   

i) Portfolio weights are fixed over the observed period; 

ii) Returns of assets from the opportunity set jointly follow a multivariate Student’s t 

distribution; 

iii) Qt+1 (Eq. 23) follows GARCH-type dynamics:  1 1 T

t t t t        Q Q z z Q  

iv) In matrix Dt+1 conditional variance σ
2

i,t+1 follows a univariate GARCH (1, 1) process 

 

5. Portfolio optimization methodology 

5.1. Evolutionary algorithms (EA) 

EA are efficient stochastic search techniques for solving complex optimization and search 

problems (e.g., optimization problems with non-differentiable objective functions, large and 

non-convex solution spaces, complex constraints etc.) through an emulation of natural 

selection i.e. survival of the fittest (see Sastry et al. [51]). EA begin with a set of randomly 

generated candidate solutions, referred to as a population. In each of the iterations (i.e. 

generations) the following processes are performed: i) Good solutions from the current 

population are selected and transferred into a set of potential parents (mating pool); ii) 

Randomly selected parent solutions are combined (crossover) producing new solutions 

(offspring solutions); iii) Some randomly selected offspring solutions are slightly modified 

(mutation); iv) Generated offspring solutions constitute the population of the next generation. 

By performing these processes in each generation (until the termination condition is satisfied) 

the solution ”evolves” and becomes even better in fulfilling the stated objectives. 
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Over the past two decades, significant advances have been made on EA methods to solve 

multi-objective optimization problems.
21

 This has led to the creation of multi-objective 

evolutionary algorithms (MOEA). In general, MOEA address two important issues: i) How to 

generate a Pareto-optimal frontier; and ii) How to provide diversity in alternative solutions 

(i.e. how to avoid convergence to a single point on the Pareto-optimal frontier). To achieve 

the first goal, most MOEA implementations use ranking based on the concept of dominance, 

while different diversity-preserving techniques are employed to achieve the second goal.  

5.2. MOEA implementation  

We directly borrowed the NSGA-II algorithm from Deb et al. [37].
22

 Implementation of 

NSGA-II involves adopting settings for the solution representation, the population size, the 

crossover and mutation probabilities and the termination condition. Solution representation 

depends upon the specific optimization problem. For the model at hand, the solution was 

defined as a non-negative real-valued vector of portfolio weights at time t=T, that is, the 

vector of fractions of the total budget invested in individual securities (see Section 4).  

Population size (the number of candidate portfolios in each generation), was set to 100. The 

Pareto-optimal frontier was, therefore, approximated with 100 points. The step by step flow 

chart which presents a schematic view of the proposed portfolio optimization method is 

shown in Figure 1.  

In the preparatory phase our software generated and printed a data file (data.csv) with a time 

series of occurrences of assets under consideration. Next, it generated and printed an R script 

file (Script.R) with commands for estimation of the univariate GARCH VaR. It then executed 

the NSGA-II algorithm in the execution phase.
23

  

 

                                                           
21

 For a detailed introduction to MOEA, see [52].  
22

 The algorithm was coded in C# and run on a personal computer with Intel i5 processor and 4GB of RAM. 
23

 For more details on the algorithm steps, see [37]. 
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Figure 1. Flow chart of the optimization algorithm 

For the breeding of an offspring population we used the uniform crossover operator. Two 

solutions (portfolios) from the current population were randomly selected and were 

recombined with a predefined crossover probability. If the two solutions undergo 

recombination, every chromosome (individual asset weight) is exchanged between the pair of 

randomly selected solutions with a certain probability, known as the swapping probability, 

otherwise, the two offspring are simply copies of their parents (see Sastry et al. [51]). In 

accordance with previous literature, we set the swapping probability to be 0.5.
24

 

We applied a uniform mutation operator (uniform replacement). When applying uniform 

mutation, each chromosome is selected with a predefined mutation probability and replaced 

with a realization of a random variable, uniformly distributed in the range defined by the 

lower and upper domain bounds. The selected crossover and mutation operator ensured that 

the constraint defined by Eq. (12) was satisfied for each offspring. However, these operators 

did not ensure satisfaction of the budget constraint (Eq.(11)). Hence, we had to normalize 

each of the offspring solutions.
25

  

In order to find the appropriate parameter values for the crossover and mutation probabilities, 

we performed a series of experiments. The performance was assessed using the ε –indicator, 

and the hypervolume metric (see Zitzler et al. [53]). The ε -indicator is a binary performance 

                                                           
24

 See [31], [32], [33], [51]. 
25

 We have done this by dividing each weight by sum of all weights. 
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metric which is used to measure how close the approximation set is to the reference set. As a 

reference set, the true or the best known Pareto-optimal frontier was used. The ε -indicator 

determines a minimum value the reference set must be multiplied by in order for every 

solution in the reference set to become weakly dominated by at least one solution in the 

approximation set. If the approximation set matches the reference set exactly then the ε-

indicator takes the value of one. For this metric, values close to one indicate that the 

approximation set very closely matches the reference set. The hypervolume indicator was 

used to measure the diversity of the approximation set. The hypervolume measure quantifies 

the volume of the objective space dominated by an approximation set. For optimization 

problems with two objectives, it quantifies the area of the objective space dominated by the 

approximation set, bounded by a predefined reference point. Thus, for this metric higher 

values are preferable.  

To determine the best performing mutation and crossover probability sets, we tested four 

crossover probabilities (0.7, 0.8, 0.9, 1.0) and five uniform mutation probabilities (0.001, 

0.005, 0.01, 0.05, 0.1). The above tests resulted in 20 different configurations for each set of 

objectives (mean-historical VaR, mean-GARCH VaR) and for each data sample that we used. 

For each configuration, the algorithm was left to run until 100,000 solutions were generated. 

The interactions between the NSGA-II algorithm and our statistical analysis were highlighted 

in Figure 2. For the evaluation of each individual solution portfolio, our software performed 

the following steps: i) It generated and printed a file with portfolio weights (weights.csv); ii) 

It called software R and executed the R script file (Script.R) created in the preparatory phase. 

During the execution of the script file, software R used the data file (data.csv) and the solution 

portfolio weights file (weights.csv) and generated a time series of actual portfolio returns 

(applying Eq. (13) –(14)). Then VaR was estimated using the univariate GARCH model (Eq. 

(4) and (5)).
 26

  

                                                           
26

 We used ‘rugarch’ package [54] within software R [49]. For fitting GARCH model we used ‘ugarchfit’ 

method; For the 1-day ahead estimation of conditional volatility we used ‘ugarchforecast’ method. 
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Figure 2. Interactions between the NSGA-II algorithm and statistical computing 

In the case of the mean-historical VaR approach, algorithm execution requires calculating the 

α quantile of the empirical distribution of 100,000 candidate portfolios. However, in the case 

of the mean-univariate GARCH VaR approach, the optimization procedure implies calculating 

the α quantile of the parametric distribution of candidate portfolios. Additional complexity of 

the univariate GARCH VaR approach stems from the fact that the GARCH parameters for 

each of 100,000 portfolios were obtained by the MLE method. We ensure that all Pareto-

optimal frontiers, obtained using different configurations, include solutions which provide the 

minimum risk and the maximum return.
27

  

 

6. Sample descriptive statistics 

For the purposes of this study, we selected 40 constituents of the S&P 100 with the highest 

market capitalization as of Sept 6
th

 2013.
28

  We observed the constituents’ time series of 1,421 

returns in the period Jan 15
th

 2008-Sept 6
th

 2013. We used a rolling window of 1,000 returns 

for VaR estimation. For each day within the rolling estimation period of 421 days (Jan 4
th

 

2012-Sept 6
th

 2013) we estimated 1-day ahead daily volatility of the S&P 100 time series. The 

volatilities were estimated using the univariate GARCH (1, 1) model. Standardized returns 

were assumed to have a standardized t-distribution. GARCH volatility estimations of the S&P 

100 index were based on a rolling window of 1,000 daily returns. Maximum volatility of 

                                                           
27

 We obtained these solutions and included them into the initial population of each MOEA execution. Maximum 

return solution was obtained analytically, while minimum risk solution was obtained using single-objective 

genetic algorithm.    
28

 Initially, 43 stocks were considered of which 3 were discarded (tickers: PM, V, KFT) due to incomplete data 

during the sample period. 
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0.01294 (20.5% in annual terms) was determined on June 29
th

 2012. Minimum volatility of 

0.00583 (9.3% in annual terms) was determined on July 31
st
 2013.

29
 From the chosen sample 

of 40 stocks we created two time series with 1,001 daily occurrences: i) First, ending on the 

maximum volatility date (referred to as the High volatility sample); and ii) Second, ending on 

the minimum volatility date (referred to as the Low volatility sample). All VaR values in this 

paper correspond to a significance level of 0.01, with a time horizon of one day. Table 1 

presents a summary statistics of the time series comprising the Low and High volatility 

samples. 

Table 1. Descriptive statistics for the Low and High volatility samples 

Sample 
Average expected 

return (annualized) 

Average volatility 

(annualized) 

Average  

historical VaR 

Average  

GARCH VaR 

Low volatility 16.61% 23.47% 3.96% 3.12% 

High volatility 13.47% 37.94% 6.95% 4.12% 

 

7. Mean-historical VaR optimization  

Rockafellar and Uryasev [20, 21] and Krokhmal et al. [22] argue that the mean-CVaR 

efficient frontier generated by the LP model also provides near-optimal solutions in the 

context of mean-historical VaR optimization. We tested this assertion in an actual portfolio 

framework. Namely, for each portfolio belonging to the mean-CVaR Pareto-optimal frontier 

generated by a LP (FWA approach), we created a time series of actual portfolio returns 

(applying Eq. (13) –(14)), calculated the corresponding 1% historical VaR and expected 

return, and represented the portfolios in the actual portfolio mean-VaR plane. In this way we 

generated an approximate Pareto-optimal frontier corresponding to the LP solution. Next, we 

determined the mean-historical VaR Pareto-optimal frontier (in the actual portfolio framework 

directly) using the NSGA-II optimization approach (see Figure 3). Figure 3 shows that the 

NSGA-II frontiers dominate the LP frontiers, especially in the High volatility sample. 

                                                           
29

 We annualize volatility using square root of time assuming 252 trading days per annum. 
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Figure 3.a. NSGA-II and LP approximate mean-historical VaR Pareto-optimal frontier in the Low volatility 

sample 

 

Figure 3.b. NSGA-II and LP approximate mean-historical VaR Pareto-optimal frontier in the High volatility 

sample 

Best performing NSGA-II mean-historical VaR approximate of the Pareto-optimal set was 

selected based on the hypervolume metric. To compare the NSGA-II mean-historical VaR 

Pareto-optimal frontier to the LP Pareto-optimal set, we used the ε –indicator. As a reference 

set, we adopted the NSGA-II mean-historical VaR Pareto-optimal frontier. The comparison is 

presented in Table 2. The values of the hypervolume parameter and reference points, together 

with the ε-indicator, were for the best performing NSGA-II approximates of the mean-VaR 

Pareto-optimal frontier. 
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Table 2. Comparison of NSGA-II mean-historical VaR and LP models 

Sample 
Mutation 

probability 

Crossover 

rate 
Hypervolume 

Reference 

point 

ε-indicator 

Low volatility 0.005 0.8 4.2366E-05 (0.0521,0) 1.1300 

High volatility 0.05 1 6.9160E-05 (0.0823,0) 1.1526 

 

The values for the ε-indicator confirm that the NSGA-II optimization approach provides better 

mean-historical VaR trade-offs of actual portfolios compared to the LP solutions in both the 

High and Low volatility samples. The relatively higher value of the ε-indicator (1.1526) 

suggests that NSGA-II performed particularly well during the High volatility period. 

 

8. Results for mean-GARCH VaR optimization 

8.1. Pareto-optimal frontiers in the Low and High volatility samples 

In this section we compared the Pareto-optimal frontiers for: i) The mean-univariate GARCH 

VaR (or univariate GARCH for short); ii) The mean-multivariate GARCH VaR (benchmark 1); 

and iii) The mean-historical VaR (benchmark 2).
30

 In order to obtain solutions in the actual 

portfolio framework for both benchmark portfolio solutions (represented by the corresponding 

vector of weights w), we generated a times series of portfolio returns. The time series of 

portfolio returns was generated by employing Equations (13) and (14) within the APF 

approach. We than calculated VaR using the univariate GARCH model (Eq. (4) and (5)).
31

  

The results are shown in Figure 4. The Pareto-optimal frontiers, for actual portfolios, are for 

the two volatility regimes when 1%VaR was estimated using the univariate GARCH model. 

Triangle markers represent the univariate GARCH frontier (obtained via NSGA-II), while 

filled dots represent benchmark 1 solutions and empty dots represent benchmark 2 solutions.  

                                                           
30

 As presented in Figure 3, the NSGA-II method provided superior actual portfolio mean- historical VaR trade-

offs compared to the LP model, in both samples. Consequently, we adopted the NSGA-II mean-historical VaR 

portfolios as benchmark 2. 
31

 During this process some of benchmark 1 and benchmark 2 portfolio solutions became dominated and thus 

have been discarded from the approximation set.  
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Figure 4a. Pareto-optimal frontiers in the Low volatility sample 

 

Figure 4b. Pareto-optimal frontiers in the High volatility sample 

The differences are particularly prominent in the area of low returns (and low risk). In this 

segment of the Pareto-optimal set, thus, the opportunities for improving the mean-VaR trade-

off through optimization are the greatest. It is worth noting that this segment of the Pareto-

optimal set is associated with most diversified portfolios. In contrast, with higher expected 

return values, the cardinality of efficient portfolios is reduced (the highest return portfolio, by 

construction, corresponds to a single asset).  

To further compare the univariate GARCH Pareto-optimal frontier to the respective 

benchmarks, we used the ε –indicator. As a reference set, we adopted the univariate GARCH 
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frontier. Table 3 presents the values of the hypervolume parameter and reference points for 

the best performing NSGA-II mean-univariate GARCH VaR approximate Pareto-optimal sets. 

The table also shows ε-indicators corresponding to the respective benchmarks in the Low and 

High volatility samples. 

Table 3. Parameters of the best performing mean-univariate GARCH VaR  

 Mutation 

probability 

Crossover 

rate 
Hypervolume Reference 

Point 

ε-indicator 

Benchmark 1 Benchmark 2 

Low volatility 0.05 0.7 5.0973E-05 (0.0504, 0) 1.2608 1.4618 

High volatility 0.01 0.9 5.3451E-05 (0.0581, 0) 1.0866 1.3243 

 

The above presented ε-indicators confirm superiority of the univariate GARCH VaR 

optimization approach. The advantages of the univariate GARCH VaR optimization approach 

are particularly pronounced in the Low volatility sample. Measured by the ε-indicators, the 

mean-historical VaR approach provides the worst approximations out of the three approaches. 

The above result is particularly important given that approximately 75% of banks tend to use 

the historical VaR models for portfolio optimization (see Pérignon and Smith [55]). 

8.2. Process time (CPU time) 

As expected, our CPU time is longer compared to the CPU time of the traditional methods 

(e.g. QP). For example, the execution of one generation of NSGA-II, when solving the mean-

univariate GARCH VaR problem, lasted 41 seconds. Hence, to execute 1,000 generations of 

NSGA-II we needed 41,000 seconds.
32

 The total CPU time for mean-univariate GARCH VaR 

optimization with the QP solver was 424 seconds.
33

 Our additional analysis, however, 

revealed that the NSGA-II CPU time could be shorter since the execution of 1,000 generations 

was not always necessary. For example, for the mean-historical VaR optimization, 99% of 

final hypervolume was achieved after 50 generations (12 seconds) in the Low volatility 

sample, and after 52 generations (12.5 seconds) in the High volatility sample.
34

 The same 

                                                           
32

 In comparison, it took only 1 second for the LP model to generate mean-historical VaR Pareto-optimal frontier 

consisting of 100 solutions. 
33

 The mean-univariate GARCH VaR optimization (using multivariate GARCH VaR approach) consisted of three 

steps: i) Determination of conditional variance-covariance matrix of individual returns (HT+1); ii) Execution of 

QP solver; and iii) Estimation of univariate GARCH VaR for each solution obtained by using QP solver. To 

determine conditional variance covariance matrix 382 seconds was needed. The execution of QP solver for 

Pareto optimal front of 100 solutions lasted 1 second. Finally the estimation of univariate GARCH VaR, for 100 

solutions obtained by using QP solver, lasted 41 second.  
34

 We define final hypervolume as a hypervolume of Pareto-optimal set generated after 1,000 generations. 
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analysis applied on the mean-univariate GARCH VaR optimization revealed that 99% of final 

hypervolume was achieved after 40 generations (1,640 seconds) in the Low volatility sample. 

The corresponding values in the High volatility sample were 20 generations and 820 seconds. 

Given its longer CPU time, the use of NSGA-II could be justified by its greater flexibility and 

ability to deal with more complex real-life portfolio optimization problems compared to the 

QP method (see Deb et al. [35]).  

8.3. Out-of-sample estimates 

Bank managers and regulators are interested in the out-of-sample performance of different 

optimization models. Thus, we compared out-of-sample performance of the different 

optimization models used in our study. The optimization dates for our High and Low 

volatility samples were dates with the highest (29
th

 June 2012) and lowest (31
st
 July 2013) 

volatilities. Based on the estimated portfolios on the optimization dates, we calculated 

respective mean and VaR values for dates which fall exactly 1 month later (30
th

 July 2012 and 

3
rd

 September 2013 respectively). 

 

Figure 5a. Out-of-sample test in the High volatility sample 
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Figure 5b. Out-of-sample test in the Low volatility sample 

The results of the out-of-sample analysis were consistent with the results reported in Figure 4, 

thus confirming the superiority of estimates based on the mean-univariate GARCH model in 

both volatility samples. As expected, the differences between the results for the mean-

univariate and mean-multivariate GARCH models are less pronounced in the Low volatility 

sample.  

 

9. Conclusions  

According to Basel regulation, the riskiness of a portfolio and the implied capital charge are 

calculated using VaR estimations of an actual portfolio of a financial institution (i.e. the 

portfolio that corresponds to current portfolio holdings). This paper proposes a novel 

approach to mean-VaR portfolio optimization within the actual portfolio framework when 

VaR is estimated by the analytical univariate GARCH VaR model with the assumption of a 

conditional t distribution of standardized portfolio returns. Due to the complexity of the 

proposed optimization problem, we applied meta-heuristics. Specifically, we developed 

software which combined a NSGA-II multi-objective evolutionary algorithm with software for 

statistical computing R. In the empirical section, we examined the opportunity set consisting 

of 40 large US stocks belonging to the S&P 100 index in two volatility regimes. We found 

that the NSGA-II method resulted in better actual portfolio mean-historical VaR trade-offs in 

both Low and High volatility regimes.  
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Next, we compared the mean-univariate GARCH VaR Pareto-optimal frontier to the mean-

multivariate GARCH VaR and to the mean-historical VaR Pareto-optimal frontiers. In 

comparison to the two benchmarks, the proposed univariate GARCH VaR procedure, again, 

provided actual portfolios with a superior mean-univariate VaR frontier for both volatility 

samples. The results suggest that the multivariate GARCH modeling framework lacks 

flexibility to conform to the actual portfolio framework which is inherent in regulation. At the 

same time, the mean-historical VaR frontier provided the worst mean-univariate GARCH VaR 

trade-offs.  

Overall, our results bear two important implications for financial institutions and their 

regulators. First, the results highlighted differences between the actual portfolio approach and 

the approach based on the fixed weights. Second, the results show the importance of carefully 

selecting amongst different VaR methodologies used in portfolio optimization.  
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