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1. Introduction and motivation

There is considerable interest in empirical finance in generating daily stock

price data which mimic actual stock price behaviour as closely as possible. Such

artificial data are useful, for instance, in backtesting models for value at risk or

in evaluating trading strategies. The form of mimicking we shall be interested

is the the ability of the model to reproduce certain stylized facts about finan-

cial assets in a quantitative sense. The concept of stylized facts was introduced

in [Kaldor, 1957]. There have been several papers on the application of the con-

cept to financial data; [Rydén and Teräsvirta, 1998], [Cont, 2001], [Hommes, 2002],

[Lux and Schornstein, 2005], [Bulla and Bulla, 2006], [Malmsten and Teräsvirta, 2010],

[Teräsvirta, 2011]. These papers are all dynamic in that they can be used for sim-

ulations once the parameters have been estimated. In general this will require a

small number of parameters as models with a large number of parameters run into

estimation problems. An approach involving some form of nonparametric estima-

tion cannot be used for simulations unless the nonparametric component can be

adequately randomized. This is the approach to be taken below. The paper builds

on Davies et al. (2012), who consider daily Standard and Poor’s (S+P) 500 returns

over 80 years. The squared returns were approximated by a piecewise constant func-

tion. This can be regarded as a nonparametric approach but in this paper we model

a finer version of the piecewise constant function as a stochastic process which can

then be used to simulate data.

Our main running example is the Standard and Poor’s (S+P) 500 shown in the

upper panel of Figure 1. The data consist of 22381 daily S+P returns with the

zeros removed. The final day is 24th July 2015. The second running example is the

German DAX index from 30th September 1959 to 19th October 2015 shown in the

lower panel of Figure 1. There are 14049 observation of which 14026 are nonzero.

A third set of data sets we shall use are the 30 firms represented in the German

DAX index. The returns are from 1st January 1973, or from the date the firm was

first included in the index, to 13th July 2015.

The question as to whether a model satisfactorily reproduces a quantified styl-

ized fact or indeed any other quantified property of the data is typically answered

by comparing the empirical value of a statistic with its value under the model. This

was done in [Stărică, 2003] for the unconditional variance using the S+P 500 from

March 4, 1957 to October 9, 2003 excluding the week starting October 19, 1987.

The conclusion was that the GARCH(1,1) unconditional variance was larger than
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Figure 1. Upper panel: The daily returns of S+P 500 with the

zeros removed. Lower panel: the same for DAX.

the empirical variance. For the Standard and Poor’s (S+P) 500 data at our disposal

the unconditional variance is 0.000135 after eliminating zero values. The maximum

likelihood estimates of a GARCH(1,1) model are

α̂0 = 8.32e-07, α̂1 = 0.9106, β̂1 = 0.08543

so that the unconditional second moment under the model is

σ̂2 = α̂0/(1− α̂1 − β̂1) = 0.000207

which is ‘considerably’ larger. This however ignores the variability of the second

moment in simulations. On the basis of 1000 simulation the 0.05 and 0.95 quantiles

of the second moment under the model are 0.000130 and 0.000345 respectively.

The empirical value lies between and has an estimated p-value of 0.079 which,

while small, would not be classified as statistically significant.

The same applies to the autocorrelation function. The upper panel of Figure 2

shows the ACF for the first 1500 lags for the absolute S+P 500 values in black: the

grey line shows the mean of the 1000 simulations for the GARCH(1,1) model with

maximum likelihood parameters. The lower panel shows nine of the 100 simulations.

The large variability of the ACF values implies that comparing the empirical values

with the means of simulated values can be misleading.
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Figure 2. Upper panel: the first 1500 values of the empirical ACF

of the absolute values of the S+P 500 data and the mean ACF of

100 GARCH simulations based on the maximum likleihood esti-

mator for the S+P 500. Lower panel: seven examples from the 100

simulated ACFs

In [Stărică, 2003] the quantitative comparisons mentioned above were augmented

by visual ones. The author compared 24 data sets generated under the model with

the real data (Figure 5.1 of [Stărică, 2003]) and stated ‘The aspect of the real data

is different from that of the simulated samples’. In this spirit Panel (a) of Fgure 3

shows data simulated under the GARCH(1,1) model using the maximum likelihood

parameters based on the whole S+P 500 data set. Panel (b) shows a simulation for

the first 2500 values based on the maximum likelihood estimators for these values.

The simulated data sets can be compared with the real data shown in Figure 1. The

discrepancy visible in Panel (b) is very large: the average squared return is 0.134

against 0.000197 for the S+P 500 data. This is due to the fact that the maximum

likelihood estimates of α̂1 and β̂1 in the GARCH(1,1) model sum to 1.0009 so that

the model is not stationary.

Such visual comparisons, also known as ‘eyeballing’, are often used (see for ex-

ample [Neyman et al., 1953], [Neyman et al., 1954], [Davies, 1995], [Davies, 2008],

[Buja et al., 2009], [Davies, 2014]). Although very useful and to be recommended

they have their limitations. Where possible the observed differences should be given
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Figure 3. (a) simulated daily returns from a GARCH(1,1) model

using the maximum likelihood parameter values based on the com-

plete S+P 500 data set. (b) the same for the first 2500 values.

numerical expressions and the empirical and simulated values compared. This will

be done in the context of financial series in the remainder of the paper.

Whether quantitative or qualitative comparisons are made there is one funda-

mental problem with the S+P 500 data sets, namely that there are no independent

comparable data sets. This means that it is is difficult to judge the variability of

such data sets. As an example some of the autocorrelations functions generated by

the GARCH(1,1) process shown in Figure 2 may be judged as being too extreme to

be credible for long range financial data. Figure 4 shows the first 1500 lags for the

first half of the data points (lines) and the same for the second half (*). This sug-

gests that the variability of the autocorrelation functions for the absolute returns

can indeed be quite large even for very long data sets.

2. Stylized facts and their quantification

In the context of financial data a list of eleven stylized facts is given in [Cont, 2001].

The ones to be considered in this paper are 1. Absence of autocorrelations, 2.
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Figure 4. The first 1500 values of the empirical ACF of the

S+P(500) data for the first (lines) and second (*) halves of the

data.

Heavy tails, 3. Gain/loss asymmetry, 6. Volatility clustering, 7. Condi-

tional heavy tails, 8. Slow decay of autocorrelation in absolute terms and

10. Leverage effect. These stylized facts are exhibited by most to all of the data

sets we consider. As stated above we shall be concerned with the ability of a model

to reproduce these stylized facts in a quantitative sense for a given empirical time

series. In some cases the quantification is straightforward, in other cases, and in

particular for volatility clustering, there is no obvious manner in which this stylized

fact can be quantified.

2.1. Absence of autocorrelations. The autocorrelations are not absent but small.

The question is how is small to be defined. The value of the first lag for the signs of

the S+P 500 data is 0.0577 which is certainly statistically significant but may not

be practically relevant. The course taken in this paper is to reproduce the value of

the first lag of the ACF but the software allows the user to produce other values.

Let eac1 denote the value of the first lag of the ACF of the signs of the data

and sac1(i), i = 1, . . . , nsim be the simulated values. The p-value of eac1 is defined

by

(1) p = min(p1, p2)

where

(2) p1 = #{i : sac1(i) ≤ eac1}/nsim and p2 = #{i : sac1(i) ≥ eac1}/nsim .

The p-value is a measure of the extent to which the empirical values can be repro-

duced in the simulations. It is seen that 0 ≤ p ≤ 1/2. This definition of a p-value

will apply to any statistic whose value may be too small or too large. In some cases,
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only values which are too large are of interest and a one-sided definition will be

used.

2.2. Heavy tails. A standard way of quantifying heavy tails is to use the kurtosis.

The kurtosis is however extremely sensitive to outliers. The S+P 500 data give

an example of this. The largest absolute value of the data is -0.229 and if this

single value is removed the kurtosis drops from 21.51 to 15.37. Because of this

extreme sensitivity the kurtosis will not be considered any further. Instead the

following measure will be used. Denote the ordered absolute values of the returns

normalized by their median by eaq and by aq the corresponding values for the

normal distribution whereby the quantile values qnorm(i/(n + 1)) are used. The

measure of the heaviness of the tails is taken to be the mean of the difference

eaq − aq. For normal data the value is close to zero. For n = 23000 the values for

data with a t-distribution with 2 and 3 degrees of freedom the values are 0.451 and

0.226 respectively where the quantiles qt(i/23001, ν), ν = 2, 3 were used. The value

for the S+P 500 is 0.316.

2.3. Gain/loss asymmetry. The top panel of Figure 5 shows the relative fre-

quency of a positive return as a function of the absolute size of the return for the

S+P 500 data. The centre panel shows the same for the DAX data and the bot-

tom panel the same for Heidelberger Zement, the latteris based on the 9427 days

where the return was not zero. The correlations are -0.480, -0.140 and 0.354 re-

spectively. The plots are calculated on the basis of the 0.02-0.98 quantiles of the

absolute returns. The S+P 500 and the DAX data are consistent with the remark

in [Cont, 2001] that ‘one observes large drawdowns in stock prices and stock in-

dex values but not equally large upward movements’ and also ‘most measures of

volatility of an asset are negatively correlated with the returns of that asset’. The

Heidelberger Zement data shows that this is not always the case.

Other things being equal, which they may not be, a dependency between the

absolute size of a return and its sign will induce an asymmetry in the distribution

of the returns. As a measure of symmetry we use the Kuiper distance

dku(P+
n+
,P−
n−

)

between the distributions of the positive and negative returns. This may be seen

as a variant of the two-sample Kolmogorov-Smirnov test. The Kuiper values for

the S+P 500, the DAX and Heidelberger Zement data sets are 0.0412, 0.0290 and

0.0342 with (asymptotic) p-values 0.000, 0.060 and 0.0810 respectively.
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Figure 5. Top panel: proportion of positive returns as a function

of the absolute return for the S+P 500 data. Centre panel: the

same for the DAX data. Bottom panel: the same for Heidelberger

Zement

2.4. Volatility clustering. The quantification of volatility clustering is the most

difficult stylized fact to quantify in spite of its visual clarity. The quantification we

shall use is based on [Davies et al., 2012]. The basic model is

(3) Rt = ΣtZt

where Z is standard Gaussian noise. From this it follows

(4)

j∑
t=i

R2
t

Σ2
t

D
= χ2

j−i+1

and hence

(5) qchisq((1− α)/2, j − i+ 1) ≤
j∑
t=i

R2
t

Σ2
t

≤ qchisq((1 + α)/2, j − i+ 1)
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with probability α. These latter inequalities form the basis of [Davies et al., 2012]

where they are extended from one fixed interval [i, j] to a family of intervals F

which form a local multiscale scheme. In this case the α of (5) must be replaced

by αn. The goal is to determine a piecewise constant volatility Σt which satisfies

the inequalities (5) for all [i, j] ∈ F . This problem is ill-posed. It is regularized by

requiring that Σt minimizes the number of intervals of constancy subject to the

bounds and to the values of Σt on an interval of constancy being the empirical

volatility on that interval. Finally αn is chosen by specifying an α and requiring

that the solution is one single interval with probability α if the data are standard

Gaussian white noise: see [Davies et al., 2012] for the details. For α = 0.9 and

n = 22784 the value of αn is 0.9999993. For the S+P 500 data there are 78 intervals

of constancy. They are shown in Figure 6.

The Zt in (3) can be replaced by other forms of white noise, for example a

t-random variable with a given number of degrees of freedom. This gives a better

fit but comes at the cost of an increase in computational complexity (see Chapter 8

of [Davies, 2014]).

0 5000 10000 15000 20000

0.0
1

0.0
2

0.0
3

0.0
4

0.0
5

Figure 6. The 78 intervals of constant volatility of the the S+P

500 data.

In this paper the number of clusters will be used as a measure of the degree of

clustering or the volatility of the volatility. There are other possibilities such as the

sizes of the clusters (Figure 7 shows the sojourn times plotted against the volatility

for the 78 intervals) but this and other measures will not be considered further.

2.5. Conditional heavy tails. The claim in [Cont, 2001] is that ‘even after cor-

recting returns for volatility clustering .... the residual time series still exhibit heavy

tails’. This as stated is not sufficiently precise to enable a numerical expression. If
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Figure 7. Sojourn times as a function of volatility for the S+P 500.

the model (3) is used with Z standard Gaussian white noise and the volatility de-

termined as described in Section 2.4 with α = 0.9 then the residual times series has

a kurtosis of 4.50 as against 3 for the standard normal distribution. If the Z in (3)

is taken to have a t–distribution with 5 degrees of freedom and again α = 0.9 then

the residual times series has a kurtosis of 6.087 as against 6 for the t5-distribution.

The matter will be discussed no further.

2.6. Slow decay of autocorrelation of absolute returns. As already men-

tioned the upper panel of Figure 2 shows the autocorrelation function of the ab-

solute return of the S+P 500 for the first 1500 lags (black) and the mean ACF

based on 100 simulations of the GARCH(1,1) model using the maximum likelihood

parameters (grey). The slow decay of the ACF for the S+P 500 data is apparent.

As a measure of closeness of two autocorrelation functions a1 and a2 over ` lags

we take the average absolute difference

(6) dacf(a1, a2) =
1

`

∑̀
i=1

|a1(i)− a2(i)| .

The p-value for the autocorrelation function of a data set based on a model

is defined as follows. Let a denote the mean ACF based on the model. This can

be obtained from simulations. In a second set of simulations the distribution of

dacf(A, a) can be determined where A denotes a random ACF based on the model.

Given this the p-value of dacf(ea, a) can be obtained relative to the distribution

of dacf(A, a) where ea denotes the ACF of the data. For the S+P 500 data with

` = 1500 dacf(ea, a) = 0.0522 with p-value 0.061. The 0.95-quantile is 0.0571, the

mean 0.0160 and the standard deviation 0.0224.
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In [Teräsvirta, 2011] the value of the first lag of the ACF of the absolute returns

was considered. This too will be included in the features to be reproduced.

2.7. The end return. The end return is just the end value of the stock or index

given a starting value of one. We shall require that this is adequately reflected by

the model. Many models modify the basic model (3) by including an additive form

for the drift

(7) Rt = µt + ΣtZt

where the Zt are assumed to have zero mean. In such a model the final return will

depend on µt. To simulate data some stochastic assumptions must be made for µt

and it is not clear how to do this. We prefer to keep to the basic model (3) but to let

the sign of Rt depend on its absolute magnitude as in Section 2.3. It turns out that

this is sufficient to successfully reproduce the end return. We point out that this

can also be done for the GARCH(1,1) process without disturbing the generating

scheme.

2.8. Absolute moments of the returns. Although they are not classified as

stylized facts we shall require that the first and second absolute moments of the

daily returns are adequately reflected by the model.

2.9. Quantiles and distribution of returns. Finally we consider two measures

of the distribution of the returns. Denote by eqm, rqm and qm the order statistics

of the data, of a random simulation and the mean of the simulations respectively.

The mean absolute deviation of a random simulation is

(8)
1

n

n∑
i=1

|rqm(i)− qm(i)|

from which a one-sided p-value for the empirical deviation

1

n

n∑
i=1

|eqm(i)− qm(i)|

can be obtained.

The same applies for the Kuiper distances. With the obvious notation the sim-

ulated Kuiper distances are dku(Prqm,Pqm) from which again a one-sided p-value

can be obtained for the empirical distance dku(Peqm,Pqm).



12

2.10. List of quantified features to be reproduced. In all there are eleven

quantified features which are to be reproduced by the simulations. The degree to

which this is accomplished will be measured by either a one-sided or a two-sided

p-value as appropriate.

(1) First autocorrelation of the signs of the returns

(2) Heavy tails

(3) Symmetry/asymmetry of returns

(4) Volatility clustering - number of intervals of constant volatility

(5) Slow decay of the ACF of absolute returns

(6) Value of first lag of the ACF of absolute returns

(7) Final return

(8) Mean of absolute returns

(9) Mean of squared returns

(10) Quantiles of returns

(11) Kuiper distance of returns

3. Modelling the data

In [Stărică, 2003] the GARCH(1,1) model is explicitly used as an example of

a stationary parametric model. In the literature however it seems to be gener-

ally accepted that the S+P 500 cannot be satisfactorily modelled using this or any

other stationary parametric model, see for example [Mikosch and Stărică, 2004] and

[Granger and Stărică, 2005]. If this is so then alternative forms of modelling must

be used. Possibilities are to use locally stationary models [Dahlhaus and Rao, 2006],

segment the data and to use stationary models in each segment ([Granger and Stărică, 2005]),

to use a semi-parametric approach ([David et al., 2012], [Amado and Teräsvirta, 2014])

or a non-parametric approach ([Mikosch and Stărică, 2003], [Davies et al., 2012],

[David et al., 2012]) whereby the boundaries between the three approaches are

somewhat fluid. There are also more ambitious models which attempt to reproduce

some stylized facts at least qualitatively by modelling the activities of the agents

(see for example [Hommes, 2002], [Lux and Schornstein, 2005] and [Cont, 2007]).

It seems to be difficult to adapt these to a quantitative reproduction of a particular

stock.

Whether a time series is regarded as stationary, that is, it can be satisfactorily

modelled by a stationary process, depends on the time horizon. Data which may not

look stationary on a short horizon may be part of a data set which looks stationary
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on a longer horizon. Any finite data set can be embedded in a stationary process as

follows. The data are extended periodically in both directions and then the origin

chosen using a uniformly distributed random variable over the original data set.

This may not be the best way of claiming that the data are part of a stationary

process but it does show that the question of stationarity is ill-posed.

The basic model is (3). The modelling will be done in two steps, firstly modelling

the volatility process Σt and then the ‘residual’ process Zt.

3.1. Modelling the volatility Σt. The upper panel of Figure 8 shows the absolute

returns of the Standard and Poor’s data together with the piecewise constant ap-

proximation of the volatility ([Davies et al., 2012]) using the value αn = 0.9999993.

The construction of the piecewise constant volatility is a form of smoothing and

as such small local variations in volatility will be subsumed in a larger interval

of constant volatility. Choosing a smaller value of αn allows the reconstruction of

smaller local changes. The lower panel of Figure 8 shows the absolute returns of

the Standard and Poor’s data together with the piecewise constant approximation

of the volatility with αn = 0.999. There are 275 intervals of constancy. The choice

of αn is the first screw which can be tightened or slackened.

In a first step the log-volatilities are centred at zero by subtracting the mean.

They are then approximated by a low order trigonometric polynomial

(9) pj(k) = aj sin(2πjk/n) + bj cos(2πjk/n), k = 1, . . . , n

where the coefficients aj and bj are determined by least squares. The calculation can

be made considerably faster by using the Fast Fourier Transform. The number of

polynomials is determined by a further screw pow which gives the proportion of the

total variance of the log-volatilities to be accounted for by the polynomial. The top

panel of Figure 9 shows the logarithm of the piecewise constant volatilities centred

at zero, the centre panel shows the approximating polynomial with pow = 0.8

which is composed of 97 polynomials of the form (9). This may be regarded as a

low frequency approximation to the logarithms of the piecewise constant volatility.

The polynomials of (9) are randomized by multiplying the coefficients aj and

bj by standard independent Gaussian random variables:

(10) Z1jaj sin(2πjk/n) + Z2jbj cos(2πjk/n), k = 1, . . . , n .

The bottom panel of Figure 9 shows a randomized version of the polynomial of the

centre panel.
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After removing the low frequency approximation the residuals form the remain-

ing high frequency log-volatility. They are shown in the upper panel of Figure 10.

It is not obvious how the residuals can be modelled. In the following it will be

done by generating random intervals with lengths exponentially distributed with

alternating means λ1 and λ2. On the long intervals corresponding to λ1 the log-

volatility will be modelled as N(0, σ2
1 with σ1 = 0 as the default value. On the

short intervals corresponding to λ2 the log-volatility will be modelled σ2Tν where

Tν is t-distributed with ν degrees of freedom. The lower panel of Figure 10 shows

such a randomization with λ1 = 200, σ1 = 0, λ2 = 20, σ2 = 0.4, ν = 15. Adding the

low and frequency components gives a randomization of the volatility as shown in

Figure 11.

So far the smoothed log-volatility process has been centred at zero by sub-

tracting the mean mlv = −4.769. The problem now is to specify the variability
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Figure 8. The absolute daily returns of the Standard and Poor’s

index together with a piecewise constant volatility: upper panel

with αn = 0.9999993 and 78 interval; lower panel with αn = 0.999

and 275 intervals.
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Figure 9. Top panel: the logarithm of the piecewise constant

volatilities of the lower panel of Figure 8. Centre panel: an ap-

proximating trigonometric polynomial accounting for 80% of the

variance. Bottom panel: a randomized version of the polynomial.

of the mean in the model. Some orientation can be obtained by dividing the data

into quarters and calculating the empirical mean log-volatilities for each quarter.

They are -4.451, -5.120, -4.807 and -4.694. Based on this the mean will be modelled

mlv+∆ where ∆ is uniformly distributed over an interval [−δ, δ] with default value

δ = 0.2. This concludes the modelling of the process volatility process ∆t.

3.2. Modelling the Rt. Let Σt be the volatility process described in the last

section and Ẑt be i.i.d. standard normal random variables. In a first step put

(11) Z̃t = (ρ|Ẑt−1|+ 1)Ẑt/

√
1 + 2ρ

√
2/π + ρ2.
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Figure 10. Upper panel:The residuals of the log-volatility after

removal of the low frequency approximation. Lower panel: a ran-

domization of the residuals.
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Figure 11. A randomization of the S+P 500 volatility process.

The value of ρ can be chosen so that the sixth item in the list of Section 2.10 can

be adequately reproduced.

Given the Z̃t the absolute return is set to

(12) |Rt| = Σt|Zt| = Σt|Z̃t|(1 + |Z̃t|)η
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for some value of η with default value zero. A positive value of η makes the tails

of |Zt| heavier than those of the normal distribution, a negative value makes them

lighter. It remains to model the sign of the return.

As is evident form Figure 5 the signs of the Rt may well depend on the value of

|Rt|. This is taken into account as follows. Denote the i/ν, i = 1, . . . , ν quantiles of

the absolute returns of the data by eqa(i) and the relative frequency of the number

of positive returns for those returns rt with qa(i − 1) < |rt| ≤ qa(i) by p(i). The

default value of ν is ν = 50. Given a simulated value of the absolute return |R| with

qa(i− 1) < |R| ≤ qa(i) the actual return R is taken to be positive with probability

γp(i) + (1 − γ)/2 where γ, 0 ≤ γ ≤ 1. The parameter γ is a further screw with

default value γ = 1.

Finally the first autocorrelation of the returns (first on the list of Section 2.10)

can be taken into account as follows. If the empirical value of the autocorrelation

is eacf1 then the final sign of Rt is determined as follows. Let Ui, i = 2, . . . n be a

sequence of i.i.d. random variables uniformly distributed over [0, 1]. If Ui > |eacf1|

then the sign of Rt is unchanged. If Ui < |eacf1| the the sign of Rt is set equal to

that of Rt−1 if eacf1 > 0 and to the opposite sign of Rt−1 if eacf1 < 0.

4. The results of some simulations

The results for the S+P 500 and DAX data are given in Table 1. They are

given in terms of the p-values for the 11 items of Section 2.10. The starred items

are two-sided p-values with a maximum value of 0.5. The GARCH(1,1) simulations

have been modified to by altering the sign of the returns as described in Section 3.2.

This has no effect on the absolute values of the returns and consequently no further

effect on the GARECH(1,1) simulations. For the modelling described in Section 3 it

proved possible in all cases to find parameter values such that all p-values exceed 0.1.

No attempt was made to maximize the smallest p-values. The choice of parameter

values is not easy as most of them affect several features. This problem does not

occur for the GARCH(1,1) modelling. The best result for the GARCH(1,1) model

is when it is applied to the DAX data. There all but two features have a p-value

exceeding 0.1. The exceptions are heavy tails 2∗ where the GARCH(1,1) modelling

results in tails which are too light. The worst failure is the inability to reproduce

the slow decay of the ACF of the absolute returns, feature 5. Figure 12 shows the

ACF of the DAX index (grey), the mean ACF using the modelling described in

Section 3 (black) and the mean for the GARCH(1,1) modelling (dashed).
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Features as in Section 2.10

1∗ 2∗ 3∗ 4∗ 5 6∗ 7∗ 8∗ 9∗ 10 11

S+P 500 0.33 0.15 0.32 0.48 0.77 0.32 0.43 0.46 0.41 0.72 0.70

GARCH 0.32 0.06 0.17 0.12 0.05 0.30 0.48 0.00 0.07 0.03 0.00

DAX 0.33 0.16 0.24 0.46 0.88 0.50 0.48 0.29 0.30 0.54 0.51

GARCH 0.29 0.01 0.31 0.34 0.00 0.12 0.27 0.25 0.11 0.19 0.33

Table 1. The p-values (based on 1000 simulations) for the 11

items on the list of stylized facts in Section 2.10 for the modelling

of Section 3 and a modified GARCH(1,1) modelling.
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0.0
0.1

0.2
0.3

Figure 12. The first 1500 values of the empirical ACF of the abso-

lute values of the DAX data (grey), the mean ACF using the mod-

elling of Section 3 (black) and the mean ACF for the GARCH(1,1)

modelling (dashed).

All thirty current members of the DAX were also modelled by both methods.

For the modelling described in Section 3 it was always possible to choose parameter

values such that all 11 features had a p-value exceeding 0.1. The GARCH(1,1)

modelling turned out to be worse for these data sets than for the two indices

S+P 500 and DAX. For all thirty firms the features 8-11 all had p-values of zero.

In the case of 8 and 9 the model underestimated the empirical values in keep

with the findings of [Stărică, 2003] for a section of the S+P 500 data. They were

also underestimated for the S+P 500 data but less severely. The DAX data are

exceptional in this respect, the empirical values were overestimated.
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