
 

Dynamic Competition with Network Externalities: 
Why History Matters 

 
 
 

Hanna Halaburda 
Bruno Jullien 

Yaron Yehezkel 
 
 

CESIFO WORKING PAPER NO. 5847 
CATEGORY 11: INDUSTRIAL ORGANISATION 

APRIL 2016 
 

 
 
 

An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.org/wp T 

 
 
 

ISSN 2364-1428 

http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.de/


CESifo Working Paper No. 5847 
 
 
 
Dynamic Competition with Network Externalities: 

Why History Matters 
 

Abstract 
 
We consider dynamic competition among platforms in a market with network externalities. A 
platform that dominated the market in the previous period becomes “focal” in the current period, 
in that agents play the equilibrium in which they adopt the focal platform whenever such 
equilibrium exists. Yet when faced with higher-quality competition, can a low-quality platform 
remain focal? In the finite-horizon case, the unique equilibrium is efficient for “patient” 
platforms; with an infinite time horizon, however, there are multiple equilibria where either the 
low- or high-quality platform dominates. If qualities are stochastic, the platform with a better 
average quality wins with a higher probability, even when its realized quality is lower, and this 
probability increases as platforms become more patient. Hence social welfare may decline as 
platforms become more forward looking. 
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1 Introduction

Platform competition typically involves both network effects and repeated interaction. We

often observe that a platform that was dominant in the recent past has the advantage of

customers’ favorable expectations, meaning that customers expect that this platform will

also attract other customers in the current period. We shall refer to such a platform as a

focal platform. For example, Apple’s success with the iPhone 4 resulted in pre-orders for its

iPhone 5 exceeding 2 million within a day of its launch in September 2012 — even though

there were not yet any applications that could take advantage of the phone’s new features.

Moreover, analysts predicted that 50 million users would buy the new smartphone within

three months of its launch.1 A similar dynamics was in evidence for the iPhone 6’s release,

as sales topped 4 million in the first 24 hours.2 In contrast, neither Blackberry nor Windows

phones enjoyed a comparable advantage during this period. Even though the new Blackberry

phones — the Q10 and the Z10 — received glowing reviews, the absence of positive expec-

tations made it difficult for the firm to gain substantial market share: application developers

were skeptical about the phone’s ability to attract users; sales were indeed sluggish, which

was due in no small part to the paucity of available apps.3 We can ascribe the developer’

skepticism and the resulting lack of apps to the Blackberry platform’s recent history.

Yet even dominant platforms can lose market share, despite winning in the past, when

faced with a higher-quality competitor. In the market for smartphones, for instance, Nokia

dominated the early stage (along with RIM) with smartphones based on a physical keyboard.

Apple then revolutionized the industry by betting on its new operating system, which fea-

tured touch-screen technology. A few years later, Samsung managed to gain substantial

market share (though not market dominance) by betting on smartphones with large screens.

The supplanting of industry leaders was likewise a common theme in the market for video-

game consoles. Nintendo, Sony, and Microsoft alternated as the market leader (Hagiu and

Halaburda 2009). Thus platforms are sometimes able to overcome the market’s unfavorable

expectations. In this paper we explore when is it profitable for a platform facing unfavorable

position to invest in capturing the market, and when it is profitable for a platform facing

1Ryan Faughnder and Adam Satariano, “Apple iPhone 5 Pre-Orders Top 2 Million, Doubling Record”,

Bloomberg (2012). Available at: (http://www.bloomberg.com/news/2012-09- 17/apple-iphone-5-pre-orders-

top-2-million-double-prior-record-1-.html).
2http://www.cnet.com/news/apple-iphone-6-iphone-6-plus-preorders-top-4m-in-first-24-hours
3On the quality and launch of the Blackberry phones, see Austen (2012) and Bunton (2013).
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a favorable position to invest in retaining the market, if each firm knows that its current

strategy may affect its future position.

If the impact on the future is ignored, then it may not be profitable for the nonfocal

platform to overcome unfavorable expectations even if it can offer higher quality than the

focal platform. The reason is that network effects provide the focal platform with a short-

term competitive advantage: in a one-time interaction, a focal platform can use its position

to dominate the market even when competing against a higher-quality platform. Yet we

can expect that, in the long run, if platforms are forward looking then a high-quality but

presently nonfocal platform can overcome its expectations disadvantage because it can afford

short-term losses in order to become focal in the future. At the same time, a low-quality

forward looking focal platform also has an incentive to invest in maintaining its dominant

market position. So even though the nonfocal platform has a quality advantage, the focal

platform has an expectations advantage.

In this paper, we ask whether a low-quality platform currently benefiting from its focal

position can continue to dominate the market in a dynamic setting — that is, when platforms

account for the future benefits of capturing the market today. For example, would Apple

continue to dominate the market for tablets if competitors (Samsung’s Tab, Microsoft’s

Surface, etc.) offered tablets of higher base quality? Is it possible for a video-game console

to maintain market leadership when facing higher-quality competitors? More specifically,

we are interested in whether the higher-quality platform’s likelihood of winning increases

with the importance attached by firms to the future. The winning platform’s identity affects

not only the firms involved but also social welfare, which is higher when the better platform

wins.

To investigate this research question, we analyze a model of dynamic competition between

two platforms. In each period, one of the platforms wins by capturing all of the market. So

as to focus on the model’s dynamic aspects, we assume that customers are homogeneous.4

Consumers base their current-period behavior on their observation of past outcomes; thus

the platform that won the market in the previous period becomes focal in the current period.

It follows that capturing the market in one period gives the platform an advantage in future

periods. Hence a nonfocal platform may be willing to sacrifice current profits to gain a better

future market position.

We start with the case where each platform’s stand-alone quality is constant for all periods

4The consequences of this assumption are addressed in Section 6.
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and where the time horizon is finite. We show that, when platforms do not care about future

profits, the low-quality focal platform maintains its position despite the nonfocal platform’s

higher quality — provided the quality gap is not too great. But when the future is important

for the platforms or the quality gap is sufficiently large, the higher-quality platform wins the

market at the start of the game and maintains its leadership. This outcome follows because a

high-quality platform can earn higher profits than the low-quality one as the focal platform

in the last period. So as compared with the low-quality platform, the high-quality platform

has a larger incentive to fight for focality in the game’s early stages.

We then consider the infinite-horizon case. We find that, when platforms care moderately

about the future, there is a unique equilibrium in which a high-quality platform wins the

market. But when the platforms care a lot about the future, the result is an increase both

in the focal platform’s incentive to maintain its position and in the nonfocal platform’s

incentive to win the focal position. This gives rise to multiple Markov equilibria. In one

Markov equilibrium, the high-quality platform wins the focal position in the first period and

then maintains it indefinitely — even if it begins as a nonfocal platform; however, there are

equilibria in which the focal platform can maintain its leadership indefinitely even if it is

of low quality. Thus an infinite horizon yields a new form of market failure, leading to an

outcome where one platform aggressively builds market share under all circumstances (i.e.,

both on and off the equilibrium path) and succeeds in doing so because the other platform

restrains from sacrificing current profit.

In terms of social welfare, these results indicate that when firms’ patience increases from

low to moderate, the social welfare increases. This outcome reflects the market’s movement

from the equilibrium in which the low-quality platform wins to the equilibrium in which the

high-quality one overcomes its nonfocal position and thereafter maintains its newly acquired

focal position indefinitely. However, as firms’ patience increases further, the effects on welfare

are ambiguous owing to the existence of multiple equilibria.

When qualities are constant, our model finds that the same platform dominates the

market in all periods. Yet there are some cases in which platforms “take turns” at being

the dominant platform, as with the Sony, Nintendo, and Microsoft video-game consoles

mentioned previously. We therefore study how focality and the importance of the future

affect changes in market leadership and market efficiency.

To study this question, we consider the case where the quality of each platform changes

stochastically every period — a setup that is consistent with the continuous technology
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improvements seen in the markets for such products as video-game consoles and smartphones.

In this setting it is possible for a low-quality platform to itself become a higher-quality one.

Even so, we will assume that one of the platforms is of higher quality in average.

Unlike the case of fixed quality, in this stochastic scenario there is a unique Markov

equilibrium. It is possible for either platform to win the market in any period if its quality in

that period is sufficiently high. Still, the more platforms care about the future, the more likely

it is that the platform with better average quality wins the market, even when its quality

realization is lower. In some cases it is also possible for a focal platform to lose its market

dominance even if its quality realization is higher than that of the nonfocal competitor. Thus

social welfare may decline with increases in platforms’ concern for the future.

The intuition behind this result is as follows. The platform with a higher quality on aver-

age is more likely capable of defending its focal position. Therefore, as future considerations

become more important to platforms, this firm has more incentive to compete aggressively

in order to capture a focal position even if its current realized quality is low. At the same

time, the platform expecting a lower future quality on average has less incentive to win the

market even if its current quality is high. This result indicates that the changes in market

leadership, following technological improvements, which we observe in several markets for

platforms (e.g., video-game consoles, smartphones), may not necessarily result in outcome

in which the platform with higher quality wins.

Related Literature

Our paper’s main conclusion is that even long-term considerations may not lead to an out-

come in which the best platform wins. For example, there is disagreement in the economics

literature as to whether the presence of network effects leads to long-term market ineffi-

ciency. David (1985) argues that the QWERTY keyboard’s prevalence is an example of

long-term inefficiency due to network effects; that claim is based on evidence that the Dvo-

rak keyboard enables faster typing and requires less training. Leibovitz and Margolis (1990)

criticize David’s argument by claiming, on the basis of a case study, that the success of

QWERTY is due not to network effects but rather to its superior quality vis-à-vis Dvorak.

In an experiment, Hossain and Morgan (2009) find that the more efficient platform always

wins over time, which would seem to support the claim of Leibovitz and Margolis. Our paper

contributes to this debate by demonstrating that, when platforms strategically set prices to
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compete for users, both efficient and inefficient equilibria are possible in the long term.

Most theoretical analyses of platform competition focus on static games. Caillaud and

Jullien (2001, 2003) introduce the notion of favorable beliefs — with respect to networks

in the context of two-sided markets — as a tool that can be used to characterize the full

equilibrium set for competition between undifferentiated platforms. This concept was used

in subsequent research on two-sided markets (see Hagiu 2006; Jullien 2011; Halaburda and

Yehezkel 2013) as a way of modeling market leadership when one platform benefits from

favorable expectations; it has also been used in the literature on telecommunications to

model consumer inertia (Lopez and Rey 2016). Though all of these papers acknowledge the

dynamic nature of platform competition, their aim is to approximate market characteristics

using static models. Halaburda and Yehezkel (forthcoming) extend this concept to partial

beliefs advantage and explore how platform’s pricing strategies affect their future profits; the

article employs a simple multi-period setup in which the extent of beliefs advantage depends

on the market’s history.

There has been some work addressing dynamic price competition between networks, but

so far as we know our paper is the first to address the dynamics of consumer expecta-

tions. One strand of the literature assumes that consumers’ decisions are based on current

market shares (e.g., Doganoglu 2003; Mitchell and Skrzypacz 2006; Markovich 2008); the

other strand assumes that consumers are forward looking (e.g., Fudenberg and Tirole 2000;

Laussel and Resende 2007; Cabral 2011). In all these papers, the competition is dynamic

because switching costs render participation decisions irreversible to some extent. Our paper

abstracts from switching costs in order to focus on the dynamics of consumer expectations.

Consequently, consumers in our model need not form beliefs about the market’s future. The

real-life examples that we cite (i.e., the markets for smartphones and video games) may

include both network externalities and switching costs (stemming, for example, from the

adjustments required after adoption of a new operating system). However, we share with

those other models the dynamic-game feature of firms competing aggressively to build their

market share in the current period so as to gain a long-term advantage.5

In a contemporaneous work, Crémer and Biglaiser (2016) propose an alternative equi-

librium concept capturing the reluctance of consumers to migrate from one platform to

another. Their concept, as well as ours, induces consumer inertia. They show that consumer

5For an analysis of such strategies in games involving dynamic competition, see Besanko, Doraszelski,

and Kryukov (2014).
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heterogeneity may lead to inefficient market fragmentation with free entry of equally efficient

platforms. We focus on consumers’ beliefs and identify conditions for an inefficient platform

to dominate the market under duopoly competition.

Argenziano and Gilboa (2012) consider a repeated coordination game where players use

the game’s history to form beliefs regarding the behavior of other players. Our paper adopts

that approach in the context of platform competition, as we study how platforms should

compete given such belief formation by consumers. But we add the feature that each platform

can alter beliefs by capturing the market and thereby shifting the coordination of consumers

in its favor.

The rest of the paper is organized as follows. After describing the model in Section 2, in

Section 3 we consider the benchmark case of a dynamic game with finite horizon. Section 4

characterizes Markov equilibria under an infinite time horizon, and Section 5 considers the

case where platform qualities change stochastically over time. We conclude in Section 6 by

summarizing our results and touching on some related considerations.

2 The Model

Consider a homogeneous consumer population of size 1 and two competing platforms, i =

A,B, with the same cost (normalized to 0).6 There are T periods, t = 1, 2, . . . , T , where

T may be finite or infinite. Each platform i offers to the customers a stand-alone value,

qi > 0, which we refer to as quality.7 Additionally, consumers, benefit from network effects.

A consumer’s utility from adopting platform i is qi + βni − pi; here ni is a measure of the

other consumers who have adopted i, β denotes the strength of network effects, and pi is the

price of platform i.8

Every period, each platform i sets a price pi(t), and then consumers decide which platform

to adopt for the current period. In what follows, a negative price is interpreted as one below

cost.9 The two platforms operate for T periods and discount future profits by δ, where

0 ≤ δ < 1. There are no switching costs, so consumers decide which platform to adopt each

6In Section 6 we discuss how our results are affected when agents are instead heterogeneous.
7We consider the case where the qi are fixed over time (Sections 3 and 4) and also the case where qualities

change from one period to the next (Section 5).
8Because consumers are homogeneous, they all adopt the same platform.
9To allow for the possibility of negative prices, we must assume that agents who collect the resulting

subsidy do indeed adopt the platform to the benefit of other users.
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period independently of other periods and hence irrespective of their discount factor.

Competition in an environment with network effects often results in multiple equilibria,

and it is also the case here. Consider the allocation of consumers that emerges for given

prices. If qi − pi(t) > qj − pj(t) + β, then all consumers adopt platform i. Yet if

|qA − qB + pB(t)− pA(t)| < β (1)

then there are two possible allocations: either all consumers adopt A or all adopt B. This

multiplicity makes it difficult to discuss dynamic competition in environments with network

effects, and several solutions have been proposed to address the issue. We rely on the notion

of pessimistic beliefs and a focal platform, as developed in Caillaud and Jullien (2003), Hagiu

(2006), and Jullien (2011). Thus we say that platform i is focal if, under condition (1), a

consumer adopts platform i. We assume that, during any period, there is a focal platform.

In a dynamic model with t = 1, . . . , T , the identity of the focal platform in t > 1 may

be related to the market’s history. In this paper we explore how allowing for such historical

dependency affects the market’s future outcomes. To simplify matters, we focus on one-period

dynamics.

During each period t, the market outcome is expressed by a pair (wt, ft), where wt ∈
{A,B} is the identity of the active platform — i.e., the platform that wins the market

in t10 — and ft ∈ {A,B} is the identity of the focal platform in t. Note that it is possible

for the nonfocal platform to win the market. Based on their observation of past outcomes,

consumers form conjectures about the platform most likely to win in the current period.

These conjectures are assumed to converge to a single focal platform. In t = 0, one of the

platforms is arbitrarily set as the focal platform, which we call platform A. The identity of

the focal platform ft is always common knowledge and is the only payoff-relevant variable.

The dynamics of platform focality is then expressed by transition probabilities: Pr(ft =

i | wt−1, ft−1). We consider a deterministic rule whereby the last period’s market winner

becomes focal; thus, Pr(ft = wt−1 | wt−1, ft−1) = 1.

As a benchmark case for our analysis, consider a static one-period game in this environ-

ment. Network externalities may create market inefficiencies in the equilibrium of a static

game. Although A is the focal platform, it can be of higher or lower quality than plat-

form B. When qA − qB + β > 0, in equilibrium the two platforms set their respective prices

10In this model there cannot be market sharing in equilibrium: at each date, a single platform attracts

the whole population.
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as pA = qA− qB +β and pB = 0, and all customers adopt A. If qA− qB +β < 0 then A would

derive negative profits from such a pricing strategy, so that strategy is not an equilibrium

strategy. In this case, the platforms set pA = 0 and pB = qB − qA − β > 0 in equilibrium,

and all customers adopt platform B.

Thus, if qA < qB yet qA > qB − β, then platform A wins despite offering lower quality.

It wins because it happens to be focal. This effect is called excess inertia, and it leads to

inefficient outcomes in equilibrium.

When there are multiple periods, a nonfocal platform may find it worthwhile to win the

market by setting negative price in an earlier period. Doing so would yield the platform a

negative current profit, but if the focal position is thereby captured then those losses could

be recovered in future periods. Of course, if the market is static then no platform finds it

optimal to win the market at negative prices because there is no way to recover the resulting

losses. If follows that, in a static market, the focal platform has the upper hand even when

it is of lower quality.

In a dynamic market, one could suppose that a higher-quality nonfocal platform is ad-

vantaged; after all, should it become focal, its higher quality yields greater profit than can be

generated by a lower-quality platform. Hence the higher-quality platform has more incentive

to invest in capturing the market than the lower-quality platform has to invest in defending

its position. The focal platform anticipates this and strives to prevent the nonfocal platform

from capturing the market.

3 Dynamic game with finite horizon

In this section we consider the case of a finite time horizon and show that there exists a

unique subgame perfect Nash equilibrium. In this equilibrium, a high-quality but nonfocal

platform wins the market in the first period and maintains its acquired focal position in

all subsequent periods — provided that platforms care sufficiently about the future (i.e., δ

is high and the time horizon is long) or that the quality gap between platforms A and B

is sufficiently large. Otherwise, a low-quality platform that is focal in the first period will

maintain that position thereafter.

Suppose that the time horizon is T ≥ 2. We define the price pfi (t) and the value function

V f
i (t) as the equilibrium price and the expected future discounted profit, respectively, of

platform i in period t when platform f is focal during that period. Our analysis will focus
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on the interesting case, where network effects are sufficiently large with respect to the quality

gap, β > |qi−qj|, so that the focal platform wins a one-period game even with a lower quality

than the nonfocal platform. Lemma 1 and Proposition 1 below describe a general solution

for all values of β, qA, and qB. We focus on subgame perfect equilibria and solve the game

by backward induction.

Consider the last period, t = T . Since in this period there is no future, the subgame

equilibrium is identical to the one-period benchmark described in Section 2. When platform i

is focal, it wins the market regardless of the quality gap; in this case, i earns V i
i (T ) = qi−qj+β

while the nonfocal platform j earns V i
j (T ) = 0. Observe that the focal platform’s last-period

profits are greater when it is the higher-quality platform; formally, V i
i (T ) > V j

j (T ) when

qi > qj.

Continuing with our backward induction, we next turn to the period immediately before

the last one, t = T − 1. To facilitate notation, suppose that A is the focal platform in this

period. Each platform takes into account that capturing the market in this period will render

it focal in the next period and earn it an additional profit of V i
i (T ). Consider first a subgame

equilibrium in which A wins the market. The lowest price that the losing platform B is willing

to charge at time T −1 is pAB(T −1) = −δV B
B (T ). In order to win, platform A must charge a

price such that qA + β − pAA(T − 1) = qB − pAB(T − 1), which is a best reply only if the profit

pAA(T − 1) + δV A
A (T ) is nonnegative. We thus have the condition

qA − qB + β − δV B
B (T ) + δV A

A (T ) ≥ 0. (2)

The same analysis applies to a subgame equilibrium in which the nonfocal platform B

wins in period T−1. In this equilibrium, the losing platform A charges a price pAA = −δV A
A (T )

and the winning platform B must earn a positive profit at the best-reply winning price. So

now we have the following condition:

qB − qA − β + δV B
B (T )− δV A

A (T ) ≥ 0. (3)

Comparing conditions (2) and (3) reveals that, in T − 1, exactly one of those subgame

equilibria exists for any set of parameters (except for the degenerate case where profit is

zero for both platforms). In this unique equilibrium, a focal platform A wins, with positive

profit, in T − 1 if

qB − qA <
β

1 + 2δ
. (4)
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We can apply the same analysis to the case where platform B is focal simply by trans-

posing qA and qB. Hence we conclude that the equilibrium is unique in period T −1 and has

the following characteristics.

(i) If the quality differential is small (i.e., less than β/(1 + 2δ)), then the focal platform

wins the market. In this case, the value of the focal platform (we can suppose for

convenience that the focal platform is A) can be written as

V A
A (T − 1) = (1 + 2δ)(qA − qB) + β = V A

A (T ) + 2δ(qA − qB), (5)

which is lower than the period T corresponding value if and only if platform A is of

lower quality than platform B.

(ii) If the quality differential lies between β/(1+2δ) and β, then the higher-quality platform

wins the market.

Thus a nonfocal platform B can win the market in T − 1 even when it could not in

the one-period case (or, equivalently, in the final period of a dynamic game). The intuition

for this result is that, since platforms care about the future and since B earns more profit

(than A) from being focal in the last period, it follows that platform B’s incentive to capture

the focal position at T −1 could well be stronger than platform A’s incentive to maintain its

focal position. In particular, if δ is high enough and if the quality gap (qB−qA) is sufficiently

large, then a high-quality but nonfocal platform can win the market in T−1 and maintain its

focal position in period T . In such cases, forward-looking platforms eliminate the inefficiency

that might otherwise emerge because of the consumer coordination problem.

If T > 2, then there are periods before T − 1 — namely, t = 1, . . . , T − 2. Suppose that

platform A is focal in T −2 but that platform B is of sufficient quality to win in period T −1

despite not being focal (i.e., condition (4) does not hold). Then, in any subgame equilibrium

in T − 2, platform A sets a nonnegative price. This is because, when condition (4) does not

hold, platform A would lose the market in T − 1 even if it had won in T − 2 and was still

focal in T − 1; formally, V A
A (T − 1) = V B

A (T − 1) = 0. We can easily verify that the value

function for platform B is such that, in period T − 1, the benefit V B
B (T − 1)− V A

B (T − 1) is

greater than the last period’s benefit V B
B (T ). As a consequence, platform B wins the market

in period T − 2 even though it is not focal. By a similar logic, platform A loses the market

and sets price 0 for all periods before T − 2. So when condition (4) does not hold, there is

no subgame equilibrium in t < T where platform A wins the market.
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If condition (4) does hold and if a symmetric condition holds for platform B, then plat-

form A wins or loses the market in T − 2 according to whether it is focal or not. In this

case we can replicate the reasoning for period T − 1 by replacing V i
i (T ) with V i

i (T − 1) for

i = A,B. Hence the equilibrium analysis is the same and once again we find that the focal

platform wins when the quality difference is small but that the higher-quality platform wins

otherwise. The difference in this case between period T − 2 and period T − 1 lies in the

quality differential threshold above which the higher-quality platform wins the market. In

a subgame where platform A wins in T − 2, it sets the highest price with which it can win,

pAA(T − 2) = qA − qB + pAB(T − 2) + β, where pAB(T − 2) = −δV B
B (T − 1). Thus A wins in

T − 2 provided that

qB − qA <
β

1 + 2δ + (2δ)2
;

otherwise A loses. Note that the quality differential threshold is smaller for period T − 2

than for period T − 1. Applying this analysis recursively shows that the threshold decreases

with the time horizon and may even vanish at some point. It follows that there is a maximal

(possibly infinite) horizon short of which there exists a unique equilibrium where the focal

platform wins in all periods irrespective of its identity, while the higher-quality platform

wins if the time horizon is longer. Let TA be shortest time horizon for which platform A

does not win the market in the equilibrium, even if it starts focal. In general, TA depends on

the model parameters and may be an arbitrary number. If platform A is of higher quality

than B or if the discount factor is small, then there is no finite TA. In this case, for any T ,

platform A wins the market if it starts being focal. We can similarly find a TB for platform B.

The following lemma characterizes how, for an arbitrary finite horizon, the equilibrium

outcome depends on the parameters.

Lemma 1 (Subgame perfect equilibrium for arbitrary finite T ) For any set of pa-

rameters qA, qB, β, and δ, there exists a unique subgame perfect equilibrium for arbitrary

finite T . In the equilibrium, the same platform wins the market in all periods. The winning

platform’s identity and its future discounted profit depend on the parameters as follows.

(i) If |qA − qB| < β 1−2δ
1−(2δ)T

then A wins every period because it is initially focal, and it

earns a total profit of

(qA − qB)
1− (2δ)T

1− 2δ
+ β.
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(ii) If qA − qB > β 1−2δ
1−(2δ)T

then TB < T . Platform A wins every period because its quality

advantage is sufficient, and it earns

(qA − qB + β)
1− δT−TB

1− δ
+ δT−TB

(
(qA − qB)

1− (2δ)TB

1− 2δ
+ β

)
.

(iii) If qB − qA > β 1−2δ
1−(2δ)T

then TA < T . Platform B wins every period because its quality

advantage is sufficient, and it earns

(qB − qA + β)
1− δT−TA

1− δ
+ δT−TA

(
(qB − qA)

1− (2δ)TA

1− 2δ
+ β

)
− 2β.

In each case, the losing platform earns zero profits.

Proof. See Appendix.

The main qualitative results of Lemma 1 are the following. First, the same platform

wins the market in all periods, so the nonfocal platform wins the market in the first period

or never. Second, nonfocal platform B wins the market only if it has quality advantage.

Yet, platform A may win either because it has a quality advantage, or it can win despite

offering lower quality, because it started with a focal position. The latter occurs when

0 < qB − qA < β 1−2δ
1−(2δ)T

, and results in an inefficient outcome. In all other cases, the

higher-quality platform wins and so the equilibrium outcome is efficient. Observe that the

set of parameters under which the equilibrium outcome is inefficient decreases as T and δ

increase — that is, as the future becomes more important to the platforms.

Thus, competition over multiple periods yields an efficient equilibrium outcome for pa-

rameters such the lower-quality platform wins in a static model. In this sense, there is less

inefficiency when the time horizon increases. One might therefore suppose that inefficiency

would disappear altogether if the time horizon were extended to infinity. However that is not

always the case, as the following proposition illustrates. In the proposition, we extrapolate

the equilibrium outcome in Lemma 1 to the case where T → ∞. For this purpose it is

important to recognize that the ratio 1−(2δ)T

1−2δ
converges to 1

1−2δ
for δ < 1/2, and converges

to infinity for δ > 1/2.

Proposition 1 (Subgame perfect equilibrium extrapolated for T →∞) As t goes to

infinity, the following statements hold.
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(i) If |qA − qB| < β(1 − 2δ) or qA = qB then platform A wins every period because it is

initially focal, and it earns a total profit of

V A
A (1) =

qA − qB
1− 2δ

+ β.

(ii) If qA − qB > max{β(1− 2δ), 0} then platform A wins every period owing to its quality

advantage, and it earns

V A
A (1) =

qA − qB + β

1− δ
.

(iii) If qB − qA > max{β(1− 2δ), 0} then platform B wins every period owing to its quality

advantage and it earns

V A
B (1) =

qB − qA + β

1− δ
− 2β.

The losing platform earns zero profits.

Proof. See Appendix.

The outcome of a subgame perfect equilibrium may be inefficient no matter how long the

time horizon. When 0 < qB − qA < β(1 − 2δ), platform A wins despite lower quality even

under infinite time horizon. That being said, the problem of inefficiency due to excessive

inertia arises less often as the time horizon increases in length. Furthermore, the inefficiency

disappears if platforms care enough about the future — that is, when δ > 1/2.

In the sections to follow, we explore some other reasons why the inefficient outcome may

occur in equilibrium.

4 Markov perfect equilibria under infinite time horizon

In Proposition 1, we characterized an equilibrium of the infinite game by extrapolating the

subgame perfect equilibrium of an arbitrary finite game. If the time horizon is infinite, there

may be other equilibria as well. In this section we identify Markov perfect equilibria in

the infinite game. Although the subgame perfect equilibrium identified in Proposition 1

is a Markov perfect equilibrium, there exist other Markov perfect equilibria that cannot

be found by extrapolating any finite-game solution. These new equilibria often result in

inefficient outcomes for the same parameters under which the equilibrium of Proposition 1

is efficient.
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Every period t of the infinite game is characterized by the identity ft of the focal platform,

the state variable for that period. A Markov perfect equilibrium is characterized by the

strategies of each platform in all possible states and by the outcome in each state. We consider

three pure-strategy equilibrium outcomes: (i) platform A wins in both states, (ii) platform B

wins in both states, and (iii) the focal platform wins.11

Next we characterize the strategies that support those equilibrium outcomes and identify

the range of parameters under which each equilibrium exists. We define the value function V f
i

as the equilibrium expected discounted profit of platform i when platform f is focal.

Consider first the equilibrium outcome of platform A winning in both states. In this

equilibrium, the value function for platform B is V B
B = V A

B = 0 because no customers adopt

that platform. Platform B sets price pfB = 0, because it has no interest in winning with

price pB < 0, given that it cannot count on future profits to justify the investment required

to capture the market. When A is focal, it optimally sets pAA = qA − qB + β; similarly, if

platform B is focal then A sets price pBA = qA − qB − β and B sets pBB = 0. If platform A

were to set a higher price, then platform B would maintain its market dominance and secure

nonnegative profits. In that case,

V A
A = qA − qB + β + δV A

A and V B
A = qA − qB − β + δV A

A .

Moreover, incentive compatibility for platform A requires that

V A
A ≥ δV B

A and V B
A ≥ 0.

It follows that this equilibrium exists whenever qA− qB ≥ β(1− 2δ). After a similar analysis

for platform B, we arrive at our next lemma.

Lemma 2 There is an equilibrium in which platform i wins in both states if qi − qj ≥
β(1− 2δ).

Proof. See Appendix.

According to Lemma 2, a nonfocal platform B can capture the focal position and maintain

it in all future periods provided qB − qA ≥ β(1− 2δ). This inequality holds when B’s quality

11There is no equilibrium that supports the fourth possible pure-strategy outcome – namely, that the

nonfocal platform wins.
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is substantially higher than that of A, when platforms are very forward looking (so that δ is

high), or when network effects (β) are weak. We remark that, for δ > 1/2, the condition’s

left-hand side becomes negative, which means that an initially nonfocal platform B could

win the market in every period even when qB < qA. Such an equilibrium involves excess

momentum and is inefficient.

Similarly, platform A can dominate the market forever when δ > 1/2, even if qA < qB,

as long as qA − qB ≥ β(1 − 2δ). This equilibrium involves excess inertia and is inefficient

as well.

It is only when the time horizon is infinite that both equilibria with excess momentum

and equilibria with excess inertia occur. The nature of these equilibria can be understood

as follows. Suppose that both platforms expect A to behave aggressively in the future —

in particular, to regain the focal position if it is ever lost. Then platform B has no reason

to sacrifice profit in the current period because it expects no future gain from being focal.

Faced with a weak competitor, will platform A decide to be aggressive as expected? If A is

focal then the answer is clearly Yes. But suppose that A is not focal. Then the choice facing

platform A is this: Should it make a sacrifice today (by setting its price pA = qA− qB−β) in

order to gain the benefit of network effects β in the next period, or should it wait and make

that sacrifice tomorrow? If the discount factor is high enough, then the platform will opt

for the sacrifice today. Hence, the beliefs that platform A always win are fulfilled. Such an

equilibrium therefore involves a particular form of coordination failure among firms that does

not arise in the finite-horizon game, even as T → ∞, because such an aggressive strategy

becomes not credible as the game’s end approaches.

The remaining equilibrium to consider is one where the focal platform wins. Recall that

pfi denotes the price of platform i when f is focal in such an equilibrium. Since the winning

platform anticipates that it will be focal from the new period onward, we have value functions

V i
i =

pfi
1− δ

and V j
i = 0.

The benefit of selling at a given date is pit + δV i
i . It follows that the minimal profit that

platform i is willing to sacrifice today in order to capture the market is −δV i
i . In such an

equilibrium, the focal platform sets a price pii ≤ qi − qj + β − δV j
j because otherwise the

competing platform would set a price above −δV i
i and win the market. Ruling out cases

where pj < −δV j
j because winning at this price would not be profitable for firm j,12 we

12Allowing prices pj < −δV j
j would not alter the existence conditions, but only the equilibrium profits.
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obtain the equilibrium prices

pii = qi − qj + β − δV j
j and pij = −δV j

j .

In this equilibrium, the value functions solve the following equations:

(1− δ)V A
A + δV B

B = qA − qB + β,

(1− δ)V B
B + δV A

A = qB − qA + β,

yielding

V A
A =

qA − qB
1− 2δ

+ β and V B
B =

qB − qA
1− 2δ

+ β.

We can therefore draw the following conclusion:

Lemma 3 There is an equilibrium where the focal platform wins in every state if β |1− 2δ| ≥
|qB − qA|.

Proof. For this to be an equilibrium, it is both necessary and sufficient that V A
A ≥ 0 and

V B
B ≥ 0. �

We arbitrarily designated A as the first period’s focal platform; hence, for equilibria in

which the focal platform wins in every state, platform A wins every period. If the condition

stipulated in Lemma 3 is satisfied, then A can maintain its focal position in all future periods

even when its quality is lower than that of platform B. This outcome is thus another instance

of an inefficient excess inertia equilibrium.

To see the intuition behind that result, consider first the case of δ ≤ 1/2. As Lemma 3

shows, the equilibrium occurs in this case provided that both δ and the quality gap (qB−qA)

are sufficiently small. Suppose now that qB increases; that increase has two effects on V B
B .

First, a direct effect is that, since pBB = qB − qA + β − δpBA, taking V A
A as given, platform B

can attract customers with a higher price pBB; this implies that V B
B will increase. Second, a

strategic effect is that, since pAB = −δV B
B , platform A knows that even when it is focal, it

will compete against a more aggressive platform B because the latter would gain more by

capturing focality from A. This threat reduces V A
A , which in turn increases V B

B because a

nonfocal A will not compete aggressively to capture the focal position. When δ < 1/2, both

the direct effect and the strategic effect increase V B
B while reducing V A

A . If the quality gap

qB−qA is sufficiently large, then V A
A becomes negative, which implies that A cannot maintain
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its focal position when competing against a platform of higher quality. As δ increases,

platform B cares more about future profits and so has more incentive to capture the market

when it is not focal, as well as to maintain its market dominance when it is focal.

Now suppose that δ > 1/2. Then the equilibrium is completely reversed. Now, if qB >

qA then V A
A > V B

B and, as qB increases, V B
B declines while V A

A increases. However, the

equilibrium in this case relies on the rather unusual feature that platforms “overreact”. In

particular: as qB increases, the direct effect increases V B
B (just as when δ < 1/2) but the

strategic effect now works in the opposite direction and is stronger than the direct effect.

To see how this works, suppose that platform B is focal and that qB increases. Then the

equilibrium holds when platform B expects that platform A, in response to the increase

in qB, will over-react by becoming very aggressive and reducing its price, pBA, thus in the

opposite direction than in the case of δ < 1/2. Here V B
B increases because qB increases (direct

effect) but decreases because pBA decreases (strategic effect). The strategic effect outweighs

the direct effect, so the overall effect is to reduce V B
B while increasing V A

A . In this equilibrium,

however, platform A reduces its price pBA because it anticipates that, after becoming the focal

platform, it will benefit from competing with a more efficient rival, another unusual feature

of this equilibrium.

We remark that ruling out the possibility of overreaction prevents the equilibrium from

adjusting to small changes in quality. So if δ > 1/2 without overreaction , e.g., in the case of

iterated best-response dynamics, a small change in qB results in convergence to an equilibrium

described in Lemma 2. In this sense, we can say that, when δ > 1/2, an equilibrium where

the focal platform wins in every state is unstable. The same cannot be said either for this

equilibrium under δ ≤ 1/2 or, with any value of δ, for the equilibria described in Lemma 2.

Our next proposition summarizes the results of Lemmas 2 and 3.

Proposition 2 (Markov perfect equilibria) Suppose that platform A is focal in period

t = 1. Then:

(i) for qB − qA > β|1− 2δ|, there exists a unique equilibrium in which platform B wins;

(ii) for β(1 − 2δ) < qB − qA < β|1 − 2δ| (which holds only when δ > 1/2), there exist

multiple equilibria and, of these, there is one in which platform B wins;

(iii) for qB − qA < β(1− 2δ), platform A wins in all equilibria.
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Proof. These statements follow from our assumption that A is initially focal and from

Lemmas 2 and 3. �

Figure 1: Equilibrium configuration

Figure 1 illustrates which platform is active in equilibrium, depending on the parameters.

It shows that, if both the discount factor and the quality differential are low, then there is

a unique equilibrium in which the focal platform A wins. Intuitively, for those parameter

values the results of the dynamic game are the same as in the static game. For a positive

quality differential qB−qA and intermediate values of δ, there is a unique equilibrium in which

the most efficient platform wins the market and maintains its position thereafter. However,

for high discount factors and low quality differential there exist multiple equilibria: some in

which A wins and some in which B wins. Observe that disregarding the Lemma 3 equilibria

(because they are unlikely to emerge) would not restore efficiency of the equilibrium in this

parameter region; the reason is that there are also two equilibria, including one in which the

low-quality platform wins, identified by Lemma 2. In both of these equilibria, one platform

expects to encounter low competitive pressure while the other renounces capturing the mar-

ket because it expects to encounter high competitive pressure — and these expectations are

self-fulfilling. In sum: if the discount factor is high, then each firm’s prospect of capturing

the focal position is not enough to outweigh the firms’ (self-fulfilling) expectations of the
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competitive pressure each will face.

5 Stochastic qualities

The previous section focused on the case where the qualities of the two platforms are con-

stant for an infinite time horizon. We saw that, in any equilibrium, the same platform wins

the market in all periods. Yet in many markets for platforms there is a shift in leadership

every few years that results from improvements in technology. Therefore, in this section we

consider the more realistic case in which platform qualities are stochastic. We demonstrate

the existence of an equilibrium in which each platform has a positive probability of winning

in each period. Our main finding is that when the distribution of qualities is dispersed, there

is a unique Markov equilibrium, but in this equilibrium social welfare may decline with δ.

Suppose that the quality of each platform changes randomly from one period to the

next. At the beginning of each period, each platform observes the realization of both its

own quality and its competitor’s quality for that particular period. Then the two platforms

compete by setting prices.

We have shown in the previous sections that the equilibrium depends not on the absolute

value of each platform’s quality but rather on the difference between them. Hence we suppose,

without loss of generality, that Q ≡ qB − qA changes randomly in each period — with

full support on the real line — according to a probability function f(Q) with cumulative

distribution function F (Q). Our assumption of an infinite support ensures that there will

be an equilibrium in which each platform can win the market with a positive probability.13

Suppose that Q has a mean µ > 0 such that, on average, platform B is of higher quality

than platform A; the case of µ < 0 is symmetric.

Let Q̄A and Q̄B denote equilibrium cut-offs such that, if platform A is focal in period t,

it wins if Q ≤ Q̄A but otherwise cedes market dominance to platform B. Conversely, if

platform B is focal in period t, then it wins if Q ≥ Q̄B but otherwise platform A wins.14

This equilibrium has the feature that, when A is the focal platform, it will win in every period

as long as Q < Q̄A. Then, once there is a realization with Q > Q̄A, platform B wins the

13This assumption is stronger than required because our results hold also when the support is finite,

provided it is wide enough. However, assuming infinite support facilitates the analysis and allows us to avoid

corner solutions.
14It is straightforward to see that any Markov equilibrium must have this form.
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market and becomes focal. Platform B will then maintain its focal position in future periods

as along as Q ≥ Q̄B , until there is a realization of q with Q < Q̄B, such that platform A

wins back its focal position. The game repeats ad infinitum, with platforms “taking turns”

at winning according to the realization of Q.

Let V f
i denote the expected value function of platform i when platform f is focal. To solve

for the equilibrium, suppose that platform A is focal in period t and that the quality difference

has a particular realization Q. The lowest price that platform B is willing to charge in order

to win the market is −δV B
B + δV A

B . This claim follows because B will earn the expected

value V B
B from becoming focal in the next period, and earn the expected V A

B from remaining

nonfocal. Given the price of platform B, the highest price that allows platform A to win the

market is pA = β−Q− δV B
B + δV A

B . Then A earns pA + δV A
A if it does indeed win (i.e., when

Q ≤ Q̄A) or 0 + δV B
A if it loses (i.e., when Q > Q̄A). Hence we can write

V A
A =

∫ Q̄A

−∞
(β − q − δV B

B + δV A
B + δV A

A )f(q)dq +

∫ ∞
Q̄A

δV B
A f(q)dq.

Suppose now that platform A is nonfocal. Then the lowest price that platform B is willing

to charge to maintain its focal position is pBB = −δV B
B + δV A

B . If A wins, it sets pBA that

ensures that −pBA ≥ β−pBB+Q, which writes as pBA = −β−Q−δV B
B +δV A

B . Then platform A

earns pBA + δV A
A if it wins the market (i.e., when Q ≤ Q̄B) or 0 + δV B

A if it does not win (i.e.,

when Q > Q̄B). Therefore,

V B
A =

∫ Q̄B

−∞
(−β − q − δV B

B + δV A
B + δV A

A )f(q)dq +

∫ ∞
Q̄B

δV B
A f(q)dq.

The cases of V B
B and V A

B are symmetric: platform B wins the market if Q ≥ Q̄B when it

is focal or if Q > Q̄A when it is not focal. Moreover, Q has a positive effect on B’s profit. It

follows that

V B
B =

∫ ∞
Q̄B

(β + q − δV A
A + δV B

A + δV B
B )f(q)dq +

∫ Q̄B

−∞
δV A

B f(q)dq,

V A
B =

∫ ∞
Q̄A

(−β + q − δV A
A + δV B

A + δV B
B )f(q)dq +

∫ Q̄A

−∞
δV A

B f(q)dq.

Next consider the equilibrium Q̄A and Q̄B. The equilibrium Q̄A is such that, for Q = Q̄A,

a focal platform A is indifferent between capturing the market or not, taking the equilibrium

future value functions and the price of platform B as given. That is,

β − Q̄A − δV B
B + δV A

B + δV A
A = δV B

A .
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Note that the condition for making the nonfocal platform B indifferent between winning

and losing is equivalent to the condition just stated. Analogously, the equilibrium Q̄B should

be such that, for Q = Q̄B, a nonfocal platform A is indifferent between capturing the market

or not, again taking the equilibrium future value functions and the price of platform B as

given. Thus,

−β − Q̄B − δV B
B + δV A

B + δV A
A = δV B

A .

Once again, this condition is equivalent to the condition for making the focal platform B

indifferent between winning and losing.

The last six equations define the equilibrium values of V A
A , V B

A , V B
B , V A

B , Q̄A and Q̄B. In

our next proposition, we use these equations to derive a sufficient condition for the equilib-

rium values of Q̄A and Q̄B to be unique.

Proposition 3 (Unique solutions to Q̄A and Q̄B) Suppose that 4βmaxq f(q) < 1.Then

there are unique equilibrium values of Q̄A and Q̄B as follows:

(i) if δ = 0, then Q̄A = β and Q̄B = −β;

(ii) Q̄A − Q̄B = 2β for all δ.

Proof. See Appendix.

The condition 4βmaxq f(q) < 1 requires that the quality gap be sufficiently dispersed

and that network effects not be too high. These conditions ensure that a nonfocal platform

can always overcome its competitive disadvantage provided its realized quality is sufficiently

high, and that there exist unique equilibrium values of Q̄A and Q̄B. Proposition 3 also shows

that, when evaluated at δ = 0, the equilibrium cut-offs are Q̄A = β and Q̄B = −β. It is

intuitive that, when δ = 0, the equilibrium is identical to the one-period benchmark in which

a focal platform wins as long as its quality advantage outweigh the value of network effects.

We now study the effects of δ, β, and µ on the equilibrium values of Q̄A and Q̄B. To-

ward that end, we make the simplifying assumption that f(Q) is symmetric and unimodal

around µ. That is: f(µ + x) = f(µ − x); and f(Q) is weakly increasing in Q for Q < µ

and weakly decreasing in Q for Q > µ. This is a sufficient but not a necessary condition

for the results to follow. Those results may hold also when f(Q) is neither symmetric nor

unimodal — provided that f(Q) places higher weights on positive than on negative values
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of Q, in which case B is more likely than A to be the focal platform in future periods. We

also assume the uniqueness condition of Proposition 3, i.e., that 4βf(µ) < 1.

Proposition 4 (Effects of δ, β, and µ on Q̄A and Q̄B) Suppose that f(.) is symmetric

and unimodal around µ and that 4βf(µ) < 1. Then:

(i) Both Q̄A and Q̄B are decreasing in δ, and if F (0) < 1/4 then Q̄A < 0 when δ is

sufficiently high.

(ii) Both Q̄A and Q̄B are decreasing in µ (holding constant the distribution of Q− µ).

(iii) If δ < 1/2, then Q̄A is increasing and Q̄B is decreasing in β; if F (0) < 1/4 and δ is

close to 1, then Q̄A is decreasing in β.

Proof. See Appendix.

Figure 2: Effect of δ on Q̄A and Q̄B when F (0) < 1/4

Figure 2 illustrates part (i) of Proposition 4. The figure reveals that an increase in δ

need not increase the probability of the current period’s higher-quality platform winning.

To see why, consider first the case where platform B is focal. Then, at δ = 0, the value is

Q̄B = −β and Q̄B decrease with δ. Therefore, as δ increases, a focal B is more likely to

win the market even when its quality realization is lower than platform A’s, which implies

that the probability of the “wrong” platform winning increases with δ. Now consider the
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case in which A is focal. Then, when δ is low, an increase in δ makes it less likely that a

focal platform A will be able to maintain its focal position with quality realization that is

lower than that of platform B, because Q̄A is decreasing in δ. However, if δ is sufficiently

high and if F (0) < 1/4, then Q̄A crosses the horizontal axis, thus becoming negative and

falling further below 0 as δ increases. In this case, platform A can lose the market even if it

is focal and has higher quality realization than platform B (when Q̄A < Q < 0). Therefore,

the probability of the “wrong” platform (i.e., one with lower quality realization) winning

increases with δ when either A or B is focal.

The intuition underlying these results is as follows. Recall that a platform’s expected

profit depends on its current profit and the probability of maintaining its focal position in

future periods. Since µ > 0, we know that B is more likely to have higher quality realization

than A in future periods. As δ increases, platform A takes into account that its chances of

winning in future periods is lower and thus will have less incentive to compete aggressively

in the current period. At the same time, platform B takes into account that it is more

likely to win in future periods and so will have more incentive to compete aggressively in

the current period. These effects increase B’s competitive advantage over A even when the

former has lower quality realization than the latter. If F (0) < 1/4, then µ is sufficiently high

for platform B’s competitive advantage to prevent platform A from capturing the market

even when A is focal and offers a higher quality than does B.

These considerations also account for part (ii) of the proposition. As µ increases, it

becomes more likely that platform B will have higher quality realization in future periods.

Hence B’s incentive to win in the current period increases, so both Q̄A and Q̄B decrease.

According to Proposition 4(iii), if δ is not too high then an increase in the strength of

network effect makes it more likely that the focal platform wins. This result is similar to

that in the one-period case. A stronger network effect increases the strategic advantage of

being focal because it then becomes easier for the focal platform to attract consumers. But

if δ is sufficiently high and if F (0) < 1/4, then a stronger network effect reduces the ability

of focal platform A to retain its focal position. In this case we can see that an increase in

the network effect increases the incentive of a nonfocal platform B to capture the market,

because B is more likely than before to maintain its focal position, due to its higher expected

quality.

We now turn our attention to social welfare. Our first question is whether social welfare

is higher when platform B or rather when platform A is focal. Given that B is expected to
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be of higher quality than A, one could expect that social welfare is higher when platform

B is focal. Yet according to Proposition 4, the probability of platform B winning despite

platform A’s higher quality realization increases with δ, a fact that may well offset the

previous effect.

In order to investigate this issue, we normalize qA to 0 and so qB = Q. Let W̄ i, (i = A,B)

denote the recursive expected social welfare when platform i is focal in period t; thus

W̄A =

∫ Q̄A

−∞
(β + δW̄A)f(q)dq +

∫ ∞
Q̄A

(β + q + δW̄B)f(q)dq,

W̄B =

∫ ∞
Q̄B

(β + q + δW̄B)f(q)dq +

∫ Q̄B

−∞
(β + δW̄A)f(q)dq.

Let W i = (1 − δ)W̄ i denote the one-period expected welfare. Our next proposition details

the results from comparing WA with WB.

Proposition 5 (Effect of δ on social welfare) Suppose that f(.) is symmetric and uni-

modal around µ and that 4βf(µ) < 1. Then the following statements hold.

(i) When evaluated at δ = 0, we have WB ≥ WA; and WA is increasing in δ while WB is

decreasing in δ.

(ii) There is a cut-off value δ′ (0 ≤ δ′ ≤ 1) such that WB > WA for δ ∈ (0, δ′) and

WA > WB for δ ∈ (δ′, 1). A sufficient condition for δ′ < 1 is F (0) < 1/4.

(iii) When evaluated at δ = 1, we have WA = WB.

Proof. See Appendix.

Observe that the case where Q is distributed uniformly along a finite interval is a special

case of the symmetric and unimodal distribution in which f(Q) is constant. In this case

δ′ = 0, so that WA > WB for δ ∈ (0, 1) and WA = WB for δ = 0, 1.

Part (i) of the proposition states that WB is greater than WA for low values of δ. In this

case, the cut-offs Q̄A and Q̄B are close to their one-period levels: a focal platform A wins if

Q < β , and a focal platform B wins if Q > −β. Because Q is more likely to be positive

than negative, welfare is maximized when B starts out as the focal platform. But part (i)

also shows that, for low values of δ, welfare WB is decreasing in δ whereas WA is increasing

in δ. This follows because, as platforms become more patient, it becomes more likely that
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a focal platform B will win despite having quality realization lower than A, which reduces

welfare. According to part (ii) of Proposition 5(ii), if platforms are sufficiently patient (i.e.,

if δ is sufficiently high) and if platform B is significantly more likely than platform A to be of

higher quality (F (0) < 1/4), then social welfare is higher when A is the initial focal platform

because otherwise B would have too much of a competitive advantage and so would win

more often than it should. We remark that these results do not show that social welfare is

maximized when platform A is focal in all periods. Rather, they imply that — in the first

period only — it is welfare maximizing to start the dynamic game with platform A as focal

even though platform B is of higher quality on average.

The results obtained so far suggest that social welfare in the one-period case might be

greater than when platforms are patient. For the general distribution function, however, the

comparison between social welfare evaluated at δ = 0 and δ = 1 is inconclusive. Hence in

the following corollary we make the simplifying assumption that Q is uniformly distributed.

Corollary 1 (Welfare under uniform distribution) Let Q be uniformly distributed along

the interval [µ− σ, µ+ σ], and suppose that σ > 1
2
(µ+ 3β) + 1

2

√
µ2 + 6µβ + β2. Then

Q̄A = β − 2δµβ

σ − 2δβ
and Q̄B = −β − 2δµβ

σ − 2δβ
. (6)

Moreover, WA|δ=0 = WB|δ=0 > WA|δ=1 = WB|δ=1.

Proof. See Appendix.

This result is illustrated in Figure 3.

6 Conclusions

In platform competition, offering the highest-quality product may not be enough to dominate

the market. When there are network externalities, a platform’s success depends not only on

quality but also on consumers’ beliefs that other consumers will adopt it. In a static model,

a focal platform that has such a beliefs advantage may dominate the market despite offering

lower quality; the result is an inefficient equilibrium. We ask whether this inefficiency can be

eliminated in a dynamic game with a long time horizon.
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Figure 3: Effect of δ on welfare for a uniform distribution

In a model with long but finite time horizon we find that, indeed, the better platform wins

and the efficient outcome is achieved when the future matters. More specifically, a higher-

quality entrant can overcome the incumbent’s network effect advantage. The future matters

when both the time horizon is long and the discount factor is high. But if the discount

factor is low, platforms are less concerned about the future and so the competition more

nearly resembles a static game; in this case, inefficiency may persist even for a time horizon

extended to infinity. We conclude that for a finite horizon social welfare is (weakly) increasing

in the extent to which platforms are forward-looking, because forward orientation makes it

more likely that consumers will be served by the higher-quality platform. Intuitively, a high-

quality platform has more to gain by being focal in the game’s final period than does the

low-quality platform, which means that it will have more incentive to compete aggressively

in early periods toward the end of capturing (or retaining) the focal position.

Once we modify the model to capture more realistic features, we find new sources of

inefficiency even if the discount factor is high. A finite time horizon entails that platforms

know when the last period occurs; if that is not known, then it is better to model it as an

infinite horizon. Markov equilibria in the infinite game replicate those in the finite-horizon

game extended to infinity. For high discount factors, however, additional and inefficient

Markov equilibria arise in which the lower-quality platform dominates the market in all

periods.

We also consider a scenario where the platforms’ qualities change stochastically from
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period to period, which allows each platform to win any period with some probability. Here,

the more the platforms are forward looking the less likely it is that even a high-quality

platform will overcome its nonfocal position. This is because, if one platform is of higher

quality on average than the other, then dynamic considerations give it more incentive (than

in a static setting) to capture the market or to maintain its focal position, even if in the

current realization it has lower quality. At the extreme, it is possible for a focal platform with

higher quality realization to lose its dominance — provided that platforms are sufficiently

forward looking. This finding indicates that, when qualities are stochastic, social welfare may

decline as platforms become less myopic.

Our paper considers homogeneous consumers, which raises the question of how these

results might be affected by the presence of heterogeneous consumers. When consumers

differ in their valuations for different platforms, a focal position becomes less important

for consumers. Armstrong (2006), for example, considers a continuum of consumers that

differ in their preferences for two competing platforms. He shows that if the two platforms

are sufficiently horizontally differentiated then for given platforms’ prices, there is a unique

allocation of consumers, such that each platform has a positive market share. Jullien and

Pavan (2014) reach the same conclusion assuming that there is enough dispersion in beliefs

about platforms’ ability to attract consumers. Halaburda and Yehezkel (forthcoming) show

that the importance of focality is decreasing in the extent to which consumers are loyal to a

specific platform.

Applying the intuition behind these three papers, it is reasonable to expect that increasing

consumer heterogeneity reduces the effect of focality on platform profits; hence platforms

will be less inclined, in that case, to compete in the current period so as to secure a future

focal position.

Of course, real-life consumers are heterogeneous. Nevertheless, our motivating examples

reveal that, in many markets for platforms, an important role is played by consumers’ coor-

dination problems and by platform focality. As this paper addresses the effect of dynamic

considerations on the focal position of platforms, our assumption of homogeneous consumers

provides us with a tractable model for determining the net effect of that market position.

Our model also abstracts both from the presence of an installed base and from switching

costs. Many markets with network effects are influenced by these factors, which constitute

additional forces capable of driving excess inertia and resulting in an equilibrium where

the lower-quality platform dominates for extended periods. Nonetheless, we abstract from
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those factors so that we can highlight the role of coordination problem as a driving force of

excess inertia. While any market that exhibits network effects is affected by the three forces

— customer expectations, installed base, and switching costs — those markets are not all

affected to the same extent. In the market for video-game consoles, for example, excess inertia

is indeed likely driven by consumer expectations. New generations of the platforms are clearly

distinguished from the previous ones by technological jumps, and backward compatibility

seldom has limited appeal. In other markets, such as smartphones and computer operating

systems, an installed base and switching costs play a more important role. These differences

may explain the more frequent leadership changes observed in the market for video-game

consoles compared with the market for computer operating systems. Even so, expectations

and thus focality affect the market dynamics for the latter types of environments, too. We

have demonstrated that, independently of these other factors, it may lead to excess inertia

and hence to reduced social welfare.
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Appendix

Proof of Lemma 1

Let Πf
i (T ) be the total discounted profit of platform i when platform f is focal at date t = 1

and there are T periods.

To win in t = 1, the focal platform A needs to set pA1 ≤ pB1 + qA− qB + β, and set such

pA1 that would force pB1 ≤ −δΠB
B(T − 1). That is, platform A wins when it sets

pA1 ≤ pB1 + qA − qB + β = −δΠB
B(T − 1) + qA − qB + β,

in which case it earns

ΠA
A(T | A wins in t = 1) = qA − qB − δΠB

B(T − 1) + δΠA
A(T − 1). (7)

Notice that calculated in such a way the profit under the condition of winning may be

negative. Then, the optimal action is to cede the market and earn no profit. Therefore,

the profit from unconditionally optimal actions is Πf
i (T ) = max{Πf

i (T | i wins in t = 1), 0}.
Using similar logic,

ΠA
B(T | B wins in t = 1) = qB − qA − β − δΠA

A(T − 1) + δΠB
B(T − 1)

≡ −ΠA
A(T | A wins in t = 1). (8)

Let Π̂f
i (T ) ≡ Πf

i (T | i wins in t = 1). Then Πf
i (T ) = max{Π̂f

i , δΠ
j
i (T − 1)}. Notice that

Πf
i (T ) is bounded by 0, while Π̂f

i (T ) is not.

Suppose that Π̂i
i(k) > 0 for both i = A, B and k = 1, . . . , T − 1. Then from (7) we

obtain15

Π̂i
i(T ) = qi − qj + β − δΠ̂j

j(T − 1) + δΠ̂i
i(T − 1)

= (qi − qj)
T∑
k=1

(2δ)k−1 + β = (qi − qj)
1− (2δ)T

1− 2δ
+ β. (9)

15This follows from applying the same formulas recursively in

Π̂i
i(T − 1)− Π̂j

j(T − 1) = 2(qi − qj) + 2δ[Π̂i
i(T − 2)− Π̂j

j(T − 2)] = 2(qi − qj)
T−1∑
k=1

(2δ)k−1 .
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The fraction 1−(2δ)T

1−2δ
is positive and increasing with T . Therefore, Π̂i

i(T ) is also monotonic.

When qi − qj > 0, then Π̂i
i(T ) is positive and increasing. Conversely, when qi − qj < 0 then

Π̂i
i(T ) is decreasing and when qi− qj < −β 1−2δ

1−(2δ)T
, it may even be negative.16 And once it is

negative, it stays negative for all larger T .

Now, suppose (qi − qj)1−(2δ)T

1−2δ
+ β < 0. By the monotonic properties of 1−(2δ)T

1−2δ
, it may

only happen for qi < qj, and there exists Ti ≤ T such that (qi− qj)1−(2δ)Ti

1−2δ
+β < 0 and either

(qi − qj)1−(2δ)Ti−1

1−2δ
+ β > 0 or qi − qj + β < 0. In the latter case, Ti = 1. That is, Ti is the

shortest time horizon for which it is not worth capturing the market. For time horizon Ti

and shorter, Π̂i
i(T ) for i = A,B can be calculated using (9) — but not for longer horizons.

Lemma 4 If Π̂i
i(T ) < 0 then, for all T ′ > T, Π̂i

i(T
′) < 0.

Proof. Suppose Ti > 1. By definition of Ti, Π̂i
i(Ti − 1) > 0 (and given by (9)), and

Π̂i
i(Ti) = qi − qj + β − δΠ̂j

j(Ti − 1) + δΠ̂i
i(Ti − 1) < 0. (10)

Now Π̂i
i(T ) for T > Ti can no longer be calculated using (9). We need to apply (8) directly:

Π̂i
i(Ti + 1) = qi − qj + β − δΠj

j(Ti) + δΠi
i(Ti) = qi − qj + β − δΠ̂j

j(Ti)

since Πj
j(Ti) = Π̂j

j(Ti) and Πi
i(Ti) = 0.

By properties of (9), Π̂j
j(Ti) > Π̂j

j(Ti − 1). From Π̂i
i(Ti) < 0, we have δΠj

j(Ti − 1) >

qi − qj + β + δΠ̂i
i(Ti − 1) > qi − qj + β. Thus δΠ̂j

j(Ti) > qi − qj + β and Π̂i
i(Ti + 1) < 0 —

and so forth for each T > Ti. �

Thus, for T > Ti, Πi
i(T ) = 0. Moreover, Πj

j(T ) = Π̂j
j(T ) also can no longer be calculated

using (9). Applying (8) directly:

Πj
j(Ti + 1) = qj − qi + β + δΠj

j(Ti),

Πj
j(Ti + 2) = qj − qi + β + δ(qj − qi + β) + δ2Πj

j(Ti).

More generally, for any T > Ti we have

Πj
j(T ) = (qj − qi + β)

T−Ti∑
t=1

δt−1 + δT−TiΠj
j(Ti)

= (qj − qi + β)
1− δT−Ti

1− δ
+ δT−Ti

(
(qj − qi)

1− (2δ)Ti

1− 2δ
+ β

)
.

16This also implies that one of the Πi
i(T ) must be positive. A negative Π̂i

i(T ) for some T implies qi−qj < 0,

and qj − qi > 0 implies Π̂j
j(T ) > 0 for all T .
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Notice that for the case when Ti = 1, Πj
j(T ) reduces to (qj − qi + β)1−δT

1−d .

Now, using those properties of Πi
i(T ), for i = A,B, we can consider following cases.

(i) |qA − qB| < β 1−2δ
1−(2δ)T

Then both Π̂A
A(k) and Π̂B

B(k) are positive for all k = 1, . . . , T . Since platform A is focal

in t = 0 and Π̂A
A(T ) is positive, the platform never cedes the market and its profit is

ΠA
A(T ) = Π̂A

A(T ) = (qA − qB)1−(2δ)T

1−2δ
+ β (by (9)).

(ii) qA − qB > β 1−2δ
1−(2δ)T

That is, (qB − qA)1−(2δ)T

1−2δ
+ β < 0, and thus, by the foregoing arguments, there exists a

TB < T . This means that Π̂B
B(T ) < 0; that is, platform B would not find it worthwhile

to win the market even if it was focal, given A’s quality advantage. Platform A wins

the market, but the prices it charges and profit depend on TB, as derived earlier:

ΠA
A(T ) = (qA − qB + β)

1− δT−TB
1− δ

+ δT−TB
(

(qA − qB)
1− (2δ)TB

1− 2δ
+ β

)
.

(iii) qB − qA > β 1−2δ
1−(2δ)T

Now there exists a TA < T . That is, Π̂A
A(T ) < 0; in other words, it is not worthwhile for

platform A to defend the market in t = 1, given the quality advantage of platform B.

Then platform B wins the market in t = 1, becomes the focal platform and keeps the

market for the rest of the time horizon. To win the market, in t = 1, platform B sets

pAB1 = qB− q−A−β, while platform A sets pAA1 = 0. In the next period, platform B is

the focal platform with quality advantage and with T − 1 period time horizon. Thus,

the discounted total profit is as that of platform A in case (ii), with relabeling the

platforms and length of the time horizon. That is:

ΠA
B(T ) = qB − qA − β + δ

[
(qB − qA + β)

1− δT−1−TA

1− δ
+ δT−1−TA

(
(qA − qB)

1− (2δ)TA

1− 2δ
+ β

)]
= (qB − qA + β)

1− δT−TA
1− δ

+ δT−TA
(

(qB − qA)
1− (2δ)TA

1− 2δ
+ β

)
− 2β.

This completes the proof of Lemma 1.

Proof of Proposition 3

Directly from the formulas for V A
A , V B

A , V B
B , V A

B , and conditions for Q̄A and Q̄B, we obtain

Q̄A − Q̄B = 2β.
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Moreover,

V A
A =

∫ Q̄A

−∞
(Q̄A − q)f(q) dq + δV B

A ,

V B
A =

∫ Q̄B

−∞
(Q̄B − q)f(q)dq + δV B

A =
1

1− δ

∫ Q̄B

−∞
(Q̄B − q)f(q) dq

and

V B
B =

∫ +∞

Q̄B
(q − Q̄B)f(q) dq + δV A

B ,

V A
B =

1

1− δ

∫ +∞

Q̄A
(q − Q̄A)f(q) dq.

The optimality condition is then

Q̄A = β − δV B
B + δV A

B + δV A
A − δV B

A ,

which can be rewritten as

Q̄A = β + δφ(Q̄A), (11)

where

φ(Q̄A) =

∫ +∞

Q̄A
(q − Q̄A)f(q) dq +

∫ Q̄A

−∞

(
Q̄A − q

)
f(q) dq

−
∫ Q̄B

−∞
(Q̄B − q)f(q) dq −

∫ +∞

Q̄B
(q − Q̄B)f(q) dq.

Integrating by parts yields

φ(Q̄A) = −2β + 2

∫ Q̄A

Q̄A−2β

F (q)dq. (12)

Now we have

φ′(Q̄A) = 2
(
F (Q̄A)− F (Q̄A − 2β)

)
,

φ(−∞) = −2β,

φ(+∞) = 2β.
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These properties imply that Q̄A > β + δφ(Q̄A) for Q̄A =∞ and that Q̄A < β + δφ(Q̄A) for

Q̄A = −∞. Hence there is a unique solution to Q̄A if Q̄A − β − δφ(Q̄A) is increasing in Q̄A

i.e. if δφ′(Q̄A) < 1. We observe that δφ′(Q̄A) < 1 when

2δmax
q

(
F (q)− F (q − 2β)

)
< 1.

In this case, the equilibrium is unique. This is the case for all δ and if 4βmaxq f(q) < 1.

Finally, notice that when evaluated at δ = 0, the solution to Q̄A = β+δφ(Q̄A) is Q̄A = β.

This completes the proof of Proposition 3

Proof of Proposition 4

Proof of part (i): Since Q̄A = β + δφ(Q̄A),

∂Q̄A

∂δ
=

φ(Q̄A)

1− δφ′(Q̄A)
.

From the proof of Proposition 3, if 4βf(µ) < 1 then 1 − δφ′(Q̄A) > 0. To see that

φ(Q̄A) < 0 for all Q̄A ≤ β, suppose first that Q̄A < µ. Then

φ(Q̄A) = −2

∫ Q̄A

Q̄A−2β

(
1

2
− F (q)

)
dq < 0,

where the inequality follows because symmetric and unimodal distribution (SUD) implies

that for all Q < µ, F (Q) < 1/2. Next, consider µ < Q̄A ≤ β. Then:

φ(Q̄A) = −2

∫ µ−(Q̄A−µ)

Q̄A−2β

(
1

2
− F (q)

)
dq − 2

∫ µ+(Q̄A−µ)

µ−(Q̄A−µ)

(
1

2
− F (q)

)
dq < 0,

where the first term is negative because Q̄A > µ > 0 and SUD implies that F (µ−(Q̄A−µ)) <

F (µ) = 1
2

and the second term equals 0 because SUD implies that F (µ+x)− 1
2

= 1
2
−F (µ−x).

Since φ(Q̄A) < 0 we have ∂Q̄A

∂δ
< 0, and since Q̄B = Q̄A − 2β it follows that ∂Q̄B

∂δ
< 0.

Next, Q̄A < 0 if

0 > β + δφ(0),

which holds for δ large if

−β > φ(0) = −2β
(
1− 2F (−2β)

)
+

∫ 0

−2β

(−2q)f(q) dq = −2β + 2

∫ 0

−2β

F (q) dq
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or if

β > 2

∫ 0

−2β

F (q) dq.

This inequality holds for all β if F (0) < 1/4.

Proof of part (ii): Let F (Q;µ) denote the F (Q) given µ. We have:

∂Q̄A

∂µ
=

2
∫ Q̄A
Q̄A−2β

(∂F (Q;µ)
∂µ

)
dq

1− δφ′(Q̄A)
< 0,

where the inequality follows because SUD implies that F (q;µ) is decreasing in µ.

Proof of part (iii): We have:

∂Q̄A

∂β
=

1− 2δ + 4δF (Q̄A − 2β)

1− δφ′(Q̄A)
> 0,

where the inequity follows because 1−2δ+4δF (Q̄A−2β) > 0 if δ < 1
2
. Since Q̄B = Q̄A−2β,

it follows that
∂Q̄B

∂β
= −

[
1 + δ(2− 4F (Q̄A))

1− 2δ(F (Q̄A)− F (Q̄A − 2β))

]
< 0,

where the inequality follows because the numerator in brackets is positive when δ < 1
2

(since

F (Q̄A) < 1) and because the denominator is positive when δ < 1
2

(since F (Q̄A) − F (Q̄A −
2β) < 1). When F (0) < 1/4 and δ = 1, we have

∂Q̄A

∂β

∣∣∣∣
δ=1

=
−1 + 4F (Q̄B)

1− φ′(Q̄A)
<
−1 + 41

4

1− φ′(Q̄A)
= 0,

where the inequality follows because F (Q̄B) < F (0) < 1/4.

This completes the proof of Proposition 4.

Proof of Proposition 5

Solving for WA and WB, we obtain

WA = β +
(1− δ + δF (Q̄B)

∫∞
Q̄A
qf(q) dq + δ(1− F (Q̄A))

∫∞
Q̄B

qf(q) dq

1− δF (Q̄A) + δF (Q̄B)
,

WB = β +
δF (Q̄B)

∫∞
Q̄A
qf(q) dq + (1− δF (Q̄A))

∫∞
Q̄B

qf(q) dq

1− δF (Q̄A) + δF (Q̄B)
.
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First consider WA. Solving the derivative of WA with respect to δ and then evaluating

at δ = 0 yields

∂WA

∂δ

∣∣∣∣
δ=0

= (1− F (Q̄A))

(∫ ∞
Q̄B

qf(q) dq −
∫ ∞
Q̄A

qf(q) dq

)
− f(Q̄A)Q̄A∂Q̄

A

∂δ

= (1− F (β))

∫ β

−β
qf(q) dq − f(β)β

∂Q̄A

∂δ
,

where the equality follows from the substitutions Q̄A = β and Q̄B = −β. By our assumption

of SUD,
∫ β
−β qf(q) dq ≥ 0 (proof available upon request), implying the the first term is

nonnegative. Since Proposition 4 shows that Q̄A is decreasing in δ, the second term is

positive implying that ∂WA

∂δ
|δ=0 > 0.

Next consider WB. Solving the derivative of WB with respect to δ and then evaluating

at δ = 0, we have

∂WB

∂δ

∣∣∣∣
δ=0

= −F (Q̄B)

(∫ ∞
Q̄B

qf(q) dq −
∫ ∞
Q̄A

qf(q) dq

)
− f(Q̄B)Q̄B ∂Q̄

B

∂δ

= −F (−β)

∫ β

−β
qf(q) dq + f(−β)β

∂Q̄B

∂δ
,

where the equality follows from the substitutions Q̄B = −β and Q̄A = β. Again by our

assumption of SUD,
∫ β
−β qf(q)dq ≥ 0, implying the the first term is nonpositive. Since

Proposition 4 shows that Q̄B is decreasing in δ, the second term is also negative implying

that ∂WB

∂δ
|δ=0 < 0.

Now we consider the gap WB −WA:

WB −WA =
(1− δ)(

∫∞
Q̄B

qf(q)dq −
∫∞
Q̄A
qf(q)dq)

1− δF (Q̄A) + δF (Q̄B)
=

(1− δ)
1− δF (Q̄A) + δF (Q̄B)

M(Q̄A),

where

M(Q̄A) =

∫ Q̄A

Q̄A−2β

qf(q)dq.

Since 1 ≥ F (q) ≥ 0 and 0 ≤ δ ≤ 1, it follows that sgn(WB −WA) = sgn(M(Q̄A)).

Consider first δ = 0 such that Q̄A = β. Then, SUD implies M(β) =
∫ β
−β qf(q)dq ≥ 0

and WB −WA ≥ 0. Second, consider δ = 1. Then WB −WA = 0
1
M(Q̄A), where M(Q̄A) is

finite; hence WB −WA = 0.

Next, we turn to 1 > δ′. We distinguish between two case, F (0) < 1/4 and F (0) > 1/4,

which will be analyzed in turn.
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Case 1: F (0) < 1/4. In this case, Proposition 4 implies that there is a cutoff, δ′′ where

δ′′ is the solution to Q̄A = 0, such that Q̄A > 0 for δ ∈ [0, δ′′) and Q̄A < 0 for δ ∈ (δ′′, 1]. For

all δ ∈ [δ′′, 1], M(Q̄A) < 0 because Q < 0 for all Q ∈ [Q̄A − 2β, Q̄A]. For δ ∈ [0, δ′′), M(Q̄A)

is decreasing with δ. To see why:

∂M(Q̄A)

∂δ
= [Q̄Af(Q̄A)− (Q̄A − 2β)f(Q̄A − 2β)]

∂Q̄A

∂δ
.

The term inside brackets is positive for all δ ∈ [0, δ′′] because Q̄A ≥ 0 and f(q) > 0 and

because Q̄A ≤ β implies that Q̄A − 2β ≤ β − 2β = −β < 0. Since Q̄A is decreasing in δ, we

have ∂M(Q̄A)
∂δ

< 0.

To summarize, M(Q̄A) ≥ 0 for δ = 0, M(Q̄A) is decreasing with δ for δ ∈ [0, δ′′), and

M(Q̄A) < 0 for δ ∈ (δ′′, 1]. Hence there is a unique cutoff δ′ < δ′′ such that M(Q̄A) > 0 for

δ ∈ [0, δ′) and M(Q̄A) < 0 for δ ∈ (δ′, 1]. Since sgn(WB −WA) = sgnM(Q̄A), this implies

that WB > WA for δ ∈ [0, δ′) and WB < WA for δ ∈ (δ′, 1).

Case 2: F (0) > 1/4. In this case, Q̄A > 0 at δ = 1. Notice that M(Q̄A) is decreasing

with δ for all δ ∈ [0, 1] (the proof that ∂M(Q̄A)
∂δ

< 0 requires only that Q̄A > 0 which holds in

Case 2 for all δ ∈ [0, 1]). However, unlike Case 1, now M(Q̄A) at δ = 1 can be either positive

or negative. It will be positive if Q̄A at δ = 1 is sufficiently higher than 0, in which case

M(Q̄A) > 0 for all δ ∈ [0, 1] and so WB > WA for all δ ∈ [0, 1). In this case δ′ = 1. Note

that M(Q̄A) can be negative at δ = 1 if Q̄A at δ = 1 is sufficiently close to 0, in which case

at δ = 1; then M(Q̄A) < 0 and so WB > WA for δ ∈ [0, δ′) and WB < WA for δ ∈ (δ′, 1), as

in Case 1.

Remark on uniform distribution. If the distribution is uniform, then M(Q̄A) = 0 at δ = 0

and M(Q̄A) < 0 otherwise. This implies that WA > WB for all δ ∈ (0, 1) and WA = WB

otherwise.

This completes the proof of Proposition 5.

Proof of Corollary 1

Substituting F (Q) = Q+σ
2σ

into (12) yields (6). To ensure that Q̄B > µ− σ, we need σ to be

large enough that σ > 1
2
(µ+ 3β) + 1

2

√
µ2 + 6µβ + β2. Observe that this assumption implies
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that σ > 2β. The recursive expected social welfare functions are then

W̄A =

∫ β− 2δµβ
σ−2δβ

µ−σ
(β + δW̄A)

1

2σ
dq +

∫ µ+σ

β− 2δµβ
σ−2δβ

(β + q + δW̄B)
1

2σ
dq,

W̄B =

∫ µ+σ

−β− 2δµβ
σ−2δβ

(β + q + δW̄B)
1

2σ
dq +

∫ −β− 2δµβ
σ−2δβ

µ−σ
(β + δW̄A)

1

2σ
dq.

Therefore,

WA = (1− δ)W̄A

=
1

4

(
4β − β2

σ
+ σ +

µ(4δ2β2(2β − 3σ)− σ2(µ+ 2σ) + δβσ(5µ− 4β + 10σ)))

(δβ − σ)(σ − 2δβ)2

)
,

WB = (1− δ)W̄B

=
1

4

(
4β − β2

σ
+ σ + 2µ+

(µ(8(−1 + δ)δ2β3 + δβ(5µ− 4(−1 + δ)β)σ − µσ2))

(δβ − σ)(σ − 2δβ)2

)
.

The gap WA −WB can now be written as

WA −WB =
2(1− δ)δµβ2

(σ − δβ)(σ − 2δβ)
.

As σ > 2β (by assumption), WA −WB > 0 for all 0 < δ < 1 and WA −WB = 0 for

δ = 0 and δ = 1. Moreover:

WA|δ=0 −WA|δ=1 =
µ2β2(2σ − β)

σ(σ − β)(σ − 2β)2
> 0;

where the inequality follows because, by assumption, σ > 2β and µ > 0.

This completes the proof of Corollary 1.
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