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Abstract 
 
This paper tests the ability of popular New Keynesian models, which are traditionally used to 
study monetary policy and business cycles, to match the data regarding a key channel for 
monetary transmission: the dynamic interactions between macroeconomic variables and their 
corresponding expectations. In the empirical analysis, we exploit direct data on expectations 
from surveys. To explain the joint evolution of realized variables and expectations, we adopt a 
DSGE-VAR approach, which allows us to estimate all models in the continuum between the 
extremes of an unrestricted VAR, on one side, and a DSGE model in which the cross-equation 
restrictions are dogmatically imposed, on the other side. Moreover, the DSGE-VAR approach 
allows us to assess the extent, as well as the main sources, of misspecification in the model. The 
paper’s results illustrate the failure of New Keynesian models under the rational expectations 
hypothesis to account for the dynamic interactions between observed macroeconomic 
expectations and macroeconomic realizations. Confirming previous studies, DSGE restrictions 
prove valuable when the New Keynesian model is exempted from matching observed 
expectations. But when the model is required to match data on expectations, it can do so only by 
moving away, and hence substantially rejecting, DSGE restrictions. Finally, we investigate 
alternative models of expectations formation, including examples of extrapolative and 
heterogeneous expectations, and show that they can go some way toward reconciling the New 
Keynesian model with the data. Intermediate DSGE-VAR models, which avail themselves of 
DSGE prior restrictions, return to fit the data better than the unrestricted VAR. Hence, the 
results overall point to misspecification in the expectations formation side of the DSGE model, 
more than in the structural microfounded equations. 
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1 Introduction

Expectations have always played a central role in models of monetary policy analysis. Fluctuations

in real activity and inflation are in large part driven by expectations about future demand, inflation,

and monetary and fiscal policy choices. Over the last two decades, the management of expectations

has evolved into probably the most fundamental and widely discussed component of monetary

policy-making. Woodford (2003), in his seminal textbook on New Keynesian thought, writes “For

successful monetary policy is not so much a matter of effective control of overnight interest rates

as it is of shaping market expectations of the way in which interest rates, inflation, and income are

likely to evolve over the coming year and later.” He then goes on to add that not only expectations

matter in policy-making, but little else matters. Svensson (2004), Bernanke (2004), and Blinder

et al (2008), as well as many other monetary researchers and policymakers, subscribe to the same

view that recognizes the expectations channel as the main channel for stabilization policy.

In state-of-the-art monetary business cycle models, macroeconomic expectations are almost

universally modeled according to the Rational Expectations Hypothesis (REH). Agents form model-

consistent expectations using all available information. They are assumed to know the correct model

of the economy, its parameters, the distribution of the shocks, and so forth. Whereas various

elements of the models are routinely checked and tested one against the other, the REH is often

taken for granted in empirical work and left unchecked.

But are New Keynesian models subject to the REH able to capture the patterns of interactions

between macroeconomic expectations and macroeconomic realizations that are observed in the

data?

We argue that understanding the model’s ability to match the data in this dimension is par-

ticularly critical in light of the fundamental role played by expectations, and the growing view

of monetary policy as management of expectations. Furthermore, the focus on expectations has

increased even more in the aftermath of the Great Recession, in light of current efforts by central

banks around the world to provide markets with “forward guidance”, with the aim of creating ex-

pectations of expansionary future monetary policies and thus stimulate their respective economies.

Our Approach. We exploit data on survey expectations to estimate a benchmark New Key-

nesian model with frictions and rational expectations. We use a DSGE-VAR approach to study

misspecification in the model, with a particular focus on potential misspecification in the expecta-

tions block.

The DSGE-VAR approach, proposed by Del Negro and Schorfheide (2004), and also used in Del

Negro and Schorfheide (2005, 2009) and Del Negro et al (2007), allows us to evaluate in the esti-
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mation all models in the continuum between two extremes: the rational expectations DSGE model,

which imposes all the cross-equation restrictions that exist under the REH, and the unrestricted

VAR model, which characterizes the joint dynamics of the observable variables and expectations

without imposing restrictions from theory or the REH. A parameter, which will be denoted by

λ, governs the weight placed on the DSGE restrictions in the specification that is found to be

favored by the data within the model continuum. This approach is particularly suited to investi-

gate misspecification of structural models. A similar approach has been used by Del Negro et al

(2007) to identify the areas of misspecification in small and medium-scale DSGE models. As typical

in the DSGE literature, however, they retain the assumption of rational expectations throughout

the analysis. Here, we explicitly focus on potential misspecification in the way that expectation

formation is modeled.

We start by estimating the New Keynesian model under the conventional assumption of rational

expectations. We then include observed survey data to the set of observable variables that the

estimation is required to match. We can, therefore, evaluate whether the DSGE’s restrictions

prove useful in successfully capturing the co-movement between macroeconomic expectations and

outcomes, or, alternatively, whether the data suggest the rejection of such restrictions.

Results. The DSGE-VAR approach reveals a substantial failure of the New Keynesian model

under rational expectations to match the joint evolution between macroeconomic observations and

expectations that exists in the data.

The estimated prior tightness parameter λ declines toward values favoring the unrestricted VAR

in the case in which observed expectations are added to the estimation. DSGE restrictions obtain

a higher weight when the model with rational expectations is freed from the need to match actual

data on expectations.

We then proceed to study misspecification in more detail by checking where exactly the model

is failing. We do so by comparing the impulse responses obtained for the best-fitting DSGE-VAR

model with the optimal λ with those corresponding to the model in which the DSGE restrictions

are imposed. The DSGE model’s responses predominantly and continually leave the probability

intervals implied by the DSGE-VAR model with the optimal λ. In various instances, the DSGE

model’s responses of output growth, inflation, and the interest rate, fail to match the required

persistence found in the best-fitting DSGE-VAR model. The responses of expectations within the

DSGE model are often misspecified and display signs and patterns inconsistent with the responses

of survey expectations in the data.

We therefore propose a selection of alternative expectation formation schemes that relax, in part
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or fully, the REH. The first alternative is based on a perceived law of motion that has the same

structural form as the minimum state variable solution of the model (excluding the disturbances,

which are now assumed to remain outside the agents’ information set), and that corresponds to a

VAR model in output, inflation, and interest rates (we also consider a misspecified AR(1) law of

motion, as alternative). This expectation formation assumption is in the spirit of learning models

(Evans and Honkapohja, 2001, Milani, 2007); we do not, however, directly incorporate learning

dynamics. The second deviation allows for heterogeneous expectations. We assume that a share

of private-sector agents in the economy forms expectations according to the previously-described

VAR model, while the remaining share forms rational expectations. Finally, as a third alternative,

we motivate our expectation models from the evidence on expectation formation available from

laboratory experiments. Hommes (2011) and Assenza et al (2012), show that expectations from

the lab are clearly heterogeneous and cluster around three groups: adaptive expectations, trend-

following expectations, and ‘anchor and adjustment’ rules. We insert those expectation formation

rules in our New Keynesian model and add a share of agents maintaining rational expectations.

The relative shares are estimated from the data. Besides changing the expectations formation

rules, we also allow expectations to be affected by expectation shocks, which are independent from

fundamentals, and potentially account for excesses of optimism and pessimism. The use of these

expectation shocks are motivated by empirical evidence in Milani (2011, 2013).

We find that for the alternative expectation models, the overall fit substantially improves.

Moreover, the DSGE-VAR estimations show that the model-imposed restrictions now become more

valuable, since larger values of λ provide the best fit of the data. The parsimonious cases with the

AR and VAR perceived laws of motions are the overall best-fitting specification.

Expectation shocks are also important. For instance, an expectation shock to expected one-

period ahead output growth is found to explain 86%, 28.1%, and 41.7% of fluctuations in output

growth, inflation, and the interest rate, respectively. The expectation shocks also explain a large

amount of fluctuations in the expectation series of output growth and inflation (53.9% and 46.8%).

These shares collapse to zero by construction in benchmark rational expectation models.

Related literatures. The main scope of the paper is to highlight the misspecification of New

Keynesian models of monetary policy in a key area: the empirical relationship between macroeco-

nomic expectations and realizations. As we discussed, this misspecification is particularly relevant in

light of recent studies investigating the potential impact of central bank communication, announce-

ments, forward guidance policies, which heavily relies on private sector expectations responding as

envisioned. Del Negro et al (2012) show that the impact of forward guidance in New Keynesian
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DSGE models is exceedingly large to be deemed believable. Our paper has a different focus, but

it further stresses the failure of the model under rational expectations to capture the behavior of

expectations.

The paper closely relates to the literatures that have focused on relaxing the rational expecta-

tions hypothesis. A large body of literature relaxes rational expectations to assume that agents are

learning about the economy over time. The research in this area studies eventual convergence to

the Rational Expectations Equilibrium (Evans and Honkapohja, 2001), the contribution of transi-

tional learning to business cycles (Milani, 2007, 2011, Eusepi and Preston, 2011), and the role of

less-than-fully-rational expectations for monetary policy (Preston, 2008, Cole, 2015, 2016). Other

studies emphasize the importance of heterogeneous expectations. Branch and McGough (2009)

incorporate heterogeneous expectations in a New Keynesian model. Hommes (2011) provides ex-

perimental evidence on the importance of heterogeneity and adaptive behavior in the formation of

expectations.

A number of papers have used data on survey forecasts in related contexts before. Roberts

(1997) uses non-fully-rational expectations as a way to predict costly disinflations. Brissimis and

Magginas (2008) analyze the fit of the New Keynesian Phillips curve when inflation expectations

are replaced by survey inflation forecasts. Adam and Padula (2011) also estimate versions of

the New Keynesian Phillips Curve with survey data and show that it performs well, using both

detrended output and unit labor costs as inflation driving variables. These works focus on a single

equation, the Phillips curve, and consider only inflation forecasts. Our study exploits a wider range

of forecasts, including also output growth expectations for one and two quarters ahead. The main

innovation of our paper, however, is the study of fit and misspecification of the New Keynesian

model using a DSGE-VAR approach.

We also add to previous studies (Del Negro and Schorfheide, 2004, 2005, 2009, Del Negro

et al 2007) that highlight the promise of DSGE-VARs as means of investigating the sources of

misspecification in empirical DSGE models, although always retaining the REH. Granziera (2012)

also focuses on expectations formation, but she is interested in testing the empirical evidence of

adaptive learning. She does not exploit data on survey expectations in the DSGE-VAR estimation.

We also evaluate the fit of the New Keynesian model under alternative expectations. We show

in this paper that modeling expectations as suggested by learning or heterogeneous expectation

approaches can considerably improve the fit of a benchmark New Keynesian model to the data.
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2 New Keynesian Model

The following section describes the benchmark New Keynesian model that we use in the empirical

analysis. The model is built from explicit microeconomic foundations and it includes the endoge-

nous sources of persistence that are typically necessary to fit macroeconomic data, such as habit

formation in private expenditures and indexation to lagged inflation in firms’ price-setting. The

model is thoroughly analyzed in Woodford (2003) and it has been estimated in Giannoni and

Woodford (2004) and Milani (2007), among others.1 The log-linearized aggregate demand, Phillips

curve, and monetary policy equations are given by

x̃t = Etx̃t+1 − (1− βη)σ[it − Etπt+1 − rnt ] (1)

π̃t = ξp[ωxt + [(1− ηβ)σ]−1x̃t] + βEtπ̃t+1 + µt (2)

it = ρit−1 + (1− ρ)[χππt + χxxt] + εmp
t (3)

where

π̃t ≡ πt − γπt−1

x̃t ≡ (xt − ηxt−1)− βηEt(xt+1 − ηxt),

and where xt, πt, and it denote the output gap, inflation, and the nominal interest rate, respectively.

Equation (1) describes aggregate demand: the current gap between actual and potential output is

a function of expected one-period and two-period ahead output gaps, expected one-period ahead

inflation, the nominal interest rate, and the natural real interest rate disturbance rnt .
2 Households’

preferences are characterized by internal habit formation, with the coefficient 0 ≤ η ≤ 1 denoting

the strength of habits in their utility function. The household’s discount rate is given by 0 ≤ β ≤ 1,

whereas σ > 0 measures the elasticity of intertemporal substitution of consumption. Equation (2)

is the New Keynesian Phillips curve, which expresses inflation as a function of lagged, current,

and expected one-period ahead output gaps, lagged and expected one-period ahead inflation, and a

cost-push shock µt. This equation derives from the profit maximization decision of monopolistically

competitive firms. Following the price-setting framework of Calvo (1983), a fraction (1−θ) of firms

are able to re-optimize each period with respect to their prices. The remaining fraction θ of firms

1Medium-scale and large-scale DSGE models expand on the current framework by adding capital accumulation,
investment decisions, variable capacity utilization, imperfectly competitive labor markets, and a variety of additional
features.

2Potential output in the New Keynesian model is defined as the equilibrium level of output existing in the same
economy, but under flexible, rather than sticky, prices. Later in the estimation, we’ll show that the results remain
unchanged independently of whether the output gap is assumed to be approximated by linearly-detrended output or
whether the precise theoretical measure is used.
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index their prices to past inflation following Christiano et al (2005), with 0 ≤ γ ≤ 1 denoting

the degree of inflation indexation. The composite coefficient ξp ≡ (1 − θβ)(1 − θ)/θ is inversely

related to the degree of price stickiness in the economy. The elasticity of marginal costs with

respect to output is defined by the parameter ω. Finally, equation (3) characterizes monetary

policy in the economy as a Taylor rule with interest-rate smoothing. The central bank adjusts the

nominal interest rate based on the lagged nominal interest rate, current inflation and output gap;

εmp
t captures unanticipated monetary policy shocks. The feedback coefficients χπ and χx denote

the weights place on the control of inflation and the output gap. The parameter ρ captures the

central bank preference for smoothing interest rate changes over time.

The structural disturbances, with the exception of the monetary policy shock, which is conven-

tionally modeled as i.i.d., evolve as AR(1) processes:

rnt = φdr
n
t−1 + σrε

r
t (4)

µt = φµµt−1 + σµε
µ
t . (5)

All innovations εmp
t , εrt , and εµt , are assumed to be drawn from a Normal distribution.

Following the dominant paradigm in macroeconomics, expectations, denoted by the mathemat-

ical operator Et, are modeled for now according to the rational expectation hypothesis.

2.1 RE Solution and State-Space Representation

The structural model can be rewritten in state-space form as:

Γ0Xt = Γ1Xt−1 +Πǫt +Ψηt, (6)

where Xt includes the endogenous variables, the expectation terms, and the AR disturbances, ǫt is

a vector including the model’s exogenous innovations, and ηt = Xt −Et−1Xt represents a vector of

expectational errors, such that Etηt+1 = 0. The model written in this form can be solved under the

assumption of rational expectations, using the approach laid out in Sims (2000). Under rational

expectations, the expectational errors disappear from the model as they are mapped into the set

of structural shocks. The solution can be written in state space as

Xt = FXt−1 +Gǫt, (7)

which yields the transition equation for our state space model.

We will estimate the model both omitting and including the available data series on expectations

as observables, in addition to macroeconomic realizations on output growth, inflation, and the

interest rate.
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The transition equation is, therefore, augmented with the following set of observation equations,

expressed here for the case in which expectations series are added to the list of observables:



gobst

πobs
t

iobst

E
obs
t gt+1

E
obs
t gt+2

E
obs
t πt+1



=




gt
πt
it

Etgt+1

Etgt+2

Etπt+1



+

[
03×3

I3×3

]


o
gt+1
t

o
gt+2

t

o
πt+1

t


 (8)

where gt denotes the growth rate of real output, and Etgt+1, Etgt+2, denote one-period-ahead and

two-period-ahead real output growth expectations. Therefore, we assume that observed expecta-

tions are equal to the rational expectations implied by the model plus a i.i.d measurement error,

denoted by ot.

3 DSGE-VAR Estimation

3.1 The DSGE-VAR Approach

The DSGE-VAR estimation approach used in this paper follows the framework developed in Del

Negro and Schorfheide (2004). We provide some intuition here and lay out the technical details in

Appendix A. The DSGE-VAR method exploits information from a DSGE model to aid in estimating

the parameters of a VAR. While VARs are typically successful in identifying interrelationships

among variables under minimal theoretical restrictions and outperform various alternatives in out-

of-sample forecasting, one of their most significant drawbacks is that they are far from parsimonious.

The DSGE-VAR approach helps in this dimension by essentially shrinking the VAR parameter

subspace toward the values implied by the DSGE model. At the same time, the approach improves

over structural DSGE estimation by providing it with more flexibility: the DSGE cross-equation

restrictions may not necessarily be imposed dogmatically, but the data are allowed to deviate from

them (or from some of them) to the extent that they need.

To aid the interpretation, one way to think about the DSGE-VAR approach is as follows. For

a given value of the DSGE model’s parameters, and given realizations of the shocks, the DSGE

model is simulated to generate artificial data. Adopting a DSGE model prior, in fact, is equivalent

to augmenting the data with new, generated, dummy observations. The parameters of the VAR

model are subsequently estimated using a sample merging the DSGE simulated data and real data.

A key parameter, which will be denoted by λ, can be interpreted, for now, as the ratio of artificial

DSGE observations over actual observations. If the process is repeated for different values of the

DSGE parameters, and if the DSGE is covariance-stationary, a mapping can be defined between the

VAR and DSGE parameters. The mapping creates a restriction function for the VAR parameters
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based on the DSGE model. If λ → 0, the DSGE contains no useful information: the best fit is

obtained when the artificial DSGE observations and, hence, their implied theoretical restrictions,

are entirely ignored. If λ → ∞, DSGE prior dummy observation dominate the sample. Therefore,

the DSGE model provides a superior description of the data. The parameter λ, therefore, can

measure the relative fit of the DSGE model to the VAR model.3

In practice, λ will scale the standard deviation of the variance-covariance matrix of the priors

for the VAR coefficients. The DSGE-VAR estimation considers all possible cases in the continuum

between the VAR and the DSGE model. A small λ indicates that the VAR coefficient prior

distributions are centered at the values consistent with DSGE restrictions, but they are extremely

diffuse; a large λ indicates a prior that is more tightly centered around the DSGE restrictions (with

a lower variance). By finding the best-fitting λ, we can gain intuition about how useful DSGE

restrictions are in explaining the data.

3.2 Data description

We use quarterly data on real GDP growth, GDP implicit price deflator inflation, and the Federal

funds rate, from FRED, as observable variables that need to be matched in the estimation. For

estimated DSGE and DSGE-VAR models with expectations, we add to the previous set of realized

series observed data on expectations, which enter the measurement equation as shown in (8). We

use expectations about one-period-ahead real GDP growth, two-period-ahead real GDP growth,

and one-period-ahead GDP deflator inflation. These are the expectations that directly enter the

model and are obtained from the Survey of Professional Forecasters (we use means across forecasters

in the main estimations, and medians in Section 6.2).4 The sample in the estimation spans the years

between the last quarter of 1968, chosen because the survey series on expectations start from this

date, and 2009, when we stop to avoid the nonlinearity imposed by the binding zero-lower-bound

constraint in the subsequent years.

Figure 1 shows the relation over the sample among realizations for output growth and inflation

and the corresponding expectations series from the SPF.

3As shown in Appendix A, the simulation is actually not necessary, since the sample moments in the extended
artificial sample can be replaced by the corresponding population moments.

4The acronyms for the series we use are GDPC1, GDPDEF, and FEDFUNDS, for real GDP, GDP deflator,
and Federal funds rate, from FRED, and RGDP, PGDP, to construct the implied one-period-ahead and two-period-
ahead forecasts for real GDP growth and one-period-ahead forecasts for inflation, from the Survey of Professional
Forecasters.
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3.3 Prior Selection and Bayesian Estimation

Our choices for the parameters’ prior distributions are shown in Table 1. We select a Gamma

prior for the intertemporal elasticity σ with mean equal to 1. The priors for ξp and ω have means

that are chosen based on Giannoni and Woodford (2004). We use inverse gamma priors for the

standard deviation coefficients of the structural innovations. For the standard deviations related to

measurement error, instead, we use Gamma(0.3,0.3) distributions, which allow us to assign higher

probability to values that fall closer to zero than to larger values. We choose Beta distributions

with mean 0.7 for the habit formation in consumption coefficient and with mean 0.5 for the inflation

indexation coefficient. Finally, a key parameter of focus in the paper is λ, indicating the tightness

of DSGE prior restrictions. We use an uninformative uniform prior between the allowed λmin and

∞.5 We have experimented with more informative Gamma priors and, given that the data appear

very informative, the results were entirely similar.

We estimate the combined DSGE-VAR models using Bayesian methods. We generate draws

through a Metropolis-Hastings algorithm. We run four chains of one million draws each, starting

from different initial values and discarding a burn-in of 200,000 draws. To choose the ideal lag

length, we performed a search by estimating all DSGE-VAR models with lag length going from one

to eight. For each estimated DSGE-VAR, we report the results corresponding to the best-fitting

specification.6

4 Empirical Results

4.1 RE without Expectations Data

As a benchmark, we first estimate the New Keynesian model summarized by equations (1) to (5),

with expectations formed according to the rational expectations hypothesis. We follow the conven-

tional approach in the empirical macroeconomic literature by not requiring rational expectations

to try to fit the corresponding observed expectations from surveys.

Table 1 shows the posterior results. The posterior mean estimates are in line with previous

existing evidence. The model requires large degrees of habit formation (η = 0.74) and inflation

indexation (γ = 0.50) to match the persistence in the data. The disturbance entering the aggregate

demand equation displays a sizable serial correlation, with a posterior mean for the AR coefficient

5The lower bound λmin is given by λmin = (n + k)/T , where k = 1 + pn, and where n denotes the number of
endogenous variables, p the number of lags, and T the number of time series observations. As described in Adolfson
et al (2008), the requirement that λ be at least as large as λmin allows the prior to be proper. This stipulation is a
necessary condition to compare marginal likelihoods across different DSGE-VAR models.

6The resulting best-fitting specifications have two lags for the DSGE-VAR with rational expectations and survey
expectations as observables, and six lags for the other cases.
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equal to 0.84. We obtain moderate degrees of intertemporal substitution (σ = 0.67) and a Phillips

curve coefficient ξp equal to 0.0014, the latter in line with the estimate in Giannoni and Woodford

(2004).7

The main interest in the estimation, however, lies in the estimate of the best-fitting λ, governing

the tightness of the DSGE prior restrictions that are imposed on the VAR coefficients. We obtain

a value of λ equal to 0.57. To facilitate comparison across different estimations, we also present

a relative indicator of distance between the DSGE and VAR specifications, which corrects for the

different values of λmin. The relative indicator, as suggested by Adolfson et al (2008) is given by

(λopt−λmin) and, here, it is equal to 0.43. The results, therefore, conform with the evidence in Del

Negro and Schorfheide (2004) and Del Negro et al (2007): a DSGE-VAR with intermediate λ fits

the data best, outperforming both the DSGE and the VAR benchmarks. The DSGE restrictions

are, therefore, useful in improving the unrestricted VAR estimates.

In this estimation scenario, however, we have let expectations free to adjust to fit the realized

data. But do actual private-sector expectations behave in the same way as the implied rational

expectations from the model? We now turn to investigate this issue by explicitly incorporating the

available data on expectations from the Survey of Professional Forecasters in the estimation.

4.2 RE with Expectations Data

We re-estimate the model, but now adding observed survey expectations to the list of observable

variables to match. Observed expectations and rational expectations obtained from the model are

related through the measurement equations laid out in (8).

First, we re-estimate the DSGE-VAR to find the best-fitting specification in the model space

between the unrestricted VAR and the fully-restricted DSGE model, i.e. the optimal λ. We then

re-estimate the model by imposing the DSGE restrictions, i.e., we consider the DSGE-VAR(λ = ∞)

approximation. Estimation of these two cases allows us to study where misspecification takes place

in the model. We can gain intuition on the areas of misspecification, for example, by comparing the

impulse responses between the specification that yields the best fit of the data and the specification

that dogmatically imposes the DSGE restrictions.

Table 1 shows the posterior estimates corresponding to the two cases. While the addition

of expectations does not substantially alter the DSGE-VAR coefficient estimates, the conclusions

regarding the ability of the DSGE restriction to help in explaining the data need to be largely

reassessed.

7The data, however, are not very informative on the values of ξp and ω.
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When the estimation is required to match the co-movement observed in the data between

macroeconomic outcomes and expectations, the data point toward substantially rejecting the DSGE

restrictions. The posterior estimate for λ is equal to 0.16, only marginally larger than the minimum

allowed λ (which falls around 0.08). Our relative indicator of misspecification (λopt−λmin), hence,

falls from 0.43 to 0.08, when the model is asked to match expectations. The DSGE model, therefore,

is unable to capture the dynamic adjustment between macroeconomic data and expectations. We

believe that this is a key failure of the New Keynesian model, given the role that the expectations

channel plays both in the propagation of business cycles and in the transmission of monetary policy

decisions to the economy.

Therefore, we seek to investigate in more depth where the main sources of misspecification in

the theoretical model lie. Figures 3, 4, and 5, show the impulse response functions of output growth,

inflation, the nominal interest rate, expected output growth, and expected inflation, to demand,

supply, and monetary policy shocks. The DSGE model’s impulse responses are compared to the

impulse responses of the best-fitting DSGE-VAR with λ = ˆλopt, which, as we have seen, is very

close to an unrestricted VAR.

We summarize the main findings into three key points. First, the impulse responses confirm that

the DSGE model is fundamentally misspecified and is unable to capture the dynamic movements

found by the DSGE-VAR(λ = ˆλopt). The DSGE model’s impulse responses continually leave

the 95% probability bands implied by the DSGE-VAR(λ = ˆλopt) model. The exceptions are the

responses of inflation and expected inflation to a monetary policy shock, which fall, however, around

zero and display sizable uncertainty.8 In addition, the second finding concerns the persistence in

the responses to the structural shocks. In particular, the DSGE model’s response of inflation and

interest rate to a cost-push shock does not exhibit as much persistence as the impulse responses

from the DSGE-VAR(λ = ˆλopt) model. The third finding concerns the responses of the observed

expectations to the structural shocks. The responses of expected inflation to a natural rate and cost-

push shock do not show enough persistence under the DSGE model. The DSGE-VAR(λ = ˆλopt)

model exhibits a hump-shaped response, while the DSGE model quickly levels out. In the case of

cost-push and monetary policy shocks, the DSGE model’s impulse responses seem to follow different

paths than those implied by the DSGE-VAR(λ = ˆλopt) model. Expected output growth (one and

two-quarters ahead), displays responses that are very different in the DSGE model compared with

the best-fitting DSGE-VAR benchmark, and that often have the opposite sign.

8The impulse response of inflation to a monetary policy shock in the DSGE-VAR analysis of Del Negro et al (2007)
also displays large uncertainty. The error bands in their paper are at least as large as the ones presented in Figure 5.
The wide bands may be a function of the uncertainty in estimating some of the Phillips curve coefficients, such as ω.
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5 Relaxing Rational Expectations:
Alternative Expectation Formation Mechanisms

To study whether rational expectations are responsible for the failure of the DSGE model to

match the interactions between macroeconomic expectations and the corresponding realizations,

we investigate the performance of the model under alternative expectation formation mechanisms.

5.1 VAR & AR Perceived Laws of Motion

First, we assume that agents form expectations from a VAR, whose set of endogenous variables

correspond to those that would appear in the MSV solution of the DSGE model under RE, and

under the assumption, which we find more empirically realistic, that agents cannot observe the

exogenous structural shocks. This corresponds to a specification that is usually chosen as a per-

ceived law of motion in adaptive learning models. For simplicity, however, we do not allow here

for learning. Adding time-varying coefficients to the DSGE-VAR framework is beyond the scope of

this analysis. A study along these lines is Granziera (2012).

The VAR expectations are formed as

Êt−1Y
V AR
t+1 = a(1 + b) + b2Yt−1 + et−1,t+1 (9)

where Yt = [xt, πt, it]
′. To be consistent with the learning literature, we assume that economic

agents observe only data up to t − 1 when forming expectations in period t about variables in

t + 1 and further. We also find that this case provides a better fit of the data than the time-

t information alternative. Moreover, a second important modification to the RE case is that

we allow disturbances to affect the formation of expectations. We allow expectations to depart

from the point VAR forecast by including an exogenous term, et−1,t+1, which can be interpreted

as an expectation shock (the shock affects expectations related to t + 1 variables, formed using

t − 1 information). The shock is in the spirit of the judgment variable studied in Bullard, Evans,

and Honkapohja (2008), and of the expectation, or sentiment, shocks proposed in Milani (2011,

2013), who finds that they explain roughly half of business cycle fluctuations in general equilibrium

settings. The sentiment shocks can be interpreted as waves of optimism or pessimism that are

unwarranted by the fundamentals of the economy. Under rational expectations, these are ruled out

by construction, as forecast errors arise only as a function of structural innovations. Here, we let

the data decide by allowing excesses of optimism and pessimism to potentially play a role.

As a second, related, specification, we simplify the previous case by assuming that agents form

expectations from simpler AR(1) models for output and inflation. The expectations, denoted by
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Êt−1Y
AR
t+1 , are formed as in (9), but now with Yt = [xt, πt]

′ and with b being a diagonal matrix.

5.2 Heterogeneous Expectations

Besides the expectation models motivated by the adaptive learning literature, we also examine

alternatives that allow for heterogeneous expectations. A fraction ωV AR of the agents in the model

are assumed to form VAR expectations, as in the previous section, whereas the remaining fraction,

1− ωV AR, forms rational expectations:

ÊtY
Het
t+1 = ωV ARÊt−1Y

V AR
t+1 + (1− ωV AR)EtYt+1 + et−1,t+1, (10)

where EtYt+1 denotes rational expectations, and where we allow, as in the previous section, for

an exogenous sentiment disturbance et−1,t+1 to affect aggregate expectations formation. In the

estimation, we select an uninformative Uniform(0,1) prior for the share parameter ωV AR.

5.3 (Heterogeneous) Expectations from the Lab

Hommes (2011) provides experimental evidence on the formation of macroeconomic expectations in

a laboratory setting. Subjects in the experiment are asked to forecast future output and inflation,

in an environment where actual data are generated by simulating a textbook New Keynesian model.

Their main findings are that expectations are heterogeneous, but they seem to cluster around

representative groups, who base their forecasts on simple heuristic rules. One group is characterized

by trend-following expectations, another by adaptive expectations, and the last one by expectations

that can be labeled as “anchor and adjustment”. In this section, we let expectations in the model

match the evidence from the lab, by allowing for heterogeneity and modeling expectations according

to the clusters that emerged from the experiments.

The trend-following (TF) expectations, adaptive (AD), and the anchor and adjustment (AA)

expectations are formed, respectively, as

ÊTF
t Yt+1 = Yt−1 + a(Yt−1 − Yt−2) (11)

ÊAD
t Yt+1 = bYt−1 + (1− b)Êt−1Yt (12)

ÊAA
t Yt+1 = c(Y ave

t−1 + Yt−1)/2 + (Yt−1 − Yt−2), (13)

where a, b, c are coefficients to be estimated, Yt = [xt, πt]
′, and Y ave

t−1 , the anchor in the anchor and

adjustment case, is computed as Y ave
t−1 = (1/8)

∑
8

i=1
Yt−i.

We consider these expectation clusters in an encompassing model with heterogeneous expecta-

tions, which also includes a residual fraction of agents, who form rational expectations. Aggregate
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expectations equal

ÊtYt+1 = ωTF Ê
TF
t Yt+1 + ωADÊ

AD
t Yt+1 + ωAAÊ

AA
t Yt+1 +

(1− ωTF − ωAD − ωAA)EtYt+1 + et,t+1. (14)

The framework closely mirrors the heterogeneous expectations identified from the lab in Hommes

(2011) and Assenza et al (2012), with the only addition of the expectation shock et,t+1.

In the estimation, we assume Beta prior distributions, with mean 0.167 and standard deviation

0.1, for the ωTF,AD,AA parameters. We select a N(0.4,0.2) prior for coefficients a, a Beta with mean

0.5 and standard deviation 0.2 for b, and a N(0.25,0.125) for c.

5.4 Results Under Alternative Expectations

We report the posterior estimates for the structural coefficients as well as for the optimal λ in Table

2 under the alternative expectations. The coefficient estimates do not substantially vary from the

estimates presented in Table 1. The exception, however, is given by the optimal λ. The estimate

for the optimal λ is approximately 0.80 across the alternative expectations models. By allowing

agents to have one of the alternative expectations, the DSGE model-imposed restrictions now

become more valuable. The model fits the data better under the alternative expectation formation

schemes. For any alternative expectations model, the estimated marginal likelihood substantially

improves, reaching values between -189.46 and -195.33, compared to the marginal likelihood for the

model with rational expectations, which is equal to -215.49.

The measures of relative fit (λopt− λmin) equal to 0.53-0.54, substantially rising from the value

of 0.08, obtained for the model that imposed fully-rational expectations. The single best-fitting

model is the one assuming AR expectations, possibly because of its relative parsimony compared

with the other models.

Evidence on the difficulties of rational expectations is also apparent looking at posterior esti-

mates of the relative weights of boundedly-rational expectations. In the heterogeneous expectations

model, the posterior means for the shares of VAR-based expectations equal 0.62 for output growth

and 0.86 for inflation; rational expectations account only for the remaining part. In the alternative

heterogeneous expectations model motivated by lab evidence, the posterior means for backward-

looking lab-based expectations sum to 0.60 for output growth and to 0.79 for inflation.9

9The posterior means for the a, b, c, coefficients in the lab expectations estimation (which are not shown in Table
2 to save space) are as follows: 0.31 for ax and 0.20 for aπ, 0.55 for bx and 0.20 for bπ, 0.25 for both cx and ci; the
data are hence uninformative for cx and ci, but informative for the other coefficients.
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5.5 Variance Decomposition

We present the results of the forecast error variance decomposition in Table 3. When allowing agents

to form expectations from a small-scale VAR model, the expectational shocks seem to contribute a

significant share to the forecast error variance in output growth, inflation, interest rate, expected

output growth, and expected inflation. This result shows that the models with rational expectations

fail to incorporate key drivers of fluctuations. Under the standard DSGE model with rational

expectations, the main factor driving movements in output growth is the demand shock. The

demand shock contributes 93.6% of the forecast error variance of output growth. When relaxing

the DSGE restrictions in the DSGE-VAR(λ = ˆλopt), the demand shock contributes slightly less

to output growth. When requiring expectations in the DSGE model to be formed according to a

small-scale VAR model, the resulting share is strikingly smaller. The demand shock accounts for

only 8.3% of variance in output growth, while an expectational shock to one-period ahead output

growth accounts for 86%. Expectational shocks also explain 46% of inflation fluctuations and 48%

of interest rate fluctuations. Those shares are, instead, captured by cost-push shocks (for the case

of inflation) and by demand shocks (for the case of interest rates) in the estimated model under

RE.

The shares due to expectational shocks, especially for output, may appear as exceedingly large.

It is, however, probably more realistic to allow expectations in (9) to react not only to lagged

observable variables, but also, to some extent, to the structural shocks that are hitting the economy

(i.e., allowing agents to use a PLM that mirrors more closely the minimum-state-variable solution of

the model). We can, therefore, assume that agents include the structural disturbances rnt and µt in

their forecasting rules (as they would under rational expectations), and re-estimate the DSGE-VAR

model. The resulting shares from the variance decomposition exercise are shown in the bottom

panel of Table 3. Expectational shocks remain important, but the shares are more reasonable:

expectational shocks about output growth account for 63% of output variance and 35% and 42%

of inflation and interest rate variance, with the inflation-pressure expectation shock explaining an

additional 12% for inflation. Regardless of the exact magnitude of the shares, the data undoubtedly

favor a significant role played by exogenous non-structural shocks in expectations. Under rational

expectations, those shocks would, instead, be ruled out by construction, as forecast errors would

arise only as a function of structural innovations.

The large contribution of expectation shocks to the forecast error variance of macroeconomic

variables is in line with the findings of the previous related literature. Milani (2011, 2013) shows

that expectation, or sentiment, shocks contribute to between forty and sixty percent of economic
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fluctuations in the U.S., when added to an otherwise standard DSGE model.10 The expectation

shocks aim to capture waves of excessive optimism and pessimism that characterize expectations

and that are unjustified based on existing fundamentals. The results in Milani (2011, 2013) reveal

that there is indeed a strong positive correlation between identified expectation shocks from the

DSGE model and a variety of sentiment indicators from consumer and business surveys.

6 Robustness

6.1 Stable Times

The main estimation implicitly assumes that the expectations formation process is unchanged across

the sample. The formation of expectations, however, may have differed in unstable (i.e., the 1970s)

and stable times (the post-1980 decades). It’s possible to imagine that while rational expectations

fail to provide a good characterization of expectations behavior in the 1970s, they are a better fit

for their behavior in stable times.

To investigate this possibility, we repeat Section 4’s exercise over the 1980-2007 period, which

spans “stable” times in the U.S. economy, and compare the results to our baseline findings.

Table 4 shows that our main conclusions from Section 4 do not change when using the 1980-2007

sample period. The posterior estimate of λopt−λmin for the DSGE-VAR model without expectations

data is 0.63. However, when expectations are required to match the co-movement observed in the

data between macroeconomic outcomes and expectations, the estimate of λopt − λmin drops to

0.12. Therefore, even during a stable time period in which survey data may be expected to better

conform to the rational expectations hypothesis, the results still indicate a rejection of the DSGE

model’s restrictions.

6.2 Potential Outliers and SPF Median

In the main estimations of the paper, we match model-implied expectations to the correspond-

ing means across forecasters from the Survey of Professional Forecasters. In principle, such mean

forecasts may be sensitive to a few outlier observations. Therefore, in this section, we assess the ro-

bustness of the main results to the use of median forecasts as observable variables, instead. In Table

5, we present the posterior estimates for the DSGE-VAR estimation under rational expectations

and under the alternative AR expectations (i.e., the best-fitting case obtained in Table 2).

The estimated λs tell a similar story as before: the posterior mean for λopt− λmin is 0.08 when

the model with rational expectations is required to match median forecasts, and it rises to 0.46

10As shown in Milani (2011), the shares due to expectation shocks can be even higher if learning is shut down (i.e.,
learning can rationalize some of the fluctuations that are otherwise attributed to exogenous expectation shocks).
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when rational expectations are replaced with AR expectations (the mean estimate is somewhat

lower than under mean forecasts, but the results are overall comparable).

Moreover, in Figure 2, we show the individual expectations data from the SPF for inflation and

one- and two-period-ahead output growth, and we compare them with the corresponding model-

implied rational expectations from the estimated DSGE model. In some episodes, rational expec-

tations fall roughly at the center of the distribution of survey forecasts. But, in many instances,

and for sustained periods, rational expectations fall in the tails of the distribution and, even more

strikingly, sometimes are outside of the distribution of SPF forecasts. This happens, for example,

in the 2000 and 2003-2005 periods for output-growth expectations, when rational expectations fall

below survey forecasts. In the same periods, rational expectations for inflation exceed most survey

measures. Such discrepancies seem to arise from significantly different responses of rational and

survey expectations to a protracted sequence of supply shocks in those years. Finally, as docu-

mented before in the literature, the dispersion of individual forecasts is clearly more pronounced in

the 1970s than later on.

6.3 Subset of Observed Expectations

We also examine if the poor performance of the DSGE model with rational expectations is driven

by the DSGE model’s inability to match data on inflation expectations or on real output growth

expectations. Specifically, we estimate the DSGE-VAR(λ̂opt) using restricted versions of the mea-

surement equation (8). The first alternative includes data for Etgt+1 and Etgt+2 in addition to the

growth rate of real output, inflation, and the interest rate. The second version contains data for

Etπt+1 in addition to the growth rate of real output, inflation, and interest rate. We then compare

the results to our baseline findings in Section 4.

Table 6 displays the results of this exercise. When adding observations for Etgt+1 and Etgt+2 to

the data set, the posterior estimate for λ equals 0.17 and our relative indicator of misspecification

(λopt − λmin) is 0.10. These results are only slightly higher than in Section 4, indicating that the

data still reject the DSGE restrictions. When adding only observations for Etπt+1 to the data set,

the performance of the DSGE model with rational expectations deteriorates relative to our baseline

results. The right panel of Table 6 shows that the posterior estimates for λ and (λopt − λmin) fall

to 0.13 and 0.07, respectively. The results overall suggest that the misspecification of expectations

refers to both output growth and inflation expectations.
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6.4 Potential Output

In the main estimation, we have implicitly used a more empirical measure for the output gap, by

removing a linear trend from real output and the corresponding expectations through the measure-

ment equations. Here, we investigate the sensitivity of the results to using the precise theoretical

definition in the New Keynesian model, which defines the output gap as the deviation between

actual output and the corresponding measure of output in the same economy, but under flexi-

ble prices. Potential output will, therefore, be a function of the structural disturbances in the

model. The estimation results are shown in Table 7. Again, even under the theoretical defini-

tion, the data provide clear evidence on misspecification of the model under rational expectations

(λopt − λmin = 0.06), alongside more promising results when the rational expectations hypothesis

is relaxed (λopt − λmin = 0.51, obtained for AR-based expectations).

6.5 Microfoundations and Infinite-Horizon Expectations

There has been some debate in the adaptive learning literature on the microfoundations of the New

Keynesian model under non-rational expectations. The most common approach, followed so far in

the paper, is denoted the Euler-Equation (EE) approach: the log-linearized model equations are

the same as under rational expectations, but the mathematical expectation operator is replaced

by subjective expectations. In this case, inflation and output depend on one-period-ahead (and,

here, two-period-ahead) expectations. The alternative, studied for example in Preston (2008),

is to re-derive the model from its primitives, but imposing the assumption of subjective, rather

than rational, expectations, and assuming that agents incorporate subjective expectations about

their intertemporal budget constraint in their decisions. Preston (2008) shows that inflation and

the output gap now depend on long-horizon expectations of the same variables, as well as of

interest rates, until the indefinite future; this approach is denoted as Infinite-Horizon (IH). The

microfoundations for both cases are studied in depth in Honkapohja, Mitra, and Evans (2012).

They show that the EE approach, as used in this paper, is also valid and model-consistent. The

assumption that is required is that agents recognize, or have quickly learned, that the market

clearing condition in this economy applies (i.e., yt = ct): in such a case, the IH approach simplifies

and the two approaches become equivalent (with log-linearized equations identical to those under

rational expectations).

In light of this debate, however, we test in our paper if the results are overturned by the use of

the IH approach. We re-estimate the DSGE-VAR model under non-fully-rational AR expectations,

but now using the version of the New Keynesian model with infinite-horizon expectations based on
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Preston (2008) and estimated in Milani (2006). The estimates are shown in Table 8. The posterior

estimate for λopt equals 0.71, which yields a relative indicator of misspecification λopt − λmin equal

to 0.44. The value is lower than under the EE approach, but still much larger than under rational

expectations (0.08).11 The main conclusions of the paper are, therefore, robust to the use of

infinite-horizon expectations.

7 Conclusions

Monetary policymakers increasingly rely on their ability to influence private-sector expectations,

by exploiting the so-called expectations channel of monetary policy, in their efforts to stabilize the

economy.

We have shown, in this paper, that the leading model for the study of monetary policy largely

fails in matching the dynamic comovements between macroeconomic realizations and macroeco-

nomic expectations that seem to exist in the data. The failure appears in large part due to the

assumption of rational expectations. When we relax rational expectations to include, at least, shares

of agents that form non-fully-rational expectations, based on VAR/AR models, on experimental

laboratory evidence, and which may be heterogeneous, the model’s performance improves consid-

erably. Another key feature in matching the data seems the inclusion of sentiment or expectation

shocks, as sources of aggregate fluctuations, in addition to typical fundamental disturbances.

But even our specifications with alternative expectation formation schemes remain far from

fitting the joint evolution of macroeconomic variables and expectations as well as the more flexible

best-fitting DSGE-VARs. In our backward-looking expectation formation models, we have assumed

constant parameters. Adding time-variation through learning may improve the ability of the model

to explain the expectations data. Understanding the directions in which to extend the model to

successfully capture the co-movement between macroeconomic variables and expectations remains

a priority for future research.

11A difference of notice in the posterior estimates for the other parameters is the reduced value for σ. The same
result has also been found in Milani (2006).
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A DSGE-VAR Methodology

We describe the procedure here in more technical terms. The interested reader is referred to

Del Negro and Schorfheide (2004) for additional details.

Let’s start from a typical VAR model with p lags:12

yt = φ0 +

p∑

i=1

φiyt−i + ǫt, (15)

where yt is an n x 1 vector of endogenous variables and ǫt denotes the error term, distributed

as N(0,Σǫ). The VAR can be rewritten as

Y = XΦ+ Ξ, (16)

where Y is a T x n matrix with rows given by y′t, t = 1, ..., T , X is a T x k matrix, where

k = 1 + np, and with rows x′t = [1, y′t−1, ..., y
′

t−p], Φ = [φ0, φ1, ..., φp]
′, and Ξ is a T x n matrix

that has rows ǫ′t.

The VAR likelihood function is, therefore, given by the familiar:

p(Y |Φ,Σǫ) ∝ |Σǫ|
−T
2 exp

{
−

(
1

2

)
tr

[
Σ−1
ǫ (Y ′Y − Φ′X ′Y − Y ′XΦ + Φ′X ′XΦ)

]
}
. (17)

In a DSGE-VAR, the priors for the VAR coefficients Φ and Σǫ, conditional on the DSGE

parameter vector θ, are obtained as if a set of T ∗ = λT simulated data are generated from the

DSGE model and combined with the actual observations T in the estimation. Therefore, the

likelihood for the combined sample, including both the T ∗ artificially-generated observations

from the DSGE model (Y ∗(θ),X∗(θ)), and the actual T sample observations, can be computed

by multiplying

p(Y ∗(θ)|Φ,Σǫ) ∝ |Σǫ|
−λT
2 exp

{
−

(
1

2

)
tr[Σ−1

ǫ (Y ∗′Y ∗ − Φ
′

X∗′Y ∗ − Y ∗′X∗Φ+ Φ
′

X∗′X∗Φ)]

}

(18)

with p(Y |Φ,Σǫ) as given by expression (17).

Instead of actually generating the artificial data set (Y ∗,X∗) and using the sample moments

Y ∗′Y ∗, X∗′Y ∗, Y ∗′X∗, X∗′X∗, however, if yt is covariance stationary as implied by the

DSGE model, we can replace them with the scaled population moments λTΓ∗

yy(θ) = Eθ[yty
′

t],

λTΓ∗

yx(θ) = Eθ[ytx
′

t], λTΓ∗

xy(θ) = Eθ[xty
′

t], and λTΓ∗

xx(θ) = Eθ[xtx
′

t]. Conditional on the

12We refer readers to Del Negro and Schorfheide (2004) for full details on the procedure.
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DSGE parameter vector θ, such moments can be obtained analytically, substantially reducing

the computational effort.

Thus, with the inclusion of an initial improper prior p(Φ,Σǫ) ∝ |Σǫ|
−(n+1)

2 , equation (18)

becomes

p(Φ,Σǫ|θ) = c−1(θ) |Σǫ|
−(λT+n+1)

2 exp

{
−

(
1

2

)
tr[λTΣ−1

ǫ (Γ∗

yy(θ)

− Φ
′

Γ∗

xy(θ)− Γ∗

yx(θ)Φ + Φ
′

Γ∗

xx(θ)Φ)]

}
,

(19)

where c−1(θ) is a normalizing constant, obtained so that the density in (19) integrates to one.

If λT ≥ k + n and Γxx(θ) is invertible, equation (19) is proper, and c(θ) is defined as

c(θ) = (2π)
nk
2 |λTΓ∗

xx(θ)|
−n
2 |λTΣ∗

ǫ(θ)|
−(λT−k)

2 2
n(λT−k)

2 π
n(n−1)

4

n∏

i=1

Γ[(λT − k + 1− i)/2], (20)

where Γ(·) indicates the Gamma function. Conditioning on the DSGE parameters θ, the prior

distribution (19) for the VAR parameters belongs to the Normal - Inverse Wishart class:

Φ|Σǫ, θ, λ ∼ N(Φ∗(θ),Σǫ ⊗ (λTΓ∗

xx(θ))
−1) (21)

Σǫ|θ, λ ∼ IW (λTΣ∗

ǫ(θ), λT − k, n), (22)

where Φ∗(θ) = Γxx
∗−1(θ)Γ∗

xy(θ) and Σ∗

ǫ (θ) = Γ∗

yy(θ)−Γ∗

yx(θ)Γ
∗−1
xx (θ)Γxy

∗(θ). In our procedure,

we also define λ as a parameter to be estimated. Thus, our DSGE-VAR model is modified to

include a prior for λ. The new prior, which is independent from θ, takes the form

p(Φ,Σǫ, θ, λ) = p(Φ,Σ|θ, λ)p(θ)p(λ) (23)

The posterior distribution can be rewritten

p(Φ,Σǫ, θ|Y ) = p(Φ,Σǫ|Y, θ)p(θ, λ|Y ). (24)

We can find an expression for p(Φ,Σǫ|Y, θ). By noting that equations (21) and (22) define a

conjugate prior for p(Φ,Σǫ|Y, θ), we see that the VAR posterior distribution p(Φ,Σǫ|Y, θ) is

from the same family of distributions. Thus, the posterior distributions of Φ and Σǫ are defined

as

Φ|Y,Σǫ, θ ∼ N(Φ̃(θ),Σǫ ⊗ (λTΓ∗

xx(θ) +X ′X)−1) (25)

Σǫ|Y, θ ∼ IW ((λ+ 1)T Σ̃ǫ(θ), (1 + λ)T − k, n), (26)
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where

Φ̃(θ) = (λTΓ∗

xx(θ) +X ′X)−1(λTΓ∗

xy +X ′Y ) (27)

Σ̃ǫ(θ) =
1

(λ+ 1)T
[(λTΓ∗

yy(θ) + Y ′Y )− (λTΓ∗

yx(θ)

+ Y ′X)(λTΓ∗

xx(θ) +X ′X)−1(λTΓ∗

xy(θ) +X ′Y )]

(28)

can be interpreted as Maximum Likelihood estimates of Φ and Σǫ. The last term in equation

(24), p(θ, λ|Y ), does not have a closed form solution, but we use a Random Walk Metropolis-

Hastings algorithm, similar to the one described in Del Negro and Schorfheide (2004), to

sample values of θ and λ from the posterior distribution.
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Table 1: Prior & Posterior Estimates

Prior Distr. Posterior Distribution

w/o Exp.(λ = λ̂opt) w/ Exp.(λ = λ̂opt) w/ Exp.(λ = ∞)

Distr. Mean 5% 95% Mean 5% 95% Mean 5% 95%
σ G(1.00,0.50) 0.67 0.22 1.10 0.72 0.23 1.20 0.32 0.20 0.43

100 ∗ ξp G(0.15,0.05) 0.14 0.07 0.21 0.15 0.07 0.23 0.08 0.04 0.12
ω N(0.90,0.25) 0.88 0.47 1.28 0.91 0.51 1.30 0.82 0.41 1.23
η B(0.70,0.10) 0.74 0.60 0.88 0.63 0.47 0.80 0.47 0.42 0.52
ρ B(0.75,0.10) 0.68 0.57 0.78 0.67 0.55 0.80 0.69 0.63 0.76
χπ N(1.50,0.25) 1.24 0.88 1.58 1.42 1.02 1.83 1.06 0.89 1.24
χx N(0.125,0.05) 0.17 0.11 0.23 0.16 0.08 0.23 0.10 0.06 0.14
γ B(0.50,0.15) 0.50 0.23 0.77 0.31 0.11 0.49 0.72 0.66 0.79
φd B(0.50,0.20) 0.84 0.73 0.95 0.84 0.70 0.97 0.91 0.88 0.94
φµ B(0.50,0.20) 0.22 0.03 0.40 0.16 0.02 0.29 0.03 0.01 0.06
λopt U(λmin,∞) 0.57 0.35 0.77 0.16 0.12 0.21 ∞ - -
σd IG(0.30, 2.00) 0.68 0.23 1.18 0.41 0.14 0.72 0.45 0.28 0.63
σµ IG(0.30, 2.00) 0.13 0.10 0.16 0.13 0.09 0.17 0.17 0.15 0.19
σm IG(0.30, 2.00) 0.23 0.19 0.27 0.24 0.17 0.31 0.34 0.31 0.38
σme
g1 G(0.30,0.30) - - - 0.19 0.14 0.24 0.29 0.26 0.32

σme
g2 G(0.30,0.30) - - - 0.14 0.10 0.18 0.19 0.17 0.21

σme
π G(0.30,0.30) - - - 0.11 0.08 0.13 0.20 0.18 0.22

logMargL (3 series) -290.19
logMargL (6 series) -215.49 -357.23

λ̂opt − λmin 0.43 0.08 -

Note: w/o Exp.(λ = λ̂opt) correponds to DSGE-VAR(λ = λ̂opt) model without expectation data; w/ Exp.(λ =

λ̂opt) corresponds to DSGE-VAR(λ = λ̂opt) model with expectation data; w/ Exp.(λ = ∞) corresponds to
DSGE-VAR(λ = ∞) model with expectation data. G: Gamma Distribution, N: Normal Distribution, B: Beta Distribu-
tion, U: Uniform Distribution, IG: Inverse-Gamma Distribution

26



Table 2: Prior & Posterior Estimates with Alternative Expectations

Prior Posterior Distribution

VAR AR HE Lab

Distr. Mean 5% 95% Mean 5% 95% Mean 5% 95% Mean 5% 95%

σ G(1.00,0.50) 0.55 0.21 0.90 0.63 0.19 1.09 0.62 0.22 1.00 0.69 0.18 1.16
100 ∗ ξp G(0.15,0.05) 0.15 0.07 0.23 0.15 0.07 0.23 0.15 0.07 0.22 0.15 0.07 0.22

ω N(0.90,0.25) 0.89 0.49 1.31 0.90 0.49 1.31 0.89 0.47 1.30 0.90 0.50 1.31
η B(0.70,0.10) 0.63 0.47 0.80 0.63 0.46 0.81 0.69 0.54 0.85 0.69 0.53 0.86
ρ B(0.75,0.10) 0.80 0.71 0.90 0.78 0.69 0.89 0.79 0.70 0.89 0.79 0.69 0.90
χπ N(1.50,0.25) 1.29 0.89 1.68 1.31 0.92 1.70 1.27 0.88 1.67 1.23 0.88 1.58
χx N(0.125,0.05) 0.11 0.03 0.19 0.14 0.06 0.21 0.11 0.03 0.19 0.14 0.07 0.22
γ B(0.50,0.15) 0.36 0.14 0.58 0.36 0.14 0.57 0.40 0.17 0.64 0.45 0.21 0.70
φd B(0.50,0.20) 0.24 0.08 0.39 0.24 0.09 0.40 0.23 0.08 0.38 0.25 0.10 0.40
φµ B(0.50,0.20) 0.14 0.02 0.24 0.14 0.02 0.24 0.12 0.02 0.21 0.11 0.02 0.21
φe

x1
B(0.50,0.20) 0.51 0.29 0.73 0.50 0.29 0.70 0.57 0.36 0.78 0.54 0.31 0.78

φe
x2

B(0.50,0.20) 0.62 0.47 0.77 0.63 0.48 0.77 0.58 0.43 0.75 0.56 0.40 0.72
φeπ B(0.50,0.20) 0.58 0.33 0.89 0.79 0.58 0.97 0.55 0.29 0.82 0.46 0.27 0.65
λ U(λmin,∞) 0.80 0.65 0.95 0.81 0.66 0.96 0.80 0.65 0.95 0.80 0.65 0.94
σd IG(0.30, 2.00) 1.71 0.66 2.67 1.60 0.67 2.52 2.03 0.88 3.17 2.02 0.72 3.33
σµ IG(0.30, 2.00) 0.19 0.16 0.22 0.19 0.16 0.22 0.19 0.16 0.22 0.19 0.16 0.21
σm IG(0.30, 2.00) 0.21 0.18 0.25 0.21 0.18 0.24 0.21 0.18 0.25 0.21 0.18 0.25
σe

x1
IG(0.30, 2.00) 0.64 0.54 0.74 0.64 0.55 0.74 0.41 0.26 0.56 0.39 0.25 0.52

σe
x2

IG(0.30, 2.00) 0.17 0.14 0.19 0.17 0.15 0.20 0.17 0.14 0.19 0.16 0.14 0.19
σeπ IG(0.30, 2.00) 0.11 0.09 0.12 0.11 0.09 0.13 0.10 0.08 0.11 0.09 0.08 0.11

ωV AR,x B(0.5, 0.2) 0.62 0.40 0.85
ωV AR,π B(0.5, 0.2) 0.86 0.76 0.96
ωTF,x B(0.167, 0.1) 0.20 0.03 0.36
ωAD,x B(0.167, 0.1) 0.27 0.10 0.44
ωAA,x B(0.167, 0.1) 0.13 0.03 0.22
ωTF,π B(0.167, 0.1) 0.13 0.02 0.24
ωAD,π B(0.167, 0.1) 0.60 0.48 0.73
ωAA,π B(0.167, 0.1) 0.06 0.01 0.11

logMargL -193.17 -189.46 -194.51 -195.33

λ̂opt
− λmin 0.53 0.54 0.53 0.53

Note: VAR corresponds to the DSGE-VAR(λ̂) model with expectations from a VAR that coincides with the MSV solution of the system; AR
corresponds to the DSGE-VAR(λ̂) model with expectations from a AR(1) model; HE corresponds to DSGE-VAR(λ̂) model with heteroge-
neous expectations; Lab corresponds to the DSGE-VAR(λ̂) model with expectations from a laboratory setting. G: Gamma Distribution, N:
Normal Distribution, B: Beta Distribution, U: Uniform Distribution, IG: Inverse-Gamma Distribution
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Shock to: rnt µt εt ex1
t ex2

t eπt ot
DGSE w/RE

gt 93.6 1 5.4 - - - -
πt 27.8 72.1 0.1 - - - -
it 50.1 15 34.9 - - - -

Etgt+1 61.5 2 3.4 - - - 33
Etπt+1 33.5 47.7 0.1 - - - 18.8

Best-fitting DGSE-VAR w/RE

gt 86.8 3.2 10 - - - -
πt 6.3 93.6 0.1 - - - -
it 54.7 10.2 35.2 - - - -

Etgt+1 61.7 3.5 6.5 - - - 28.3
Etπt+1 11.5 32.2 0.1 - - - 56.2

DGSE w/VAR Exp.

gt 8.3 3.2 0.3 86 1.1 1.1 -
πt 1.9 51.6 0.1 28.1 0.7 17.7 -
it 2.8 10.6 38.2 41.7 1 5.8 -

Etgt+1 33.9 4 2.6 53.9 5.2 0.6 -
Etπt+1 3.1 11.7 0.2 46.8 1.1 37 -

DGSE w/VAR Exp. & Disturbances

gt 32.5 1.4 1.3 63.1 1.2 0.4 -
πt 8.8 40.6 2.1 35.4 1 12.1 -
it 6.8 10.2 36.5 42.1 1.2 3.1 -

Etgt+1 10.6 1.86 1.25 77.4 8.5 0.3 -
Etπt+1 13.3 6.1 3.2 53.3 1.5 22.6 -

Table 3 - Variance Decomposition.

Note: The table shows the share of the forecast error variance in output growth, inflation, in-
terest rate, expected output growth, and expected inflation, due to each structural shock (nat-
ural rate, cost-push, monetary policy), expectational shock (to expected output, one and two
quarters ahead, and expected inflation), and the respective measurement error (ot). The re-
sults are compared across the benchmark DSGE model with RE, the best-fitting DSGE-VAR
under RE (with λ = λ̂opt), the DSGE-VAR models with expectations formed from a small-
scale VAR model and allowing for expectation shocks, and the same DSGE-VAR as the latter,
but also including structural disturbances in the agents’ PLM.
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Table 4: Prior & Posterior Estimates over 1980-2007 Subsample

Prior Distr. Posterior Distribution

w/o Exp.(λ = λ̂opt) w/ Exp.(λ = λ̂opt)

Distr. Mean 5% 95% Mean 5% 95%
σ G(1.00,0.50) 0.66 0.22 1.10 0.72 0.21 1.21

100 ∗ ξp G(0.15,0.05) 0.15 0.07 0.22 0.15 0.07 0.22
ω N(0.90,0.25) 0.90 0.49 1.30 0.89 0.49 1.30
η B(0.70,0.10) 0.74 0.61 0.88 0.62 0.45 0.80
ρ B(0.75,0.10) 0.70 0.61 0.79 0.71 0.60 0.83
χπ N(1.50,0.25) 1.33 0.96 1.68 1.40 1.00 1.79
χx N(0.125,0.05) 0.17 0.10 0.23 0.15 0.08 0.23
γ B(0.50,0.15) 0.40 0.18 0.62 0.29 0.11 0.47
φd B(0.50,0.20) 0.82 0.71 0.94 0.84 0.69 0.98
φµ B(0.50,0.20) 0.18 0.03 0.32 0.15 0.02 0.27
λopt U(λmin,∞) 0.84 0.52 1.15 0.24 0.17 0.30
σd IG(0.30, 2.00) 0.48 0.16 0.83 0.27 0.09 0.50
σµ IG(0.30, 2.00) 0.10 0.08 0.13 0.10 0.07 0.13
σm IG(0.30, 2.00) 0.13 0.11 0.16 0.15 0.11 0.19
σme
g1 G(0.30,0.30) - - - 0.15 0.11 0.19

σme
g2 G(0.30,0.30) - - - 0.11 0.08 0.14

σme
π G(0.30,0.30) - - - 0.09 0.07 0.12

logMargL (3 series) -58.49
logMargL (6 series) 47.03

λ̂opt − λmin 0.63 0.12

Note: w/o Exp.(λ = λ̂opt) correponds to DSGE-VAR(λ = λ̂opt) model without expecta-

tion data; w/ Exp.(λ = λ̂opt) corresponds to DSGE-VAR(λ = λ̂opt) model with expec-
tation data. G: Gamma Distribution, N: Normal Distribution, B: Beta Distribution, U:
Uniform Distribution, IG: Inverse-Gamma Distribution
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Table 5: Prior & Posterior Estimates with Median Forecasts

Prior Distr. Posterior Distribution

RE w/ Exp.(λ = λ̂opt) AR)

Distr. Mean 5% 95% Mean 5% 95%
σ G(1.00,0.50) 0.71 0.22 1.18 0.71 0.26 1.13

100 ∗ ξp G(0.15,0.05) 0.15 0.07 0.23 0.15 0.07 0.22
ω N(0.90,0.25) 0.91 0.50 1.32 0.89 0.48 1.31
η B(0.70,0.10) 0.62 0.45 0.80 0.60 0.43 0.77
ρ B(0.75,0.10) 0.67 0.55 0.80 0.78 0.67 0.88
χπ N(1.50,0.25) 1.40 1.00 1.79 1.28 0.88 1.66
χx N(0.125,0.05) 0.16 0.08 0.23 0.14 0.07 0.21
γ B(0.50,0.15) 0.34 0.12 0.54 0.39 0.16 0.61
φd B(0.50,0.20) 0.82 0.67 0.97 0.24 0.08 0.39
φµ B(0.50,0.20) 0.17 0.03 0.31 0.15 0.03 0.27
φex1

B(0.50,0.20) - - - 0.51 0.31 0.71
φex2

B(0.50,0.20) - - - 0.63 0.47 0.78
φeπ B(0.50,0.20) - - - 0.72 0.47 0.97
λopt U(λmin,∞) 0.17 0.12 0.22 0.73 0.60 0.86
σd IG(0.30, 2.00) 0.46 0.13 0.83 1.19 0.54 1.85
σµ IG(0.30, 2.00) 0.13 0.09 0.17 0.19 0.16 0.22
σm IG(0.30, 2.00) 0.23 0.17 0.30 0.20 0.17 0.23
σme
g1 G(0.30,0.30) 0.20 0.15 0.25 0.15 0.11 0.19

σme
g2 G(0.30,0.30) 0.15 0.11 0.19 0.11 0.08 0.14

σme
π G(0.30,0.30) 0.12 0.09 0.15 0.09 0.07 0.12

σex1
IG(0.30, 2.00) - - - 0.61 0.51 0.70

σex2
IG(0.30, 2.00) - - - 0.17 0.14 0.19

σeπ IG(0.30, 2.00) - - - 0.11 0.09 0.13
logMargL (3 series)
logMargL (6 series) -240.37 -204.33

λ̂opt − λmin 0.08 0.46

Note: RE w/ Exp.(λ = λ̂opt) corresponds to DSGE-VAR(λ = λ̂opt) model with RE and use
of expectation data; AR to the DSGE-VAR with expectations formed from AR models. G:
Gamma Distribution, N: Normal Distribution, B: Beta Distribution, U: Uniform Distribution,
IG: Inverse-Gamma Distribution
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Table 6: Prior & Posterior Estimates with Subsets of Observed Expecta-

tions

Prior Distr. Posterior Distribution

w/ Etgt+1 & Etgt+2 w/ Etπt+1

Distr. Mean 5% 95% Mean 5% 95%
σ G(1.00,0.50) 0.47 0.12 0.83 0.86 0.28 1.43

100 ∗ ξp G(0.15,0.05) 0.15 0.07 0.23 0.15 0.07 0.22
ω N(0.90,0.25) 0.90 0.49 1.31 0.90 0.49 1.31
η B(0.70,0.10) 0.65 0.47 0.83 0.71 0.56 0.86
ρ B(0.75,0.10) 0.71 0.58 0.83 0.71 0.58 0.84
χπ N(1.50,0.25) 1.30 0.91 1.66 1.45 1.05 1.85
χx N(0.125,0.05) 0.16 0.08 0.24 0.14 0.06 0.22
γ B(0.50,0.15) 0.51 0.26 0.75 0.31 0.11 0.50
φd B(0.50,0.20) 0.80 0.64 0.96 0.83 0.65 0.98
φµ B(0.50,0.20) 0.35 0.13 0.56 0.16 0.02 0.29
λopt U(λmin,∞) 0.17 0.11 0.23 0.13 0.07 0.19
σd IG(0.30, 2.00) 0.82 0.15 1.56 0.54 0.12 1.01
σµ IG(0.30, 2.00) 0.12 0.08 0.15 0.13 0.09 0.18
σm IG(0.30, 2.00) 0.25 0.18 0.32 0.25 0.16 0.33
σme
g1 G(0.30,0.30) 0.20 0.14 0.25 - - -

σme
g2 G(0.30,0.30) 0.14 0.10 0.18 - - -

σme
π G(0.30,0.30) - - - 0.11 0.08 0.14

logMargL (5 series) -302.69
logMargL (4 series) -220.96

λ̂opt − λmin 0.10 0.07

Note: w/ Etgt+1 & Etgt+2 corresponds to a restricted version of equation (8) in which data
for Etgt+1 and Etgt+2 are included in addition to the growth rate of real output, inflation,
and interest rate; w/ Etπt+1 corresponds to a restricted version of equation (8) in which
data for Etπt+1 is included in addition to the growth rate of real output, inflation, and inter-
est rate; G: Gamma Distribution, N: Normal Distribution, B: Beta Distribution, U: Uniform
Distribution, IG: Inverse-Gamma Distribution

31



Table 7: Prior & Posterior Estimates with Theoretical Definition for Output

Gap

Prior Distr. Posterior Distribution

RE w/ Exp.(λ = λ̂opt) AR

Distr. Mean 5% 95% Mean 5% 95%
σ G(1.00,0.50) 0.74 0.24 1.23 0.68 0.15 1.19

100 ∗ ξp G(0.15,0.05) 0.15 0.07 0.23 0.15 0.07 0.23
ω N(0.90,0.25) 0.91 0.50 1.32 0.89 0.48 1.30
η B(0.70,0.10) 0.68 0.53 0.83 0.73 0.56 0.89
ρ B(0.75,0.10) 0.69 0.57 0.82 0.79 0.70 0.89
χπ N(1.50,0.25) 1.45 1.04 1.84 1.34 0.96 1.71
χx N(0.125,0.05) 0.15 0.08 0.23 0.14 0.07 0.22
γ B(0.50,0.15) 0.33 0.12 0.54 0.36 0.15 0.58
φd B(0.50,0.20) 0.80 0.66 0.96 0.47 0.15 0.80
φµ B(0.50,0.20) 0.17 0.02 0.30 0.14 0.02 0.25
φex1

B(0.50,0.20) - - - 0.56 0.35 0.78
φex2

B(0.50,0.20) - - - 0.67 0.51 0.83
φeπ B(0.50,0.20) - - - 0.79 0.58 0.98
λopt U(λmin,∞) 0.14 0.10 0.18 0.78 0.63 0.92
σd IG(0.30, 2.00) 0.51 0.12 0.92 0.39 0.07 0.86
σµ IG(0.30, 2.00) 0.13 0.08 0.17 0.19 0.16 0.21
σm IG(0.30, 2.00) 0.23 0.16 0.30 0.21 0.18 0.25
σme
g1 G(0.30,0.30) 0.13 0.09 0.17 - - -

σme
g2 G(0.30,0.30) - - - - - -

σme
π G(0.30,0.30) 0.11 0.08 0.13 - - -

σex1
IG(0.30, 2.00) - - - 0.62 0.53 0.73

σex2
IG(0.30, 2.00) - - - 0.18 0.15 0.20

σeπ IG(0.30, 2.00) - - - 0.11 0.10 0.13
logMargL (3 series)
logMargL (6 series) -225.67 -203.12

λ̂opt − λmin 0.06 0.51

Note: RE w/ Exp.(λ = λ̂opt) corresponds to DSGE-VAR(λ = λ̂opt) model with RE and use
of expectation data; AR to the DSGE-VAR with expectations formed from AR models. G:
Gamma Distribution, N: Normal Distribution, B: Beta Distribution, U: Uniform Distribution,
IG: Inverse-Gamma Distribution
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Table 8: Prior & Posterior Estimates with Infinite-

Horizon Expectations

Prior Distr. Posterior Distribution

AR

Distr. Mean 5% 95%
σ G(1.00,0.50) 0.06 0.01 0.12

100 ∗ ξp G(0.15,0.05) 0.14 0.06 0.22
ω N(0.90,0.25) 0.88 0.47 1.30
η B(0.70,0.10) 0.87 0.78 0.96
ρ B(0.75,0.10) 0.79 0.68 0.90
χπ N(1.50,0.25) 1.37 0.96 1.77
χx N(0.125,0.05) 0.12 0.05 0.20
γ B(0.50,0.15) 0.33 0.14 0.51
φd B(0.50,0.20) 0.28 0.12 0.45
φµ B(0.50,0.20) 0.21 0.04 0.38
φex1

B(0.50,0.20) 0.30 0.12 0.47
φex2

B(0.50,0.20) 0.55 0.38 0.72
φeπ B(0.50,0.20) 0.55 0.36 0.74
λopt U(λmin,∞) 0.71 0.59 0.83
σd IG(0.30, 2.00) 0.11 0.09 0.12
σµ IG(0.30, 2.00) 0.13 0.11 0.15
σm IG(0.30, 2.00) 0.21 0.18 0.24
σex1

IG(0.30, 2.00) 0.64 0.54 0.74
σex2

IG(0.30, 2.00) 0.16 0.13 0.18
σeπ IG(0.30, 2.00) 0.10 0.09 0.11

logMargL (6 series) -223.78

λ̂opt − λmin 0.44

Note: The estimates correspond to the DSGE-VAR for a New
Keynesian model with Infinite-Horizon expectations and expecta-
tions formed from AR models. G: Gamma Distribution, N: Normal
Distribution, B: Beta Distribution, U: Uniform Distribution, IG:
Inverse-Gamma Distribution
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Figure 1: Real Output Growth and Inflation: Expectations and Realizations.
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Figure 2: Model-Implied Rational Expectations and Distribution of Individual SPF Forecasts. The
solid line denotes the expectations implied by the DSGE model under RE. The green dots indicate
each respondent’s expectations from the Survey of Professional Forecasters.
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Figure 3: Impulse Response Functions. Response of observables to natural rate shocks. The solid
blue line denotes responses obtained for the DSGE-VAR (λ = λ̂opt) model; the dashed red line
denotes responses obtained for the corresponding DSGE model. Dotted lines denote 95% error
bands.
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Figure 4: Impulse Response Functions. Response of observables to cost-push shocks. The solid blue
line denotes responses obtained for the DSGE-VAR (λ = λ̂opt) model; the dashed red line denotes
responses obtained for the corresponding DSGE model. Dotted lines denote 95% error bands.

37



0 5 10 15 20 25 30 35
−0.4

−0.3

−0.2

−0.1

0

0.1

Output growth: g
t

0 5 10 15 20 25 30 35
−0.06

−0.04

−0.02

0

0.02

0.04

Inflation: π
t

0 5 10 15 20 25 30 35
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Interest Rate: i
t

0 5 10 15 20 25 30 35
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Expected Output growth (t+1): E
t
g

t+1

0 5 10 15 20 25 30 35
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Expected Output growth (t+2): E
t
g

t+2

IRF to MP Shock

0 5 10 15 20 25 30 35
−0.04

−0.02

0

0.02

0.04

Expected Infl: E
t
π

t+1

Figure 5: Impulse Response Functions. Response of observables to monetary policy shocks. The
solid blue line denotes responses obtained for the DSGE-VAR (λ = λ̂opt) model; the dashed red
line denotes responses obtained for the corresponding DSGE model. Dotted lines denote 95% error
bands.
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