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Abstract 
 
The literature on learning in unknown environments emphasises reinforcing on actions which 
produce positive results. But, in some cases, success requires shifting from a currently 
successful actions to others. We examine, experimentally and theoretically in a very simple 
framework, how individuals initially learn by exploiting information from the pay-offs of 
actions taken but also from exploring new actions. We analyse if and how they learn that pay-
offs are inter-temporally dependent. We then ran the same experiments but where individuals 
could observe the actions taken or the pay-offs obtained by others or both. Such observations 
improved pay-offs if one of the pair had learned to obtain the maximum pay-off. 
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1 Introduction

When individuals have to learn which of the many courses of action open to them yield the best

results, they typically start exploring the various possibilities that they perceive. They start with a

set of possible actions and try to choose amongst them but may learn that there are other options

available to them as they proceed.

Most of the emphasis in the learning literature is on reinforcing actions which have produced

positive results (Bush and Mosteller, 1951) whether the reinforcement is based on the realized

payoffs (Erev and Roth, 1998), the foregone payoffs (Camerer and Ho, 1999), or their regrets

(Marchiori and Warglien, 2008). However, they should also explore alternatives other than those

which they have tried in the past even if some of the latter have given positive results. This is

what is referred to in the literature as the “exploration, exploitation” trade-off (March, 1991) and

we will use this as our basic framework. We will assume that agents start with a model of their

environment and try to learn within it.

But, what if this model is an inadequate representation? Can agents learn not only which

actions to take in their currently perceived model but also to change the latter? In our theoretical

model, we will model the process involved in doing this.

To focus the discussion, consider the case in which the success of an endeavor depends on

shifting from a currently successful action to another. The simplest case is that of fisheries. Having

fished at one period in a certain area, fishermen move on to other areas knowing that otherwise

their catch will diminish and that the remaining fish will not be sufficient to replace the current

population. A more subtle problem but still a classic example is crop rotation where sustainable

success depends on changing the crop cultivated each year. The yield from a crop grown on a given

plot of land this year depends on what was grown there in the past. The use of such inter-temporal

strategies depends on the farmer becoming aware of the existence of inter-temporal dependencies in

the payoffs across various options. Once this happens he will then have to explore among the many

possible inter-temporal choice strategies to discover the ones that result in higher payoffs. This

problem is particularly difficult because farmers may well learn quite quickly that leaving the land
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fallow will improve the yield of the crop which was planted previously, but it is more complicated

to understand that growing other crops on the same land may actually improve the yield compared

to what it would have been if it had been left fallow. The process by which people become aware of

such features of the environment that they have not known before, and learn to adopt potentially

more complex, but better, behavioral strategies is not yet very well understood. How individuals

learn which actions to take within their perceived model has been thoroughly investigated but how

they learn to change their perception of their model is much less clear.

This raises an important question which has generated a large literature. What are the mental

processes at work that lead individuals to learn how to understand and operate in their environ-

ment? This has been the subject of considerable interest in the neurosciences where attention has

been focused on the mechanisms which lead a person to start exploring new alternatives and thus

to enlarge his vision of the world he lives in.

One approach has been to identify the neural processes at work when an individual suddenly

perceives the answer to a problem he or she has been wrestling with. This is often referred to as

the “aha” or, referring to Archimedes, the “eureka” moment. There is now a substantial literature

trying to identify the changes in neural activity that take place when such a realisation occurs (see

Auble et al., 1979; Kounios et al., 2008; Topolinski and Reber, 2010). However, this literature has

focused on solving a well defined problem to which it is known that there is a “solution” such as

the Rubik’s cube or a mathematical puzzle.

We are concerned with a more general situation in which individuals take actions and try

to improve their performance but do not know whether there is necessarily a “solution.” What

interests us, in particular, is how agents come to decide to try alternative actions to those which

they have already used. It is now argued, in the neuroscience literature, that different mechanisms

operate in the brain when an individual switches from exploiting the information about the various

options he has tried to exploring new ones (see Laureiro-Mart́ınez et al., 2014, 2015).1

1Not only are different networks of neurons activated in the two cases but the process of switching is different
depending on the activity that an individual normally pursues. The authors compared two groups of subjects,
managers and entrepreneurs, and found that the threshold at which a manager passed to exploration is significantly
higher than that of an entrepreneur. In other words, entrepreneurs tend to function in the exploratory mode more
often than managers. Indeed, the distinction that emerges between people with different professions suggests that
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In this paper, we focus on experiments to investigate how individuals gain a better understanding

of their environment and, as a result, obtain better results. We study a case in which the payoffs

from actions are correlated and have a temporal structure. More specifically, we study a case in

which subjects are faced with a multi-armed bandit and try to obtain the highest pay-off they can

get from choosing the different arms in succession. Our experiment is very different from other

experiments on “standard” stationary multi-armed bandit problems in which all the arms generate

stochastic payoffs from predetermined distributions, and the task for a subject is to find which one

to choose (see, for example, Banks et al., 1997; Brown et al., 2009; Efferson et al., 2007; Hu et al.,

2013; McElreath et al., 2005; Steyvers et al., 2009). In that framework, agents will optimally try

arms to form an idea as to their expected pay-offs and will have a stopping rule which tells them

when to stop experimenting and stick to that arm which has proved most successful up to that

point. Such a strategy is not well adapted to a framework like ours in which payoffs have temporal

structure and are not independent of each other.

How individuals learn which action to take, in the sort of context that corresponds to our

experimental framework, and how to condition that choice on previous experience has been a

subject of considerable interest in other fields such as machine learning. There, a problem which

corresponds to our simplest case, is what is referred to as the “contextual bandit problem.” In this,

as in our experiments, an agent collects rewards for actions taken over a sequence of rounds. At

each point in time, the agent chooses an action to take on the basis of two things: the context for

the current round, and the feedback, in the form of rewards, obtained in previous rounds. That

literature has focused on the optimal choice of the probabilities with which to explore different

actions. The strongest known results (Auer, 2002; McMahan and Streeter, 2009; Beygelzimer

et al., 2011) provide algorithms that carefully control the distribution of the probabilities with

which actions are explored, to achieve an optimal regret after T rounds. However, in this paper,

we will use a rather simple exploratory rule, “entropic” exploration. The logistic rule which we

employ can be derived as an optimal trade-off between exploitation and exploration (Nadal et al.,

1998).

this process is also present in longer term situations.
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An important feature of our problem, as mentioned, is the sequential nature of the pay-offs and,

until the subject recognises this structure, he may continue to try to reinforce on the experience

from choosing single arms. The important change that is necessary for him to learn how to improve

his gain, is to recognise that there is a sequential pattern in the pay-offs and then reinforce on

those. Thus he has to change the space of possible choices to one of choices conditioned on what

has happened in the past, and this, in our framework, is the “context” which is referred to in

the machine learning literature to which we have just alluded. Indeed, the literature on machine

learning has dealt with similar issues when analyzing problems in “sequence extrapolation” (Laird

and Saul, 1994). That literature typically tries to develop deterministic algorithms that may be

used for successful sequence predictions in general. And where there is an underlying deterministic

process generating pay-offs as in our case, such an approach is appropriate.

Our paper provides a link between two approaches, that of machine learning in which the

recognition of patterns in the data being observed is the primary objective, and that developed in

game theory in which the objective is to recognise patterns in opponents’ behaviour (see, Sonsino,

1997; Spiliopoulos, 2012, 2013). Although the mechanics of the processes have many aspects in

common, the goal is very different. In machine learning, the aim is to recognise and identify

patterns in data. In the game theory literature, the objective is to react to the patterns in the best

way knowing that the reaction will provoke a change in the patterns. The ultimate aim is to find

an equilibrium in which the patterns no longer change.

We will proceed by first presenting our experimental framework in which the subjects have to

understand that the order in which they choose actions is important if they are to achieve good

results. Until subjects realise that there is such a sequential structure, they cannot obtain a high

or, although they do not know it, the optimal pay-off. Their problem is precisely that they have

no a priori information about how actions and pay-offs are linked. Our question is not whether

they can find the solution to a well defined problem, such as solving the Rubik’s cube, but rather,

whether, by exploring the various possibilities and using the information they gain in doing so, they

improve their payoffs and may even arrive, without realising it, at the maximum attainable. We

present some examples of how subjects performed in the experiments and then develop a model to
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try to capture how subjects learn about the interdependence in the pay-offs from their actions and

how they learn to try new strategies. We then compare the behaviours the model generates with

those observed in the experiments.

In the second part of the paper, we consider another important aspect of the learning problem.

In many cases, individuals do not learn in isolation but observe what others do or what they gain

from their actions. In a second series of experiments, we took this into account and allowed subjects

to observe another individual’s choices, pay-offs or both. There is a substantial literature on what

is referred to as “observational learning” (Bandura and McDonald, 1963; Bandura et al., 1963;

Fryling et al., 2011) and we investigate to what extent individuals benefit from such information

by accelerating their learning process.

2 The baseline experiment

In our baseline experiment, 30 subjects participated in an experiment that involve 200 rounds of

play. In each of these round, participants were asked to choose one of four options without being

given any information about the possible payoffs that each option could generate. The underlying

payoff generating process was such that the first three options generate a payoff of either 0 or 1

following a deterministic cycle whereas the fourth generates a constant payoff of 0.3. The payoff

cycle of the first three options was such that in round t, option a ∈ {1, 2, 3} generates a payoff of 1

if Mod(t − 1, 3) = 3 − a and 0 otherwise. That is, a payoff of 1 can be achieved in every round if

the participant selects the right option a at the right time t, i.e., the optimal option choice cycles

in the order of 3, 2, 1, 3, 2, 1, 3,... from round 1, ..., 200.

At the end of each round, participants received no other information than the payoff outcome of

their own choice. Further, they were not allowed to record any information on paper or else either,

so that they had to rely on their memory of past play and outcomes to make their decisions. To

incentivize their decisions, their payoffs (expressed in Experimental Currency Units, ECUs) were

cumulated over the 200 rounds and converted into cash at the end of the experiment at the rate of

20 Australian cents per ECU.
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Once the 200 rounds of play were over, participants were given a new set of instructions that

outlined the lottery choice questionnaire to measure their risk preferences proposed by Holt and

Laury (2002). Again, to incentivize decisions, it was explained to them that, once the questionnaire

was completed, one of the lottery questions would be randomly chosen to determine their individual

payoffs for this second part of the experiment. Subjects received the outcome of the lottery if they

accepted the chosen lottery and nothing if they did not. The lottery payoffs, which were expressed

in Australian Dollars, are provided in the Appendix along with the full set instructions.

The average individual reward from participating in this experiment, including the lottery choice

questionnaire, was A$30 (which includes a A$5 show-up fee) for a maximum of one hour and a half

spent in the laboratory, including the time needed to read the instructions.

We are interested in understanding how quickly subjects discover, if ever, that there was a

sequential structure to the pay-offs, and how many actually made the best choices given the true

hidden payoff generating pattern even though they were not aware of the existence of such a pattern.

In other words, how many subjects “learned to optimise.”

2.1 Descriptive results

We start with providing a brief model-free overview of the most salient types of behaviour. Out

of the 30 subjects, exactly half of them discovered the hidden cycle that generates a payoff of 1

in each round but they did so at very different times: five of them found it within 50 rounds, 13

within 100 rounds and 15 within 200 rounds. The other half of subjects either never found it or

settled for the safe option (option 4) which generates a constant payoff of 0.3.2

Figure 1 shows the time-series of choices and payoff outcomes for six participants who displayed

different types of behaviour. While Subject 19 discovered the hidden cycle within 50 rounds, other

subjects explored for a few rounds and settled for the safe option. Among the latter, some never

got a payoff of 1 when choosing other options (e.g., Subject 10) while others decided to exploit

the safe choice even though they sometimes got a payoff of 1 when choosing other options (e.g.,

2By “discover”, we mean that a subject uses the “best” pattern and earn a payoff of 1 for successive rounds. We
define a participant as having discovered the best pattern if he or she earned a payoff of 1 for twelve consecutive
rounds for the first time and used the middle round of this sequence as the discovery time.
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Figure 1: Exemples of choice and payoff patterns in the baseline treatment.
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Figure 2: Risk Aversion vs Frequency of Safe Option. Triangle: subjects who have switched
multiple times in Holt and Laury (2002) questionnaire.

Subject 1). Yet, other participants settled into more complex and less profitable cyclical choice

patterns: Subject 20 settled into a 9-round cycle repeating the choice sequence (3, 4, 4, 4, 4, 1,

4, 4, 4), Subject 25 settled into the 6-round cycle (1, 3, 2, 4, 4, 4) while Subject 30 settled into

another, almost optimal, 6-round cycle (3, 2, 1, 3, 2, 4).

One might reasonably conjecture that more risk averse individuals are more likely to exploit

the safe option than to explore risky ones, so we checked whether the individuals’ frequencies of

choosing the safe bandit is positively correlated to their aversion toward risk. Recall that the Holt

and Laury (2002) questionnaire consists of a series of lottery choice tasks in which participants are

asked to choose between two lotteries, one of which is riskier than the other in the early tasks and

safer in the later ones. A risk averse subject should therefore choose the safer lottery in the early

tasks and switch to the other lottery in the later ones; the later this switch occurs and the more

risk averse is the subject.3

Figure 2 shows a scatter plot of the degree of risk aversion (the subjects’ switching points) versus

the frequency of choosing the safe option (freq4) along with a Spearman correlation coefficient. As

3Six out of thirty participants reverted to the “safe lottery” after having stopped choosing it. As such behaviour
might be considered aberrant since it seems to be inconsistent with rational choice theory under uncertainty, we
conducted our analysis with and without these participants but found no significant change in our conclusions. For
the analyses including these subjects, we have used their first switching point to measure their degree of risk aversion.
It is also worth noting that in our context, if an individual who has chosen the safe arm, switches unsuccessfully to
another choice it would not be irrational to come back to the safe arm.
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the reported coefficient is not statistically significant at α = 0.05, we discard risk aversion as a

possible explanation for the observed behaviour and develop a model that attempts to capture the

observed behaviour.

3 The baseline model

We assume that agents, who are initially not aware of the possible payoffs that each option generates,

remember the payoffs that result from choosing each option if it is observed once. Thus, for our

simple problem, after enough trials, agents will learn about all the possible outcomes that each

option generates. Let Πi
t(a) represent the set of payoffs agent i has observed each time he chose

option a until period t. Thus, if agent i has experienced all the possible outcomes from choosing all

four options at least once, before period t, we have Πi
t(a) = {0, 1} for a ∈ {1, 2, 3} and Πi

t(4) = {0.3}.

Of course, agents cannot be certain that what they have observed are indeed all the possible

outcomes. In addition, we need to decide how the agents in our model make their choices amongst

these different options. To what extent should they rely on their experience in trying the different

options and to what extent should they switch to trying on other options. This is the well known

“Explore v.s. Exploit” trade-off which has given rise to an extensive literature (see, for example,

Hills et al., 2015, for a review). The idea is that the individual weighs up the gain that he might

get from trying different options against the value of pursuing previously successful actions. In this

literature, it is generally assumed that the success obtained from taking an action is independent

of the choices of other actions in the past. Or put alternatively, the agents are assumed to make

that assumption. This, we assume, is their initial model of the environment. Now the question is,

how do individuals learn come to understand that their model is an inadequate representation of

reality and to change their model?4

4One approach is that of econometricians who argue that what is being learned are the characteristics of the data
generating process with which agents are faced (see, Dufour, 2008, for a survey). However, whilst various forms of
Bayesian learning have been explored, the problem of how to act when the actual data generating process does not
fall into the class which the agent has considered, remains a difficult one. One approach is to start with a very general
specification in which all possible variables, functional forms, lags etc are included in the set of candidate models.
However, it has been argued that to start with such a general specification and then to narrow it down to a specific
model is simply too costly. But Castle et al. (2013) give a full discussion of this problem and argue that it is now
technically possible and not necessarily very costly if one uses automatic selection procedures. Nevertheless it seems
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It may well be the case that individuals do not learn the “correct model.” Indeed, there have

been a number of accounts showing that individuals can have a wrong model in mind, but, as

they learn what to do within that framework, their actions lead them to believe that the model is

correct. Furthermore, their actions lead to the results that they expect (see, e.g., Arrow and Green,

1973; Kirman, 1975, 1983; Bray, 1982; Woodford, 1990). In those cases the pay-offs are, themselves,

modified by the actions taken by the economic agents. Here, this is not the case. But the agents

may be led, depending on the pay-offs that they receive in the early rounds, to conclude that they

should use the safe arm, for example. But we are faced with a much more difficult question as to

what it is that individuals might observe that might lead them to change their model of the world.

This would lead them to be faced with a different set of possible actions and possibly arrive at

results quite different from those obtained in the past. One reason for making such a change would

be that the results obtained using the original perception were consistently different from those

anticipated. In many cases, such as those discussed in the literature just mentioned, this would not

be evident. An individual may not understand that there were alternative courses of action which

would be superior to the best of those that he has already tried. He “does not know what he does

not know.” However, our experimental evidence shows that many subjects do become aware that

there is an inter-temporal structure in the way pay-offs are generated.

The first step will be for individuals to recognise that their gain does not simply depend on the

particular action taken but also on when that action is taken as opposed to some alternative. Thus,

the subjects in our experiments should not just condition their choices on past experience with those

choices but also the “context.” In our case, the context is the order in which actions are taken. A

substantial literature on learning about “contextual bandits” has developed in machine learning.

In the simplest case, corresponding to our baseline treatment, the feedback is incomplete: in any

given round, the agent observes the reward only for the chosen action but is not informed as to

what he would have obtained had he chosen another action. The use of features to encode context

is inherited from supervised machine learning and in our case, when we come to consider other

experimental treatments, this will allow us to introduce the history or sequence of previous choices

unlikely that this is the procedure that ordinary subjects would adopt.
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and not just the pay-offs from each. On the other hand, that literature emphasises that exploration

is necessary for good performance as it is in reinforcement learning.5 In our particular case, the

recognition that sequences matter amounts to detecting patterns in the payoff sequence and again

in the machine learning literature considerable attention has been paid to pattern detection.6

For our model then, to take these considerations into account, we need to make an assumption

as to how agents become aware of the existence of a pattern in the payoff generating process. We

assume that agents become aware of the possibility of the existence of such a pattern in the payoffs

from options a ∈ {1, 2, 3} if they observe the sequence (choice, payoff) of length li ≥ 2, starting

with a payoff of 1, ri ≥ 1 times. For example, if li = 2 and ri = 2, after observing the sequence of

choice payoff pair (1, 1), (1, 0) over two consecutive periods twice, agent i will start considering the

existence of a dependency (namely, choosing the option 1 after choosing it and obtaining payoff of

1 will result in payoff of 0).7

Once i starts considering such dependencies, he will start choosing the option conditional on

the outcome in the previous period. In particular, i will start remembering the possible payoffs

each conditional choice generates. Let Πi
t(a|h) represent the set of payoffs agent i has observed by

choosing option a conditional on history h until period t. For example, Πi
t(1|(2, 1)) will be either

empty or 1. While it is possible that an agent may condition his choice of options on the outcomes

of two or more previous periods, we restrict our attention to those choices which are conditioned

5As Agarwal et al. (2014) point out, contextual bandit problems are found in many important applications such
as online recommendation and clinical trials. The use of the term contextual is important because it suggests that
other features of the choices can be taken into consideration, thus one can argue that this sort of model represents
an intermediate point between “supervised learning” and pure “reinforcement learning.”

6An even more difficult problem that has received some attention when dealing with games is that of recognising
patterns in an opponent’s behaviour. Here the difficulty is that the pay-off to each player depends on both players’
choices. One attempt to do that was made by Sonsino (1997) and his idea of “learning to learn” in this case, is simply
illustrated when he says, “As a simple example, consider the case where three strategy profiles, say C, A, B, have
been played repeatedly, for a long time, in that specific order, so that the history of play at some stage is . . . C, A,
B, C, A, B, C, A, B, C, A, B, C, A. We claim that the players must “ recognize” the repeated pattern if it has been
repeated successively with no interruptions a large enough number of times.” Recently, Spiliopoulos (2012, 2013)
showed that introducing ability to recognize pattern in the opponent’s choices in belief-based learning model greatly
improves the fit of the model to the experimental data. In our case the subject can be thought of as playing “a game
against nature” where nature is playing a deterministic sequence. We do not need to give such an interpretation
however, and the problem boils down to one of identifying a structure in the pay-offs without considering that they
are generated by an “opponent.”

7We can easily allow an agent to start considering dependencies based on (choice, payoff) sequences that do not
start with payoff of 1. This will in fact speed up the learning of the inter-temporal dependencies. We did not do so
here because (choice, payoff) sequence starting with payoff of zero, such as (1, 0) can result in payoff of both 0 and 1
for all the possible choices among three options.
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only on the outcome of the most recent period (i.e., the choice of period t, at, depends on the

outcome of period t− 1 (hit−1 = (ait−1, π
i
t−1) )). Because of this assumption, we also assume li = 2

for all i. Note that for the problem we consider in this paper, the set of all the possible outcomes

in the previous period, hit−1, is {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0.3)}.

How will these outcomes contribute to determining choices? We consider two sets of strategies:

unconditional and conditional. Unconditional strategies, those used before a subject becomes aware

of sequences, are simply choices of options a ∈ {1, 2, 3, 4}. Conditional strategies are period t

choices of options conditional on the outcomes in period t − 1, s = a|h. Agents start using

conditional strategies only after they have become aware of existence of a sequential pattern as we

have described above.

Let us first describe an unconditional strategy. Ait(a) summarizes, at the beginning of period t,

the past experience for agent i from choosing option a. Let Ai0(a) = 0.5 for all i and a. We assume

that Ait(a) evolves as follow:

Ait+1(a) =


αiAit(a) + (1− αi)πit if a = ait

Ait(a) otherwise

where ait and πit denote the option chosen by agent i in period t and the resultant payoff, and

α ∈ (0, 1) captures the weight put on past experience.

Given Ait(a), we assume that the probability of agent i choosing option a in period t is

Pr(ait = a) =
eλ

iAit(a)∑
k e

λiAit(k)

Let Bi
t(a|h) summarize i’s experience from choosing a conditional strategy a|h at the beginning

of period t. Let Bi
t(a|h) = Ait(a) for all h after i became aware of the inter-temporal dependencies.

And Bi
t(a|h) evolves as follows

Bi
t+1(a|h) =


βiBi

t(a|h) + (1− βi)πit if a|h = ait|hit−1

Bi
t(a|h) otherwise
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Based on Bi
t(a|h), the agent chooses option a in period t according to

Pr(ait = a|hit−1) =
eµ

iBit(a|hit−1)∑
k e

µiBit(k|hit−1)

For simplicity, we assume αi = βi and λi = µi for all i.

We fit our model to the experimental data for each subject by searching for a set of (αi, λi, ri)

from the predefined parameter space that maximizes

200∑
t=1

ln(P it (a
i
t))

where P it (a
i
t) is the probability of observing choice ait according to the model described above.

The parameter space we consider is αi ∈ [0.01, 0.99] with a step of 0.01, λi ∈ [0.1, 20.0] with

a step of 0.1, and ri ∈ [1, 10] with a step of 1. When multiple sets of parameter values generate

the same sum of log likelihood, we selected the one with the smallest ri as this parameter was the

unique source of multiplicity.

Figure 3 shows the time series of observed and simulated choices (left panel) and payoffs (right

panel) for three of the six participants displayed in Figure 1. Our model replicates quite well the

behaviour of Subject 19 who discovered the hidden cycle within 50 rounds, and of Subject 10 who

settled for the safe choice from early on. This, however, is less so for Subject 30 who ended-up

using an almost optimal cyclical pattern of length 6 (i.e., 3, 2, 1, 3, 2, 4).

Once we fitted and determined the set of best parameter values for each individual
{

(α̂i, λ̂i, r̂i)
}

,

we considered a population of 1000 artificial agents with parameters randomly drawn (with re-

placement) from this set and we compare the simulated outcomes to the observed ones in terms

of individuals’ discovery times and total payoffs. Clearly, as participants did not know the exact

structure underlying the bandits’ payoffs, their objective function is ill-defined and many choice

patterns could be believed to be ‘optimal’. Here we focus on the discovery of the hidden cycle

generating a payoff of 1 in each round. More precisely, we diagnose a discovery if a participant

earns a payoff of 1 for twelve consecutive rounds for the first time8 and we define participant i’s

8As already observed, some participants occasionally ‘deviated’ from the hidden pattern after having exploited it
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Figure 3: Comparison of the experimental data and simulated model for three subjects.
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Figure 4: CDFs of discovery times and total payoffs. Legend: Observed (solid), Simulated (dashed).
Mean (standard deviation) are also shown. P-values are based on Permutation tests (for indepen-
dent samples), two-tailed.

discovery time, t̂i by the median round number of this twelve-round window.9

The observed and simulated cumulative distributions of discovery times and total payoffs and

their respective averages (standard deviations) reported in Figure 4 indicate that the model fits

these data remarkably well. This is confirmed by the Permutation tests (for independent samples)

which do not reject the null of equivalent data samples (p = 0.814 for discovery times and p = 0.597

for total payoffs, two-tailed tests).

4 Additional experiments: Learning from others

We now extend our baseline setting, henceforth named the NI (No Information) treatment, to

allow participants to observe the choices made or the payoffs obtained by another participant.

This “observational learning,” that is learning from others, came to the forefront with the work of

Bandura and his colleagues (Bandura and McDonald, 1963; Bandura et al., 1963). They argued

that the process of learning is greatly influenced by observing the behaviour of other individuals

and Fryling et al. (2011) argue that “The important conclusion of these studies is that behavior

for long time, but most of them quickly returned to it.
9For example, if a subject got a payoff of 1 from round 40 until 200, then his her discovery time is round 45. Note

that we get qualitatively the same results if we change the criterion to six consecutive rounds instead of twelve.
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change can and does occur through observation, even when such observation is incidental, occurring

in the context of other activities.” Indeed, when individuals are looking at the other’s behaviour

or rewards what may cause them to modify their own behaviour is the observation of systematic

patterns in the behaviour of the person they are observing. In our framework, the observation of

consistently high pay-offs or of regular patterns in the choices may lead a subject to change his

behaviour.10 As Bossan et al. (2015) show, and which is intuitive, imitation of good performance

may do better than individual learning. This is simply because imitating successful individuals

accelerates the learning process for the less successful. They add, however, an important caveat:

in a non-stationary environment, imitation may produce inertia in behavior as imitation induces

herd behaviour and discourages individual exploration. In the experiments that we will discuss in

this paper, the environment is, in fact, stationary, but the subjects were not aware that this was

the case.

Imitation or social learning has also been taken into account in the neuroscientific field by

conducting experiments in which subjects, in addition to their own experience also profit from

feedback from other participants. It is also probably appropriate when considering phenomena

such as the emergence of agricultural practices which involve substantial periods of time before the

results of certain actions are known, and where actions are taken in a noisy environment, where

weather and other stochastic natural variations can make the interpretation of the consequences of

an action difficult. In such environments one might expect the learning process to be a collective one

and still the adoption of innovative actions to be very slow. Indeed, in the optimal foraging literature

in which individuals “learn” to behave optimally (see, Stephens and Krebs, 1986), no indication

is given as to the time necessary for such convergence to optimal behaviour to be accomplished.

Furthermore, one might argue that the process never converges since the environment may change

more quickly than either individual or collective learning. In fact, one can either think of the

problem of individuals learning how to solve a problem which is well defined even if they may not

10Similar work has been done by Nedic et al. (2012) who faced subjects with a two armed bandit whose arms,
unknown to the subjects paid off depending on the number of times that the arms had been chosen. Many subjects
managed to make the pay-offs from the two arms equal but did not find the optimal behaviour. In their case observing
the behaviour of others actually had negative effects in some cases. There is a considerable literature on observational
learning that is relevant here (e.g. Smith and Sørensen, 2011). However, most (if not all) of it deals with interactive
situations where pay-offs to individuals depend on those to others, which is different from what we do.
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Table 1: Summary of experimental treatments

Treatment No. of subjects Description

NI 30 Each subject independently tries our bandit problem

CPI 32 (16 pairs) Subject can observe both the choice made by one another
subject and the payoff s/he obtained (the pair is fixed
throughout the experiment).

PI 32 (16 pairs) Subject can observe the payoff obtained by one another
subject (the pair is fixed throughout the experiment).

CI 32 (16 pairs) Subject can observe the choice made by one another sub-
ject (the pair is fixed throughout the experiment).

be aware of the full structure of the problem, or think of individuals trying constantly to adapt to

an environment which is non-stationary.11

What we investigate here is the relative impact on subjects’ behaviour of three different sorts

of information: observing another player’s choice and pay-off, observing another’s choice only, and

observing only the other’s pay-off. To be more precise each of the following three experiments

(treatments) involve 32 different subjects who were randomly matched in pairs for the 200 rounds

of play. In one treatment, they got to know both the other subject’s last choice and payoff out-

come. In another treatment, they got to know the other subject’s last payoff outcome but not the

corresponding choice whereas in the last one, they got to know the other’s last choice but not the

payoff outcome of that choice. We will refer to these treatments as the CPI (Choice and Payoff

Information), PI (Payoff Information) and CI (Choice Information) treatments, respectively. All

other aspects of these treatments were the same as those of the NI treatment – Table 1 summarizes

the four treatments’ main features.

11It is worth noting that some work has been done in neuroscience to try to detect what mechanisms are at work
when individuals shift to another way of looking at their environment, (see, Cohen et al., 2007) in which individuals
were faced with a changing environment. Thus they were not faced with a problem to be solved but rather with a
problem of adapting their choices to this evolving environment.
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4.1 Descriptive Results

Figures 5, 6 and 7 display the time-series of choices and payoffs for four pairs of subjects in each

of these three additional treatments, CPI, PI, and CI, respectively. The plots indicate that while

some pairs never discovered the hidden pattern (Pair 7 in CPI and in CI and Pair 12 in PI), in a

few others, one participant discovered it whilst the other did not (Pair 1 in CPI, Pair 3 and 14 in

PI and Pair 5 in CI). Yet, in other pairs, both participants eventually discovered patterns (Pairs 5

and 16 in CPI, Pair 1 in PI and Pairs 1 and 4 in CI). As in the NI treatment, a few participants

who discovered the pattern occasionally deviated from it in subsequent rounds (Subjects 5 and 6

of Pair 5 in CPI, Subject 27 of Pair 14 in PI and Subject 19 of Pair 4 and Subject 23 of Pair 5

in CI). In contrast to the NI treatment, however, we find no evidence of participants settling into

more complex and less profitable choice patterns.

Before proceeding with the modeling of behaviour, we check again whether the observed fre-

quencies of safe choices were driven by the participants’ risk aversion. The scatter plots in Figure 8

suggest no clear pattern in this regard, and since the reported correlation coefficients are not signif-

icant (p > 0.06) we reject the conjecture that behaviour in these information treatments is driven

by risk aversion.

4.2 Extending the baseline model

In what follows we extend our baseline model to account for the additional information provided

in each of the above treatments. We note, however, that subjects were not informed that if they

chose the same arm as the other subjects with whom they are matched, they would receive the

same pay-off. This reduces the inferences they could make from their observations.

4.2.1 The CPI case

We assume that agents keep track not only of their own choice and payoff, but also of the other’s,

and thus learn on the basis of these two information sets.12

12Bayer and Wu (2016) report evidence that suggests that subjects actually learn mostly from their own experience
rather than from other’s. However, their finding pertains to Bertrand duopolies which involve strategic interactions
whereas our setting involves no such interactions.
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Figure 5: Examples of choice and payoff patterns in the CPI treatment.
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Figure 6: Examples of choice and payoff patterns in the PI treatment.
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Figure 7: Examples of choice and payoff patterns in the CI treatment.
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Figure 8: Risk Aversion (x-axis) vs Frequency of Safe Option (y-axis). Triangle: subjects who have
switched multiple times in Holt and Laury (2002) questionnaire.

Let Ait(a) summarize, at the beginning of period t, the past experience for agent i from choosing

option a. Let Ai0(a) = 0.5 for all i and a. We assume that Ait(a) evolves as follows:

Ait+1(a) =


αiAit(a) + (1− αi)πit if a = ait

αiAit(a) + (1− αi)πjt if a = ajt

Ait(a) otherwise

As for the NI treatment, we assume that agent i becomes aware of inter-temporal dependencies

when i observes the same sequence of (choice, payoff) pairs. However, this sequence of (choice,

payoff) pairs can now be based on the sequence of his own (choice, payoff) pairs as well as on the

sequence of j’s (choice, payoff) pairs.

Let Bi
t(a|h) = Ait(a) for all h from the moment when i becomes aware of the inter-temporal
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dependencies. We assume Bi
t(a|h) to evolve as follows:

Bi
t+1(a|h) =


βiBi

t(a|h) + (1− βi)πit if a|h = ait|hit−1

βiBi
t(a|h) + (1− βi)Γitπ

j
t if a|h = ajt |h

j
t−1

Bi
t(a|h) otherwise

Based on Bi
t+1(a|h), the choice of option a for agent i in period t is thus be defined as:

Pr(ait = a) =
eλ

iBit(a|hit−1) + eλ
iBit(a|h

j
t−1)∑

k e
λiBit(k|hit−1) +

∑
k e

λiBit(k|h
j
t−1)

4.2.2 The PI case

The basic idea here is that when i observes j obtaining a sequence of payoff 1s, i tries to figure out

how j is obtaining such a stream of high payoffs based on (i) what i knows about the set of possible

(choice, payoff) pairs and (ii) their inter-temporal dependencies. On the one hand, if i is not yet

aware of conditional strategies, then we assume that by observing j’s sequence of high payoffs, i

becomes aware of the existence of such strategies. Adopting the same reasoning, i would need to

observe j obtaining a sequence of consecutive πjt = 1 of length li = 2, at least ri times.

If i is already aware of conditional strategies and has just experienced the (choice, payoff)

sequence (1, 1), (1, 0), then i will infer (assuming he already knows that Π(a)it = {0, 1} for a ∈

{1, 2, 3} and Π(4)it = {0.3}) that choosing either 2 or 3 instead of 1 after (1, 1) could have generated

a payoff of 1. In fact, this type of inference is possible in our set-up only after i obtains a payoff

of 1 in the previous period and 0 in the current one.13 Notice also that this means that i will not

use the information about j’s payoff when s/he is not using a conditional strategy. We therefore

assume that Ait(a) evolves as follows:

Ait+1(a) =


αAit(a) + (1− α)πit if a = ait

Ait(a) otherwise

13After receiving a 0 payoff in the previous period, all choices (but 4) can result in both payoff of 0 or 1.
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On the other hand, if i is already using a conditional strategy (or has become aware of such

strategies due to the observation of j’s payoff) then,

Bi
t+1(a|h) =


βBi

t(a|h) + (1− β)πit if a|h = ait|hit−1

βBi
t(a|h) + (1− β)1 if h = hit−1, a 6= ait, π

i
t = 0, πit−1 = 1, 1 ∈ Πi

t(a)

Bi
t(a|h) otherwise

Again, we are basically assuming that j’s payoff information is used only if j obtains a payoff of 1

in two consecutive periods. The choice of a conditional strategy in period t + 1 will be based on

Bi
t+1(a|h) just as in the baseline case.

4.2.3 The CI case

Here, intuitively, the decision will involve mimicking. We will, however, implement it within our

modeling framework through the evolution of attractions for consistency with the analysis of the

NI treatment (to keep the modeling framework consistent across our four conditions instead of

modeling it directly as agents copying the observed choice patterns). The basic idea will be that

when agent i detects a pattern in the choices made by j, i will assume that j is doing it because it

generates high payoff. So the attraction for conditional strategies will be updated with “presumed”

high payoffs based on i’s observation about j’s choices (of course, given i’s knowledge about the

set of possible payoffs for each options and conditional choices).

First i has to recognize patterns in j’s choices. He does so when he observes that j has been

making the same sequence of li consecutive choices ri times in the row. Say i has observed j

making the sequence of choices 3, 2 twice in row. If i has already learned about the performance of

conditional strategies, this will translate into i assuming that strategy 2|(3, 1) will result in payoff

of 1.

In the case where, i has not yet become aware of conditional strategies then the first time i

notices the pattern in j’s choice sequences, we assume that i then becomes aware of the existence

of such strategies and starts learning about their performance.
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Recall, however, that i does not observe j’s payoff directly. Thus, we assume that when i is

making unconditional choices, the observation of j’s choice will not be used in the evolution of

Ait(a); and that this will happen only when i’s choices are conditional.

Bi
t+1(a|h) =


βBi

t(a|h) + (1− β)πit if a|h = ait|hit−1

βBi
t(a|h) + (1− β)1 if a|h = (ajt |(a

j
t−1, 1)), ajt ∈ {1, 2, 3}

Bi
t(a|h) otherwise

The choice of a conditional strategy in period t + 1 will be based on Bi
t+1(a|h) just as in the

baseline case.

4.3 Simulation results

We simulate the above models using the parameter values best that best fit the baseline model

described in Section 3. So for each individual in each pair of 500 simulated pairs of agents, we

randomly draw (with replacement) each of the parameter values from the set {(α̂i, λ̂i, r̂i)} obtained

for the NI treatment. The resulting distributions of individual discovery times and total payoffs

are displayed in Figure 9 along with the observed ones.

The plots suggest that, overall, subjects discovered the hidden cycle somewhat faster than

our simulated agents (c.f. left panels) which consequently led them to earn higher payoffs (c.f.,

right panels). However, this only partially holds for the CPI treatment since the outcomes of

Permutation tests indicate a significant difference at α = 0.05 between simulated and observed

only for total payoffs (p = 0.058 for discovery times and p = 0.024 for total payoffs). Otherwise, we

find no significant difference so that, as the reported average statistics also indicate, our modeling

approach provides a remarkably good overall out-of-sample fit to the data ( p = 0.500 in PI and

p = 0.189 in CI for discovery times, and p = 0.482 in PI and p = 0.277 in CI for total payoffs).

We proceed with cross-treatment comparisons of the models’ simulations and the observed data.

The upper panel of Figure 10 displays the simulated distributions of discovery times (left panel) and

total payoffs (right panel) whereas the lower panel displays the observed distributions along with the

26



CPI
Discovery Time Total Payoff

ò ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò

ò
ò
ò
ò
òò

0 50 100 150 200
t
`

0.0

0.2

0.4

0.6

0.8

1.0

CDF

ò ò
ò
ò
ò
ò
ò

ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
òò

0 50 100 150 200
SΠ0.0

0.2

0.4

0.6

0.8

1.0

CDF

Exp: 75.75 (59.05), Sim: 95.82 (60.90) Exp: 154.07 (42.70), Sim: 138.90 (38.75)
p=0.058 p= 0.024

PI
Discovery Time Total Payoff

ì ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
ì

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ìì

0 50 100 150 200
t
`

0.0

0.2

0.4

0.6

0.8

1.0

CDF

ì ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ì
ìì

0 50 100 150 200
SΠ0.0

0.2

0.4

0.6

0.8

1.0

CDF

Exp: 110.13 (76.43), Sim: 117.85 (62.68) Exp: 131.26 (52.55), Sim: 126.10 (40.46)
p=0.500 p= 0.482

CI
Discovery Time Total Payoff

à à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à

à
à
à
à
à
à
à
àà

0 50 100 150 200
t
`

0.0

0.2

0.4

0.6

0.8

1.0

CDF

à à
à
à
à
à
à
à
à
à

à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à à

0 50 100 150 200
SΠ0.0

0.2

0.4

0.6

0.8

1.0

CDF

Exp: 106.38 (64.70), Sim: 121.22 (62.29) Exp: 131.96 (43.92), Sim: 124.12 (40.25)
p=0.189 p= 0.277

Figure 9: CDFs of discovery times and total payoffs.
Legend: Observed (solid), Simulations (dashed). Mean (standard deviation) are also shown. P-
values are based on Permutation tests (for independent samples), two-tailed.
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Figure 10: CDFs of discovery times and total payoffs (with p-values of Kruskal-Wallis tests for
multiple sample comparisons and permutation tests for pair-wise comparisons (one-tailed)).
Legend: NI (blue), CPI (red), PI (dashed orange), CI (light blue).
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outcomes of Kruskal-Wallis (KW) and Permutation tests that assess their stochastic equivalence.

Both the simulated and the observed distributions (and the test statistics) clearly support the

conjecture that the more complete the information one has about the other subject, the faster

the hidden pattern will be discovered. However, partial information of the type provided in our

experiments participants receive (i.e, choices or payoffs) does not significantly affect the variables of

interest; as both the simulated and the observed distributions indicate. The data actually suggest

no significant difference between NI and CI or PI (p > 0.05) and significantly smaller (higher)

discovery times (total payoffs) in CPI than in the other treatments.

4.4 Does “observation” facilitate discovery?

Although it is quite intuitive that observing the choices and/or payoffs of another person who has

discovered the hidden pattern will help the observer to discover the hidden pattern, it is less clear

whether observing the choices and/or payoffs of another participant who has not found any pattern

is equally helpful. We investigate this by first identifying in each pair of subjects, the one who

discovered the hidden pattern first, henceforth the Early participant, or second, henceforth the

Late participant. In case the hidden pattern was not discovered, the labels are randomly assigned.

We also randomly match participants in the NI treatment in pairs and assign labels by comparing

their respective discovery times to get some benchmark for Early and Late participants who do not

observe any other participant.

Figure 11 shows the distributions of discovery times of each type of participant in each treat-

ments along with the outcomes of nonparametric tests to assess the observed differences. The

plots and test statistics for Late participants (right panel) indicate that they greatly benefited from

this additional information. It appears that those in CPI benefited most and significantly more

than those in CI or PI whose distributions are not significantly different. The plots also indicate

that when compared to the NI treatment, the partial information feedback of these treatments

significantly improved their time of discovery. However, for the Early participants (left panel) we

find no significant difference across treatments so that the additional information provided in the

information treatments had no significant effect on the performance of Early participants.
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Figure 11: CDFs of discovery times of Early and Late participants (with p-values of Kruskal-Wallis
tests for multiple sample comparisons and permutation tests for pair-wise comparisons (one-tailed)).
Legend: NI (blue), CPI (red), PI (dashed orange), CI (light blue).

Next, to determine who benefited most from the information provided, we tracked the evolution

of average payoffs of each type in the four treatments. Figure 12 reports the median of the average

pay-offs from each round for Early and Late participants for each block of 10 rounds in each

treatment. The plots and the reported KW test statistics (c.f. lower panel of Figure 12) suggest

that round average payoffs are not significantly different across treatments for the first five blocks

and are actually very similar across types. Differences emerge from the sixth block onwards as

the round average payoffs of Late participants vary widely across treatments whereas those of

Early participants become identical. This confirms that the information provided did not affect the

discovery time of Early participants whereas it significantly helped Late participants in the three

information treatments considered. To repeat, observing a successful subject is very helpful but

observing an unsuccessful subject does not speed up learning.
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τ 1 2 3 4 5 6 7 8 9 10

Early participants 0.249 0.709 0.814 0.416 0.801 0.288 0.430 0.261 0.852 0.300
Late participants 0.098 0.204 0.592 0.067 0.981 0.008 0.044 0.039 0.004 0.018

τ 11 12 13 14 15 16 17 18 19 20
Early participants 0.126 0.317 0.638 0.852 0.693 0.759 0.690 0.511 0.885 0.676
Late participants 0.003 0.019 0.014 0.005 0.014 0.012 0.008 0.032 0.010 0.054

Figure 12: Dynamics of median round average payoff (over block of 10 rounds) of Early and Late
participants (with p-values of Kruskal-Wallis tests).
Legend: NI (blue), CI (solid light blue), PI (dashed light blue), CPI (red).

5 Concluding remarks

This paper examines the problem of how people learn to improve the results that they obtain from

taking different actions. In particular we focus on situations in which individuals have no knowledge

of the structure of the environment within which they operate. In many problems of this sort, it is

assumed that there is a simple mapping from actions to pay-offs. We looked at a situation in which

pay-offs depend on the sequence of actions taken. To make improvements in such a case, subjects,

who may start by reinforcing on the pay-offs from single actions, have to realise that there is an

inter-temporal dependence.

Our experiments involved multi-armed bandits with a hidden deterministic payoff structure

and we wished to see whether subjects could discover this structure or to behave as if they had

done so. In a baseline treatment (NI), subjects were only informed of the payoff they themselves

have obtained after each choice. While some of our subjects were surprisingly fast in “discovering”

the hidden mechanism in this treatment, half of them failed to do so within 200 rounds. Most of

our subjects initially explored among four different options. At some point, however, those who
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were successful seem to had, what has been referred to in the psychology literature as an “aha”

moment, and started to reinforce on sequences of actions taken in the past. We developed a simple

model that tries to incorporate this type of “counter intuitive learning” and found that it generates

(simulated) distributions of discovery times and of total payoffs that match remarkably well those

observed.

We then considered a further series of experiments through which we examined how the pos-

sibility of observing what others do or obtain may help subjects to improve their gains. This is

the problem that is raised in the literature on “observational learning.” In these additional paired

treatments, a subject could, in addition to the own payoff, observe the last choice made (CI), the

last payoff obtained (PI), or both (CPI) by another subject. In these treatments, however, the

additional observation did not seem to significantly facilitate the task for subjects who were the

first in their pair to discover the pattern to do so compared to those in the NI treatment who

discovered the pattern earlier in randomly created pairs. However, compared to those who were

slower to discover the pattern in NI treatment, those subjects in paired treatments who discovered

the pattern later than the other discovered it significantly faster. This was true even if subjects

were only observing the payoffs, and not the choices, obtained by the other and thus had to discover

the exact choice sequence leading to consecutive payoffs of one, the maximum attainable in our

framework. As might be expected, the CPI case led to the most improvement for these slower

subjects.

We extended our basic model to capture the observed behaviour in these additional experi-

ments. We found that our model gave discovery times which corresponded well to the experimental

evidence in the CI and the PI treatments. In the CPI treatment, however, our model resulted in

later discovery times than was observed in our experiment. This gap between the model and the

experimental observations may reflect some compounding effect of information that is not captured

well in our model.

We believe our modelling approach is the first to study this type of learning with(out) obser-

vational learning and hope that it will induce further research that will investigate whether our

results are specific to the particular deterministic payoff generating mechanism we employed in our
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experiment. For example, one can investigate how the existence of a safe option that returned

a low but sure payoff would affect the results by eliminating such an option or changing it to a

risky option with the same expected payoff. One could also extend the memory of the subjects, by

displaying the past outcomes, to see if this facilitates their learning.

Another fruitful avenue for future research would be to consider several models of learning that

allows an agent to become aware of features of the environment and start expanding the set of

possible choice strategies, and compare which model does a better job in replicating the observed

experimental outcomes by running a competition à la Erev et al. (2016). Among many possibilities,

building upon the models proposed by Donoso et al. (2014) or Plonsky et al. (2015) seem to be

fruitful ways forward.

Finally, as we have mentioned, a number of the questions that are raised in this paper are

related to issues raised in the psychology and in the neuroscience literature. For example, to

better understand the mechanisms involved in producing an “aha” moment, a moment in which

the subjects change their perspective on the environment about which they are learning, would be

of considerable interest. To understand the neural processes at work when such an insight occurs,

possibly by using fMRI or other instruments, is a promising avenue for future research.
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6 Appendix

The experiments were conducted in the laboratory for experimental economics of the Australian

Business School (ASBLab) at the University of New South Wales. Participants were students

in Economics, Commerce, Marketing, and Engineering who were recruited on campus using the

ORSEE software (Greiner, 2015). Upon arrival in the laboratory, they were randomly assigned

to individual cubicles and given the following sets of instructions that were read aloud. Once the

experiments finished, they were individually called to collect their reward in cash. The experiments

were programmed using z-tree (Fischbacher, 2007).

6.1 Instructions for treatments CPI, PI and CI

Welcome to the ASBLab.

If you read the following instructions carefully, you can, depending on your decisions, earn a considerable

amount of money. It is therefore very important that you read these instructions carefully. The instructions

are the same for all participants.

It is prohibited to communicate with the other participants during the experiment. If you have a question

at any time raise your hand and the experimenter will come to your desk to answer it. Please switch off

your mobile phone or any other devices which may disturb the experiment. Please use the computer only

for entering your decisions. Please do not start or end any programs, and do not change any settings.

This Experiment

You are about to participate in an experiment which consists of two parts.

The first part consists of 200 rounds of play. The second part will be explained to you when you finished

the first part.

First Part

Task

In each of the 200 rounds of play, you are asked to choose one of 4 one-armed bandits. Once you made

your choice, you will be informed and will receive the bandits’ payoff (in Experimental Currency Units,

ECUs). The experiment then proceeds to the next round.
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Information

You are not aware of the payoffs that you may receive from each of these bandits but you are told that

a bandits’ payoff outcome in one round does not depend on which bandit you chose in the previous round.

You are not allowed to collect any written information on the bandits’ payoff outcomes.

== [CPI treatment only] ==

Throughout the experiment, you will be matched with one other participant. At the end of each round,

you will get to know this participant’s bandit choice and the payoff outcome of that choice, and s/he will get

to know your bandit choice and the associated payoff. Note that the information displayed is about bandit

choices and the payoff outcomes associated to these choices.

== [CI treatment only] ==

Throughout the experiment, you will be matched with one other participant. At the end of each round,

you will get to know this participant’s bandit choice, and s/he will get to know your bandit choice.

== [PI treatment only] ==

Throughout the experiment, you will be matched with one other participant. At the end of each round,

you will get to know the payoff outcome for this participant’s, and s/he will get to know your payoff outcome.

Payment

Your reward from participating to this first part will be equal the sum of the payoffs that you realised,

and this sum will be converted to the rate of $0.2 per ECU and individually paid to you.

Second Part

Task

In the second part of the experiment, you are asked 10 times to choose between “Option A” and “Option

B.” Please read carefully the questions asked. (The questions were displayed in sequence and were phrased

as in Table 2 below)

Payment

Once you have answered all questions, your reward from participating to this second part will be deter-

mined by 1) your answer to one of these ten questions and 2) by chance. The computer will randomly select
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Table 2: List of questions fro Holt and Loury task.

Option A Option B

1. A$2.0 with 10% chance or A$1.60 with
90% chance

A$3.85 with 10% chance or A$0.1 with
90% chance

2. A$2.0 with 20% chance or A$1.60 with
80% chance

A$3.85 with 20% chance or A$0.1 with
80% chance

3. A$2.0 with 30% chance or A$1.60 with
70% chance

A$3.85 with 30% chance or A$0.1 with
70% chance

4. A$2.0 with 40% chance or A$1.60 with
60% chance

A$3.85 with 40% chance or A$0.1 with
60% chance

5. A$2.0 with 50% chance or A$1.60 with
50% chance

A$3.85 with 50% chance or A$0.1 with
50% chance

6. A$2.0 with 60% chance or A$1.60 with
40% chance

A$3.85 with 60% chance or A$0.1 with
40% chance

7. A$2.0 with 70% chance or A$1.60 with
30% chance

A$3.85 with 70% chance or A$0.1 with
30% chance

8. A$2.0 with 80% chance or A$1.60 with
20% chance

A$3.85 with 80% chance or A$0.1 with
20% chance

9. A$2.0 with 90% chance or A$1.60 with
10% chance

A$3.85 with 90% chance or A$0.1 with
10% chance

10. A$2.0 with 100% chance or A$1.60 with
0% chance

A$3.85 with 100% chance or A$0.1 with
0% chance

one of the ten questions that you have answered and you will be rewarded according to your decision (ie.,

Option A or Option B) for that question.

Even though you will make ten decisions, only one of these will end up affecting your earnings, but you

will not know in advance which decision will be used. Obviously, each decision has an equal chance of being

used in the end.
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