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Abstract 
 
In the presence of dispersed information, agents may decide to take into account the actions of 
other agents because of the possible additional information conveyed by these actions. We call 
the act of using other agents’ actions in the individual decision process social learning. This 
paper argues that social learning aimed at increasing the precision of individual information may 
lead to aggregate fluctuations. We consider a setting where firms receive independent noisy 
signals about a common fundamental and can observe other firms’ actions through a network of 
informational links. We show that, when firms can observe each other’s decisions, they are able 
to increase the accuracy of their actions. While reducing volatility at the individual level, social 
learning may lead to an increase in volatility at the aggregate level depending on the network 
topology. Moreover, if the network is very asymmetric, aggregate volatility does not decay as 
predicted by the law of large numbers. 
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1 Introduction

Human beings are social animals. This simple truth is often neglected when analysing human

behavior in macroeconomics. The characteristic of social animals is that they live in groups and

interact with other members of the group to perform vital tasks, such as defence or feeding. Several

studies in biology document forms of interaction in which the group allows individuals to take

advantage of the information gathered by others. Pulliam (1973) for example studies the flocking

behavior of finches and shows that an advantage of feeding in groups is to increase the probability to

detect a predator (“many eyes effect”). If one finch spots a predator and decides to fly off in alarm,

the other finches observe this action and follow without having actually seen the danger. Moreover,

assuming that anti-predatory vigilance is costly, for example because it is time consuming and

alternative to feeding, the group provides a simple and effective cost sharing mechanism (Fernandez

et al., 2003). In fact, the propensity to live in groups and learn from others’ behavior can be

considered an evolutionary response that promotes survival in complex environments for both

animals and human beings (Henrich, 2015). Several experiments in psychology (e.g., Asch, 1961)

and economics (e.g., Apesteguia et al., 2007; Lahno and Serra-Garcia, 2015) document indeed that

the behavior of peers influences decision making under many different circumstances.

There are in fact countless social and economic situations in which human beings are influenced

by what others around them are doing when deciding upon an action. The decisions of others

can be relevant for individual decision making for a variety of reasons. First, in the presence of

payoff externalities, the actions of others can directly influence the utility function. An example

is the adoption of new information technologies where individuals decide to adopt technologies,

e.g., operating systems, whose value depends on the adoption choices of others. The actions of

other agents may matter also because of “social pressure”, i.e., the influence exerted by a group on

the behavior of individuals seeking social conformity (or social nonconformity). The relevance of

social conformity in economics was already recognized by J.M. Keynes, who argues that investment

decisions can be biased by the incentive of reputation: “Worldly wisdom teaches that it is better for

reputation to fail conventionally than to succeed unconventionally” (Keynes, 1936, p. 158). Finally,

the decisions of other agents may matter for individual decision making when such decisions are

perceived as reflecting relevant information. In a complex world, it is difficult to collect and process
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all the available information. Observing the actions of others can allow to exploit the information

- and the processing capability - available to other members of the group. This is the scenario we

analyze in this paper and, following Bandura and McClelland (1977), we call the act of observing

and learning from other agents’ actions social learning.

The goal of this paper is to investigate the consequences of social learning for aggregate outcomes

and to study how aggregate volatility depends on the structure of the social network shaping the

patterns of interaction and learning among individuals. To this end, we consider a setting where

agents receive independent noisy signals about the true value of a common variable of interest

and social learning occurs through an arbitrary social network. Although in our setting individual

payoffs do not depend on the decisions of others, paying attention to other individuals is rational

because their decisions may reflect valuable additional information. This simple setup, in which

there are no strategic complementarities and the interaction among agents is purely informational,

allows us to isolate the impact of different network topologies on aggregate fluctuations.1

The essence of the model is as follows. A set of agents must take an action, receive a private

signal on a common payoff-relevant fundamental state variable, and can observe the actions of

a subset of other agents. The subset of observable agents is defined by a social network. The

network is represented as a weighted directed graph indicating whether agent i can observe the

action of agent j (informational link), and how much weight the agent gives to such decision.

The “observational structure” defined by the network is exogenous and can correspond to e.g.,

geographical proximity or social relationships.

For the sake of concreteness, we frame the analysis in a setup where firms must decide the

investment level before they can observe the true return on capital. They receive a private signal

on the common productivity and they can observe the investment decisions of a subset of other

firms. In this setting we show that social learning aimed at increasing the precision of individual

information may lead to aggregate fluctuations. Our main results can be summarised as follows.

The case of isolated firms, i.e., firms acting only in reaction to their own signal, represents an

upper bound for the volatility of individual investment decision. In fact, when firms can observe

1Models with noisy signals and strategic complementarities have been considered by Morris and Shin (2002),
Angeletos and Pavan (2007), Angeletos and La’O (2013), Colombo et al. (2014), Benhabib et al. (2015), Chahrour and
Gaballo (2015) and Angeletos et al. (2016) among others. All papers mentioned above abstract from considerations
about the macroeconomic impact of social learning for different social networks topologies, which is instead the focus
of this paper.
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each other’s decisions, they are able to increase the accuracy of their investment plans. This is

quite intuitive as each firm is able to exploit the additional information embedded in other firms’

decisions. Moreover, this result is independent on the topology of the network.

While reducing volatility at the individual level, social learning may, on the other hand, lead to

an increase in volatility at the aggregate level. In fact, the case of isolated firms represents a lower

bound for the volatility of aggregate investment and, according to the properties of the network

topology, learning by observing other firms’ behavior can imply a higher variance of aggregate

investment.

Our paper also contributes to the debate on whether aggregate volatility can originate from

fluctuations at the micro level. Following the standard diversification argument, in an economy

composed by N firms, aggregate volatility should decay at a rate 1/
√
N (see e.g., Lucas, 1977).

We show that the diversification argument may not hold in the presence of dispersed information

and social learning and that social networks may translate imperfect information into volatility at

the aggregate level. In particular, our results demonstrate that when the informational network

is very asymmetric, then aggregate volatility decays at a rate much slower than 1/
√
N . In other

words when many firms look at the decision of the same small number of firms, then the influence

exerted by firms that are very central in the informational network does not decay as the number

of firms in the economy increases.

Our work relates to several strands of research. Banerjee (1992), Bikhchandani et al. (1992)

and Smith and Sørensen (2000) among others study learning models in which agents can observe

the actions of other agents. These papers investigate whether sequential learning mechanisms, de-

fined as observational learning, lead to informational cascades, and to an inefficient aggregation of

private information. Informational cascades are defined in Bikhchandani et al. (1992) as situations

in which agents follow the actions of the preceding agents, disregarding their own private infor-

mation. Informational cascades emerge when the set of possible actions is discrete (Bikhchandani

et al., 1998). In our analysis we consider simultaneous decisions as in Gale and Kariv (2003), and

a continuous set of possible actions, ruling out the possibility of informational cascades. Moreover,

we introduce a network structure defining the patterns of social learning and show that it plays an

important role for aggregate outcomes. Ellison and Fudenberg (1993, 1995) study private informa-

tion aggregation when agents can observe choices and payoffs of other agents and use rule of thumb
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heuristics to decide their own action. They show that even with simple heuristic behaviors, social

learning can lead to efficient outcomes. We analyze instead a framework in which agents do not

observe other agents’ payoffs and focus on the impact of the observational network on individual

and aggregate volatility.

The papers stemming from the seminal contribution of DeGroot (1974), e.g., Bala and Goyal

(1998), Golub and Jackson (2010), Acemoglu et al. (2011) and DeMarzo et al. (2003), analyze

instead richer network structures. These papers focus on network topologies ensuring convergence

to the true underlying fundamental (or unidimensional opinions) both under Bayesian and non-

Bayesian learning/updating of beliefs. We consider a different mechanism of beliefs’ updating as

described in Section 2 and focus on aggregate volatility.

Another important stream of literature related to our work concerns the social value of public

information in presence of imperfect private information (see e.g., Morris and Shin, 2002; Angeletos

and Pavan, 2004; Colombo et al., 2014, among others). In particular, the model in which we

frame our analysis is similar to the model described in Angeletos and Pavan (2004), but with

several substantial differences. First, the focus of our paper is on the impact of social learning on

aggregate volatility rather then on social welfare. Second, in our framework agents do not have

access to public information, but they can observe the actions of different subsets of other agents.

Finally, to isolate the network effect on the individual actions, we assume that the agents do not

have a beauty contest incentive.2

Finally, our work is also related to the literature on the role of idiosyncratic shocks at the micro

level in macroeconomic fluctuations. Dupor (1999) and Horvath (1998, 2000) debated about the

diversification argument mentioned above. Gabaix (2011) shows that the 1/
√
N diversification

argument does not apply when the firm size distribution is sufficiently fat-tailed, while Acemoglu

et al. (2012) show that the argument is not valid in the presence of asymmetric input-output links

between sectors.3 We show that, even in the presence of firms with identical size and without input-

output relations between different sectors, the diversification argument may fail in the presence of

dispersed information and social learning.

2In the terms of the model described in Angeletos and Pavan (2004), we assume that the individual return to
investment does not depend on the aggregate level of investment.

3Earlier contributions on the topic include Jovanovic (1987) and Durlauf (1993) who show that strategic com-
plementarities and local firms’ interactions may translate shocks occurring at the firm-level into aggregate volatility.
Moreover, Bak et al. (1993) focus on the role of supply chains in aggregate fluctuations.
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The outline of the paper is as follows. Section 2 presents a model with dispersed information

and social learning. Section 3 analyzes the effect of different network topologies on volatility at

the individual and aggregate level. Section 4 discusses social learning in a Lucas-Phelps island

model and shows the effect of dispersed information and social learning on aggregate GDP. While

the previous sections derive results for a general social learning mechanism in which weights on

different sources of information can be set arbitrarily, Section 5 analyzes the case in which agents

set these weights optimally. Section 6 concludes.

2 Model

The economy is populated by N firms indexed by i = 1 . . . N . Preferences and technologies are

modeled as in Angeletos and Pavan (2004). In particular, firms are risk-neutral with utility

ui = θki −
1

2
k2i , (1)

where θ ∈ IR is the return to investment, ki ∈ IR is the investment decision and k2i /2 is the cost

of investment. The exogenous random variable θ parameterizes the fundamentals of the economy

and is assumed to be drawn from an improper uniform distribution (Morris and Shin, 2002).

Differently from Angeletos and Pavan (2004), in our framework the return on capital does not

depend on the investment decision of the other agents in the economy. This implies that there is no

complementarity between investment decisions. The fundamental θ is unknown when investment

decisions are made so that each agent chooses ki to maximize Ei[ui]. This implies that the optimal

investment of firm i is

ki = Ei[θ] = E[θ|Ii] , (2)

where Ii is the information set available to agent i. Firms receive a private signal si on the

fundamental

si = θ + σεi , (3)

where σ is the standard deviation of the private signal and εi ∼ N (0, 1) is an i.i.d. disturbance.

Eqs. (2) - (3) ensure that firms’ payoffs are independent from each other and that interaction among
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firms is purely informational.

When firms cannot observe investment decisions of other firms in the economy, the information

set of each firm consists only of the private signal. Therefore in isolation we have that

ki = E[θ|Ii] = si . (4)

Now consider the case in which firms can observe the actions of a subset of other firms (as in

e.g., Banerjee, 1992; Bikhchandani et al., 1992).4 If firms have access to information about the

behavior of other firms, i.e., to their investment decisions, they will rationally use this information

in order to average out the idiosyncratic noise. The rationality argument follows from the fact

that the signal s is an unbiased predictor of the fundamental θ and from the fact that firms take

optimal decisions given their information. This implies that ki is an unbiased predictor of θ. The

firms’ interaction network is described by an N ×N non-negative matrix W, where each element

wij > 0 indicates an informational link from firm i to firm j, i.e., firm i pays attention to the

decision of firm j. The matrix W can be asymmetric and informational links can be one-sided, so

that wij > 0 and wji = 0. The network topology determines the subset of other firms observable

by each firm. If firm i can observe firm j, the weight wij > 0, otherwise wij = 0. Moreover, we

assume that the elements on the main diagonal of W are zeros, i.e., wii = 0, meaning that, quite

naturally, firms do not need to form an informational link with themselves. The specific value of

wij > 0 can be interpreted as the relative precision of information about the fundamentals reflected

in the investment decision of firm j, as perceived by firm i (see Golub and Jackson, 2010).5 Matrix

W is stochastic so that its entries across each row are normalized to sum to 1, i.e.,
∑

j wij = 1.

The information provided by the network on the fundamentals is therefore a weighted average of

observed firms’ decisions, i.e.,
∑

j wijkj .

Based on both private information and information coming from the network, firm i’s expected

4In appendix B we show that results described below do not change if we assume that the agents can observe the
private signals of other agents, rather than the actions.

5Notice that we allow firm i’s assessment of the precision reflected in firm j’s decision to be subjective for the
sake of generality, but it could also be objectively correct for all firms.
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value of θ and optimal investment decision is given by:

ki = αisi + (1− αi)
∑
j

wijkj , (5)

where the parameter αi measures the importance imputed by firm i to its signal relative to the

information conveyed by the network. In principle the weights {αi, wij} on the different sources

of information could be set optimally by firms, but perfectly rational aggregation of information

requires taking into account the exact structure of the network. In fact, the precision of the

information conveyed by the investment decision of each firm j, depends not only on the precision

of its signal sj , but also on the precision of the information conveyed by its observational network,

i.e., on the information contained in the investment decisions of other firms observed by firm j and so

on. This is an especially complex problem because firms connected through a network may receive

information both directly and indirectly from the same source. Therefore, in order to optimally

weight the information received, firms would need to know the source of all the information that

influenced, both directly and indirectly, the decisions of other firms. DeMarzo et al. (2003) argue

that agents may have difficulties with the weighting process and propose a model in which agents

are subject to persuasion bias, i.e., they fail to properly account for possible repetitions of the

information they receive. Brandts et al. (2015) present experimental evidence consistent with the

model of persuasion bias of DeMarzo et al. (2003).

Given that, in the light of the previous considerations, fully Bayesian learning in this setup

appears to be too complicated to be realistic, in our analysis we consider generic values of the

weights wij and αi. Eq. (5) can be interpreted as a general heuristic to deal with the complex

inference problem at hand, where the weights wij are a subjective evaluation of the relative precision

of the decisions of observed firms, and αi is a subjective evaluation of the relative precision of private

information and the information obtained from the network. We remark nevertheless that this is a

general framework that nests the optimally chosen weights as a special case, which will be analyzed

in Section 5.
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Timing and equilibrium

In each period firms choose actions simultaneously. Within the same period, each firm i observes

the actions chosen by other firms in the social network and updates its beliefs according to Eq. (5).

Let k denote the N × 1 vector of individual investment decisions, s the N × 1 vector of private

signals, and D the diagonal matrix such that [D]ii = αi , ∀i ∈ [1, N ]. We can then write Eq. (5) in

vectorial form as

k = Ds+ (I−D)Wk , (6)

where the entries of matrices D and W are fixed and depend on the exogenous network structure

and on the (perceived) precision of different sources of information. Equilibrium in each period is

reached as the fixed point of the dynamic process

kτ = Ds+ (I−D)Wkτ−1 (7)

occurring in notional time τ . Before identifying conditions for the existence of the fixed point of

the dynamic process above, let us introduce the following definitions. Following Golub and Jackson

(2010), we define a group of nodes Z ⊂ N as closed relative to a generic adjacency matrix Ω if

i ∈ Z and ωij > 0 imply that j ∈ Z. A closed group of nodes is minimally closed relative to Ω if it

is closed and no nonempty strict subset is closed.

The following lemma establishes the convergence result for the dynamic process in Eq. (7).

Lemma 1. The matrix difference equation (7) converges to

k = [I− (I−D)W]−1Ds (8)

if one of the following conditions is satisfied

a) 0 < αi ≤ 1 ∀i ∈ [1, N ] for any network topology.

b) 0 ≤ αi ≤ 1 and for each minimally closed group Zj relative to (I−D)W there exists at least

one i ∈ Zj such that αi > 0.

Intuitively, Lemma 1 states that for equilibrium in Eq. (8) to exist, each firm in the network
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must be reached directly or indirectly by at least one signal. In case a) this condition is obviously

satisfied since each firm gives a positive weight to its private signal. In case b) we consider the case

in which αi = 0 for some firms. According to Lemma 1, for the equilibrium to exist there must be

at least one αi > 0 in each minimally closed group. This implies that all firms in each minimally

closed group, and all firms connected directly or indirectly to any minimally closed group, are

reached by at least one signal.

The equilibrium in Eq. (8) is reminiscent of the equilibrium in Acemoglu et al. (2012) but with

the following important differences. Firstly, Eq. (8) is derived in a dispersed information setup

rather than an input-output multisectoral model, leading to different interpretations of structural

parameters and economic results. Secondly, while Acemoglu et al. (2012) consider the case of

homogeneous α, representing the labor share in the production technology, we analyze the case of

heterogeneous αi, representing individual information weighting.

At this point it is also worth emphasizing the differences between the belief updating mechanism

à la DeGroot (1974) (see e.g., DeMarzo et al., 2003; Golub and Jackson, 2010, among others) and

the process in Eq. (7). While in DeGroot (1974) agents’ beliefs are in each round of updating given

by a weighted average of previous period’s beliefs, in Eq. (7) we allow agents to bias their decisions

towards their private signal. Therefore, when αi > 0, the equilibrium decision of firm i always

includes information from its private signal. The updating mechanism à la DeGroot is nested in

formulation (7) and can be recovered by setting αi = 0 and wii ≥ 0 ∀i. In this case Golub and

Jackson (2010) show that limiting beliefs may converge to solutions, periodic or aperiodic, in which

agents do not take into account their private signal in equilibrium.

In what follows we will consider the case in which 0 < αi ≤ 1 ∀i ∈ [1, N ], firstly because it

seems reasonable that firms always place some weight on their private signals, and secondly because

in this case the equilibrium in Eq. (8) always exists for any network configuration. This allows us

to derive general results about the impact of different observational topologies on individual and

aggregate volatility. Nevertheless, we remark that our conclusions also apply to the cases in which

0 ≤ αi ≤ 1 stated in Lemma 1 point b).

Eq. (8) shows that, when firms’ actions are observable through the informational network, in

equilibrium the individual investment decisions are a linear combination of the private signals. The

extreme case in which αi = 1 ∀i is equivalent to the case of isolation in which firms only consider

10



their private information and the network does not play any role.

Before proceeding to the analysis of the impact of social learning on volatility, we define aggre-

gate investment as the sum of individual investment decisions, normalized by the number of agents

in the economic system:

K =
1

N

∑
i

ki . (9)

In the following section we present the main results of the paper, namely that in the presence of

dispersed information, social learning increases the precision of firms’ investment decisions (reducing

therefore the variance of individual investments with respect to isolation), and that at the same time

the social learning process leads to increased volatility at the aggregate level (increasing therefore

the variance of aggregate investment with respect to isolation) depending on the topology of the

informational network. Moreover, we also characterize the decay of aggregate volatility as the

number of firms N →∞ and show that social learning may lead to a decay rate slower than 1/
√
N

depending on the network topology.

3 Network Topology and Micro/Macro Volatility

In this section we focus on the impact of social learning on both micro and macro volatility, and

relate it to the structure of the network characterizing the interaction patterns among firms.

To help the intuition we will illustrate our results using simple examples. Fig. 1 displays two

different configurations of the economy. In both cases we have N = 5 and all N firms observe the

actions of another firm in the economy. In the economy depicted in Fig. 1(a) as a directed star

network, all firms observe the same firm i = 1 and the latter observes another firm j = 2. In the

economy depicted in Fig. 1(b) as a directed regular network, each firm observes the investment

decision of a different firm.

The corresponding adjacency matrices representing the star and the regular networks are shown

in Eq. (10).

Wstar =


0 1 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

 Wregular =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

 . (10)
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(a) Star network. (b) Regular network.

Figure 1: Different configurations of the economy.

In both cases, given that each firm can observe only another firm in the economy, the weight

assigned to that observation is equal to 1 by construction. In the following sections we will use

these simple network configurations as examples to illustrate the impact of different topologies on

the micro and macro properties of the economic system.

3.1 Volatility of Individual Investment

In what follows we show that incorporating information from other firms in investment decisions is

rational from a generic firm i’s point of view, as social learning leads to lower variance of individual

investment. Using Eq. (8), individual investment in equilibrium can be written as

ki =
∑
j

ŵijαjsj ,

where ŵij denotes the element (i, j) of the matrix Ŵ defined as Ŵ ≡ [I−(I−D)W]−1. The variance

of ki is then given by

var (ki) =
∑
j

ŵ2
ijα

2
jσ

2 . (11)

In the case of isolated firms there are no informational links between firms, i.e., W is a matrix of

zeros (hence Ŵ is an identity matrix), and αi = 1 ∀i, meaning that firms only consider their private

signal and therefore

var (ki) = σ2 . (12)
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Social learning happens when αi < 1 and wij > 0 for at least one j 6= i, which means that firm i

has at least one informational link with another firm j in the economy, and uses the information

embedded in the decision made by firm j. The impact of social learning on individual volatility is

stated in the following proposition:

Proposition 1. The variance of individual investment in the case of social learning is always

less than the variance of individual investment in case of isolated firms, that is

∑
j

ŵ2
ijα

2
j < 1 . (13)

The proof is in Appendix A. Proposition 1 shows that social learning is rational from the firm

point of view. In this way firms are in fact able to increase the precision of their individual forecasts

on the fundamental. The intuition for this result is that the information about fundamentals

contained in individual signals is spread through the network and in equilibrium firms are able to

exploit this additional information by observing the behavior of other firms.

The following example illustrates the information spreading mechanism.

Example 1.

Consider an economy with N = 5 firms. In the absence of informational links we have

that each firm sets ki in reaction to its own signal only, i.e., ki = si, and therefore the

variance of individual investment is given by σ2 defined as before.

Suppose instead that the informational structure of the economy is described by the

regular network in Fig. 1(b). In this case the investment decision of e.g., firm 1 is taken

according to k1 = α1s1 + (1 − α1)w12k2, i.e., using both the private signal s1 and the

decision of firm 2, which in turn is taken using its private signal s2 and the decision of

firm 3, and so on. The network structure allows to incorporate information from other

firms’ signals in individual decisions. In fact, in equilibrium we have that production

decisions are determined according to Eq. (8) and therefore the way in which private

signals are spread through the network depends on the matrix C ≡ [I− (I−D) W]−1 D.

The specific value of 0 < αi ≤ 1, contained in matrix D, does not influence the ability

of the network to spread the information. For the sake of illustration we assume in this
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example that αi = α = 0.5 ∀i without loss of generality. In Section 5 we analyze the

same type of economy when firms set weights optimally and show that the qualitative

conclusions do not change. Given the assumption on the observational network and on

α, it is easy to compute the matrix Cregular ≡ [I− (I−D) Wregular]
−1 D:

Cregular =


0.5161 0.2581 0.1290 0.0645 0.0323

0.0323 0.5161 0.2581 0.1290 0.0645

0.0645 0.0323 0.5161 0.2581 0.1290

0.1290 0.0645 0.0323 0.5161 0.2581

0.2581 0.1290 0.0645 0.0323 0.5161

 .

The expression above shows that, due to the network of observational links, the indi-

vidual investment decision of each firm is influenced by the private signals of all firms

in the economy. For example, the decision k1 of firm 1 is given by

k1 =

5∑
j=1

c1jsj = 0.5161s1 + 0.2581s2 + 0.1290s3 + 0.0645s4 + 0.0323s5 .

Given the topology of the regular network we have that, for each firm, the variance

of individual investment with social learning is given by 0.09σ2 and thus smaller than

the case of isolation. Social learning allows to exploit the information contained in

individual actions and thus reduces the errors in individual investment decisions. ♣

The reduction in individual volatility in the presence of social learning with respect to the case

of isolation is independent on the network structure. In fact, as long as a firm has at least one

informational link and therefore looks at the decision of at least one additional firm (on top of

reacting to its own signal), the variance of its investment will be lower than the case of isolation.

Nevertheless, different network topologies may imply different levels of individual volatility, as

shown in the following example.

Example 2.

Consider an economy with an informational structure described by the star network in
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Fig. 1(a) and keep the assumption αi = α = 0.5 ∀i. In this case we have that

Cstar =


0.67 0.33 0 0 0

0.33 0.67 0 0 0

0.33 0.17 0.50 0 0

0.33 0.17 0 0.50 0

0.33 0.17 0 0 0.50

 .

The expression above shows that the decisions of firms 3, 4 and 5 are based on infor-

mation contained in the individual signals of two additional firms, while the decisions

of firms 1 and 2 only exploit information from one additional firm. We have therefore

that var(k1) = var(k2) = 0.14σ2, while var(k3) = var(k4) = var(k5) = 0.10σ2, meaning

that individual variances are higher than in the case of a regular network where each

individual decision exploits information from all the firms in the economy, but still lower

than in the case of isolated firms. ♣

3.2 Volatility of Aggregate Investment

In this section we show that when firms look at other firms’ decisions to make their own investment

plans, the aggregate variance may increase with respect to the case of isolation depending on the

topology of the informational network. We denote aggregate investment normalized by the number

of agents in the economy as

K =

∑
i ki
N

=
1

N

∑
i

∑
j

ŵijαjsj , (14)

where again ŵij denotes the element (i, j) of the matrix Ŵ defined as Ŵ ≡ [I− (I−D)W]−1. Using

matrix C ≡ ŴD we can define the 1×N vector v′ as

v′ ≡ e′C , (15)

15



where e′ ≡ [1, . . . , 1], so that vj =
∑

i cij = αj
∑

i ŵij and

K =
1

N

∑
j

vjsj .

Vector v can be defined as an influence vector, since each element vj determines the influence of

signal sj on aggregate investment. The influence vector v is related to the Bonacich (in-degree)

centrality measure (Bonacich, 1987) and it is reminiscent of the influence vector described in Ace-

moglu et al. (2012), with the crucial difference that the impact of firm j’s signal in this case also

depends on αj . If the Bonacich centrality of firm j (summarized by the term
∑

i ŵij) in the obser-

vational network increases, the influence of firm j’s signal will increase. On the other hand, given

the observational network, increasing αj and holding constant all αi 6=j , will increase the influence of

firm j’s signal. The intuition is that, if αj is relatively high, firm j’s signal will be largely reflected

in its investment decision, and therefore it will have relatively higher influence on the decisions of

the firms observing firm j. The variance of K can be written as

var (K) =
1

N2

∑
j

v2jσ
2 . (16)

In the absence of social learning we have that vj = 1 for all j, and therefore the variance of aggregate

investment is

var(K) =
σ2

N
. (17)

The impact of social learning on aggregate volatility is described in the following proposition:

Proposition 2. The variance of aggregate investment in the case of social learning is always

greater than, or equal to, the variance of aggregate investment in the case of isolated firms, that

is

1

N

∑
j

v2j ≥ 1 . (18)

The proof is in Appendix A. According to Proposition 2, the case of isolated firms represents a

lower bound for aggregate volatility. The intuition for this result is that social learning introduces

correlation among individual decisions. We know that the variance of aggregate investment depends

on var(
∑

i ki), i.e., the variance of the sum of individual investment decisions. In the absence of
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social learning we have that individual decisions are independent from each other and therefore the

aggregate variance is simply given by the sum of the variances of individual decisions, that is

var

(∑
i

ki

)
=
∑
i

var(ki) . (19)

In the presence of social learning, individual decisions are not independent and therefore aggregate

variance depends also on the covariance among individual decisions, as dictated by the network

structure, so that

var

(∑
i

ki

)
=
∑
i

var(ki) +
∑
i 6=j

cov(ki, kj) . (20)

The impact of social learning is twofold. First, as shown in Proposition 1, the variance of individual

decisions is lower, implying that the first term in Eq. (20) is lower when compared to the case of

isolated firms in Eq. (19). Second, social learning introduces a covariance element given by the

second term in Eq. (20). Proposition 2 shows that the net effect depends on the structure of

the observational network and on the weights attached by each firm to the different sources of

information.

In particular, if the vector v has heterogeneous entries, aggregate volatility increases. The

only case in which the variance of aggregate investment under social learning is equal to the case of

isolation is when the signal of each firm in the economy has exactly the same influence on aggregate

investment, i.e., when vj = 1 for all j. This scenario is verified when the network is regular, i.e., all

firms have the same weighted in-degree and out-degree in the observational network, as in Fig. 1(b),

and α is homogeneous.6 Any other case results in an influence vector with heterogeneous elements

and thus aggregate volatility increases with respect to the case of isolation.

The following example illustrates the impact of heterogeneous centrality among firms.

Example 3.

Consider the two economies described in Figs. 1(a) and 1(b). Again we assume, without

loss of generality, that αi = α ∀i. In Section 5 we analyze the same type of economy and

show that, when firms optimally set weights, qualitative results do not change. Given

6As analyzed in Section 5, if firms are able to observe directly or indirectly all other firms in the economy and set
their weights optimally, they will set the weights so that the resulting network is regular, with homogeneous weighted
in-degree and out-degree and homogeneous αi → 0 ∀i.
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the matrices Cstar and Cregular computed in Examples 1 and 2, we can compute the

influence vectors associated to each network using Eq. (15):

vstar =


2.0

1.5

0.5

0.5

0.5

 vregular =


1.0

1.0

1.0

1.0

1.0

 .

The influence vector is given by the sum over the columns of the matrix C, meaning

that each element vi is sum of the weights given by each firm to the signal si. The

higher is vi, the higher the centrality of firm i. In the star network, firm 1 is highly

central since all firms look at its decision when making their own choices. Note that

firm 2 is also relatively central. The reason is that the decision of firm 2 is used by

firm 1. The centrality of each firm i, as measured by the influence vector, depends

not only on the number of firms looking at firm i, but also on the number of firms

looking at the firms who are looking at firm i. This means that the influence of a firm

is recursively related to the influence of the firms who observe its decision (see Jackson

et al., 2015). As an example, consider a modification of the star network in which, for

example, firm 4 looks at firm 3 instead of firm 1. In this case the influence vector is

given by v′ = [1.83, 1.42, 0.75, 0.5, 0.5]. Although both firms 2 and 3 are observed by

one firm, the influence of firm 2 is higher than the influence of firm 3 due to the fact

that firm 2 is observed by firm 1, which is more central than firm 4. On the contrary, in

the regular network all firms have the same centrality. Using Eq. (16) we can compute

the variance of aggregate production for both networks

var (Kstar) = 0.28σ2 var (Kregular) = 0.20σ2 .

In the case of regular network aggregate variance is equal to the variance in isolation,

i.e., σ2/5, meaning that the reduction in the sum of individual variances and the pos-

itive covariances in individual decisions balance each other out (see Eq. (20)). On the

opposite, heterogeneity in the centrality of firms, as in the case of the star network,
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leads to an increase in aggregate volatility. ♣

3.3 Decay Rate of Aggregate Volatility

The possibility of significant aggregate fluctuations originating at the micro level, i.e., at the firm or

sector level, is often discarded in macroeconomics following a diversification argument. According

to the latter, in an economy composed by N firms (or sectors), the volatility of aggregate investment

should decay at a rate 1/
√
N . Therefore idiosyncratic fluctuations should disappear in the aggregate

as N →∞. Gabaix (2011) proves that the 1/
√
N diversification argument does not apply when the

firm size distribution is sufficiently fat-tailed, while Acemoglu et al. (2012) show that the argument

is not valid in the presence of asymmetric input-output links between sectors.

In the following we show that, even in the presence of firms with identical size and without

input-output interconnections between different sectors, the diversification argument may not hold

when information is dispersed and firms try to reduce their uncertainty by learning from other

firms’ decisions.

Consider a sequence of economies indexed by the number of firms N ≥ 1, with the network of

informational links in each economy denoted by WN . The corresponding sequences of aggregate

investment and influence vectors are denoted respectively by {KN} and {vN}. Assuming that the

variance of idiosyncratic signal is independent of the size of economy N , e.g., σ2N = σ2 ∀N , we

have that

std (KN ) =
√

var (KN ) = σ

√∑
j

(vj,N
N

)2
.

Given two series of positive real numbers {aN} and {bN}, we write aN = Θ(bN ) if the following

relationships hold simultaneously

lim sup
N→∞

aN/bN < ∞

lim inf
N→∞

aN/bN > 0 .

As shown in Acemoglu et al. (2012), when the precision of individual signals is independent of the

economy’s size, we have that

std (KN ) = Θ(1/N ‖vN‖2) . (21)
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Eq. (21) implies that the volatility of aggregate production in deviation from actual demand may

decay with a rate different from 1/
√
N , according to the properties of the network defining the

patterns of social learning in the economy summarized by vector v.

We can use the results derived in Gabaix (2011) to characterize the decay rate of aggregate

volatility when v has a fat-tailed distribution. The results are summarized in the following propo-

sition:

Proposition 3. Consider a series of economic systems indexed by N ≥ 1. Assume that the

sequence of influence vectors v1, . . . , vN has a power law distribution

P (v > x) = ax−ζ

for x > a1/ζ , with exponent ζ ≥ 1. Then, as N →∞ aggregate volatility follows

a) std
(
K̂N

)
∼ vζ

lnN σ for ζ = 1

b) std
(
K̂N

)
∼ vζ

N1−1/ζ σ for 1 < ζ < 2

c) std
(
K̂N

)
∼ vζ

N1/2σ for ζ ≥ 2

where vζ is a random variable. The distribution of vζ does not depend on N and σ. When

ζ ≤ 2, vζ is the square root of a stable Lévy distribution with exponent ζ/2. When ζ > 2, vζ is

a constant.

Proof. See Proposition 2 in Gabaix (2011) and proof therein.7

Proposition 3 implies that when the distribution of firms signals’ influence v has thin tails

(ζ ≥ 2), then the variance of aggregate investment decays at rate 1/
√
N . On the contrary, when

the distribution has fat tails (ζ < 2) the decay rate is much slower.

Therefore social learning may represent an additional reason for the failure of the diversification

argument, depending on the topology of the informational network. In particular, a fat-tailed

distribution of v implies a greater heterogeneity in the influences of firms’ signals, corresponding

7Defining h =
√∑

j

( vj,N
N

)2
we have that std(K̂N ) = hσ, as in Gabaix (2011). Notice that while in Gabaix (2011)

h is the square root of the sum of (squared) individual firms production over total GDP, i.e., the sales herfindhal of
the economy, in our model h is the square root of the sum of (squared) relative influence of the signal received by
each firm.
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to the case in which many firms look at the decision of the same small number of firms. The latter

group of firms have high centrality in the network and therefore the influence of their signals decays

slowly as the number of firms N increases.

4 Lucas-Phelps Island Economy

When information is dispersed and agents can observe each other’s actions through a network of

informational links, social learning leads to lower volatility at the level of individual actions, but at

the same time it may lead to higher volatility at the aggregate level. So far we have described the

consequences of dispersed information and social learning in an investment model as in Angeletos

and Pavan (2004). However, the mechanism described in the previous section is general and can be

applied to different frameworks. In this section we analyze the effect of social learning on individual

production decisions and aggregate output in a Lucas-Phelps island economy, as in Morris and Shin

(2002). Differently from Morris and Shin (2002), we do not have public information in the model,

therefore we can not asses the effect on individual actions of the precision of public information

released by the central bank. Our scope in using this model is different: we want to determine the

effect on individual and aggregate production of a network of informational links when information

is imperfect.

Consider an economy composed by N islands. Supply ysi in island i of a single consumption

good is given by

ysi = bpi ,

where b > 0 and pi is the price chosen in island i. The demand ydi on island i is given by

ydi = c (θ − pi) ,

where θ is the money supply and c > 0. Market clearing implies that the optimal price decision

under perfect information is

pi =
c

b+ c
θ .
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When θ is unknown, each firm forms expectations on the money supply θ and sets the price

pi =
c

b+ c
Ei (θ) .

Assume that firms receive a private signal on the money supply as described in Eq. (3), and that

θ is drawn from an improper uniform distribution. In isolation the expected money supply is

Ei(θ) = si ,

and the optimal price is

pi =
c

b+ c
si .

When firms are able to observe the price decision of a subset of firms in other islands, they will use

this information when setting their price to increase the precision of their expectation on money

supply. Similarly to Eq. (5), the price decision in the presence of social learning is:

pi = αiβsi + (1− αi)
∑
j

wijpj ,

where αi and wij have the same interpretation as in Section 2, while β ≡ c/(b+c). The equilibrium

price decision in all islands can be written as

p = [I− (I−D)W]−1Dβs ,

where W is the adjacency matrix describing the network of social learning and D is a diagonal

matrix such that [D]ii = αi ∀i. Firms sell at price pi and equilibrium production is determined

by market clearing. Production on island i is computed using the demand function determined by

realized money supply θ and price pi:

yi = c (θ − pi) . (22)

From Eq. (22) it is clear that the variance of individual production is proportional to the variance

of the price decision pi. From Proposition 1, we know that observing the price decisions of other

22



firms reduces the variance of individual actions, and it is therefore beneficial to firms. Aggregate

output, i.e., the GDP of the island economy, is the sum of the individual production decisions:

Y =
∑
i

yi = cNθ − c
∑
i

pi .

From Proposition 2, we know that given N , the variance of aggregate production depends on the

topology of the observational network. If the network is asymmetric, aggregate volatility is higher

relative to the same economy in which firms take their price decision in isolation. Finally, when

the observational network is characterized by the properties in Proposition 3, then the variance of

aggregate output does not decay following the law of large numbers. This finding complements the

results obtained in Gabaix (2011) and Acemoglu et al. (2012) showing that aggregate fluctuations

can originate at the micro level as the result of disperse information and asymmetric observational

networks.

5 Optimal Information Weighting

DeMarzo et al. (2003) argue that persuasion bias, defined as the individual failure to properly adjust

for possible repetitions when processing information, is consistent with psychological evidence,

while Brandts et al. (2015) present experimental evidence showing that hat agents have difficulties

in assessing correctly the information they receive. It is highly unlikely that agents in a complex

network are able to objectively assess the precision of information embedded in the actions of other

agents and to understand how to manage the information in order to avoid the persuasion bias. In

this section we argue that even if agents were able to optimally weight information from different

sources, the observational network would still play a key role in shaping aggregate fluctuations.

Optimality from an individual point of view requires the minimization of individual variance as

defined in Eq. (11). As already mentioned in Section 2, optimal setting of weights wij and αi for

firm i, given the network structure and the weights set by other firms, is a complicated problem.

We will illustrate the principles driving optimality by means of four examples.

Start from an economy described by a regular network as in Fig. 1(b). A first principle of

optimality for information weighting is that the weights wij should reflect the objective relative
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precision of information contained in the decisions of each observed firm. In this particular case,

since each firm observes only another firm in the network, the optimal weight assigned to the

observed firm is equal to one. Therefore the matrix W∗ of optimal weights w∗ij in this case is given

by

W∗regular =


0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

 .

Given the structure of the network, each firm observes directly or indirectly the decision of all other

firms in the network. Therefore, for each firm i, the information conveyed by the network already

includes its own signal si. Consider for example firm 1 who is observing the decision of firm 2,

which in turn observes the decision of firm 3 and so on. The structure of the network implies that

firm 1 is observing indirectly firm 5, which is in turn observing firm 1 itself. Thus, the information

contained in the signal of firm 1 is included in firm 1’s decision both directly, with weight α1,

and indirectly, with weight 1 − α1, by observing the decision of firm 2. For each αi > 0, we have

that firm i suffers from persuasion bias, in the sense that firm i fails to account for the repetition

of the information contained in si. A second principle of optimality is that, if the information

conveyed by the individual signal si is already present in its observational network, each firm i

should set αi = α∗ → 0 to minimize the persuasion bias.8 Moreover, let D∗ denote the diagonal

matrix such that [D∗]ii = α∗ ,∀i ∈ [1, N ]. In this case we have that each entry of the matrix

C∗ ≡ [I− (I−D∗)W∗]−1D∗, describing equilibrium mapping of signals into decisions as per Eq. (8),

is positive and equal to 1/N .

C∗regular =


1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

 .

In the presence of a regular network, agents are able to set {αi, wij} so that in equilibrium all signals

receive a weight equal to their objective relative precision, equal to 1/N given the assumption of

8Notice in fact that α∗ should be strictly positive, otherwise if all firms set αi = 0 there would be no information
in the network (see also Lemma 1).
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homogeneous variance of individual signals. In general, if the network topology allows the agents to

observe directly or indirectly all the signals in the economy, there exists a configuration of weights

leading to an efficient use of the information by all agents.

Consider the network described by Fig. 2(a). This network is similar to the regular network,

with the difference that firm 5 is linked both to firm 1 and firm 2. If firm 5 sets both w51 > 0 and

w52 > 0, the signal of firm 2 enters its individual decision both indirectly through the observation of

firm 1’s action, and directly through the observation of firm 2’s decision, implying thus persuasion

bias. This in turn affects the whole network, and implies an influence vector with heterogeneous

elements. If firm 5 realizes that it is suffering from persuasion bias, and knows the structure of the

network, it can correct the bias by setting w51 = 1 and w52 = 0 reducing the network in Fig. 2(a)

to a regular network as in Fig. 1(b). A third principle of optimality is hence that observational

links conveying no additional information are redundant. In this last example, the heterogeneous

(a) Modified Regular network. (b) Asymmetric network.

Figure 2: Different configurations of the economy.

network is reduced to a regular network by the optimizing behavior of firms. This can happen only

in the special case in which the network topology allows all firms to observe, directly or indirectly,

all other firms.

Consider next an economy described by a star network as in Fig. 1(a). Each firm is observing the

decision of only another firm in the network, implying therefore that the optimal weight assigned
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to the observed firm is equal to one. The matrix W∗ of optimal weights w∗ij is in this case given by

W∗star =


0 1 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

 .

Notice that for both firms 1 and 2 the information contained in their private signal also appears

in the information coming from the network. Therefore, as we showed in the previous example,

in order to eliminate the persuasion bias it is optimal for firms 1 and 2 to set α∗1 = α∗2 → 0. The

private signals of firms 3, 4 and 5, are instead not present in their respective observational networks.

Minimization of individual variance implies that the equilibrium contribution of signals s3, s4, s5 to

the decisions of firms 3, 4, and 5 respectively, should be equal to the inverse of the total number of

signals affecting the equilibrium investment decisions of these firms (due to the assumption of equal

signal’s precisions). A fourth principle of optimality is in fact that, if firm i’s private signal is not

present in its observational network, this firm should set αi in order to reflect the objective relative

precision of the signals entering its equilibrium decisions. In other words, given the hypothesis of

homogeneous signal variance, a signal si not present in the informational network of firm i should

receive a weight αi = 1/
∑

j Icij>0, where the denominator gives the number of positive entries

of the i-th row of the equilibrium matrix C. Given that firms 3, 4, and 5 observe, directly and

indirectly their own signal on top of the signals of firms 1 and 2, we have that α∗3 = α∗4 = α∗5 = 1/3.

In this case the matrix C∗ is given by

C∗star =


1/2 1/2 0 0 0

1/2 1/2 0 0 0

1/3 1/3 1/3 0 0

1/3 1/3 0 1/3 0

1/3 1/3 0 0 1/3

 .

In this case each firm is able to use efficiently the information they receive. Nevertheless, the

aggregate volatility is greater than the case of isolated firms. This is easy to observe by using

Proposition 2 and noting that the influence vector associated to C∗star is heterogeneous and equal

to v′ = [2, 2, 1/3, 1/3, 1/3]. Optimality in information weighting does not remove the impact of
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asymmetric network structures.

The next example considers a case in which the network structure does not allow the agents to

set efficiently the weights, i.e., individual optimality does not lead to homogeneous individual equi-

librium weights. Consider the network represented in Fig. 2(b). Following the previous arguments,

we know that the optimal weights assigned to the outgoing links of firms 2, 3, 4, 5, 6 are equal to 1.

Considering that firm 1 observe firms 2 and 6, and noting that the actions of firms 2 and 6 convey

the same amount of information, since both firms observe their own signal and the decision of the

same set of firms, it easy to conclude that w∗12 = w∗16 = 1/2.9 The optimal observational matrix is

therefore:

W∗asy =



0 0.5 0 0 0 0.5

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0


.

Firms 3, 4, 5 observe their signal both directly and indirectly through their observational network,

implying that the optimal weight on their own signal should tend to zero to avoid the persuasion

bias, i.e., α∗3 = α∗4 = α∗5 → 0. Firms 2 and 6 do not observe their own signal through the network.

Exactly as in the previous example, these firms must set the weights on their signal so that the

impact of each signal affecting their equilibrium individual decisions is homogeneous as prescribed

in the fourth principle mentioned above, and equal to the inverse of the total number of signal

observed in equilibrium. In this particular case α∗2 = α∗6 = 1/4. The problem of firm 1 is slightly

different. By observing the decisions of both firm 2 and 6, firm 1 can not avoid persuasion bias. The

actions of firm 2 and firm 6 convey, beside the information from their own signals, the information

reflected the actions of firms 3, 4, 5. Persuasion bias, i.e., using twice the information of firms 3, 4, 5,

is unavoidable.10 Given the optimal weights set by other firms, we can compute numerically the

9Notice that the actions of firms 2 and 6 convey the same amount of information but not exactly the same
information in terms of signals, therefore none of the observational links is redundant.

10Notice also that setting either w12 or w16 equal to zero would result in the loss of the information contained in
one of the signals, leading therefore to a suboptimal choice.
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optimal choice of α∗1 = 0.1795. In this case the matrix C∗ is given by

C∗asy =


0.1795 0.1026 0.2051 0.2051 0.2051 0.1026

0 0.2500 0.2500 0.2500 0.2500 0

0 0 0.3333 0.3333 0.3333 0

0 0 0.3333 0.3333 0.3333 0

0 0 0.2500 0.2500 0.2500 0.2500

 .

Individual rationality leads firms 2, 3, 4, 5, 6 to optimally aggregate the available information. On

the contrary, optimal weights setting in the case of firm 1 does not allow to efficiently aggregate its

available information. The reason is that firm 1’s optimal choice of weights does not allow to avoid

double-counting part of the information in the network. Moreover, the influence vector associated

to the matrix C∗asy is heterogeneous, leading to an increase in aggregate volatility with respect to

the case of isolation.

The network structure has important consequences both at the individual and the aggregate

level, also when optimally weight information, having perfect information about both the topology

of the network and the weights chosen by the other agents. Individual rationality can eliminate

the amplification effect of aggregate volatility due to social learning only if all firms are able to

observe directly and indirectly all other firms, and the topology of the network allows them to

avoid possible repetitions in the information they receive. As soon as the network displays some

asymmetries, dispersed information and observation learning will affect aggregate volatility also

when agents optimally weight available information.

6 Conclusions

The behavior of peers, friends or in general other members of a social or economic group, represents a

valuable source of information for the homo oeconomicus. Observation of others’ behavior is deeply

rooted in human nature as a consequence of the adaptation to a complex environment, where it is

difficult to collect and process all available information. This paper shows that this micro-behavior,

which we have called social learning, can have relevant consequences at the aggregate level. The

aggregate effect of social learning depends on the topology of the network describing the links

between the agents. We proved that the network structure can explain, at least in part, aggregate
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fluctuations.

If the network is homogeneous, in the sense that all firms have the same influence in equilibrium,

then aggregate fluctuations with social learning coincide with aggregate fluctuations when firms

are isolated. For any other network configuration, social learning leads to an increase in aggregate

volatility. Aggregate variance is positively related to the concentration of influence in the network.

Moreover, we show that the diversification argument does not always apply in the presence of

social learning. If the influence vector is sufficiently asymmetric, i.e., there exist few very influential

firms in the network, then aggregate variance does not decay at a rate equal to 1/
√
N as N →∞.

This result complements the findings of Gabaix (2011), who shows that the diversification argument

does not hold when firms’ size distribution is sufficiently fat-tailed, and Acemoglu et al. (2012) who

show that the law of large number argument breaks down in the presence of asymmetric input-

output links between productive sectors.

An important question regards the empirical relevance of social learning. From a qualitatively

point of view, the impact of social learning crucially depends, as argued above, on the topology of

the observational network. In practice the network structure characterizing how agents learn from

each other is difficult to observe. It is possible to look for proxies using observable social-economic

networks, or propose a network formation model (see e.g., Bala and Goyal, 2000) in order to analyze

possible theoretical configurations of the network. In general, in the case of firms, we believe that it

is highly plausible that the influence of a firm in the observational network is strongly and positively

correlated to the importance of the firm with respect to some relevant economic variables. For

example bigger firms might be easier (or cheaper) to observe than smaller firms, and given the

strongly skewed distribution of firms’ size (Axtell, 2001; Gaffeo et al., 2003), it is plausible to think

of an asymmetrical observational network. Similarly, assuming that firms observe the decisions of

downstream or upstream partners, one could describe the topology of the observational network

using the topology of the input-output network. Given the empirical properties of input-output

networks, this would imply an asymmetrical observational network. Moreover, Bikhchandani et al.

(1992, 1998) argue in favor of the presence of fashion leaders, i.e., “expert” agents observed by

many other agents, and Gilbert and Lieberman (1987) show that “smaller firms tend to imitate the

investment activity of others”. Therefore, we conclude that it is highly plausible that observational

networks are asymmetric, and consequently that dispersed information and social learning play an
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important role in generating aggregate fluctuations.

Appendix A Proofs

A.1 Proof of Lemma 1

Proof. Iterating Eq. (7) we get

kτ =

τ−1∑
z=1

[(I−D)W]z Ds+ [(I−D)W]τ k0 .

Define A ≡ (I−D)W and notice that limτ→∞Aτ = 0 and
∑∞

z=0 Az = [I−A]−1 when the spectral

radius of A, defined as ρ(A) = max1≤i≤N |λi| where λi is the i-th eigenvalue of A, is strictly smaller

than one. Then notice that

‖A‖∞ = max


N∑
j=1

|(1− αi)wij | | 1 ≤ i ≤ N

 = max {|(1− αi)| | 1 ≤ i ≤ N} ,

given that matrix W is stochastic. Moreover, for a generic eigenvector-eigenvalue pair (x, λ) with

x 6= 0, we have that λx = Ax and therefore

‖λx‖∞ = |λ| ‖x‖∞ = ‖Ax‖∞ ≤ ‖A‖∞ ‖x‖∞ ⇒ |λ| ≤ ‖A‖∞ ,

where the inequality follows from the submultiplicativity property of the matrix norm.

In case a) of Lemma 1, i.e., when 0 < αi ≤ 1 ∀i ∈ [1, N ], we have that ‖A‖∞ < 1 implying that

ρ(A) < 1.

In order to prove the result in case b) of Lemma 1, we start by proving that if A is irreducible

and at least one αi > 0, then it must be that ρ(A) < 1. Notice that when at least one αi > 0,

then matrix A is substochastic. Denoting by e′ = [1 . . . 1], this implies that Ae ≤ e and Ae 6= e.

When matrix A is irreducible, from the Perron-Frobenius theorem it follows that ρ(A) = 1 would

imply Ae = e, which is impossible by construction. Therefore ρ(A) < 1 follows from the result

ρ(A) ≤ ‖A‖∞ derived above.

Let’s now consider the case in which A is reducible. In general, if 0 ≤ αi < 1, the reducibility
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of matrix A follows from the reducibility of matrix W. If instead αi = 1 for some agents i ∈ [1, N ],

then matrix A is reducible even if matrix W is irreducible. In what follows we define conditions

such that ρ(A) < 1 when A is reducible. If A is reducible, then following Meyer (2000, page 694),

it is possible to write matrix A in the canonical form for reducible matrices

A ∼



A11 A12 · · · A1r A1,r+1 A1,r+2 · · · A1,m

0 A22 · · · A2r A2,r+1 A2,r+2 · · · A2,m

...
. . .

...
...

... · · ·
...

0 0 · · · Arr Ar,r+1 Ar,r+2 · · · Ar,m

0 0 · · · 0 Ar+1,r+1 0 · · · 0

0 0 · · · 0 0 Ar+2,r+2 · · · 0

... · · ·
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · Am,m



,

where each A11, . . . ,Arr is either irreducible or [0]1×1, and Ar+1,r+1, . . .Amm are irreducible. As

noted in Meyer (2000), the effect of such a symmetric permutation is simply to relabel the nodes in

the original network. Therefore a generic Asz denotes the sub-network describing the connections

from agents in rows s to agents in columns z. Define α(s) as the vector containing the αi set by

each agent i belonging to the set described by rows s.

As a first step, consider the matrices Akk for k = 1, 2, . . . , r and observe that ρ(Akk) < 1 for

each k = 1, 2, . . . , r, for any possible value of entry αi in vector α(k). This is certainly true when

Akk = [0]1×1, so consider the case in which Akk is irreducible and notice that Akk is substochastic

by construction because there must be blocks Akj , j 6= k that have nonzero entries. From the

previous result we know that irreducible substochastic matrices are characterized by a spectral

radius strictly smaller than one.

Consider now the matrices Akk for k = r+ 1, . . . ,m, which refer to the minimally closed groups

relative to A. These matrices are substochastic if and only if at least one αi in vector α(k) is

positive. Once again, these irreducible stochastic matrices are characterized by a spectral radius

strictly smaller than one.

Therefore, when at least one agent i in each minimally closed group of A sets αi > 0, we

conclude that ρ(A) < 1.
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In other words, for equilibrium in Eq. (8) to exist, each agent must receive at least one signal

directly and/or indirectly. If αi > 0 ∀i, this condition is satisfied for any possible network topology.

If instead αi = 0 for some agent i, then for equilibrium in Eq. (8) to exist, at least one agent i

in any minimally closed group must have αi > 0 guaranteeing that all agents in the network are

reached by at least one signal.

A.2 Proof of Proposition 1

Proof. Before proceeding with the proof of Proposition 1, we describe an important property of the

matrix C ≡ [I − (I − D)W]−1D, which maps private signals into equilibrium investment decisions

according to Eq. (8), in the following lemma.

Lemma 2. Matrix C is a stochastic matrix, i.e.,
∑

j ŵijαj = 1 ∀i.

Proof of Lemma 2. Define the vector e′ = [1 . . . 1]. Proving that
∑

j ŵijαj = 1 ∀i is equivalent to

prove that Ce = e or equivalently that C−1e = e, since C is invertible. Start from

C = [I− (I−D)W]−1D ,

and pre-multiply both sides by C−1 to get

I = C−1[I− (I−D)W]−1D .

Post-multiplying by D−1

D−1 = C−1[I− (I−D)W]−1 ,

and by [I− (I−D)W] we get

D−1[I− (I−D)W] = C−1 .
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Post-multiplying both sides by e, we have

C−1e = D−1[I− (I−D)W]e

C−1e = D−1[e− (I−D)We]

C−1e = D−1[e− (I−D)e]

C−1e = D−1[e− e+ De]

C−1e = D−1De

C−1e = e ,

where the third equality follows from the fact that W is stochastic.

Having established the result in Lemma 2 we can proceed to prove Proposition 1 as follows.

Eq. (13) follows from the comparison of Eqs. (11) and (12). We start by defining an M-matrix

(Plemmons, 1977):

Definition. An N ×N matrix C that can be expressed in the form C = sI−A, where aij ≥ 0

is the (ij)-th element of matrix A, 1 ≤ i, j ≤ N and s ≥ ρ(A), the maximum of the moduli of

the eigenvalues of A, is called an M-matrix.

It is straightforward to show that matrix I − (I − D)W is an M-matrix. Define s = 1 and A =

(I − D)W. By construction we know that aij ≥ 0, while we showed in the proof of Lemma 1 that

ρ(A) ≤ 1.

Since I − (I − D)W is an M-matrix, we know that it is inverse-positive (Plemmons, 1977),

i.e., each element ŵij of Ŵ = [I − (I − D)W]−1 is non-negative. From Lemma 2 we know that∑
j ŵijαj = 1 and therefore, given that 0 < αj ≤ 1 ∀j, we have that 0 ≤ ŵijαj < 1 ∀j. Therefore,

defining f(x) = x2, we have that

∑
j

f(ŵijαj) ≤ f

∑
j

ŵijαj

 = 1 ,

where the inequality follows from the fact that f is a superadditive function for non-negative real

numbers. The only case in which the above expression holds as an equality is when there is no social

learning, i.e., when W is a zero matrix (meaning that Ŵ is an identity matrix) and αj = 1 ∀j.
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A.3 Proof of Proposition 2

Proof. Eq. (18) follows from the comparison of Eqs. (16) and (17). We can rewrite Eq. (18) as

∑
j

v2j ≥ N ⇒ ‖v‖2 ≥
√
N ,

and prove it using the Cauchy-Schwarz inequality. In fact, noticing from the results in Lemma 2

that
∑

j vj = N , we can write

∑
j

v2j

 ·N ≥

∑
j

vj

2

‖v‖2
√
N ≥ N

‖v‖2 ≥
√
N .

Appendix B Observing Private Signals

In this appendix we assume that agents observe other agents’ private signals, rather than other

agents’ actions, and show that, mutatis mutandis, all the propositions in Section 3 hold. Assume

that the framework is the same as the one described in Section 2, with the only difference that

firms observe the private signal of a subset of other firms. The investment decision of firm i can be

rewritten as:

ki =
∑
j

wijsj , (23)

where the wij is the element (i, j) of the stochastic matrix W, determining the weight assigned

by agent i to the signal of agent j, and sj is the private signal received by agent j. Matrix W

is an N × N adjacency matrix describing the topology of the observational network, where N is

the total number of agents in the economy and each element wij > 0 indicates the existence of

an informational link from firm i to firm j, i.e., firm i can observe the private signal of firm j.

Matrix W can be asymmetric, and differently from the model described in Section 2 we assume

that wii > 0 ∀i, meaning that, quite naturally, firms take into account their own signal when
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making investment plans.11 The investment decision in Eq. (23) is therefore a weighted average of

the signals observed by agent i, where wij > 0 can be interpreted as a subjective evaluation of the

precision of the agent j’s private signal by agent i. The investment decisions in the economy can

be written as:

k = Ws ,

where k is the N×1 vector of investment decision and s is the N×1 vector if signals. The aggregate

investment, normalized by the number of agents is:

K =
1

N

∑
i

ki .

As in the model described in Section 2, all private signals are independent and have the same

variance σ2.

Individual volatility. The variance of the individual investment decision is

var(ki) =
∑
j

w2
ijσ

2 .

By assumption
∑

j wij = 1, therefore
(∑

j wij

)2
= 1. We can therefore reproduce the proof of

Proposition 1 by defining f(x) = x2, λj = wij/
∑

j wij and x =
∑

j wij , and writing

∑
j

w2
ij =

∑
j

f(wij) =
∑
j

f(λjx) ≤
∑
j

λjf(x) = f(x) = f

∑
j

wij

 = 1 ,

where the inequality follows from the fact that f is convex and f(0) = 0. The only case in which

the above expression holds as an equality is when there is only one element on the row wi· different

from zero. Since we have assumed that wii > 0, this is the case in which firm i does not observe

other firms in the economy and wii = 1. If firm i observes at least another signal, beside its own,

then
∑

j w
2
ij < 1.

11We remark that assuming wii ≥ 0 does not change our results. We consider the case wii > 0 in order to facilitate
comparison with the case of isolation.

35



Aggregate volatility. The variance of aggregate investment is:

var (K) =
1

N2
var

(∑
i

ki

)
,

from which

var (K) =
1

N2
var

∑
i

∑
j

wijsj

 .

Let’s define the influence of firm j as vj ≡
∑

iwij , which corresponds to its weighted in-degree.

In this setting, the influence of firm j depends directly on the weight given by other firms in the

economy to the signal received by agent j. We can rewrite the variance of aggregate investment as:

var (K) =
1

N2
var

∑
j

vjsj

 .

Using the fact that signals are independent, we can rewrite the variance of aggregate investment as

var (K) =
σ2

N2

∑
j

v2j .

In the case of isolated firms, the elements of the influence vectors are homogeneous and equal to

1, so that the term
∑

j v
2
j = N and the variance of aggregate investment is var (K) = σ2

N . In

Proposition 2 we show that the variance of aggregate investment is always equal to, or greater

than, the volatility in isolation, i.e.,

σ2

N2

∑
j

v2j ≥
σ2

N
.

The proof of Proposition 2 can be reprised in the current setting, simply by noticing that
∑

j vj = N .

This property comes from the assumption that W is a stochastic matrix, implying that the sum of

all the elements of W is equal to N . Since vj is the sum of the elements of column j, it follows that∑
j vj = N .

Similarly we can translate the conditions on the distribution of v identified in Proposition 3

directly in the current setting. If the distribution of vj has fat tails, i.e., few agents are observed

by many other agents in the economy, then the decay rate of aggregate volatility does not follow

the law of large numbers.
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The difference between the case in which the agents observe the actions of other agents, and

the case in which the agents observe directly the private signal of other agents, boils down to the

different definition of the influence vector v.
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