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Abstract 
 
This paper analyzes the impact of demographic aging on capital accumulation and welfare in 
economies with unfunded pensions. Using a two-period overlapping generation model with 
potentially endogenous retirement decisions, it shows that both the type of aging, i.e. declining 
fertility or increasing longevity, and the type of pension system, i.e. defined contributions or 
defined benefits, are important in understanding this impact. Results show that when aging is 
driven by increasing longevity, an unregulated retirement age system leads to a greater 
improvement in welfare. In contrast, with decreasing fertility, a mandatory retirement system 
with defined contributions fares better. 
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1 Introduction

Demographic aging presents a major challenge to all industrialized economies and a large
number of developing countries. According to UN Population Division projections, the
total world population will increase by 40% and the median age on the planet will in-
crease by 7.8 years within the next four decades. Compared to recent history, these
changes represent a significant slowdown in population growth and a considerable ac-
celeration in aging.

Although demographic aging is common around the world, the factors involved vary
among countries. In the short and medium terms, these may be transitory events such as
out-migration of the young population, wars or the aging of the baby-boom generation.
However, in the long term, this phenomenon can be traced back to decreases in fertility
rates and increases in longevity, albeit at different magnitudes in different economies.

The economic implications of demographic aging are complex, and they are not al-
ways well understood in public discussions. Some consequences are clearly unfavorable:
aging, whether it is driven by a decrease in fertility or an increase in longevity, ceteris
paribus, pushes the old-age dependency rate up, i.e. there are more elderly people than
economically active people. This, in turn, increases the pressure on unfunded pensions.
In contrast, some consequences of aging are perceived to be positive: if the decline in
fertility outweighs the increase in longevity, then the total population will decrease. This
outcome may be welcomed by some on the basis of environmental concerns. Finally,
there are some ambiguous consequences. An example is the effect of aging on capital
accumulation, a key determinant of growth, which we investigate in this paper.

Studying the effect of aging on capital accumulation is particularly difficult when a
large number of discretionary policy choices can affect the outcomes. In this paper, we
use a two-period overlapping generation model to show that the effect of aging on capi-
tal accumulation and welfare depends on: i) the type of aging, i.e. decreasing fertility or
increasing longevity, ii) the type of unfunded social security system, i.e. defined contribu-
tion (DC) or defined benefit (DB), and finally iii) the regulation of the retirement age, i.e.
mandatory early retirement vs. laissez-faire.

To fix these ideas, we set up an economic environment in which each individual lives
for two periods. The first period of her life has a unitary length, while the second one
has a variable longevity. In the first period, the individual works and earns a wage equal
to her marginal productivity net of any social security contributions. This income is then
devoted to consumption in the first period and saving for future consumption. In the
second period, she works for a fraction of her remaining lifetime with her work duration
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being determined by the balance between the marginal income and the disutility created
by the work. In the case of mandatory retirement, however, the optimal retirement choice
may be overwritten and she may be forced to retire earlier than she would like. In the end,
the individual’s second period consumption is equal to the wage earnings from second
period work, savings from the first period’s with interest earnings, and, finally, pension
benefits from the unfunded social security system.

This structure enables us to elaborate on our main results by introducing a number of
institutional and demographic factors vis-à-vis the standard Diamond case, where indi-
viduals do not work in the second period of their lifetime and there is no PAYG pension
system. First, we allow work in the second period of life and investigate how a manda-
tory early retirement rule affects the outcome. Second, we consider different types of
unfunded social security systems in order to see how incentives respond to changes in
demography under different pension system obligations and entitlements. Third, and fi-
nally, we also investigate these effects under different aging profiles, i.e. fertility driven
vs. longevity-driven changes in age composition.

The main contribution of this study is, then, to show the incidence of these three fac-
tors on the effects of aging on capital accumulation and welfare. In the standard Diamond
case, an increase in fertility decreases capital accumulation in the absence of a PAYG pen-
sion system, as capital is diluted by more workers. In our framework, this depressive
effect is reinforced if the country has a DC pension system. In contrast, it is weakened
or possibly reversed with DB pensions. Similar results are also derived with increasing
longevity. A small increase in longevity has a fostering effect on capital accumulation in
the standard case. Introducing PAYG pensions and the possibility of work in the second
period, however, diminishes and potentially reverses the fostering effect.

The economics literature comprises a large number of studies devoted to understand-
ing the effects of demographic aging in different settings. These could be classified on
the basis of numerous criteria: explicit recognition of the distinction between different
sources of aging, e.g. longevity and fertility changes, consideration of different social
security systems, and characterization of growth in exogenous or endogenous settings.
We will not provide an exhaustive review of this large field. However, a subset of these
studies that investigate how institutional factors and behavioral responses may affect the
impact of aging on capital accumulation is more relevant for our purposes.

An interesting discussion on the effect of longevity increase on growth is provided by
Bloom et al. (2007). The authors point out that, in theory, improvements in healthy life ex-
pectancy should increase the average age of retirement with little effect on savings rates.
In many countries, however, retirement incentives in social security programs prevent
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retirement ages from keeping pace with changes in life expectancy, increasing the need
for life-cycle savings. Using a cross-country panel of macroeconomic data, the paper then
finds that increased longevity raises aggregate savings rates in countries with universal
pension coverage and retirement incentives. Similarly, Bloom et al. (2003) show that aging
leads to more capital accumulation even if retirement is endogenous. Echevarria (2004)
reaches the same conclusion. Kalemli-Ozcan et al. (2000) show that the positive effect of
mortality decline on capital accumulation is larger if education decisions are endogenous.

De la Croix and Licandro (1999) and Zhang et al. (2001, 2003) argue that the effect
of increasing longevity depends on its initial level. For low levels of life expectancy the
effect is positive but it can turn negative for high levels. Similarly, Miyazawa (2006) also
shows that the effect of an increase in longevity on economic growth has a hump-shaped
pattern. This is the result of a two-effect system. First, higher longevity increases the
aggregate saving rate directly by increasing precautionary saving for the prolonged re-
tirement period and indirectly by increasing accidental bequests (the bequest-wage ratio
is important because higher-income groups have a higher propensity to save). Second, it
reduces the frequency of accidental bequests, which implies that the population share of
the higher income group decreases. This leads to a reduction in aggregate savings. The
relative shares of these factors change over the aging horizon. This is also true for income
inequality (first positive, then negative). Kinugasa and Mason (2006) provide empirical
evidence to show that an increase of wealth across countries is likely as mortality declines.

Let us also mention the effect of aging on human capital and hence on growth. The
idea that an increase in longevity can foster investment in education became well known
starting with Ben-Porath (1967). Recently, Ludwig and Vogel (2010), by using a two-
period overlapping generation model similar to ours, looked at the effect of longevity
on human capital accumulation but also extended their analysis to cover fertility. They
showed that, whereas declining fertility stimulates education and capital accumulation,
increasing longevity has an ambiguous effect on both.

Among the studies that link the impact of aging with social security systems, Ito and
Tabata (2008) find that unfunded social security systems can explain the hump-shaped
relationship between longevity and per capita output. Tabata (2014) looks at the effect
on growth of a shifting from a DB to a DC PAYG pension on growth. He shows that this
shift is growth-enhancing and alleviates the cost of aging. Heijdra and Mierau (2011) also
compare the respective effects of DB and DC PAYG pensions on economic growth in an
aging society. They show that the DC formula fares better than the DB one in facilitating
growth. They also show that raising the retirement age as a response to an increase in
longevity dampens the growth gains. The analysis in this paper compares several differ-
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ent social security systems, retirement age policies, and types of aging within a unified
framework, thus providing a consistent survey of the welfare effects of demographic ag-
ing under various conditions.

Some of the theoretical results that we develop in this paper are known in the existing
literature. Others, including the surprisingly positive effect of mandatory early retirement
on welfare and the non-monotonic dynamic effects of aging on welfare, are novel. In
addition, a major contribution of this paper is to organize all of these findings in a unified
framework that can show us what would be the ideal social security system for a society
with an aging population. We assume throughout our analysis that the pay-as-you-go
(PAYG) pension system is a given and that, assuming dynamic efficiency, this system is
welfare-worsening. In other words, we do not tackle the issue of shifting from a PAYG to
a fully funded system of pensions.

The rest of the paper is organized as follows. In section 2, we present our basic model
and main results for an economy that consists of identical individuals with a defined con-
tribution pension system. Section 3 is devoted to steady state comparative statics where
we investigate changes in capital accumulation and welfare for all pension systems, retire-
ment schemes, and aging types. Sections 4 and 5 present static and dynamic simulations
respectively. Finally, in the last section, we offer some concluding remarks.

2 Basic Model

We use a standard two-period overlapping generation model. An individual who belongs
to generation t lives in two periods: t and t + 1. The first period of her life has a unitary
length, while the second one has a length ` ≤ 1, where ` reflects variable longevity.

In the first period, the individual works and earns a wage, wt, which is devoted to first-
period consumption, ct, savings, st, and pension contribution, τ. In the second period, she
works for an amount of time zt+1 ≤ ` ≤ 1 and earns zt+1wt+1. These earnings, together
with the proceeds of savings Rt+1st and the PAYG pension p, finance the second period
consumption dt+1.

We assume that working in the second period zt+1 implies a disutility defined in mon-
etary terms v (zt+1, `), where ∂v

∂z > 0, ∂2v
∂z2 > 0 are imposed for the existence of a unique

solution. In addition, disutility from working in the second period of life is a decreasing
function of longevity, i.e. ∂v

∂` < 0, which reflects the idea that an increase in longevity
fosters later retirement. Note that, for simplicity, earnings in the second period of life are
not taxed. Any savings in a funded social security system are not modeled explicitly and
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are assumed to be identical to other savings. Thus, the pension contribution parameter τ

measures the relative size of the unfunded pensions. In other words, τ = 0 implies that
the whole pension system is funded.

Denoting by u (·), the utility function for consumption c or d, and U, the lifetime utility,
the problem of an individual of generation t is:

max
s, z

Ut = u (wt − τ − st) + β`u
(

wt+1zt+1 + Rt+1st + p− v (zt+1, `)
`

)
, (1)

where p = τ(1+ n) is the pension benefit in period t + 1 and β is the time discount factor.
The gross rate of population growth (1 + n) is equivalent to the number of children per
individual in this set-up. Note also that the argument of the second period utility is the
net amount of resources then available divided by the length of the second period.1

The first order conditions for life time utility maximization are simply given by:

v′zt+1
(zt+1, `) = wt+1, (2)

βRt+1u′ (dt+1)− u′ (ct) = 0, (3)

where ct and dt+1 denote first and second period consumption. The first condition (2)
shows that the marginal disutility from the second period of work needs to be equal to
the wage rate in equilibrium. The second condition is the consumption Euler equation,
which shows that the individual cannot gain further utility by reallocating consumption
between periods. In order to be able to show some of our results analytically, we will use
simple functional forms for u (·) and v(·). Accordingly, we assume that the period utility
function is logarithmic u (x) = ln x and that the monetary disutility function is quadratic
in its main argument v (x) = x2

2γ` . One clearly sees from the latter functional form that
the disutility of working longer can be mitigated by an increase in longevity. We can now
rewrite the problem of the individual as the following:

Ut = ln (wt − τ − st) + β` ln

wt+1zt+1 + Rt+1st + p−
(

z2
t+1

2γ`

)
`

 . (4)

1Suppose T1 (T2) is the number of years of the first (second) period, where T1 > T2. The life-time utility
would then be: U = T1u [(w− τ − s) /T1] + βT2u ((wz + Rs + p− v(z, T2))/T2), where we normalize T1
and T2 so that T1 = 1 and T2 = l.
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The first order condition with respect to zt+1 yields:

zt+1 = z∗t+1 = γ`wt+1, (5)

where an asterisk (∗) denotes an optimal solution.2 Using this optimality condition and
incorporating p = τ(1 + n), we now get an explicit solution for the optimal saving rates:

st =
β`

1 + β`
wt −

γ`w2
t+1

2Rt+1 (1 + β`)
− τ

(
β`

1 + β`
+

1 + n
(1 + β`) Rt+1

)
. (6)

In many countries, z is not the outcome of a choice without a distortion. Through an
array of programs, workers are induced to retire at a different age than they would choose
in the absence of these programs. We consider a case where the workers are induced to
retire earlier than they wish, and denote this induced early retirement by z̄.3 In the case
of this mandatory early retirement, we rewrite equations (5) and (6) as follows :

zt+1 = z̄ < z∗t+1,

st =
β`

1 + β`
wt −

z̄
Rt+1 (1 + β`)

(
wt+1 −

z̄
2γ`

)
− τ

(
β`

1 + β`
+

1 + n
(1 + β`) Rt+1

)
. (7)

This structure helps us develop one of the major contributions of this paper by con-
trasting the effects of aging when the choice of retirement is early and mandatory and
when the choice is free. This is a widely discussed topic in the economics of retirement,
where the focus is on the efficiency cost that mandatory early retirement entails. By set-
ting the problem in a dynamic setting we show that early retirement has some virtue as it
stimulates saving and gets the economy closer to the golden rule. By adopting a quasi lin-
ear utility specification in regards to work in second period, we assume away any income
effect, which tends to overemphasize the efficiency incidence of mandatory retirement

2Note that we assume that lifetime utility is increasing in longevity: ∂U
∂l =

β
[
u(d)− u′(d)d− u′(d) ∂z(z,l)

∂l

]
> 0, which is satisfied if u′(d)d

u(d) < 1. Intuitively speaking one
more year of life is worth living. With the functional forms we use, this condition is reduced to
∂U
∂l = β

[
log(d)− 1 + γw2

d

]
> 0.

3An alternative specification could be that second period labor is subject to a proportional tax θ whose
proceeds are returned to the old workers. Their problem would be to choose z such as to maximize :
wz(1− θ) + T − v(z, `). With T = θwz and v = z2/2γ`, this yields z = γ`w(1− θ). In the case of optimal
retirement with no distortions, z = z∗ = γ`w. In the case of induced early retirement, z = z̄ = γ`w(1− θ),
where θ is chosen such as to generate z̄ < z∗; see Gruber and Wise (1999) for this.
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age. But this does not affect the qualitative nature of the message.
We now turn to the production side of the economy. The technology is characterized

by a Cobb-Douglas production function:

Yt = F (Kt, Lt) = AKα
t L1−α

t , (8)

where K is the stock of capital, A is a productivity parameter, and L is the labor force. We
posit A = 1. We distinguish the labor force Lt from the size of generation t, Nt. The labor
force comprises the young population of generation t and the labor force participation of
the older generation t− 1. Incorporating population growth Nt = Nt−1 (1 + n), the labor
force can then be written as Lt = Nt + Nt−1zt = Nt−1 (1 + n + zt). In comparison, total
population at time t is :

Nt + `Nt−1 = Nt−1 (1 + `+ n) .

Denoting Kt/Lt ≡ kt and Yt/Lt ≡ yt, we obtain income per worker (not per capita):

yt = f (kt) = kα
t .

Factors of production are paid according to their marginal contributions :

Rt = f ′ (kt) = αkα−1
t , (9)

wt = f (kt)− f ′(kt)kt = (1− α) kα
t . (10)

Equilibrium conditions in the labor and capital markets are as follows:

Lt = Nt−1 (1 + n + zt) , (11)

Kt+1 = Ltst, (12)

where the latter expression reflects the fact that capital is assumed to depreciate com-
pletely after each period. Although this assumption arises from convenience, it is not
unrealistic considering the fact that a period denotes several decades. Using the optimal-
ity condition for savings that we defined previously, the latter expression can be rewritten
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as follows :

Gt ≡ (1 + n + zt+1) kt+1 −
β`

1 + β`
(1− α)kα

t + τ

(
β`

1 + β`
+

(1 + n) k1−α
t+1

α (1 + β`)

)
,

+
zt+1k1−α

t+1

(1 + β`) α

(
(1− α)kα

t+1 −
zt+1

2γ`

)
= 0,

(13)

which explicitly defines the dynamic behavior of capital stock. Note that the standard
(Diamond) case with no social security and work in the second period of life can be de-
duced by shutting down these two sections, z = τ = 0, which generates the following:

Gt ≡ (1 + n) kt+1 −
β`

1 + β`
(1− α)kα

t . (14)

Comparing (13) and (14), we observe two main differences. First, the third term on the
right-hand side of (13) denotes the double burden that PAYG imposes on savings. Second,
the fourth term reflects the double effect of working in the second period: a distortionary
effect if z is not optimal and a savings inducement effect if z < z∗.

In equations (6) and (7) we assumed a pension system that relies on a defined contri-
bution (DC) formula in which the tax τ̄ is given and thus the benefits p have to follow
through based on demographic shifts. An alternative system can also be considered that
offers constant annuity benefits ā (DB) during retirement.4 The two revenue constraints
that these systems imply are as follows:

DC : τ̄(1 + n) = p,

DB : ā(`− z) = τ(1 + n),

where an upper bar denotes the defined variable. For example, ā is the defined annuity
and τ has to adjust to variations in z, `, and n in this case. Note that for each type of
pension system, the individual utility has to adjust accordingly. With DB the choice of the
retirement age is not z∗t+1 = γ`wt+1 as in the DC case, but z∗t+1 = γl (wt+1 − ā) to take
into account that working one more year implies foregoing ā.5

We have so far identified two major dimensions of a social security system: is it DC

4With defined benefits, there are two ways of exiting the pension system at the time of retirement: either
through annuities or by receiving some capital. Most public DB systems provide annuities. Some DB
private systems, on the other hand, provide the option to choose between the two types of exits.

5Note that we could include a defined contribution system with annuities, where τ̄(1+ n) = a(1− z), or
a defined benefit system with lump sum benefits, where τ(1 + n) = p̄. However, we restrict our attention
to the more commonly known cases.
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Table 1: Different Social Security and Retirement Regimes

Type of Social Security System Retirement Age Regulation Scheme
Case-1 Defined Contribution Mandatory Early Retirement
Case-2 Defined Benefit Mandatory Early Retirement
Case-3 Defined Contribution Optimal Retirement
Case-4 Defined Benefit Optimal Retirement
Notes: Optimal retirement is given by z∗ = γ`w, and mandatory early retirement is given by z = z̄ < z∗.

or DB, and is there mandatory early retirement or not? Together, these two dimensions
provide four different ways to describe equation (13). These four cases are presented in
Table 1, and the corresponding equations for Git are provided in Appendix 1.

Before proceeding with comparative statics, it is important to further discuss some of
the assumptions made in this paper. First, we adopt simple functional forms for utility
and production. This allows us to obtain analytical results to the extent possible and lets
us assume the existence of a unique and stable equilibrium. This equilibrium is defined
by the dynamics of capital accumulation (13), where 0 < ∂kt+1

∂kt
< 1. This condition im-

plies that ∂G
∂k > 0 holds in a steady state.6 Second, we assume a quasi-linear disutility

from working in old age. On the one hand, this means that we neglect income effects
that could clearly play some role in retirement decision. On the other hand, this assump-
tion allows us to better contrast mandatory early retirement and freely chosen retirement.
Finally, we assume away the intensive margin in the first period and just focus on the in-
tensive margin in the second period. This simplifies the analysis and is in agreement with
the literature on age taxation that focuses on the retirement decision; see, for example,
Lozachmeur (2006).

3 Steady State Comparative Statics

In this section, we investigate comparative statics for the four alternative social security
systems identified in the previous section. We adopt a steady state setting and are not
concerned by any dynamics that may account for a move from our steady state to another
one caused by demographic changes. Our main aim is to elaborate on the behavior of

6In this paper we refrain from discussing the issue of existence, unicity and stability of the equilibria by
choosing commonly known and well behaving functional forms. For a general technical discussion on this,
see de la Croix and Michel (2002), and for a discussion of a framework similar to our model, see Ludwig and
Vogel (2010). Finally, Rogerson and Wallenius (2009) provide a nice discussion on preference specifications
that are consistent with balanced growth.
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capital accumulation when the economy experiences aging due to lower fertility or higher
longevity.

3.1 Mandatory Early Retirement

We begin by showing the impact of an increase in fertility in a mandatory early retirement
system:7

Case 1 (DC, z̄) : Ψ
∂k
∂n

= −k− τ̄k1−α

α(1 + β`)
< 0, (15)

Case 2 (DB, z̄) : Ψ
∂k
∂n

= −k +
ā(`− z̄)β`

(1 + β`)(1 + n)2 ≷ 0, (16)

where Ψ =
(

∂G
∂k

)−1
> 0. In a standard case (Diamond), an increase in fertility has a

depressive effect on capital accumulation in the absence of a PAYG pension system. This
is shown by the first term on the right-hand side of each equation above, which is often
called the “capital dilution” effect. This depressive effect is reinforced in a DC pension
system as shown by the negative second term in (15) but is weakened or possibly reversed
in DB pension systems as shown by the positive second terms in (16). The explanation is
quite intuitive. With a DC system, an increase in the fertility rate implies an increase in
pensions, which discourages saving. With a DB system the pension level is kept constant
and thus the contribution rate decreases, which fosters saving. We call this effect the
“savings displacement” effect. Note that, in DB, the lower the z̄, the larger the negative
savings displacement effect. With a too generous pension, an increase in fertility can even
lead to an increase in capital.

Next, we turn to the impact of an increase in longevity on equilibrium capital per
worker in a mandatory early retirement system:

Case 1 (DC, z̄) : Ψ
∂k
∂`

=
1

(1 + β`)2 [βw− τ̄Π− z̄Ω] ≷ 0, (17)

Case 2 (DB, z̄) : Ψ
∂k
∂`

=
1

(1 + β`)2 [βw− āΘ− z̄Ω] ≷ 0, (18)

where Π = ( β
R ) [R− (1 + n)], Θ = β(`−z̄)

(1+n)R [R− (1 + n)] + (1+β`)
(1+n)R [

R
βl + (1 + n)], and Ω =

1
2Rγ`2 [βlz̄ + 2(z̄− z∗)].

In both (17) and (18) we have three terms in brackets. The first term, which is com-

7Although we are concerned with decreasing fertility, it is clearer mathematically to look at the effect of
an increasing fertility.
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mon to both cases, represents the capital dilution effect that is always positive. The third
term is also common to the two expressions. It represents the savings displacement ef-
fect due to the mandatory retirement. When z̄ = 0, this term vanishes. The need for
saving is then at its highest as there are no earnings in the second period. Thus, as z̄ in-
creases, the effect of longevity on capital decreases. The second term varies between the
two expressions. It represents the saving displacement effect due to social security and
vanishes when τ̄ = ā = 0. Remember that we assume dynamic efficiency, R > (1 + n),
and as shown by Aaron (1966), when the marginal productivity of capital is higher than
the rate of population growth, social security depresses both capital and welfare. With
DB, the savings displacement effect due to the defined annuity ā comprises not only the
gap between R and (1 + n) but also the sum of the two rates.

Next, we investigate capital accumulation in the absence of a mandatory retirement
age.

3.2 Optimal Retirement

We now relax the early retirement assumption and analyze the impact of aging on capital
accumulation when retirement is chosen optimally. The analysis here shows that, com-
pared to the case with early retirement, the ability to adjust the retirement age optimally
leads to less distortion in equilibrium, but it also diminishes incentives for saving.

Case 3 (DC, z∗) : Ψ
∂k
∂n

= −k− τ̄k1−α

α(1 + β`)
< 0, (19)

Case 4 (DB, z∗) : Ψ
∂k
∂n

= −k +
āβ`2(1− γ(w− ā))
(1 + β`)(1 + n)2 ≷ 0. (20)

Similar to the case with early retirement, the PAYG pension system reinforces the de-
pressive effect of an increase in the fertility rate on capital accumulation in the DC case
and weakens or possibly reverses it in the DB case. Turning to the effect of longevity
when z is endogenous, we have:

Case 3 (DC, z∗) : Ψ
∂k
∂`

=
1

(1 + β`)2 [βw− τ̄Π−Φ] ≷ 0, (21)

Case 4 (DB, z∗) : Ψ
∂k
∂`

=
1

(1 + β`)2 [βw− āχ−Ψ] ≷ 0, (22)
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Table 2: The Effects of Aging on Equilibrium Capital Per Worker

Standard Case Defined Contribution Defined Benefit
Mandatory Early Retirement

Decrease in Fertility > 0 > 0 ≶ 0
Increase in Longevity > 0 ≶ 0 ≶ 0

Optimal Retirement
Decrease in Fertility > 0 > 0 ≶ 0
Increase in Longevity > 0 ≶ 0 ≶ 0

where the expressions within brackets are defined as Φ = kγw
2α

[
2α(1 + β`)2 + (1− α)

]
,

χ =
(

1−γ(w−ā)
(1+n)R

)
[(1 + n)R + βlR(1 + βl)], and Ψ = kα(w−ā)

2α

[
2α(1 + βl)α + ā

kα + (1− α)
]
.

In both expressions above, we observe a positive capital dilution effect. We also have
two savings displacement effects that are both negative and different for the DC and the
DB regimes. As in the mandatory retirement case, with τ̄ = ā = 0 the savings displace-
ment effect of social security vanishes. However, this effect increases with the two social
security parameters, τ̄ in DC and ā in DB. The terms Φ and Ψ represent the savings dis-
placement effect due to second period activity. They vanish when γ = 0, which implies no
activity in the second period. Both of these terms increase with longevity as z* increases
with l. There is an additional depressing term with DB, which increases with ā.

We summarize these in Table 2. The only unambiguous case is the positive effect
of declining fertility with DC. Increasing longevity is ambiguous but has a higher effect
with z̄ = 0 than with z∗. With DB, both sources of aging have an ambiguous effect but,
again, the effect is more prominent with z̄ = 0 than with z∗. These results are intuitive:
with z̄ = 0 or at least z̄ < z∗, individuals anticipate a lower level of earnings in the
second period and compensate for this by increasing their savings. As we consistently
assume dynamic efficiency, all things being equal, utility under optimal retirement is not
necessarily higher than under mandatory retirement. This is mainly because mandatory
early retirement induces higher saving and capital accumulation as desired consumption
in the second period of life time cannot be financed by extending work hours. As a result,
mandatory early retirement presents a case that is closer to the golden rule than optimal
retirement. This is a standard second-best problem where a distortion makes a second
distortion desirable.
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3.3 Aging and Utility

We next study the effects of aging on welfare. To do this, we need to distinguish between
two main drivers of welfare: the capital stock that determines aggregate production and
the PAYG system that has a differential impact under DC and DB. In order to provide
some analytical results for the PAYG effect, we look at the incidence of aging in a fixed
factor prices setting. We prove the following proposition in Appendix 2.

Proposition 1. In a fixed factor price setting with PAYG social security and endogenous retire-
ment age,

1. An increase in the fertility rate always improves individual welfare. In the case of DC the
effect is the same whether retirement is freely chosen or mandatory. In the case of DB, the
effect is smaller when the retirement age is not regulated.

2. Assuming that surviving one more year in the second period is desirable, the welfare inci-
dence of an increase in longevity is consistently positive with DC. With DB the incidence is
ambiguous. Yet it is higher with optimal retirement than with mandatory retirement.

To see the effect of aging on welfare, we have to combine the capital effect that was
studied in the previous subsections and the PAYG effect. We resort to numerical simula-
tions to be able to show these combined effects. Note that in a fixed factor price setting
one clearly sees the utility gain of having z∗ instead of z̄ < z∗. This has to be distin-
guished from what the above proposition shows, namely that with DC the welfare boost
of a fertility increase can be higher with z̄ than with z∗.

4 Steady State Simulations

The analysis so far has shown that demographic change has different implications for
capital accumulation under alternative PAYG systems. Analytically, these results are suf-
ficient to show that the impact is different quantitatively. In order to better grasp these
effects and to study the welfare effects, we now employ a numerical example. To this ef-
fect, we use common values of parameters from the literature to simulate the equilibrium
profiles for the agent’s lifetime utility U and capital per worker k with different values of
fertility n and longevity `.8 Figures 1 and 2 show our results with respect to variations in

8Note that we do not attempt to calibrate the simulations to any specific country case. As the model is built to demonstrate our
results (preferably analytically) by using the simplest possible case, it does not lend itself to replicating the complex demographic
and institutional aspects of actual country examples. Nevertheless, we chose commonly used parameter values: A = 10, α = 0.33,
β = 0.25, and γ = 0.15, where A is a scaling parameter and plays no important role and capital’s share in income in the economy
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Figure 1: Fertility, Lifetime Utility and Capital per Worker
Defined Contribution Defined Benefits 
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Notes: Simulations reflect the parameter values: A = 10, α = 0.33, β = 0.25, and γ = 0.15. In addition,
the following assumptions were made when needed: a = 1.6, z̄ = 0.394 in the defined benefit case
with mandatory retirement and z̄ = 0.579 in the defined contribution case. These values equalize the
starting points of mandatory and optimal retirement systems at n = 0.2.

fertility and in longevity respectively. In those figures we give the steady state values of
k and U that correspond to different values of n and `. Note that, to make the compar-
ison easier, we normalize utility at 100 at the starting point of the fertility decline or the
longevity increase.
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Figure 2: Longevity, Lifetime Utility and Capital per Worker
Defined Contribution Defined Benefits 
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Notes: Simulations reflect the parameter values: A = 10, α = 0.33, β = 0.25, and γ = 0.15. In addition,
the following assumptions were made when needed: a = 1.6, z̄ = 0.394 in the defined benefit case
with mandatory retirement and z̄ = 0.579 in the defined contribution cases. These values equalize
the starting points of mandatory and optimal retirement systems at ` = 0.6.
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4.1 Declining Fertility

We start with the interpretation of the declining fertility case. Note that we impose a
condition that the mandatory age of retirement is not distortionary at the highest level
of fertility level in Figure 1, i.e. it is set at the optimal retirement age. This explains why
both the level of capital and the generational utility are identical in the mandatory and
optimal retirement systems at this point. We start at n = 0.2 and look at the steady states
that correspond to values of n declining from 0.2 to 0. At n = 0.2, z̄ = z∗. When n
decreases, if the capital stock increases, z∗ will also increase, which means that, at n = 0,
the gap between z̄ and z∗ is at its highest with expected and contrasted implications to
which we now turn.

In both DC and DB pension regimes considered, the capital stock increases regardless
of the retirement age regulations when fertility decreases. This increase differs from one
case to the other with clear implications for the welfare level. We first consider the DC
regime. The increase in k is greater with z̄ than with z∗. With z̄, as k increases the labor
distortion increases with the effect of pushing for additional saving. This explains why
the capital stock with mandatory retirement (solid black line) dominates the capital stock
under optimal retirement (dashed line) in Figure 1. The same relationship is also true for
the utility profiles under the mandatory and optimal retirement systems with DC. As n
is declining, the capital increases as we have seen and this is dynamically efficient. This
effect dominates the static efficiency loss resulting from an increasing gap between z∗ and
z̄.

Under the DB regime, the capital profile is the same for both retirement assumptions.
Utility profiles, however, differ significantly between the two. A decrease in fertility leads
to an initially increasing and then decreasing (hump-shaped) lifetime utility with optimal
retirement. In comparison, utility always decreases with mandatory retirement. This is
consistent with our theoretical findings above. The capital stock increases at the same
pace with z∗ and z̄, which implies the same positive impact on utility from the capital
dilution channel. The difference thus comes from the channels described in Proposition
1: the negative PAYG effect of a declining fertility is larger with z̄ than with z∗. The capital
stock evolution does not play any role, the main explanation comes from what we call the
static inefficiency of mandatory retirement that increases as k increases.

(α) reflects the averages for the OECD countries, see Jones (2003). Considering the fact that each period represents approximately
35 years in our model, β is equivalent to 0.96 in annual terms. In addition, the following assumptions were made when needed:
a = 1.6, z̄ = 0.394 in the defined benefit case with mandatory retirement and z̄ = 0.579 in the defined contribution case. These values
are chosen to make the initial conditions and changes comparable with alternative social security systems. As to the demographic
parameters, we took n ∈ (0, 0.2) and ` ∈ (0.6, 1). The results are quite robust to an alternative range of values for either n or `.
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4.2 Increasing Longevity

We next turn to aging due to an increase in longevity. Note that, in all cases, capital per
worker increases with longevity. However, the effect is more prominent in the mandatory
retirement scheme under both DC and DB. This is also consistent with our theoretical re-
sults. With a longer life span, savings are increased to smooth consumption between two
periods. The increase in savings is more dramatic when work hours cannot be adjusted
in the second period of life.

Similarly, lifetime utility increases in the four cases. Whereas optimal retirement dom-
inates mandatory retirement in the case of DB, the opposite occurs in the case of DC. The
reason for this contrasting result is straightforward. We observe that with DC, the capital
gap between z̄ and z∗ is higher with DC than with DB when l = 1. As a consequence,
with DC the gain in dynamic efficiency (getting closer to the golden rule) dominates the
loss in static efficiency (on the labor market). The opposite holds in the case of DB. It is
important at this point to recall the key differences between DB and DC regarding aging.
On the one hand, DB contributions decrease with fertility and increase with longevity. On
the other hand, DC benefits increase with fertility but do not depend on longevity. These
differences between DB and DC explain the results that appear on Figures 1 and 2.

Overall, the static simulations in this section show that the DC pension system seems
to outperform the DB system in aging societies regardless of the retirement age regu-
lation. This is particularly the case when the mandatory early retirement rule prevails.
Note, however, that these observations compare long-term performance. Next we inves-
tigate the transition dynamics between two static equilibria brought about by a change in
fertility or longevity, that have the same impact on the old age dependency ratio.

5 Dynamics

Up to now we have been concerned by the long-term (steady state) implications of aging
in alternative pension systems. In this section, we investigate whether the short-term
impact of a demographic shift is different from the long-term implications in alternative
configurations of pension systems.

The simulations in this section use the same parameter values as in the static simula-
tions in the previous section. However, in this case, we need to specify the magnitude of
the demographic transition between two steady states as a single value. In order to make
comparable the changes in n and `, we characterize fertility-driven aging by decreasing
the n from 0.2 to 0.137 and longevity-driven aging by increasing the ` from 0.9 to 0.95.
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These changes, in turn, increase the rate of dependency `
1+n by about 5.6 percent in com-

parison with the initial steady state. We assume that there is perfect foresight, i.e. both
changes are anticipated by the agents in advance. We introduce both changes in period-6
in order to observe the anticipatory adjustments as well as the after-change propagation.
These demographic shifts lead to new equilibria over time, though not necessarily in a
monotonic manner as we show.

Figures 3 and 4 show the dynamic adjustment paths in different social security sys-
tems and demographic changes. In the case of capital accumulation, transitions are gen-
erally monotonic with the exception of an increase in longevity in DB, which we explain
below. In all cases, capital per worker increases starting from period-6. Note that the cap-
ital per worker in period-6 is determined by a combination of two factors: savings made
by the generation that is born in period-5 (which we call generation-5 from now on) and
the size of the workforce in period 6 (which comprises generation-6 and the old age work
hours of generation-5). In the most obvious case where the retirement age is regulated by
a mandatory retirement system and aging is driven by changes in longevity, capital by
worker increases as generation-5 increases its savings to smooth their consumption over
a longer lifespan. With DB, generation-5 again increases its savings to finance consump-
tion over a longer life when longevity increases in period-6. However, the members of
this generation do not bear the burden of financing a larger pension bill since they con-
tributed in period-5, before the demographic change occurs. In comparison, generation-6
and following generations pay higher social security contributions, which reduces their
first period income. Thus, they cannot save as much as generation-5, which translates
into a temporary overshooting in capital accumulation in period-6 as shown in Figure 4.

The other cases present more complex mechanisms. For instance, in an optimal re-
tirement system with fertility-driven aging, capital per worker also increases due to the
capital dilution effect, i.e. holding generation-5 savings constant, each worker gets to use
more capital as there are fewer workers in generation-6. At the same time, the elderly
from generation-5 increase their labor force participation, which partially offsets the de-
crease in n. Moreover, if the pension system is DC, then members of generation-5 may
also adjust their savings in anticipation of a change in income in period-6, which comes
as a result of a decrease in pensions as well as changes in interest earnings and wages as
a result of the capital deepening that occurs in period-6.

The most striking result, however, is a transitory loss in lifetime utility that comes
with a fertility drop. Consider the case of fertility-driven aging in a defined contribution
system for instance. Although the long-term impact of a fertility shock in period-6 on
welfare is positive, generation-5 experiences a decline in its lifetime utility. In order to
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Figure 3: Dynamics of Fertility-driven Aging
Defined Contribution Defined Benefits 
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Notes: Simulations reflect the parameter values: A = 10, α = 0.33, β = 0.25, and γ = 0.15. In addition, the
following assumptions were made when needed: ā = 1.6, z̄ = 0.394 in the defined benefit case with
mandatory retirement and z̄ = 0.579, τ = 0.67 in the defined contribution case. Thus, with defined
contribution, the pension contributions constitutes about a fifth of consumption. These values also
equalize the mandatory and optimal retirement systems at ` = 0.6. The fertility drop denotes a
decrease in n from 0.2 to 0.137 in period 6. Utility level at period t shows the lifetime utility of the
generation who are born in period t and live in period t and t + 1.
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Figure 4: Dynamics of Longevity-driven Aging
Defined Contribution Defined Benefits 
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Notes: Simulations reflect the parameter values: A = 10, α = 0.33, β = 0.25, and γ = 0.15. In addition, the
following assumptions were made when needed: ā = 1.6, z̄ = 0.394 in the defined benefit case with
mandatory retirement and z̄ = 0.579, τ = 0.67 in the defined contribution case. Thus, with defined
contribution, the pension contributions constitutes about a fifth of consumption. These values also
equalize the mandatory and optimal retirement systems at ` = 0.6. The fertility drop denotes a
decrease in n from 0.2 to 0.137 in period 6. Utility level at period t shows the lifetime utility of the
generation who are born in period t and live in period t and t + 1.
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see this, note that the fertility change reduces the pensions of generation-5 and, thus,
the old-age consumption. At the same time, because this particular generation already
worked and contributed to social security system in period-5, it does not benefit from
efficiency gains available to future generations to the same extent. As the decrease in
fertility brings the economy closer to golden rule savings, lifetime utility increases for the
following generations.

The same principle is also operative in the fertility-driven aging with defined bene-
fits case. Although pensions do not change in this case, there are other factors that affect
the income of generation-5 in period-6. Note that when fertility decreases in period-6,
it leads to capital deepening through adjustments in the capital dilution effect as well as
the savings displacement effect. As a result, interest earnings on period-5 savings de-
crease and the wages increase in period-6. However, the latter is only partially beneficial
to generation-5 as their work hours in period-6 are limited. Thus, the decrease in inter-
est earnings dominates the gain in wages, leading to a loss in lifetime utility.9 With an
increase in longevity in the DB case, we observe an increase in longevity followed by
a small decrease starting with generation-6. This follows from the capital accumulation
dynamics that are described above.

Overall, our dynamic simulations also highlight other interesting trade-offs between
alternative social security systems. The long-term welfare gain under DC is larger than
under DB in all kinds of aging and retirement age regulation regimes. This can be seen by
comparing the changes in equilibrium capital per worker and lifetime utility as a share of
the initial equilibrium values displayed in Figures 3 and 4. For instance, when retirement
age is flexible, the fertility change leads to a 1 percent increase in utility in the long term
when pension system is based on defined contribution. In comparison, the increase in
utility under defined benefit pensions is only about 0.1 percent. However, this ranking
between the DC and DB is not necessarily true in our short-term simulations. With a
fertility drop, the transition generation (generation-5) experiences a welfare reduction in
the case of DC (0.2 percent). In comparison, the reduction in DB is about half of that
(0.1 percent). Moreover, when aging is driven by an increase in longevity, the transition
generation is better-off under DB than the future generations. This is not observed with
DC, where lifetime utility gradually increases over time before it stabilizes at the new
steady-state.

9Note that, since the underlying model is a simple two period OLG framework, changes in key variables
are not expected to reflect the smooth adjustments that could happen in large calibration models where one
period is approximately one calendar year.
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6 Conclusions

In this paper, we evaluate the effects of aging on capital accumulation and lifetime utility.
We show that these effects differ both quantitatively and qualitatively depending on the
type of social security system, type of retirement regulations and the time frame of the
analysis. The effects of an increase in longevity or a decrease in fertility, two phenomena
that contribute to aging, change depending on a number of features in the pension system.
In a standard overlapping generations model with no social security or second period
work, a decrease in fertility and increase in longevity should lead to an increase in capital
accumulation. However, this is not necessarily the case once we introduce those elements.
The effect of a decrease in fertility on capital accumulation is still positive with a defined
contribution system regardless of the retirement age regulation; however, the results are
ambiguous with other unfunded social security systems and with an increase in longevity.

To show our results, we used a theoretical OLG model with simple functional forms,
and when needed, we proceeded with numerical simulations by using plausible parame-
ter values. Given this framework, it is legitimate to question the generality of our results.
Would they still hold with a more complex model and more realistic calibrations? With
alternative numerical examples, which we excluded here for the sake of brevity, that com-
prise a CES production function and wider ranges of longevity and fertility values, our
results did not change qualitatively. An interesting one among those alternatives is the
case where we try with the CES an elasticity that brings the economy close a fixed factor
price scenario. Our results remained consistent with those presented in Proposition 1.

We believe that our findings have important implications. Demographic aging takes
different forms across countries; therefore, the consequences of aging for growth and
welfare are likely to be different as well. In the meantime, social security systems tend
to shift progressively from a regime of defined benefits towards one of defined contribu-
tions, which is more common across countries. Our dynamic simulations show that this
shift could bring long-term gains; however, the transition could impose welfare costs for
current generations. The relative importance of such gains and losses, again, vary among
different types of aging. In our future research, we intend to look at the joint effect of ag-
ing and changes in the social security regimes explicitly: from DC to DB and from early
retirement to flexible retirement. A limitation of the current analysis is the assumption
of identical individuals. With heterogeneity in wages, we might find more merits in the
defined benefit formula, which is also left for future research.
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Appendix 1: Motions of Capital with Alternative Designs of Social Se-

curity

Case 1 : G1t ≡ (1 + n + z̄) kt+1 −
β`

1 + β`
(1− α)kα

t +
τ̄

1 + β`

(
β`+

(1 + n)k1−α
t+1

α

)

+
z̄k1−α

t+1

(1 + β`) α

(
(1− α)kα

t+1 −
z̄

2γ`

)
= 0

Case 2 : G3t ≡ (1 + n + z̄) kt+1 −
β`

1 + β`
(1− α)kα

t +
ā(`− z̄)
1 + β`

(
β`

(1 + n)
+

k1−α
t+1

α

)

+
z̄k1−α

t+1

(1 + β`) α

(
(1− α)kα

t+1 −
z̄

2γ`

)
= 0

Case 3 : G3t ≡ (1 + n + (1− α)kαγ`) kt+1 −
β`

1 + β`
(1− α)kα

t

+
τ̄

1 + β`

(
β`+

(1 + n)k1−α
t+1

α

)
+

(1− α)2γ`k1+α
t+1

2 (1 + β`) α
= 0

Case 4 : G4t ≡ (1 + n + Dtγ`) kt+1 −
β`

1 + β`
A(1− α)kα

t +
ā(`− Dtγ`)

1 + β`

(
β`

(1 + n)
+

k1−α
t+1

Aα

)

+
Dtγ`k1−α

t+1

(1 + β`) Aα

(
(1− α)kα

t+1 −
Dt

2

)
= 0

where Dt = (1− α)kα
t − ā.

Appendix 2: Fixed Factor Price

In this section, we elaborate on the effects of aging on welfare in a fixed factor price setting. Re-

turns to capital (R) and labor (w) are fixed. We also assume that z̄ = 0 when mandatory retirement

is implemented and that v(z, l) = z2

2γl and R = 1 for the sake of simplicity. These assumptions have

no real bearing on the analysis, except that assuming z̄ = 0 exacerbates the utility gain of having

an endogenous retirement age. Having freely chosen z implies that second period consumption

is w2γ`
2 higher. Given these assumptions, we can write down the lifetime utilities following the

definitions in Table 1:

Case 1 : U1 = u (w− τ̄ − s) + `u
(

Rs + τ̄(1 + n)
`

)
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Case 2 : U2 = u
(

w− s− ā
1 + n

`

)
+ `u

(
Rs + ā`

`

)

Case 3 : U3 = u (w− τ̄ − s) + lu

(
Rs + τ̄(1 + n) + w2γ

2 `

`

)

Case 4 : U4 = u
(

w− s− ā
1 + n

`(1− wγ)

)
+ `u

(
Rs + w2γ`

2 + āl(1− wγ)

`

)
Next, we evaluate the effect of a marginal change in longevity and fertility by differentiating

the definitions above. In all cases, a small increase in fertility is found to improve the welfare

when wages and interest rates are unaffected.

Case 1 :
∂U1

∂n
= `u′(d)τ̄ > 0

Case 2 :
∂U2

∂n
= u′(c)

`ā
(1 + n)2 > 0

Case 3 :
∂U3

∂n
= `u′(d)τ̄ > 0

Case 4 :
∂U4

∂n
= u′(c)ā

`(1− γw)

(1 + n)2 > 0

Similarly, the effects of longevity are given by:

Case 1 :
∂U1

∂`
= u(d)− u′(d)d > 0

Case 2 :
∂U2

∂`
= u(d)− u′(d)d + u′(d)ā

(
1− R

1 + n

)
≷ 0

Case 3 :
∂U3

∂`
= u(d)− u′(d)d + u′(d)

w2γ

2
> 0

Case 4 :
∂U4

∂`
= u(d)− u′(d)d + u′(d)

w2γ

2
+ u′(d)ā

(
1− R

1 + n

)
(1− γw) ≷ 0

where we assume that u(d)− u′(d)d > 0 and that R > 1 + n. Cases 2 and 4 are ambiguous.

Longevity is welfare-improving if ā is small enough and/or R is not much higher than 1 + n.

Naturally if R ≤ (1 + n), longevity is consistently welfare-improving.
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