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Abstract 
 
The estimated amount of people affected by natural hazards stands at a staggering number of 
about 243 million people per year. While not all of the affected move across borders, 
international migration potentially provides an adaptation mechanism to natural hazards. The 
aim of this paper is to assess whether natural hazards induce international migration from a 
macro perspective. We construct a stylized theoretical gravity model of migration that includes 
hazards as random shocks. To estimate this model, we deploy exogenous data on geological and 
meteorological hazards from 1980 to 2010. We combine this data with the World Bank’s Global 
Bilateral Migration Database. Overall, our results suggest little evidence that natural hazards 
affect medium to long-run international migration. However, considering heterogeneity across 
income groups, we find that particularly middle-income countries experience significant push 
and pull effects on migration from natural hazards. 
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I. Introduction

According to the UN-DESA 2016 report on migration, 244 million international migrants
are living in the world in 2015. 157 million of these stem from middle-income countries
with their numbers rising more rapidly than those from other income groups. Related to
this, the amount of people affected by natural hazards stands at an estimated number of
243 million per year.1 The reports by the IPCC (2012), by the World Bank (2012) and
the Stern Review (Stern, 2006) particularly accentuate that climate change and natural
hazards have become serious issues that are global in their consequences. If global warming
progresses, it will become increasingly impossible to sustain livelihoods in some regions so
that the numbers of those needing to relocate permanently will continue to increase (Stern,
2006; Marchiori and Schumacher, 2011; IPCC, 2012; Economist, 2012). Historically, the
vast bulk of relocation of people caused by hazards has occurred within nations.2 Even
though not all of the affected move across borders, international migration might provide
a potential adaptation mechanism in the presence of natural hazards (McLeman and Smit,
2006; Tacoli, 2009; Barnett and Webber, 2010; Marchiori and Schumacher, 2011).

On these grounds, the impact of increasingly extreme natural hazards on the worldwide
relocation of people is one of the major potentially problematic issues that need scrutiny.
Knowledge remains limited on the factors at work involving hazards as a cause of inter-
national migration. Two channels advocated by Marchiori and Schumacher (2011) may
cause permanent relocation as an adaptation mechanism to natural hazards and climate
change. First, if amenities at home change or more infectious diseases occur, this may
directly lead to higher emigration abroad. Second, crop failure or aridification in rural
areas force people to migrate to urban regions, which puts urban wages under pressure
and might thus lead to higher international migration. The rural poor in developing
economies are most affected by natural hazards. By contrast, they are often liquidity
contraint and least able to insure themselves or adopt alternative adaptation strategies.
Moreover unfettered migration to the global North is not always possible as industrialized
nations get increasingly tough on migrants with stricter immigration policies (Boeri and
Brücker, 2005).

The aim of this paper is to assess whether natural hazards induce international mi-

1This was calculated by Oxfam (2009), "Forecasting the numbers of people affected annually by
natural hazards up to 2015". Other studies suggest even higher numbers, finding that 135 million are at
risk due to desertification alone (INCCCD, 1994), while 200 million are at jeopardy due to sea-level rise
(Myers and Myers, 2002).

2In this context, previous research found an effect of hazards in particular on migration from rural to
urban areas within national boundaries (Barrios, Bertinelli and Strobl, 2006; Beine and Parsons, 2015).
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gration from a macro perspective. We relate to the literature on the determinants of
migration3, to the general empirical literature on bilateral migration4, and to the more
specific subcategory on the relation between migration and natural hazards or climate
change. Empirical research is often regionally constrained. Naudé (2010) and Drabo and
Mbaye (2015) investigate the relation between hazards and international migration from
Sub-Saharan Africa or developing countries to OECD economies, respectively. They find
that hazards cause outmigration. Other studies look at single extreme disasters to eval-
uate their impact on migration. Ambrosetti and Petrillo (2016) examine intra-national
migration flows after L’Aquila’s earthquake of 2009, finding a strong increase of outflows
from L’Aquila to other provinces and close regions. Yet another branch of literature
focuses only on certain hazard types. Reuveny and Moore (2009), Coniglio and Pesce
(2015), and Backhaus, Martinez-Zarzoso and Muris (2015) use a gravity framework to
analyze the role of origin country climate anomalies on international migration to OECD
countries. Their results suggest that an increase in weather-related hazards in the origin
increases outmigration. Beine and Parsons (2015) use a comprehensive data set of global
migration for 1960 to 2000. They find little direct effects of climate anomalies or disasters
on international migration, but rather on migration from rural to urban areas.

A range of promising approaches to identify the link between hazards and migration
exists, but the underlying data used in seeking answers often has its drawbacks5, which
makes it difficult to generalize results and policy implications. As recapitulated by Mbaye
and Zimmermann (2015) in a literature review, effects of environmental hazards on migra-
tion range from positive to neutral to negative outcomes. Above all, most of the empirical
literature suffers from two major problems. First, they exclude migration towards non-
OECD countries, which might induce a large measurement error. According to the Global
Bilateral Migration Database, migration to non-OECD countries accounts for 51% of in-
ternational migration. Piguet, Pécoud and De Guchteneire (2011) note that hazards are
unlikely to affect migration in rich and politically stable economies. Exceptions that also
include non-OECD destinations are Beine and Parsons (2015), who find little effect of
climate change on migration, and Cattaneo and Peri (2016), who find in a monadic re-
gression that higher temperature increases migration to urban areas and middle-income
countries, while poor countries are liquidity constrained. Second, studies have often used
information on the incidence of disasters from databases drawn from insurance records

3Important contributions are Sjaastad (1962); Borjas (1987, 1989); Mincer (1978); Stark (1991).
4Studies include Lewer and Van den Berg (2008); Pedersen, Pytlikova and Smith (2008); Letouzé

et al. (2009); Ortega and Peri (2009); Mayda (2010); Beine, Docquier and Özden (2011), to name a few.
5Empirical economists face a lack of observational data and definitions for migration and hazards.
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or news. This introduces severe reporting and endogeneity biases, as both, insurance
penetration and damage caused are correlated with development, which in turn affects
migration patterns (for a detailed discussion, see Felbermayr and Gröschl, 2014).

In this paper, we construct a stylized theoretical gravity model of migration based on
derivations by Anderson (2011) and include hazards as random shocks. To estimate the
implications of this model, we deploy a conditional fixed effects Poisson Pseudo Maxi-
mum Likelihood approach advocated by Santos Silva and Tenreyro (2006). We offer two
contributions beyond recent work: (i) we explicitly estimate the time-variant part of mul-
tilateral resistance (MR)6 in bilateral migration, thereby allowing hazards in the origin
and the destination to vary in impact; and (ii) we deploy updated and extended natural
hazard data from Ifo GAME based on exogenous intensity measures, thus we solve the
endogeneity and reporting problems of insurance- and news-based disaster data.

Our results suggest little impact of natural hazards on medium to long-run interna-
tional migration in line with findings by Beine and Parsons (2015). Using the full sample
and considering the timing of events combined with migration decisions, we find that
a mean hazard event at origin leads to 1.7% more bilateral migration. The identifica-
tion of statistically significant effects becomes very noisy if we do not consider timing.
Moreover, decomposing hazards by type does not yield a clear pattern. When we dis-
tinguish countries by income levels, we do find heterogeneity across groups. Individuals
from low-income countries do not migrate internationally if struck by natural hazards.
International migration or other adaptation strategies may not be feasible for financially
constrained individuals (see also Cattaneo and Peri, 2016). If high-income countries ex-
perience hazards, their outmigration declines, possibly due to high insurance penetration
rates. These may cause incentives to stay as insured capital is upgraded after a hazard.
Middle-income countries show a clear pattern of migration due to hazards - which lead to
international migration of 1.4%, while those at potential destinations decrease migration
by 11.5%, both evaluated at the mean. Hence, examining the effect of natural hazards on
migration using a full sample may lead to aggregation bias.

The remainder of the paper is structured as follows. Section II provides a theoretical
gravity model of migration. Section III describes details on the empirical strategy and
section IV addresses the data. Section V provides results and a sensitivity analysis. The
last section concludes.

6MR terms are adapted to the setup from the derivations of Baier and Bergstrand (2009) using a
Taylor series expansion.
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II. A Gravity Model of Migration

To provide a simple theoretical motivation for estimating bilateral migration in a gravity
framework, we follow Anderson (2011). The decision to migrate is, in contrast to the
decision to export, characterized by the choice over a discrete number of alternative
locations on a global scale. The costs of migration are common to all migrants within
a particular bilateral link, albeit migration costs may have an idiosyncratic component
reflecting individual costs or utility from moving.
Consider a multi-country framework where i, j = 1, · · · , C denote countries, h =

1, · · · , H denotes individuals, and t denotes time. Each individual h has an idiosyncratic
component of utility from migrating, ξijh,t, which is unobservable and independently dis-
tributed across individuals with an iid extreme value distribution. In addition, individuals
face costs of migration, which are the same for all workers that migrate in a particular
migration corridor, κij,t = κji,t.7 Migration costs constitute an iceberg cost factor κij,t ≥ 1

and κii,t = 1 at time t. Migration costs are a function of several factors, comprising time-
invariant costs from the move, such as cultural proximity (common language, common
colonizer), or geographic location (distance, common border), and time-variant factors,
such as networks (stock of migrants), regional networks (regional trade agreements), im-
migration policies, political ties between country-pairs, or benevolence of welfare states
in receiving countries. In addition, migration costs may depend on unobserved bilateral
determinants, such as historical affinity of country-pairs, ethnic or business networks.
Moreover, migration costs may also follow a common time trend t.
When a natural hazard strikes, it damages and destroys both physical and human

capital. It follows that hazards affect the migration decision by reducing the productivity
of labor. By this they affect wages and eventually also the movement of population.8 We
formally introduce natural hazards as random shocks Φ, where Φ ≥ 1.9 The occurrence

7Note that migration costs may as well vary by skill levels. Migration costs could be lower for skilled
workers and increase with decreasing skill level. Individuals with low skill levels may benefit more from
migrating but also face relatively higher migration costs given their lower income and potential liquidity
constraints they face in situations where they cannot save or borrow enough to pay the costs of migration.
On the other hand, migrant networks may increase with skill and thus lead to lower migration costs for
the more highly skilled. This implies selection mechanisms by skill, which we abstract from in this model
as we cannot test implications empirically on the basis of our global migration data which does not allow
us to distinguish migrants by skill level.

8Note that natural hazards could also affect migration costs directly, such that migration costs would
increase with natural hazards as, for instance, infrastructure or amenities get destroyed. This would make
migration more costly and less likely. We abstain from modeling a direct effect; instead we consider that
hazards change multilateral resistance of countries, thus assuming an implicit effect on migration costs.

9Random shocks may also incorporate civil or international war, changes in governance from autocracy
to democracy or vice versa, etc.
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of random shocks and the damage they cause are assumed to be idiosyncratic across
locations. Random shocks have a transitive effect on labor productivity as they suddenly
shift demand and/or supply structures. Let the wage net of migration costs and net
of random shocks to labor productivity in the destination be wj,t/(κij,tΦj,t), where wj,t
denotes the wage in destination j at time t, and wage net of the labor productivity shock
at home is wi,t/Φi,t, where wi,t denotes the wage at origin i at time t and κii,t = 1. Then,
an individual h migrates if the utility from migrating to some destination j at time t is
larger than from staying at home, (wj,t/(κij,tΦj,t)) ξijh,t ≥ wi,t/Φi,t.10

To evaluate migration, suppose expected utility is a logarithmic constant relative risk
aversion (CRRA) CES function.11 Specifically, the observable component of log-linear
utility from migrating is

lnuij,t = lnwj,t − lnκij,t − ln Φj,t − [lnwi,t − ln Φi,t].
12 (1)

Note that individual decisions can be aggregated up to a representative individual (Mc-
Fadden, 1974), as migrants are assumed to be homogeneous except for the random term
ξijh,t. To retrieve a tractable gravity equation, we assume that the aggregated level of the
discrete choice probability is equal to migration flows from source i to destination j at
time t. Aggregate bilateral migration is then given as

Mij,t = P (uij,t)Ni,t, (2)

where the population in the source country takes a decision on migration and, with ξijh,t
following an iid extreme value distribution, the probability P (uij,t)

13 is given by

P (uij,t) = P (uij,t = m
k

axuik,t) =
euij,t∑
k e

uik,t
for ik 6= ij. (3)

10The average expected gain in utility from not migrating (remaining in i) is zero for individuals that
choose to stay in the origin (Ortega and Peri, 2009). wi,t and Φi,t are constant across all destinations.

11The CES utility function is given as uij,t = 1
σ−1

(
wj,t/(κij,tΦj,t)

wi,t/Φi,t

)σ−1

, where σ is the elasticity of
substitution for wages in different locations (also called the coefficient of relative risk aversion).

12Utility may also be derived from country characteristics C that denote benefits such as public
infrastructure, amenities, the welfare state etc. (compare for instance Beine and Parsons (2015) for a
more detailed discussion). We do not specifically model these benefits here as we do not devote particular
attention to country specific factors which do not alter the prediction of our random shock variable. The
role of these factors for migration will in our empirical section be considered by country dummies (time-
invariant) and also by controls and MR terms (time-varying).

13For examples of bilateral migration discrete choice models that build on a multinominal logit func-
tion, see Beine, Docquier and Özden (2011), Grogger and Hanson (2011), Gibson and McKenzie (2011)
or Beine and Parsons (2015).
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Since the Φ’s and κ’s enter the model multiplicatively through their effect on wages, they
combine into a shock-cost measure θij,t that represents both migration costs and random
shocks from natural hazards or similar factors on labor productivity.14 Both migration
costs and random shocks to labor productivity operate in combination with given wages
to generate the allocation of migrants. The combined shock-cost measure is then given
as θij,t = κij,tΦj,t/Φi,t.

With logarithmic utility, the structure of the migration equation corresponds to

Mij,t =
(wj,t/θij,t)

σ−1∑
k(wk,t/θik,t)

σ−1
Ni,t. (4)

To derive a tractable gravity equation, define Γi,t ≡
∑

k(wk,t/θik,t)
σ−1 and specify the

aggregated labor market clearing condition as Nj,t ≡
∑

iMij,t. The clearing condition is
then Nj,t = wσ−1

j,t

∑
i(θ

1−σ
ij,t /Γi,t)Ni,t. In equilibrium, wages are

wσ−1
j,t =

Nj,t

NtΓj,t
(5)

with total world population Nt ≡
∑

iNi,t ≡
∑

j Nj,t and Γj,t =
∑

i

θ1−σij,t

Γi,t

Ni,t
Nt
. Substituting

for the equilibrium wage in equation (4) using equation (5) yields the tractable gravity
specification of migration

Mij,t =
Ni,tNj,t

Nt

(
θij,t

Γ̃i,tΓ̃j,t

)1−σ

, (6)

with the outward migration friction price index Γ̃i,t =

[∑
j
Nj,t
Nt

(
θij,t
Γ̃j,t

)1−σ
]1/1−σ

and the

inward migration friction price index of Γ̃j,t =

[∑
i
Ni,t
Nt

(
θij,t
Γ̃i,t

)1−σ
]1/1−σ

.

To make the impact of random shocks visible in the gravity equation of migration, we
decompose θij. This gives

Mij,t =
Ni,tNj,t

Nt

(
κij,t

Γ̃i,tΓ̃j,t

)1−σ

Φσ−1
i,t Φ1−σ

j,t , (7)

14This useful simplification follows Anderson (2009) and is exploited in what follows. It can be de-
composed at any point into its components.
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and multilateral resistance terms are Γ̃i,t =

[∑
j
Nj,t
Nt

(
κij,t
Γ̃j,t

)1−σ (
Φj,t
Φi,t

)1−σ
]1/1−σ

and Γ̃j,t =[∑
i
Ni,t
Nt

(
κij,t
Γ̃i,t

)1−σ (
Φj,t
Φi,t

)1−σ
]1/1−σ

.

The first term of equation (7) denotes bilateral migration in a world without frictions,
where migrants are found in equal shares relative to the population in all destinations.
The second term denotes the impact of frictions in a world that entails costs to migration.
The larger bilateral migration costs κij,t, the lower are migration flows. Albeit, in a world
in which migrants choose from a set of alternative destinations, migration also depends
on multilateral resistance, which captures worldwide bilateral migration costs. The third
term indicates that random shocks to labor productivity in the origin and in the receiving
country affect migration. The larger the shock in the origin Φi,t, the higher are migration
flows. The larger the shock in the destination j at time t, the lower are migration flows.

III. Empirical Strategy

To test the predictions of the previous section regarding the effect of hazards on bilat-
eral migration patterns, we outline a fully fledged gravity model on a panel of bilateral
migration and primary hazard data. Estimating an augmented gravity specification, we
examine how natural hazard in the origin (Φi,t) and in the destination (Φj,t) affect bilat-
eral migration rates (Mij,t/Nii,t).

To get an estimable equation on migration rates, we take logs of equation (7) and obtain

ln
Mij,t

Nii,t
= (1− σ) lnκij,t + (σ − 1) ln Γ̃i,t + (σ − 1) ln Γ̃j,t + (σ − 1) ln Φi,t + (1− σ) ln Φj,t.

15 (8)

As discussed earlier in Section II, migration costs comprise time-invariant and time-
variant components. We empirically model our cost function as

κij,t = g(ln(DISTij), ADJij, LANij, COLij, RTAij,t,MigStockij,t−1, νt, νi, νj) (9)

which is a function of controls for time-invariant historical or cultural country character-
istics, such as bilateral distance ln(DISTij), adjacency ADJij, common language LANij,
and colonial heritage COLij. The cost function also comprises time-varying components,

15Note that Nt is constant, lnNj,t is omitted, and lnNi,t is transformed to lnNii,t (the non-migrant
population of i) to obtain migration rates as the dependent variable rather than migration flows. With
using migration rates we follow for instance Mayda (2010); Beine and Parsons (2015).
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such as regional trade agreements RTAij,t that account for the fact that more integrated
countries or regions might also experience higher migration flows.16 MigStockij,t−1 is the
stock of migrants from country i residing in j at time t − 1, which captures network
effects.17 νt are time specific dummies that account for common trends. νi and νj are
a complete collection of origin and destination country dummies which account for all
time-invariant country characteristics. Multilateral resistance (MR) terms have a time-
invariant and a time-variant component. While the time-invariant component of MR is
fully captured by origin and destination country fixed effects, the time-variant component
of MR is captured by Γ̃i,t and Γ̃j,t in equation (8).18 As in the traditional gravity model,
price indexes are computable once migration costs κij,t are constructed econometrically.

Zero bilateral migration flows make up about 65% of observations. To account for
these zero migration flows and to correct for heteroskedastic error terms, we choose a
conditional fixed effects (FE) Poisson Pseudo Maximum Likelihood (PPML) approach
advocated by Santos Silva and Tenreyro (2006).19 Based on equation (8), we estimate a
gravity equation of the form

Mij,t

Nii,t

= exp[α1Φi,t + α2Φj,t + α3 ln(GDPj,t/GDPi,t) + α4Civil Wari,t + α5Civil Warj,t

+α6κij,t + α7MRij,t] + εij,t . (10)

where Mij,t

Nii,t
is the decennial bilateral migration rate calculated as the migration flow

from i to j at decade t divided by the domestic non-migrant population in country i. Φi,t

(Φj,t) capture the physical intensity of natural hazards in the origin (destination) in a
given decade. These may be included as an index variable or separately for specific types
(see data section for more detail). As common in the migration-hazard literature, we
include two country specific controls directly that vary over time. GDPj,t/GDPi,t is the
ratio of destination to origin decennial average per capita GDP and proxies average wage

16Our RTA variable incorporates free trade agreements, currency unions and customs unions.
17The literature on networks identifies migrant networks to promote bilateral migration flows, trade

and capital flows (Rauch and Trindade, 2002; Munshi, 2003; Kugler and Rapoport, 2007; Docquier and
Lodigiani, 2010). In particular, Beine, Docquier and Özden (2011) find that migrant networks significantly
increase migration flows to OECD countries.

18Ideally, the time-variant component of MR is controlled for using time-varying country fixed effects.
Since our hazard variables are country-time specific, this approach is unfeasible. The fixed effects would
pick up the variation in our variables of interest.

19If zeros are prevalent in the data and error terms are heteroscedastic, PPML generates consistent
estimates even when the underlying distribution is not strictly Poisson.
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differences. Civil Warn,t with n = i, j are count variables of the number of years in which
civil wars took place in the source or the receiving country, respectively, within the last 10
years of observation. κij,t is a vector of migration costs as outlined in equation (9). It in-
cludes time constant and time-varying costs including a complete collection of origin and
destination country dummies and time specific fixed effects. The constructed MR terms
MRij,t = Γ̃i,t, Γ̃j,t capture the time-variant component of multilateral resistance (e.g.,
immigration policies or benevolence of the welfare state). We derive MR indices from a
first-order Taylor series expansion of the gravity equation following an approach by Baier
and Bergstrand (2009). We approximate MR terms based on distance (MRDISTij,t), ad-
jacency (MRADJij,t), common language (MRLANij,t), colonial relationship (MRCOLij,t),
and RTAs (MRRTAij,t) which we weight by population over world population (a proxy
for a country’s relative migrant potential). For details see Appendix A. This econometric
approach allows us to control simultaneously for the direct effects of hazards in the source
and the destination country and for time-varying country characteristics absorbed in the
MR terms. εij,t is an additive error term.
Our model suggests that α1 is positive such that hazards in the origin induce migra-

tion out of affected countries, while α2 is negative indicating that hazards in potential
destinations reduce migration. We will now bring this theoretical prediction to the data.

IV. Data

A. International Migration

We combine two data sets. The Global Migrant Origin Database (Version 4, 2007) pro-
vided by the World Bank reports bilateral migration stocks based primarily on the foreign-
born concept in intervals of 10 years from 1960 to 2000 for 226 countries. The data set
combines census and population register records to construct decennial matrices corre-
sponding to the last five completed census rounds. Data for 2010 are also provided by the
World Bank and updates data by Ratha and Shaw (2007) as described in the Migration
and Remittances Factbook 2011. The 2010 data set also uses the foreign-born concept
and similar sources and methods as the 1960-2000 data.20

To calculate bilateral decennial migration rates, we take the difference between contigu-
ous bilateral migrant stocks to approximate migration flows, which we then divide by the

20Note that the World Bank data relies on official census data, hence undocumented migrants or
refugees are not included. Temporary migration is included only if if the stay extends across a census
date. The data does not allow identifying how big the share of temporary migrants is.
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non-migrant origin population (following Beine and Parsons, 2015). This is constructed
as the country’s total population (according to WDI) minus the sum of immigrants in
that country. In some cases migration stocks shrink over the observed time period which
leads to negative values. As the exact reason of the decrease in migration stocks is not
clear, we stay in line with the literature and ignore all negative values by setting them to
zero, implicitly assuming that migrant stocks decrease due people’s deaths.21

In our sample, zero bilateral migration flows make up about 65% of observations. To
account for these zero migration flows and a potentially heteroskedastic error structure,
we estimate a FE PPML approach. Still, we lose observations due to missing data for
migration rates, control variables and natural hazards, preserving 66,673 observations
used in the PPML estimation. These preserved observations spread over all three decades
(17,556 observations for 1981–1990, 24,806 for 1991–2000, and 24,311 for 2001–2010) and
across 162 countries as listed in Appendix B, Table 7. Hence, we expect sufficient variation
in our data.22

B. Natural Hazards

We use natural hazard data from the Ifo GAME database on geological and meteorolog-
ical events, first introduced by Felbermayr and Gröschl (2014). The database contains
physical intensities of earthquakes, volcanic explosions, storms, droughts, floods, and tem-
perature anomalies on a monthly basis from 1979 to 2014 for 232 countries.23 The data
included in Ifo GAME stem from various primary sources and come in two different types
of geocoding requiring different treatment: (a) non-gridded hazards (volcanoes, hurri-
canes, and earthquakes) are aggregated to the country level by directly mapping the data
to all countries within a radial geodesic buffer around the exact hazard geolocation;24 (b)
gridded data (temperatures, precipitation, SPEI) are aggregated to the country level by

21The actual reasons for negative differences between subsequent bilateral migrant stocks can be a
mixture of mortality, return migration, or migration to a third country. The data does not allow us to
disentangle the true drivers of negative stock differences.

22The loss of data is commonly known in the literature. For example Beine and Parsons (2015),
the paper closest related to ours, have similar numbers of observations spread over four decades from
1960-2000.

23An earlier version of the Ifo GAME data base ranging from 1979 to 2010, covering 188 countries,
and using slightly different mapping procedures is currently available at http://www.cesifo-group.de/
ifoHome/research/Departments/International-Trade/Ifo_GAME.html.

24Not knowing the true spatial extent of natural hazards poses a potential problem. Volcanoes are very
local events, but gas plumes can have extensive impact. Also, the true geographic extent of earthquakes
and hurricanes is not easy to predict given only their magnitude and location at center. In addition,
geological, meteorological and surface characteristics matter. We thus rely on approximations from the
literature, as the prediction of the true spatial extent of hazard events lies beyond the scope of this paper.

http://www.cesifo-group.de/ifoHome/research/Departments/International-Trade/Ifo_GAME.html
http://www.cesifo-group.de/ifoHome/research/Departments/International-Trade/Ifo_GAME.html
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calculating area-weighted arithmetic means. The exact data sources as well as the re-
spective spatio-temporal aggregation procedures and index choices are described in detail
below; descriptive statistics are shown in Figure 2.

Earthquakes. We measure a country’s earthquake hazard by its maximum magnitude.
To obtain this, physical earthquake magnitudes from the Incorporated Research Institu-
tions for Seismology (IRIS) are mapped to each country within 150 km of the respective
epicenter. We aggregate to the decennial level by collapsing maximum earthquake mag-
nitudes across all months. The resulting earthquake magnitude is distributed between 0
and 10, with a mean of 5.9 and a standard deviation of 1.9 (compare Figure 2).

Volcanic Explosions. A country’s volcanic activity is measured by its maximum vol-
canic explosivity index (VEI). VEI is obtained from the Smithsonian Global Volcanism
Program and mapped to each country within 50 km of the respective volcano’s geolo-
cation. We aggregate VEI for each country to the decennial level by collapsing VEI to
their maximum across all months. Resulting VEIs are distributed between 0 and 6, with
a mean of around 0.4 and a standard deviation of 1.1 (compare Figure 2).

Storms. In order to measure a country’s storm hazard, we use the maximum combined
wind speed of a country from two data sources. Hurricane wind speeds in knots at the
exact locations and paths of hurricane centers come from the International Best Track
Archive for Climate Stewardship (IBTrACS) v03r07, provided by the World Meteorologi-
cal Organization (WMO) and the US National Oceanic and Atmospheric Administration
(NOAA). We map hurricane wind speeds to each country within a 100 km range of the
respective hurricane eye. Wind speeds of winter or summer storms in knots stem from
weather station data of the Global Summary of the Day (GSOD) statistics. This reports
wind speeds measured at terrestrial weather stations worldwide by the exact geolocation
of the respective station. To obtain a decennial measure for each country, we collapse
maximum wind speeds across all months. Resulting combined wind speed is distributed
between 16 and 165 knots, with a mean of 78.3 and a standard deviation of 29.8 (compare
Figure 2).

Temperature. We measure extreme temperature by the absolute mean temperature
difference from the long-run monthly mean. Monthly mean land surface air tempera-
tures in degrees Celsius at 0.5° x 0.5° latitude-longitude grid cell levels come from the
Climate Prediction Center of the National Centers for Environmental Prediction. The
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data combine and interpolate data collected from the Global Historical Climatology Net-
work Version 2 (GHCN) and the Climate Anomaly Monitoring System (CAMS). Spatially
aggregating grid cell data addresses two caveats. First, coordinates of measuring points
are located at grid cell centers which means that (a) small countries may not have any
measuring points within their geographic boundaries, and (b) for larger countries, mea-
suring points in border regions may concern only a relatively small aerial fraction. Second,
fixed-degree grid cells feature varying metric area along latitudes due to the earth’s cur-
vature. Hence, measuring points more remote from the equator affect smaller land area.
We apply the following procedure to address both caveats: First, we split each country

Figure 1: 2.5° grid cell aggregation example

i into fractions frac by grid cells. Second, we calculate geodesic land area a in km2 for
each fraction in a cell. At any point in time t, we add values of each measuring point
to all fractions within its respective cell, as they constitute the best proxy available in
their respective grid cell (compare Figure 1). Finally, we aggregate gridded observations
to the country level by calculating a weighted mean using each country’s geodesic land
area within a grid cell as analytic weights using

x̄∗
i,t

=

∑
frac∈i

aifrac · x
i,t
frac∑

frac∈i
aifrac

(11)

We then calculate the differences between monthly mean temperatures and the long-
run (1979-2014) monthly mean for each country. For our decennial data, we collapse
temperature differences across all months. In order to treat heat and cold waves alike,
we take the absolute value of the measure (see also Felbermayr and Gröschl, 2014). The
absolute temperature difference is distributed between 0 and 1.4 degrees Celsius, with a
mean of 0.3 and a standard deviation of 0.2 (compare Figure 2).
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Precipitation. Excessive precipitation, which might exceed percolation and sewage ca-
pacities, is captured by the positive maximum precipitation difference from the long-run
monthly mean. We obtain monthly mean precipitation in mm/day at 2.5° x 2.5° latitude-
longitude grid cell level from the National Aeronautics and Space Administration (NASA)
Global Monthly Merged Precipitation Analyses of the Global Precipitation Climatology
Project (GPCP) Version 2.2, which combines and harmonizes observations from satellites
and weather stations (gauges). We aggregate the gridded observations to the country level
in the same way as for temperatures (see equation (11)). For each country, we then cal-
culate the differences between monthly mean precipitation and the long-run (1979-2014)
monthly mean. For the decennial level, we use maximum precipitation differences across
all months. To avoid picking up the effect of potential droughts, we only work with posi-
tive maxima. The resulting indicator is distributed between 0.1 and 21.2, with a mean of
4.2 and a standard deviation of 2.9 (compare Figure 2).

Droughts. To approximate droughts, we deploy the negative mean of the Standardized
Precipitation-Evapotranspiration Index (SPEI) computed at a time-scale of 9 months.25

We obtain monthly mean precipitation in mm/day at 0.5° x 0.5° latitude-longitude grid
cell level from the Climatic Research Unit of the University of East Anglia (CRU TS
v3.23). While this data set is based on weather stations its longer time-scope and the
availability of information on evapotranspiration are necessary ingredients to calculate
the SPEI. We calculate the climatic water balance (precipitation minus potential evapo-
transpiration) at grid cell level for each month. The water balance is then standardized
for each grid cell by use of a log-logistic distribution function (applying an unbiased Prob-
ability Weighted Moments method).26 The SPEI is standardized with zero mean and a
standard deviation of one, where negative values indicate a drought. We aggregate the
gridded SPEIs to the country level by use of equation (11). To get to the decennial level,
we collapse SPEI values to their mean across all months and take only negative values
in absolute terms. The resulting SPEI indicator is distributed between 0 and 1.2, with a
mean of 0.1 and a standard deviation of 0.2 (compare Figure 2).

25The SPEI is specifically designed to quantify and monitor droughts according to their intensity and
duration (Vicente-Serrano, Beguería and López-Moreno, 2010). It takes the amount of rainfall at given
locations as well as the evapotranspiration into account and thus is an advancement of the Standardized
Precipitation Index (compare McKee et al., 1993).

26Data from the current month and of the respective past nine months are used, giving all months the
same weight and taking 1901-2014 as a reference period for obtaining the distribution parameters.
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Figure 2: Kernel densities of hazard indicators; zeroes excluded for earthquakes and vol-
canic explosions

Distribution Across Income Groups. When we compare the above indicators across
income groups in Figure 3 in the Appendix, we find that earthquakes are more common
among middle-income countries with a mean magnitude of 6.5, than in high- or low-
income regions. Volcanic explosions also mostly spread across middle-income countries,
while there is very little volcanic activity in low-income countries, but quite some activity
in high-income groups with a lower standard deviation but a higher mean of 0.5. Storms
have the lowest mean density (61.8 knots) in low-income regions with some spread es-
pecially at the higher end (>100 knots). Middle-income countries have a higher mean
(75.7) but experience more storms in the upper tail, while high-income countries have the
highest mean with 85.4 knots. Contrasting this, temperature differences are quite evenly
distributed across income groups, as are differences in excess precipitation where middle-
income and especially high-income countries experience a long tail. Droughts measured
at absolute negative SPEI levels are more prevalent in low-income countries with a mean
of 0.3 but less spread than in middle-income regions (standard deviation of 0.2).

Hazard Index. We use a combination of four different disaster indices. The simplest
one combines all types of hazard intensity measures into an index variable, Hazard Indexi,t
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= Quakei,t + Volcanoi,t + Stormi,t + ∆ Precipitationi,t + Droughti,t+ ∆ Temperaturei,t,
using an equal weights scheme. We also consider an index weighted by the inverse of
the standard deviation of each hazard type within a country (compare Felbermayr and
Gröschl, 2014). This is guided by the idea of precision weights, such that no one hazard
component dominates the movement of the index. Finally, we also take the time dimension
into account by weighting each physical intensity with a probability obtained from a
normal distribution f(x) = N(0; 1) which we fit over 120 months in a decade.27 This
way, hazard magnitudes are onset weighted at the monthly level, such that events which
occur earlier or later within a decade get a smaller weight than events occurring in the
middle of a decade when aggregating to the decennial level. The rational for using a bell-
shaped onset weighting scheme is that the effect of natural hazards that occurred at the
beginning of the decade may already have smoothed out before the next census, whereas
events occurring at the very end of a decade might not yet show an effect in the census as
it takes some time for people to adjust. This approach is adapted to our framework based
on an idea by Noy (2009), who studies the impact of disasters on macroeconomic output
over a year and linearly adjusts hazards by onset month to account for their occurrence
during the observed year. We again take the simple and the inverse standard deviation
weighted index combined with onset weighting.
As the impact of a hazard on the economy might depend on the hazard intensity relative

to the size of the economy, we follow the literature (i.e., Skidmore and Toya, 2002) and
scale all respective disaster variables by land area. This is potentially important, because
it alleviates biases resulting from spatial aggregation. Larger countries ceteris paribus have
a higher chance of being hit by a hazard of a given magnitude. Moreover, the larger a
country is the less likely will a natural hazard at a given location within that country have
a statistically significant impact on inward or outward migration. Descriptive statistics
on the various hazard indices can be found in Table 5 in the Appendix.

C . Controls

Data on population size and GDP per capita stem from the World Bank’s World De-
velopment Indicators (WDI). Information on civil wars are taken from the Intra-State
War Data (v4.1) of the Correlates of War Project. We work with the total number of
years involving civil wars within the last 10 years of the reported migration observation.
Geographic and cultural linkages – distance, common border, common language, colonial

27We shift the distribution such that the first and the last month each correspond to f(-3) and f(3)
respectively and then re-scale such that max[f(x)] = 1, ensuring a maximum probability-weight of 1.
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relation – as well as land area in square kilometers are taken from CEPII’s Geographic
and Bilateral Distance Database (2011). Information on regional trade agreements comes
from the RTA-Gateway of the WTO.28 Countries’ income groups are defined along 2014
World Bank Gross National Income per capita, using the World Bank Atlas Method.

V. Results

This section presents results on the impact of aggregated natural hazards and disag-
gregated hazard types on medium to long-run migration patterns. We also look into
heterogeneity across income groups and present a sensitivity analysis.

A. Baseline Results

Table 1 reports our baseline results. All regressions include origin and destination country
fixed effects, year dummies and respective MR terms. Each column uses a different
specification of the physical hazard intensity index as described in Section IV. All hazard
indicators are divided by the log land area to account for size differences of countries.29

Across all four specifications, control variables are consistent in sign, overall magnitude,
and level of significance. According to column (1), one additional year of civil war at
the origin country implies an increase in the bilateral migration rate by 5.7% over a
decade.30 Conversely, one additional year of civil war at destination leads to a decline in
the bilateral inward migration rate by 23% over a decade. Presence of a mutual regional
trade agreement, a proxy for regional networks, increases the bilateral migration rate by
31.3%. Moreover a ten percent increase in the lagged bilateral migrant stock, a proxy for
network effects, implies an increase in the bilateral migration rate by 3.6%. The effect is
slightly smaller than the estimated 4% by Beine and Parsons (2015) and lower than the
6.5% estimated by Beine, Docquier and Özden (2011), who use different time and country
samples. The controls for cultural proximity are also in line with the gravity literature
on migration. If bilateral distance increases by ten percent, bilateral migration decreases
by 7.5%. The presence of a common official language or common colonial history boost
bilateral migration by 65.7% or 60% respectively. Wage differences, proxied by the log
ratio of destination over origin GDP per capita, show a positive but not statistically
significant effect.

28The RTA gateway is accessible via http://rtais.wto.org/UI/PublicMaintainRTAHome.aspx.
29Note that if we do not scale by log land area, we obtain similar results.
30%∆Mig.Rate = 100× [eβ − 1]
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Table 1: Baseline Results

Dependent Variable: Migration Rateij,t
basic onset weighted

simple sd weighted simple sd weighted
(1) (2) (3) (4)

Hazard Indexi,t −0.111 −0.009∗∗∗ −0.060 0.004∗∗∗

(0.09) (0.00) (0.11) (0.00)
Hazard Indexj,t 0.025 −0.002 0.012 −0.013

(0.11) (0.01) (0.14) (0.01)
Controls

ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.168 0.206 0.175 0.201

(0.23) (0.23) (0.23) (0.23)
Civil Wari,t 0.055∗∗ 0.058∗∗ 0.042∗ 0.060∗∗

(0.03) (0.03) (0.03) (0.03)
Civil Warj,t −0.261∗∗ −0.259∗∗ −0.258∗∗ −0.258∗∗

(0.11) (0.11) (0.11) (0.11)
RTAij,t 0.272∗∗ 0.290∗∗ 0.291∗∗ 0.294∗∗

(0.12) (0.12) (0.12) (0.12)
ln
(
Mig. Stockij,t−1 + 1

)
0.357∗∗∗ 0.357∗∗∗ 0.358∗∗∗ 0.357∗∗∗

(0.03) (0.03) (0.03) (0.03)
ln (Distanceij) −0.748∗∗∗ −0.747∗∗∗ −0.743∗∗∗ −0.744∗∗∗

(0.08) (0.08) (0.08) (0.08)
Contiguityij 0.381∗∗ 0.380∗∗ 0.371∗∗ 0.377∗∗

(0.16) (0.16) (0.16) (0.16)
Common Languageij 0.505∗∗∗ 0.505∗∗∗ 0.501∗∗∗ 0.508∗∗∗

(0.11) (0.11) (0.11) (0.11)
Colonyij 0.470∗∗∗ 0.467∗∗∗ 0.463∗∗∗ 0.471∗∗

(0.17) (0.17) (0.17) (0.17)

Log-Likelihood −73.980 −74.024 −73.895 −74.013
Observations 66, 673 66, 673 66, 673 66, 673

Note: ***, **, * denote significance at the 1%, 5% and 10% level, respectively. Con-
stant, origin, destination and decade fixed effects and MR terms are included but not
reported. Natural hazards are scaled by log land area. Robust standard errors reported
in parentheses.

The physical intensity hazard index itself shows mixed results across specifications. In
column (1), we use the simple physical intensity hazard index, which sums up the physical
intensities across all hazard types. Using this indicator, we do not find any statistically
significant effects on the bilateral migration rate. In column (2), we use the hazard index
weighted by its inverse standard deviation to ensure that the entire index is not driven
by variation in only one hazard type. Using this indicator, estimates imply a counter-
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intuitive negative push effect, suggesting that natural hazards at origin have overall led
to a decline in the decennial bilateral migration rate.31 Timing of the migration decision
related to natural hazards might play an important role. Hence, hazards happening at
the beginning or towards the end of the decade might not induce migration counting into
the decennial census rounds. In columns (3) and (4), we thus take the time dimension
into account using a bell-shaped onset-weighting scheme as explained in Section IV. Using
the simple onset weighted index still does not yield any statistically significant estimates
(column 3). However, if we use onset weighting with the hazard index weighted by
inverse standard deviations in column (4), we find a positive and statistically significant
push effect, suggesting that natural hazards at origin have overall led to an increase in
the bilateral migration rate by 1.68% (evaluated at the mean). Pull effects are negative
but not statistically significant.

The latter finding implies that the timing of migration decisions combined with natural
hazard events plays an important role for the identification of migration responses to
natural hazards. We thus take column (4) as our default specification.32

B. Heterogeneity Across Hazard Types

As a next step, we simultaneously use intensities of all hazard types.33 Again, all physical
intensity measures are weighted by log land area, but we obtain very similar results if not
done so.

Table 2 shows the coefficients for each physical intensity type. If basic intensity mea-
sures are used, we find no statistically significant effects (column (1)). Using onset weight-
ing in column (2) reveals positive push effects of volcanic explosions, suggesting that
volcanic events at origin boost the decennial bilateral outward migration rate by 7.9%
(evaluated at the mean). We also obtain a counter-intuitive positive pull effect for earth-
quakes in destinations, suggesting that people migrate more towards earthquake-prone
countries. This result may be driven by middle-income countries, which are more prone
to earthquakes (compare Figure (3)) but are also preferred destinations for migrants from
low- and other middle-income countries. The reasoning might be that even though earth-
quakes destroy a lot of capital, the migrants might still be better off due to reconstruction

31As we show in part C of this section, this effect is driven by high-income origin countries.
32While onset weighting can only proxy for the timeliness of adjustment, the exact shape of the actual

onset response function requires further research, which lies beyond the scope of this paper.
33Using all physical intensities simultaneously might induce multicollinearity into the regression as

temperature is also used as a component of potential evapotranspiration in calculating the SPEI. However,
if temperature events are omitted from the regression, this does not change our results.
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Table 2: Heterogeneity across hazard types

Dependent Variable: Migration Rateij,t
basic onset weighted
(1) (2)

Earthquakei,t 0.643 −0.451
(0.48) (0.65)

Earthquakej,t 0.631 2.434∗∗∗

(0.77) (0.71)
Volcanic Explosioni,t 2.144 2.452∗∗

(1.46) (1.24)
Volcanic Explosionj,t 1.565 −1.442

(2.06) (1.09)
Windspeedi,t −0.120 −0.044

(0.08) (0.11)
Windspeedj,t 0.038 0.000

(0.10) (0.13)
∆ Precipitationi,t 0.235 0.384

(0.36) (0.50)
∆ Precipitationj,t −1.058 −0.797

(1.05) (0.76)
∆ Temperaturei,t 0.120 4.373

(3.96) (7.44)
∆ Temperaturej,t −2.434 −15.279

(6.95) (15.70)
Drought (SPEI))i,t −5.300 2.076

(3.42) (6.63)
Drought (SPEI)j,t −1.014 6.467

(4.94) (8.97)

Log-Likelihood −73.882 −73.743
Observations 66, 673 66, 673

Note: ***, **, * denote significance at the 1%, 5% and 10%
level, respectively. Constant, origin, destination and decade
fixed effects and MR terms are included but not reported.
Natural hazards are scaled by log land area. Robust standard
errors reported in parentheses. Controls included as in Table
1.

purposes that might create new jobs (particularly in high- or top-middle income coun-
tries with high insurance and investment rates). We cannot pin down the effects of other
hazard types. Findings on controls (not shown in the Table) are similar with respect to
signs, magnitudes, and levels of significance as in our baseline specification in Table (1).
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C . Heterogeneity Across Origin Country Groups

Migration responses of individuals are likely to differ systematically across countries de-
pending on income characteristics. On the one hand, individuals in poor countries may
not migrate internationally after a hazardous event, because they are liquidity constrained
(see Cattaneo and Peri, 2016). On the other hand, high-income countries usually feature
high insurance penetration rates. Thus, individuals from high-income countries may not
see the need to migrate if losses from natural hazards are insured. In fact, crop yield
destruction can easily be compensated by high-income countries via imports (as they are
often financially open), whereas insured damages in built structures and capital assets
may even result in a growth-propagating replacement with new, higher quality or more
innovative substitutes. This might in turn boost individual’s expected earnings and there-
fore may lead to a decline in migration. In line with this reasoning, we expect not to see
a significant migration response to natural hazards by liquidity constrained low-income
countries, whereas insured high-income countries may either show no or even a negative
effect for hazards at origin. Middle-income countries, where individuals have the financial
means to migrate but insurance penetration rates are rather low are thus most likely to
migrate internationally in case of natural hazards. Consequently, pooling over all coun-
try pairs across all origin income groups might induce aggregation bias into our baseline
regression.

Table 3 tests this hypothesis and shows estimates by origin country income groups.34

Columns (1) and (2) contain the results for low-income origin countries only. In line
with the liquidity-constraint hypothesis, we observe no significant migration effects of
our hazard indices. Columns (3) and (4) contain the results for middle-income origins.
Evaluated at the mean, the basic result in column (3) suggests a negative and statistically
significant pull effect of hazards in potential destinations of -7.3%; (100×[e−0.015·5.075−1]).
If we consider the time dimension in column (4), we observe that hazards in the origin
increase migration by 1.4% (evaluated at the mean; (100× [e0.003·4.529−1]) and a negative
pull effect at the mean of -11.5%; (100 × [e−0.030·4.085 − 1]). Thus, push and pull effects
are largely in line with our priors for the group of middle-income origin countries. Again,
timing is important to identify causal effects. Columns (5) and (6) show results for high-
income origins. We observe a negative and statistically significant push effect of natural
hazards for the basic index in column (5). This finding is in line with the hypothesis that
natural hazards might potentially hamper outward migration from high-income countries

34For descriptives on the distributions of natural hazard types across low-, middle- and high-income
countries see Figure 3 in Appendix B.
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Table 3: Heterogeneity across origin country income groups

Dependent Variable: Migration Rateij,t
Low-Income Origins Middle-Income Origins High-Income Origins

basic onset weighted basic onset weighted basic onset weighted
(1) (2) (3) (4) (5) (6)

Hazard Indexi,t −0.011 0.039 −0.001 0.003∗∗∗ −0.010∗∗ −0.037
(0.03) (0.08) (0.02) (0.00) (0.00) (0.04)

Hazard Indexj,t 0.005 −0.001 −0.015∗∗ −0.030∗ −0.001 −0.015
(0.02) (0.01) (0.01) (0.02) (0.01) (0.02)

Controls

ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.895∗∗ 0.801∗ 0.370 0.369 −0.322 −0.540

(0.45) (0.45) (0.23) (0.23) (0.42) (0.41)
Civil Wari,t −0.052 −0.050 0.050∗ 0.043 0.172 0.158

(0.04) (0.04) (0.03) (0.03) (0.21) (0.20)
Civil Warj,t −0.179∗ −0.177∗ −0.019 −0.027 −0.477∗∗∗ −0.484∗∗∗

(0.10) (0.10) (0.04) (0.04) (0.13) (0.13)
RTAij,t 0.577∗∗ 0.523∗∗ 0.173 0.213 0.705∗∗∗ 0.714∗∗∗

(0.27) (0.26) (0.17) (0.18) (0.23) (0.23)
ln
(
Mig. Stockij,t−1 + 1

)
0.386∗∗∗ 0.390∗∗∗ 0.372∗∗∗ 0.371∗∗∗ 0.249∗∗∗ 0.247∗∗∗

(0.04) (0.04) (0.05) (0.04) (0.05) (0.05)
ln (Distanceij) −0.488∗∗∗ −0.481∗∗∗ −0.780∗∗∗ −0.776∗∗∗ −0.694∗∗∗ −0.696∗∗∗

(0.12) (0.12) (0.10) (0.10) (0.11) (0.11)
Contiguityij 1.111∗∗∗ 1.103∗∗∗ 0.521∗∗∗ 0.506∗∗∗ 0.130 0.121

(0.22) (0.21) (0.16) (0.16) (0.36) (0.35)
Common Languageij 0.240∗ 0.243∗ 0.881∗∗∗ 0.876∗∗∗ 0.139 0.141

(0.14) (0.15) (0.14) (0.14) (0.29) (0.29)
Colonyij 0.580 0.543 0.313 0.346∗ 0.709∗∗∗ 0.723∗∗∗

(0.39) (0.38) (0.21) (0.21) (0.25) (0.25)

Log-Likelihood −8.183 −8.179 −38.895 −38.905 −24.749 −24.759
Observations 11, 302 11, 302 33, 080 33, 080 22, 291 22, 291

Note: ***, **, * denote significance at the 1%, 5% and 10% level, respectively. Constant, origin, destination, and decade fixed
effects and MR terms are included but not reported. Natural hazard indicator components are weighted with their inverse standard
deviation. Natural hazards are scaled by log land area. Robust standard errors reported in parentheses.

due to positive income effects resulting from the replacement of insured losses. Moreover,
given the absence of significant push effects for low- and middle-income country groups in
columns (1) and (3), we conclude that high income origin countries do drive the negative
push effects in column (4) of Table 1. If we weight by onset month in column (6), the
effect again vanishes.
The finding that middle-income countries show a positive and statistically significant

push effect of natural hazards on bilateral migration is in line with findings on monadic
regression by Cattaneo and Peri (2016).
Interestingly, our control variables also show heterogeneity across income groups: While

overall wage differences, proxied by relative GDP per capitas, do not play a significant
role for the decision to migrate from middle- and high-income countries, they significantly
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drive migration from low-income countries. A ten percent increase in the per capita GDP
ratio implies a nearly proportionate increase in the bilateral migration rates from low-
income countries by 8 to 9 percent. Interestingly, armed conflicts in the destination have
a very strong deterring effect on potential migrants from high-income countries (who seem
to have a strong preference for safety), a smaller but still significantly positive effect for
low-income countries (for whom other motives, like escaping poverty, might be more im-
portant), and a negative but non-significant effect for middle-income countries. A similar
ranking albeit with less pronounced differences in magnitude, obtains for RTAs. Conti-
guity on the other hand plays the strongest role for low-income countries, with more than
three times the effect on the migration rate than for middle-income countries. Adjacency
does not seem to play a role for high-income countries. This finding supports the hy-
pothesis that migrants from poorer countries are on average more financially constrained,
as moving to neighboring countries implies lower migration cost. Common language is
important for middle-income countries, more than doubling the bilateral migration rate,
but it does not affect migration for high-income economies. On the other hand, colonial
relationships are of major importance for high-income origins, but less so for low- and
middle-income economies. Finally, diasporas are equally important for low- and middle-
income, but less for high-income countries.
We can conclude that heterogeneity in migration behavior exists across income groups

of countries. This leads to aggregation bias if considered jointly and may be responsible
for some counterintuitive or non-existent effects (they level out) we have found earlier in
this paper.

D. Sensitivity Analysis

Migration might only take place if major events occur that drive people out of their home
country, while small scale events may not exert an effect on international migration. As
a first check, we thus re-construct the hazard intensity index using only the top two
standard deviations of our hazard type indicators while setting smaller events to zero.
This way, our hazard variable captures major events only. Table 4 column (1) shows that
this modification does not lead to statistically significant estimates.35

As noted earlier, it might take some time for people to react to hazards and to come
up with the decision to migrate, particularly across international borders. As a second
check, we thus choose an alternative approach. Instead of applying a bell-shaped onset
weighting scheme, we exclude all hazards that took place within two years before each

35If we use the simple instead of the sd-weighted index, results do not change.
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census from our hazard index. The results are shown in Table 4 column (2). Again, the
hazard index does not show a significant impact on the bilateral migration rate, but might
also not consider timing properly.36

The frequency rather than the intensity might matter for the migration decision. We
change our hazard variable from physical intensities capturing the strength of hazardous
events to a count variable capturing the frequency. For each hazard type we count the
number of months within a decade whenever an event beyond a specified threshold37 has
occurred, and then sum up over all types, creating the inverse weighted index. Columns
(3) and (4) in Table 4 show that the hazard frequency does not imply any statistically
significant push or pull effects, whether we consider timing or not.
Fourth, we deviate from using FE PPML as the preferred estimation technique and use

FE OLS. Estimating OLS causes a loss of 43,418 observations for which the dependent
variable is zero. Columns (5) and (6) show that hazards do exert a significant effect on
migration.38 One peculiarity of the OLS results is that we obtain significant negative
effects for RTAs. This finding occurs in OLS due to the lack of country-pair fixed effects
causing omitted variable bias (for an overview of the large body of trade gravity literature
on this topic, see Head and Mayer, 2014). If bilateral fixed effects are included, RTA effects
become insignificant, but in turn the network variable reverses (see Appendix B, Table 8).
Since our migration data only covers three decennial waves, the inclusion of bilateral fixed
effects is problematic as within-group variation is limited. This problem is aggravated by
OLS compared to PPML due to zero migration flows. Hence, we follow Beine and Parsons
(2015) by excluding bilateral fixed effects and using direct gravity controls for common
country characteristics in all previous and prospective specifications.
Finally, we estimate a Heckman selection model to explore potential heterogeneity in

the adaptation mechanism at the extensive versus the intensive margin. In absence of a
better instrument, we use the Helpman, Melitz and Rubinstein (2008) common religion
measure as a selection variable. Our results suggest that natural hazards in the destination
country negatively affect the probability to observe a non-zero migration rate between a

36Again, using the simple instead of the sd-weighted index does not change this result.
37Chosen thresholds are given in Appendix B, Table 6.
38Using the simple hazard index instead yields positive push and negative pull effects which are

statistically significant. However, this finding is not robust, potentially due to heteroskedastic error
terms. A White test proposed by Wooldridge (2003, pp. 268-269) for applications with lengthy regressors
yields White’s special chi-square test statistic of 109.07 and a p-value of 2.1e-24. The Null hypothesis
of homoskedasticity is rejected such that estimated variances under OLS are biased. PPML, beyond
solving the problem of zero dependent variables, consistently estimates the gravity equation and is robust
to measurement error and different patterns of heteroskedasticity (see Santos Silva and Tenreyro, 2006;
Head and Mayer, 2014; Fally, 2015). Estimating FE PPML based on the smaller OLS sample does not
yield significant hazard estimators.
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country pair (column 7), whereas conditional on the probability that bilateral migration
takes place, hazards do not have any statistically significant push or pull effects (column
8). Thus, we conclude that natural hazards rather tend to affect migration at the extensive
margin whereas we do not find evidence for an effect at the intensive margin.39

VI. Concluding Remarks

This paper aims to provide an answer to the question on the impact of natural hazards
on international migration. To motivate the empirical strategy, we construct a stylized
gravity framework of bilateral migration introducing hazards as random shocks. To test
the implications empirically, we deploy a full matrix of international migration available
for increments of 10 years from 1980 to 2010 and hazard data based on intensity measures
of geological and meteorological events only. We run a conditional fixed-effects PPML
model to address the issue of zero migration flows and potentially heteroskedastic standard
errors. The gravity estimations are augmented by the use of explicit MR terms to control
for unobservable time-varying country characteristics.
Our PPML findings show little robust, if at all noisy evidence for push and pull effects

of natural hazards on medium to long-run international relocation. We find that hazard
intensity in the origin causes bilateral migration to increase by 1.7% (evaluated at the
mean), only if we consider the timing of events with respect to the migration decision
using a bell-shaped onset weighting scheme. If timing is neglected or alternative hazard
measures are applied, this finding turns out not to be noisy. Decomposing natural hazards
by type does not show a clear pattern of events either. Nevertheless, if we distinguish
between origin income groups, we find substantial heterogeneity, suggesting that natural
hazards have positive push and negative pull effects for middle-income countries. These
are neither financially constraint (as low-income countries), nor do they show high insur-
ance penetration rates (as high-income countries). We conclude that examining the effects
of natural hazards on migration using a full country sample may lead to aggregation bias.
Finally, we cannot rule out the possibility that the mere aggregation of our ten-year

data smooths out a big amount of information, making identification of causal effects
problematic. Given our migration data restrictions, our outlined findings must therefore
be taken with caution.

39Note that Heckman results are not directly comparable to PPML, which nest the intensive and
extensive effects in one estimate, while Heckman separates them.
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Table 4: Sensitivity Analysis

Dependent Variable: Migration Rateij,t (log in OLS)
Exclude Hazards (Intensity) Hazard Frequency (Count) OLS (Intensity) Heckman Selection (Intensity)

< Max -2 sd Census -2 Years basic onset weighted basic onset weighted Probit, onset weighted OLS, onset weighted
(1) (2) (3) (4) (5) (6) (7) (8)

Hazard Indexi,t −0.334 −0.005 −0.038 −0.013 0.000 −0.000 −0.000 −0.000
(0.38) (0.02) (0.05) (0.12) (0.00) (0.00) (0.00) (0.00)

Hazard Indexj,t 0.028 0.001 0.018 −0.039 −0.002 −0.006 −0.002∗∗∗ −0.006
(0.07) (0.01) (0.06) (0.14) (0.00) (0.00) (0.00) (0.00)

Controls

ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.210 0.238 0.216 0.214 0.117∗∗ 0.117∗∗ 0.008 0.109∗∗

(0.23) (0.22) (0.24) (0.23) (0.05) (0.05) (0.03) (0.05)
Civil Wari,t 0.052∗∗ 0.056∗∗ 0.055∗∗ 0.059∗∗ 0.005 0.006 0.006 0.005

(0.03) (0.03) (0.03) (0.03) (0.01) (0.01) (0.00) (0.01)
Civil Warj,t −0.260∗∗ −0.277∗∗ −0.259∗∗ −0.259∗∗ 0.015 0.015 −0.022∗∗∗ 0.018∗

(0.12) (0.11) (0.11) (0.11) (0.01) (0.01) (0.00) (0.01)
RTAij,t 0.290∗∗ 0.310∗∗ 0.290∗∗ 0.279∗∗ −0.066∗∗ −0.064∗∗ 0.064∗∗∗ −0.065∗∗

(0.12) (0.12) (0.12) (0.12) (0.03) (0.03) (0.02) (0.03)
ln
(
Mig. Stockij,t−1 + 1

)
0.358∗∗∗ 0.354∗∗∗ 0.357∗∗∗ 0.357∗∗∗ 0.590∗∗∗ 0.590∗∗∗ 0.033∗∗∗ 0.584∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.01) (0.01) (0.00) (0.01)
ln (Distanceij) −0.745∗∗∗ −0.719∗∗∗ −0.746∗∗∗ −0.748∗∗∗ −0.521∗∗∗ −0.520∗∗∗ −0.283∗∗∗ −0.475∗∗∗

(0.08) (0.08) (0.08) (0.08) (0.02) (0.02) (0.01) (0.02)
Contiguityij 0.373∗∗ 0.450∗∗∗ 0.379∗∗ 0.378∗∗ 0.457∗∗∗ 0.458∗∗∗ 0.027 0.454∗∗∗

(0.17) (0.15) (0.16) (0.16) (0.07) (0.07) (0.06) (0.07)
Common Languageij 0.506∗∗∗ 0.480∗∗∗ 0.504∗∗∗ 0.506∗∗∗ 0.384∗∗∗ 0.383∗∗∗ 0.167∗∗∗ 0.349∗∗∗

(0.11) (0.11) (0.11) (0.11) (0.03) (0.03) (0.02) (0.03)
Colonyij 0.469∗∗∗ 0.488∗∗∗ 0.472∗∗∗ 0.467∗∗∗ 0.007 0.009 −0.014 0.011

(0.17) (0.17) (0.17) (0.17) (0.09) (0.09) (0.07) (0.09)
Common Religionij 0.234∗∗∗

(0.03)

ρ −0.239∗∗∗

(0.07)
σ 0.352∗∗∗

(0.01)

Log-Likelihood/R2 −74.013 −73.122 −74.019 −74.022 0.783 0.783 −68899.91
Observations 66, 673 66, 048 66, 673 66, 673 23, 255 23, 255 65, 386

Note: ***, **, * denote significance at the 1%, 5% and 10% level, respectively. Physical intensity indicator components are weighted with their inverse standard deviation. Natural hazards are scaled by
log land area. Constant, origin, destination, and decade fixed effects and MR terms are included but not reported. Robust standard errors reported in parentheses.
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A. Appendix

Details on the Taylor series expansion to obtain tractable MR terms estimated in the
empirical specifications. From the theoretical derivations in section II, MR terms are
given by

Γ̃i,t =

∑
j

δj,t

(
θij,t

Γ̃j,t

)1−σ
 1

1−σ

, (12)

Γ̃j,t =

∑
i

δi,t

(
θij,t

Γ̃i,t

)1−σ
 1

1−σ

, (13)

where δ is Ni,t/Nt or Nj,t/Nt, respectively.

The first order Taylor series expansion of any function f(xi), centered at x, is given by
f(xi) = f(x) + [f ′(x)](xi− x). We follow Baier and Bergstrand (2009) and center around
symmetric migration frictions θij,t = θ. We start by dividing both sides of equation (12)
by a constant θ1/2:

Γ̃i,t/θ
1/2 =

[∑
j δj,t

(
θij,t/θ

1/2
)1−σ

/Γ̃1−σ
j,t

] 1
1−σ (14)

=

[∑
j δj,t (θij,t/θ)

1−σ /
(

Γ̃j,t/θ
1/2
)1−σ

] 1
1−σ

We define Γ̂i,t = Γ̃i,t/θ
1/2, θ̂ij,t = θij,t/θ, and Γ̂j,t = Γ̃j,t/θ

1/2. Substituting these in the
previous equation, we obtain

Γ̂i,t =

[∑
j

δj,t

(
θ̂ij,t/Γ̂j,t

)1−σ
] 1

1−σ

. (15)

It will later be useful to rewrite equation (15) as

e(1−σ) ln Γ̂i,t =
∑
j

eln δj,te(σ−1) ln Γ̂j,te(1−σ) ln θ̂ij,t , (16)

where e is the natural logarithm operator. In a world with symmetric migration costs
θij,t = θ, connoting θ̂ij,t = 1, the latter implies

Γ̂1−σ
i,t =

∑
j

δj,tΓ̂
σ−1
j,t (17)
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multiplying both sides by Γ̂σ−1
i,t yields

1 =
∑
j

δj,t(Γ̂i,tΓ̂j,t)
σ−1. (18)

As noted in Feenstra (2004, p.158, footnote 11), the solution to this equation is Γ̂i,t =

Γ̂j,t = 1. For this reason, under symmetric migration costs θ̂ij,t = Γ̂i,t = Γ̂j,t = 1 and
Γi,t = Γj,t = θ1/2.
A first-order log-linear Taylor series expansion of Γ̂i,t from equation (16), analogue for
Γ̂j,t, centered at θ̂ = Γ̂i,t = Γ̂j,t = 1 yields

ln Γ̃i,t = −
∑
j

δj,t ln Γ̃j,t +
∑
j

δj,t ln θij,t (19)

and
ln Γ̃j,t = −

∑
i

δi,t ln Γ̃i,t +
∑
i

δi,t ln θij,t. (20)

Using d
[
e(1−σ) ln x̂

]
/d[ln x̂] = (1 − σ)e(1−σ) ln x̂, some mathematical manipulation and as-

suming symmetry of migration costs, a solution to the above equations is

ln Γ̃i,t =

[∑
j

δj,t ln θij,t −
1

2

∑
k

∑
m

δk,tδm,t ln θkm,t

]
(21)

and

ln Γ̃j,t =

[∑
i

δi,t ln θij,t −
1

2

∑
k

∑
m

δk,tδm,t ln θkm,t

]
, (22)

where multilateral resistances are normalized by (the square root of) population weighted
average migration frictions (the combined shock-cost measure).
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In the empirical specification MR terms are calculated as

MRDISTij,t =

[(
C∑
k=1

δk,t(lnDistik + Φk,t − Φi,t)

)
(23)

+

(
C∑

m=1

δm,t(lnDistmj + Φj,t − Φm,t)

)

−

(
C∑
k=1

C∑
m=1

δk,tδm,t(lnDistkm + Φm,t − Φk,t)

)]
,

MRADJij,t =

[(
C∑
k=1

δk,t(Adjik + Φk,t − Φi,t)

)
(24)

+

(
C∑

m=1

δm,t(Adjmj + Φj,t − Φm,t)

)

−

(
C∑
k=1

C∑
m=1

δk,tδm,t(Adjkm + Φm,t − Φk,t)

)]
,

where δ denotes a states’ share of population over ’total’ world population, Nk,t/Nt and
Nm,t/Nt.
MR terms for RTA, Colony and Common Language are calculated analogously.
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B. Appendix
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Figure 3: Kernel densities of hazard indicators by country income groups at decennial
level; zeroes excluded for earthquakes and volcanic explosions
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Table 5: Summary Statistics, PPML, Full Sample

mean sd min max

Migration Rateij,t 0.0002 0.003 0.000 0.500

Aggregate Hazard Indices
Hazard Indexi,t 7.370 2.842 1.616 19.557
Hazard Indexj,t 7.421 2.855 1.616 19.557
Hazard Indexi,t, onset weighted 5.777 2.247 0.767 15.522
Hazard Indexj,t, onset weighted 5.813 2.256 0.767 15.522
Hazard Indexi,t, sd weighted 5.096 21.526 0 322.040
Hazard Indexj,t, sd weighted 5.102 22.082 0 322.040
Hazard Indexi,t, onset weighted, sd weighted 4.156 14.855 0 533.030
Hazard Indexj,t, onset weighted, sd weighted 4.196 15.113 0 533.030
Hazard Indexi,t, major 1.873 4.061 0 17.709
Hazard Indexj,t, major 1.896 4.101 0 17.709
Hazard Indexi,t, census -2yrs 7.130 2.749 1.621 19.305
Hazard Indexj,t, census -2yrs 7.182 2.764 1.621 19.305
Hazard Countsi,t 14.137 6.144 2.565 33.542
Hazard Countsj,t 14.152 6.199 2.565 33.542
Hazard Countsi,t, onset 5.880 2.528 0.710 13.827
Hazard Countsj,t, onset 5.886 2.550 0.710 13.827

Hazard Types (basic)
Earthquakei,t 0.511 0.158 0 0.947
Earthquakej,t 0.510 0.160 0 0.947
Volcanic Explosioni,t 0.042 0.093 0 0.476
Volcanic Explosionj,t 0.043 0.093 0 0.476
Windspeedi,t 6.455 2.641 1.133 17.709
Windspeedj,t 6.502 2.649 1.133 17.709
∆ Precipitationi,t 0.329 0.278 0.008 2.936
∆ Precipitationj,t 0.333 0.282 0.008 2.936
∆ Temperaturei,t 0.023 0.018 2.1e−05 0.115
∆ Temperaturej,t 0.023 0.018 2.1e−05 0.115
Drought (SPEI)i,t 0.012 0.018 0 0.127

Drought (SPEI)j,t 0.012 0.018 0 0.127

Hazard Types (onset weighted)
Earthquakei,t 0.418 0.155 0 0.792
Earthquakej,t 0.418 0.155 0 0.792
Volcanic Explosioni,t 0.031 0.072 0 0.311
Volcanic Explosionj,t 0.0315 0.073 0 0.311
Windspeedi,t 5.094 2.127 0.119 13.899
Windspeedj,t 5.127 2.135 0.119 13.899
∆ Precipitationi,t 0.218 0.198 0.006 1.404
∆ Precipitationj,t 0.221 0.199 0.006 1.404
∆ Temperaturei,t 0.011 0.008 9.9e−05 0.048
∆ Temperaturej,t 0.011 0.008 9.9e−05 0.048
Drought (SPEI)i,t 0.005 0.009 0 0.072

Drought (SPEI)j,t 0.005 0.009 0 0.072

Controls
ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.028 2.187 −6.149 6.149

Civil Wari,t 0.729 1.947 0 10
Civil Warj,t 0.721 1.948 0 10
RTAij,t 0.169 0.375 0 1
ln
(
Mig. Stockij,t−1 + 1

)
2.608 3.084 0 16.053

ln (Distanceij) 8.718 0.774 2.349 9.894
Contiguityij 0.021 0.143 0 1
Common Languageij 0.147 0.354 0 1
Colonyij 0.013 0.114 0 1

Note: 66,673 Observations, all hazard variables are land area weighted.
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Table 6: Standard Thresholds for Hazard Count Variables

Count Indicator Intensity Measure Bound Minimum Event Type

Earthquakes maximum magnitude ≥ 4 felt shaking of the earth with light
damage caused to buildings and
structures

Storms maximum sustained wind speed ≥ 64 knots some damage to buildings and trees,
extensive damage to to power lines
and poles
(Cat. 1 on Saffir-Simpson Hurricane
Scale)

Volcanoes maximum Volcanic Explosivity Index
(VEI)

≥ 1 light eruption with ejecta volume >
10,000 m3

Extreme Precipitation positive difference of monthly mean
precipitation from monthly long-run
mean

≥ 1.5 mm/day excess-rain anomaly

Extreme Temperatures absolute difference of monthly mean
temperature from monthly long-run
mean

≥ 1.5°C temperature anomaly

Droughts mean Standardized Precipitation
Evapotranspiration Index (SPEI)

≤ 0 mild drought (Vicente-Serrano,
Beguería and López-Moreno, 2010)
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Table 7: Countries in PPML Specification

Case numbers Case numbers

Origin Destination Origin Destination

Afghanistan 151 0 Kuwait 307 318
Albania 439 450 Kyrgyzstan 439 450
Algeria 440 289 Lao People’s Democratic Republic 439 450
Angola 439 450 Latvia 307 318

Argentina 439 450 Lebanon 440 289
Armenia 307 318 Lesotho 439 450
Australia 439 450 Liberia 439 450
Austria 439 450 Libya 307 318

Azerbaijan 307 318 Lithuania 307 318
Bahamas 439 450 Luxembourg 439 450
Bahrain 439 450 Madagascar 439 450

Bangladesh 439 450 Malawi 439 450
Belarus 307 318 Malaysia 439 450
Belgium 439 450 Mali 439 450
Belize 439 450 Mauritania 439 450
Benin 439 450 Mauritius 439 450

Bhutan 150 161 Mexico 439 450
Bolivia (Plurinational State of) 439 450 Mongolia 439 450

Bosnia and Herzegovina 307 318 Morocco 440 289
Botswana 440 289 Mozambique 439 450

Brazil 439 450 Namibia 439 450
Brunei Darussalam 439 450 Nepal 439 450

Bulgaria 439 450 Netherlands 439 450
Burkina Faso 439 450 New Zealand 439 450

Burundi 439 450 Nicaragua 439 450
Cambodia 307 318 Niger 439 450
Cameroon 439 450 Nigeria 439 450

Canada 439 450 Norway 439 450
Central African Republic 439 450 Oman 439 450

Chad 439 450 Pakistan 440 289
Chile 439 450 Panama 439 450
China 440 289 Papua New Guinea 439 450

China, Hong Kong Special Administrati.. 439 450 Paraguay 439 450
Colombia 439 450 Peru 439 450

Congo 439 450 Philippines 439 450
Costa Rica 439 450 Poland 307 318

Croatia 307 318 Portugal 439 450
Cuba 439 450 Puerto Rico 439 450

Cyprus 439 450 Qatar 150 161
Czech Republic 307 318 Republic of Korea 439 450

Côte d’Ivoire 439 450 Republic of Moldova 439 450
Democratic Republic of the Congo 440 289 Romania 307 318

Denmark 439 450 Russian Federation 439 450
Djibouti 307 318 Rwanda 439 450

Dominican Republic 439 450 Saudi Arabia 439 450
Ecuador 439 450 Senegal 439 450
Egypt 439 450 Sierra Leone 439 450

El Salvador 439 450 Singapore 439 450
Equatorial Guinea 307 318 Slovakia 307 318

Eritrea 308 157 Slovenia 307 318
Estonia 307 318 Solomon Islands 307 318
Ethiopia 439 450 South Africa 439 450

Fiji 439 450 Spain 439 450
Finland 439 450 Sri Lanka 439 450
France 439 450 Sudan 439 450
Gabon 439 450 Suriname 439 450
Gambia 439 450 Swaziland 439 450
Georgia 439 450 Sweden 439 450

Germany 439 450 Switzerland 439 450
Ghana 440 289 Tajikistan 439 450
Greece 439 450 Thailand 439 450

Guatemala 439 450 The former Yugoslav Republic of Maced.. 307 318
Guinea 439 450 Togo 439 450

Guinea-Bissau 439 450 Trinidad and Tobago 439 450
Guyana 439 450 Tunisia 439 450

Haiti 307 318 Turkey 439 450
Honduras 439 450 Turkmenistan 439 450
Hungary 307 318 Uganda 439 450
Iceland 439 450 Ukraine 439 450
India 439 450 United Arab Emirates 150 161

Indonesia 439 450 United Kingdom of Great Britain and N.. 439 450
Iran (Islamic Republic of) 439 450 United Republic of Tanzania 439 450

Iraq 439 450 United States of America 439 450
Ireland 439 450 Uruguay 439 450
Israel 439 450 Uzbekistan 439 450
Italy 439 450 Vanuatu 439 450

Jamaica 439 450 Venezuela (Bolivarian Republic of) 439 450
Japan 439 450 Viet Nam 440 289
Jordan 439 450 Yemen 307 318

Kazakhstan 307 318 Zambia 439 450
Kenya 439 450 Zimbabwe 439 450

Note: Case numbers extracted from post-estimation sample tabulation.
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Table 8: OLS, Full Sample, 1980-2010, Bilateral Fixed Effects

Dependent Variable: Migration Rateij,t
basic onset weightd

simple sd weighted simple sd weighted
(1) (2) (3) (4)

Hazard Indexi,t 0.059∗∗ −0.062 0.070∗ 0.106
(0.03) (0.08) (0.04) (0.08)

Hazard Indexj,t −0.174∗∗∗ −0.196∗∗ −0.070∗ 0.269∗∗∗

(0.03) (0.08) (0.04) (0.09)
Controls

ln
(
GDP p.c.j,t/GDP p.c.i,t

)
0.371∗∗∗ 0.398∗∗∗ 0.419∗∗∗ 0.415∗∗∗

(0.06) (0.06) (0.06) (0.06)
Civil Wari,t 0.011 0.010 0.008 0.012

(0.01) (0.01) (0.01) (0.01)
Civil Warj,t 0.027∗∗∗ 0.026∗∗∗ 0.032∗∗∗ 0.033∗∗∗

(0.01) (0.01) (0.01) (0.01)
RTAij,t −0.052 −0.049 −0.050 −0.043

(0.06) (0.06) (0.06) (0.06)
ln
(
Mig. Stockij,t−1 + 1

)
−0.114∗∗∗ −0.121∗∗∗ −0.122∗∗∗ −0.125∗∗∗

(0.01) (0.01) (0.01) (0.01)

R2(within) 0.079 0.071 0.071 0.071
Observations 23, 255 23, 255 23, 255 23, 255

Note: ***, **, * denote significance at the 1%, 5% and 10% level, respectively. Constant,
bilateral and decade fixed effects, and MR terms are included but not reported. Robust
standard errors reported in parentheses.
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