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Abstract 
 
Why are the East sides of former industrial cities like London or New York poorer and more 
deprived? We argue that this observation is the most visible consequence of the historically 
unequal distribution of air pollutants across neighborhoods. In this paper, we geolocate nearly 
5,000 industrial chimneys in 70 English cities in 1880 and use an atmospheric dispersion model 
to recreate the spatial distribution of pollution. First, individual-level census data show that 
pollution induced neighborhood sorting during the course of the nineteenth century. Historical 
pollution patterns explain up to 15% of withincity deprivation in 1881. Second, these equilibria 
persist to this day even though the pollution that initially caused them has waned. A quantitative 
model shows the role of non-linearities and tipping-like dynamics in such persistence. 
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1 Introduction

“In Manchester [...] prevailing and strongest winds [blow] from the

South West. This meant that when the dense sulphurous smoke left

Manchester’s tall chimneys it usually moved North East, and this was

to have a marked effect on the shaping of the city. [...] The poorest

city dwellers were forced to live amongst the mills and factories in north-

easterly districts [...] the better-paid among Manchester’s working classes

might at least escape the worst of the smoke.”

- Stephen Mosley (2013), The Chimney of the World

Cities that were formerly reliant on industry tend to have Eastern suburbs that

are notably poorer than Western suburbs. This observation is echoed in media stories

about the East Side in London, New York or Paris and in popular culture (such as

in the long-running BBC soap opera, EastEnders). However, there is surprisingly

little analysis of the reasons behind this pattern. In this paper, we show that this

East-West gradient is the most visible remnant of a more general process induced

by the atmospheric pollution which affected cities during the Industrial Revolution.

In a first step, we focus on the nineteenth century and document the relationship

between the distribution of clean air within English cities and neighborhood sorting.

We find that concentrations of pollution from historical factories account for 15%

of the variation in neighborhood composition in 1880. In a second step, we turn

to the post-pollution period and analyze the dynamics of neighborhood segregation.

We find strong non-linearities in the dynamics of persistence. In cities with high

dispersion in environmental (dis)amenities, tipping forces anchored formerly polluted

neighborhoods. The effects of the now absent pollution are still felt to the modern

day.

These findings are relevant for contemporary policy issues. First, the long-run im-

pact of environmental disamenities on the spatial organization of cities holds impor-

tant implications for the design of environmental and urban policies for economies,

such as China, in the process of structural transformation. Second, many developed

economies look to costly urban policies in order to open up deprived areas to new

housing opportunities and business investment. We identify a tipping force in the

dynamics of segregation which can inform policy makers seeking to reduce spatial

inequalities.

While the impact of pollution on the environment and on the spatial organization

of cities is echoed in policy debates, there is almost no work incorporating the long-

run responses of economic agents. Providing such evidence is indeed challenging.
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There exist no adequate data on historical pollution and data on residential sorting

are equally scarce. Our empirical analysis combines detailed pollution information

from the time of the Industrial Revolution with unique panel data at the neigh-

borhood level spanning nearly 200 years. Three methodological innovations help us

generate these data. First, we develop an algorithm to geo-locate industrial chimneys

from historical Ordnance Survey (OS) maps of the 70 largest metropolitan areas in

England over the period 1880-1900.1 Second, we use the world leading modelling

system for atmospheric emissions (ADMS 5)2 that incorporates within-city informa-

tion on terrain, wind directions, chimney dimensions, exit velocity and coal burning

temperature to predict pollution dispersion from each individual chimney. Third,

we develop a novel algorithm to overcome a shortcoming of old censuses: as data are

nested in large spatial units, such as ancient parishes in England, they are of limited

use for within-city analysis of neighborhoods. Our algorithm geo-locates entries of

the 1881 English census and matches them to low-level administrative units (for our

purpose, the 2001 Lower Super Output Areas (LSOA)). This gives us a great deal

more detail–across the 70 metropolitan areas, we observe 4,500 LSOAs versus 500

parishes, and cities like Bristol, Liverpool or Manchester are covered by about 90

LSOAs instead of 10 parishes.3

There is a strong correlation between air pollution and the share of low-skilled

workers in 1881. A pollution differential equivalent to the one between the 10%

and 90% most polluted neighborhoods of Manchester would be associated with a

gradient of 18 percentage points in the share of low-skilled workers. While the

spatial distribution of pollution results from the interaction of industry locations,

wind patterns and city-specific topography, we show that this correlation is robust

to the addition of a large set of controls including distance to the major public

amenities in the city (to capture location amenities), distance to waterways, elevation

(to capture the mere impact of topography), latitude, longitude, and fixed effects

at the parish or Medium Super Output Areas (to capture the variation implied by

wind patterns).

The ideal experiment to identify the causal impact of pollution on neighborhood

sorting would be to randomly locate a chimney, and compare upwind and downwind

neighborhoods at the same distance from the chimney. To get closer to this thought

experiment, we first include proxies capturing the proximity to factories. However,

conditioning on proximity to factories does not take into consideration that chimneys

1We also consider domestic chimneys but their contribution to overall pollution is small.
2Atmospheric Dispersion Modelling System (ADMS) models have been developed to make use

of the most up-to-date understanding of the behavior of the lower levels of the atmosphere.
3The median LSOA in our sample covers an area of 0.3 square kilometers.
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may have been selectively located upwind of poor areas. To account for such reverse

causality, we run a series of robustness checks. Specifically, we discard the existence

of unobserved pre-existing (dis)amenities in polluted neighborhoods by looking at

the neighborhood composition in 1817, and by running difference-in-difference spec-

ifications between 1817 and 1881. To reduce concerns about potential changes in

(dis-)amenities between 1817 and 1881, we instrument the pollution pattern induced

by actual chimneys with two counterfactual pollution patterns. As steam engines

need water for cooling (Maw et al., 2012), we first locate counterfactual chimneys

along natural waterways and canals that were present in 1827. This specification

exploits the difference between upwind and downwind neighborhoods at the same

distance from potential factories located along waterways. Our second counterfac-

tual pollution pattern relies on a uniform allocation of chimneys within 1890 city

borders. This instrument draws exclusively from variation induced by wind patterns

and topography but not industry location. The two-stage specifications with either

instrument deliver similar qualitative results, but slightly larger estimates.

Having established that pollution caused neighborhood sorting in the past, we

focus on recent years and analyze the dynamics of persistence between 1971 (just

after the second Clean Air Act of 1968) and 2011.4 Over the course of this period,

pollution from coal burning abruptly decreased and yet, we find a significant and

relevant effect of historical pollution on the social composition of neighborhoods.

The estimates in 1971, 1981, 1991, 2001 or 2011 are all quantitatively comparable to

those in 1881. Past pollution explains up to 20 percent of the observed neighborhood

segregation whether captured by the shares of blue collar workers and employees,

house prices or official deprivation indices.

The dynamics of persistence show patterns of non-linearities, with some mean-

reversion for intermediate values of within-city pollution and a strong inertia for

neighborhoods with extreme values of within-city pollution. In order to quantify

these non-linearities, we develop a stylized model of neighborhood sorting which

extends Lee and Lin (2013). The location choices of high- and low-income indi-

viduals depend on consumptive amenities with some amenities being tied to the

neighborhood composition (e.g., through preferences, public goods accumulation or

other man-made amenities). We estimate the model to match the dynamics over the

period 1881-1971, and the best fit exhibits tipping-like dynamics with large tail ef-

fects for the endogenous consumptive amenity. The model predictions for the period

1971-2011 closely match the observed evolution of neighborhood composition, and

4The first Clean Air Act was enacted in 1956 as a reaction to the Great Smog of 1952 in London.
However, as apparent from Appendix Figure A8, the second Clean Air Act in 1968 caused a much
more abrupt drop in coal consumption.
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explain both the within-city differences in returns to the mean but also the observed

differences between heavily and mildly polluted cities.5

Our paper makes important contributions to different strands of the literature.

First, we contribute to the literature on neighborhood sorting. We show that a

large but temporary environmental disamenity may modify the spatial organization

of cities in the long run. To the best of our knowledge, we are the first to present

evidence for this pollution-driven residential sorting in cities before, during and af-

ter industrialization (Kuminoff et al., 2013, review the existing sorting literature).

Closely related papers that look at pollution-induced sorting today include Banzhaf

and Walsh (2008) and Chay and Greenstone (2005). Another related paper is Red-

ding and Sturm (2016), who use Second World War destruction in London to identify

patterns of spatial sorting across neighborhoods. Our argument further relates to

Depro et al. (2015) who argue that neighborhood sorting, rather than environmen-

tal injustice, is the reason why poor households are more exposed to environmental

disamenities.

Second, we contribute to the literature on the dynamics of segregation and tip-

ping points (Schelling, 1971; Anas, 1980; Card et al., 2008). Even after the sharp

decrease of industrial pollution in English cities, formerly polluted neighborhoods

remain the poor parts of town. Our quantitative analysis points to non-linearities

as the main driver of the dynamics of segregation: past a certain threshold, highly-

polluted neighborhoods accumulate low amenities and attract low-income residents

even after pollution has waned. We differ from most of the tipping-point literature

in two dimensions. In our context, we mostly identify a social component behind

segregation (in contrast to the literature on the United States focusing on ethnic

considerations). Moreover, we exploit a temporary disamenity to explain the initial

spatial distribution of residents instead of permanent differences across neighbor-

hoods (as present in Lee and Lin, 2013, for instance). The phenomenon of segrega-

tion relates closely to that of gentrification which concerns the rise of historic centers

in the United States (Brueckner and Rosenthal, 2009; Brueckner and Helsley, 2011;

Guerrieri et al., 2013). We capture some signs of revitalization in formerly-polluted

English cities but we only observe reversion to the mean for neighborhoods with

initially moderate levels of pollution.

Third, our approach to modelling residential sorting builds upon Brueckner et

al. (1999) and Lee and Lin (2013). Lee and Lin (2013) develop a dynamic model of

5Another interesting factor behind the persistence of neighborhood sorting is related to the
liberalization of social housing and the ‘Right to Buy’ introduced by the Thatcher government in
1979. The model shows that this liberalization reinforced the persistence of spatial inequalities by
lowering the existing barriers to neighborhood sorting.
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household neighborhood choice to assess the role of natural amenities in sustaining

the spatial distribution of income over the period 1890–2010 in the United States.

Instead of natural amenities that anchor sorting, we look at pollution as an imperma-

nent natural amenity whose effect is long-lasting due to the presence of endogenous

neighborhood effects. While we use Durlauf (2004) and Rosenthal and Ross (2015)

to inform our structural functional forms for neighborhood effects, our data do not

allow us to disentangle underlying mechanisms.

Fourth, our paper relates to research on the spatial distribution of income and

population between cities (Bleakley and Lin, 2012; Redding et al., 2011). A paper

that is particularly relevant is Hanlon (2016), who argues, in the same context, that

coal-based pollution was a significant disamenity with a strong negative impact on

city size. We complement this research by adding a within-city perspective that

shows substantial effects operating through residential sorting.

Fifth, we make several methodological contributions to quantitative research in

economic history. Our first contribution is to provide a methodology to digitize

historical maps and fully exploit them as extremely valuable sources of information.

Related to this approach is work by Hornbeck (2012) and Siodla (2015) who use

historical maps to understand the effects of the great fires in Boston and San Fran-

cisco and Redding and Sturm (2016) who use maps to document Second World War

destruction in London. Our second contribution is to show the predictive power

of state-of-the-art pollution models to estimate historical pollution. Our third and

most important methodological contribution is to provide an algorithm that geo-

locates census entries in 1881 and could be applied to any historical census in most

developed countries. The algorithm exploits the clustering among census entries to

infer the geo-references of residents from a small share of well-matched neighbors.

Finally, an important line of research examines effects of pollution exposure

on productivity (Graff Zivin and Neidell, 2012), cognitive performance (Lavy et

al., 2014), violent crime (Herrnstadt and Muehlegger, 2015; Heyes and Saberian,

2015), and health (Graff Zivin and Neidell, 2013 review this comprehensive body of

literature). Our paper is most closely related to historical assessments of the effect

of coal use on health (Clay and Troesken, 2011; Barreca et al., 2014; Clay et al.,

2016; Beach and Hanlon, 2016).

The remainder of the paper is organized as follows. In Section 2, we develop a

stylized model of neighborhood sorting. Section 3 briefly provides some elements of

context. We detail our main data sources and methodology in Section 4, and our

empirical strategy in Section 5. We analyze the relationship between neighborhood

sorting and historical pollution in Section 6. Section 7 looks at the dynamics of
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persistence between 1971 and 2011 and relies on a quantitative, dynamic version of

the model developed in Section 2. Finally, Section 8 briefly concludes.

2 Pollution and neighborhood sorting

In this section, we introduce a stylized framework to study the effect of pollution

on neighborhood sorting. This static model is the foundation for a quantitative,

dynamic version that we further develop in Section 7.

In the model, neighborhood sorting arises out of within-city differences in con-

sumptive amenities.6 Neighborhoods are made up of an interval of locations, and

the amenity level at a location is part air quality (constant within a neighborhood)

and part location-specific. As in Lee and Lin (2013), there is a complementarity

between consumption and amenities. Willingness to pay rent in high amenity loca-

tions is relatively higher for the high income types: in equilibrium, all high income

workers are housed in the best amenity locations, all low income workers are in the

other locations, and a difference in air quality causes sorting of a portion of the high-

(low-)skilled workers into the less (more) polluted neighborhood.

Environment A city is composed of two neighborhoods indexed j ∈ {W,E} (West

and East). The mass of land in each neighborhood is µ(Ω(j)) = 1, and we assume

that rent is collected by absentee landlords who lease land to the worker who will pay

the most rent. The mass of workers is of measure 2. Workers are heterogeneous in

their income, θ, and they are perfectly mobile. A fixed proportion γ are low-skilled

workers with income θl; the remaining workers are high-skilled and have income

θh > θl.

While the quantitative model in Section 7 will be dynamic, we assume here a

static framework. Workers choose their location to maximize,

V (j, `) = A(j, `)c(j, `) subject to c(j, `) +R(j, `) = θ, (1)

where A(j, `) is the amenity level in location ` of neighborhood j, c(j, `) is con-

sumption and R(j, `) is rent. Since consumption and amenities are complementary,

high-skilled workers will sort into the most attractive neighborhood locations.

The amenity at each location ` in each neighborhood j is made up of three

components: a location amenity x, air quality a (at the neighborhood level), and an

6By contrast, Redding and Sturm (2016) model the production side and estimate spillovers
between neighborhoods.
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endogenous amenity d that will be inoperative in the present static framework,

A(j, `) = a(j) + x(`, j) + d(j). (2)

Air quality and the endogenous amenity can differ across neighborhoods but they

are constant within neighborhoods. By contrast, the location factor varies within a

neighborhood – different locations within a neighborhood have inherent differences

in attractiveness (as in Davis and Dingel, 2014).7 We assume that x(`, j) is, in both

neighborhoods, uniformly distributed over the interval [0, 1]. In this static model,

we normalize endogenous amenities to d(j) = 0 for j = {W,E}.

Equilibrium Since agents are perfectly mobile, workers of the same type obtain

the same utility. Let utility to high-skilled workers be V̄ h, and V̄ l to low-skilled

workers. Without loss of generality, we normalize V̄ l = 0 and the rent charged to a

low-skilled worker is Rl(j, `) = θl for all (j, `). Rent charged to a high-skilled worker,

Rh(j, `), is,

Rh(j, `) = θh − V̄ h

A(j, `)
. (3)

Landlords rent their land to the workers that pay the highest rent. Land is rented

to a low-skilled worker if at (j, `),

θl ≥ θh − V̄ h

A(j, `)
. (4)

Low-skilled workers sort into those locations with the worst amenities.

Equilibrium V̄ h, and so Rh(j, `), is obtained using equations (3), (4) and a land-

worker clearing condition. In particular, V̄ h is such that the mass of land rented

to low-skilled workers is equal to the total supply of low-skilled workers. Letting

I l(j, `) = 1 if location ` in neighborhood j is rented to a low-skilled worker, the

land-worker clearing condition is,

∑
j

∫
`∈Ω(j)

I l(j, `, t)d` = 2γ. (5)

Equations (4) and (5) imply that, in equilibrium, V̄ h is such that the 2γ locations

with the lowest amenities across both neighborhoods host the low-skilled workers.

7While within the same neighborhood all workers share the same air and can access the same
endogenous amenities, some locations have an inherent advantage over others. One part of a
neighborhood may have scenic views, for example.
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Proposition 1. There exists a V̄ h∗ > 0 such that worker-land clearing condition is

satisfied. High-skilled workers sort into those locations with amenities above A∗ =

V̄ h∗/(θh − θl). Imperfect sorting at the neighborhood level can occur in equilibrium

if amenity levels overlap.

Proof. See Appendix A.

Sorting and pollution Following Proposition 1, we denote F (A) the cumulative

density of land with amenity level less than or equal to A within the city, and we

define Sl(j) as the equilibrium share of low-skilled workers in neighborhood j.

In the absence of pollution, we have a(W ) = a(E) = 0 and d(W ) = d(E) = 0, so

F (A) = 2A. The amenity level that satisfies (5) is where A∗ = γ. The low-skilled

share in neighborhood j is the share of land in the neighborhood with A ≤ A∗, that

is, Sl(j, t) = A∗−min`{A(j, `, t)}. Without pollution, neighborhoods are symmetric

and Sl(j, t) = γ for j ∈ {W,E}.
Pollution takes the form of emission of an air contaminant that causes air quality

to decline. Pollution emitted in each neighborhood is ρ, but a Westerly wind blows

a portion η ∈ (0, 1) of the pollution emitted in neighborhood W into the air of

neighborhood E:

a(W ) = −(1− η)ρ,

a(E) = −(1 + η)ρ.

Lemma 1. With imperfect sorting, pollution causes the East to have a larger pro-

portion of low-skilled workers. More intense pollution causes more sorting.

Proof. See Appendix A.

The impact of pollution is depicted in Figure I. The disamenity causes equilibrium

rents paid by high-skilled workers to increase compared to the benchmark without

pollution. Since the lowest 2γ amenities are now disproportionately in the East, the

East has a larger share of low-skilled workers.

In our empirical exercise, we will provide evidence on the spatial relationship

between pollution and the share of low-skilled workers at the peak of industrial

pollution, relying – as in the model – on the asymmetric dispersion of pollution

implied by wind patterns (and topography).

3 Historical context

The start of the Classical Industrial Revolution is dated to around 1760 by the arrival

of new technologies in key growth sectors such as textiles, iron and steam. However,
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important consequences of that revolution were not realized until much later. Per

capita growth rates did not accelerate until after 1830 (Crafts and Harley, 1992), and

the transition to coal as a dominant energy source occurred only after the 1840s.8

This late energy transition is reflected in Appendix Figure A8: there is a sharp

acceleration of coal consumption between 1850 and 1910, and a stabilization until

1960. The early twentieth century saw a consolidation of industry with employment

peaking at 46% in 1950 (Crafts, 2014). Thereafter it declined, most rapidly in the

1980s when state-owned industries were privatized. The decline in coal consumption

slightly preceded the massive de-industrialization. The Clean Air Acts of 1956 and

1968 introduced regulations that penalized, among other things, the emissions of

grit, dust and ‘dark smoke’ and placed minimum height restrictions on chimneys.

These Acts led industry to shift away from coal to the use of cleaner energy sources

such as oil, gas and electricity generated by power stations outside of cities. As

apparent in Figure A8, these regulations had an immediate and marked impact on

coal consumption.

The heavy reliance on coal between 1850 and 1950 generated unprecedented

concentrations of sulphur dioxide, which scarred cities and their surroundings. The

negative impact of atmospheric pollution is captured in a well-known case of mi-

croevolutionary change: The dominant form of the peppered moth (Biston betu-

laria) at the start of the nineteenth century was the lighter form (insularia) as it

was camouflaged against predation when on light trees and lichens. The first sight-

ings of the darker form of the moth (carbonaria) in the industrial North of England

were not until after 1848 (Cook, 2003). As the intensity of pollution caused trees to

blacken under layers of soot, the carbonaria emerged as the dominant form by the

end of the nineteenth century. The decline in air pollution after the Clean Air Acts

is also reflected in the rapid recovery of the Biston betularia insularia between 1970

and 2000 (Cook, 2003).

In parallel to the structural transformation of the economy, the end of the eigh-

teenth century also saw a rapid growth of population in cities and the migration of

workers out of rural hinterlands into the emerging industrial cities (see Shaw-Taylor

and Wrigley, 2014). As shown in Williamson (1990) and the Appendix Figure A8,

the growth of cities peaked in the 1830s and then slowed down as the nineteenth

century proceeded. By the end of the nineteenth century, the large cross-country

migratory flows that marked the early Industrial Revolution had moderated signifi-

cantly.9

8As Musson (1976) shows, power derived from water wheels remained important to early nine-
teenth century industry–steam power was not prevalent outside of textiles until after the 1870s.

9Williamson (1990) and Ravenstein (1885) show that the portion of city growth due to migration
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In our empirical exercise, we will observe: (i) urban composition in 1817, before

the acceleration in coal consumption and around the end of the rural migration to

urban centers; (ii) atmospheric pollution and urban composition around 1880-1900,

slightly before the peak in coal consumption; and (iii) urban composition between

1971 and 2011, after the abrupt decrease in atmospheric pollution.

4 Data

This section describes the construction of our measures: atmospheric pollution

around 1880-1900 and neighborhood composition in 1817, 1881 and 1971-2011. We

first explain how we identify industrial chimneys and generate the associated pol-

lution imprint. We then describe our matching algorithm to geo-locate the 1881

Census.

4.1 Construction of the Air Pollution measure

Our strategy to generate a geo-referenced air pollution map for 70 metropolitan

areas covered by Ordnance Survey (OS) maps can be summarized as follows. In a

first step, we go through each geo-referenced map tile and mark each chimney with

a unique identifier. We use a recognition algorithm to locate each mark, and extract

the associated identifier. In a second step, we predict atmospheric dispersion of

polluting particles from each individual chimney and we isolate a chimney-specific

pollution imprint. In a third step, we consider a relevant geographic unit, i.e.,

the Lower Super Output Area in 2001, and overlay all chimney-specific pollution

imprints to generate a unique air pollution measure for each geographic unit. We

describe these three stages in more detail below.

Identifying chimneys We rely on OS maps to identify chimneys and factories.

These maps come at a 25 inch:1 mile scale, by far the most detailed topographic

mapping that covers all of England and Wales between 1880 and 1900. The maps

contain details on roads, railway, rivers, canals, public amenities, the outline of each

building and their use. Most useful for our purposes, these maps also outline, in a

sign of the fastidiousness of Victorian mappers, a clearly marked location of factory

chimneys. Symbols are either a small rectangle with an inner circle or a large white

circle, and they are drawn to scale. In most maps, a Chy or Chimney is written to

help identify these symbols. These variations in symbols and sizes prevent us from

declines over the nineteenth century and, by 1881, 75% of individuals in England and Wales resided
in the county of their birth.
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directly using a recognition algorithm (two examples of symbols are shown in Figure

II). Instead, we go through all map tiles and mark chimneys with a recognizable

symbol X and a unique numeric identifier.

An example of the chimney-identification is provided in Figure III. On this map

fragment, four different chimneys can be identified.10 The red symbol X is located in

the center of a chimney and is used to geo-locate the chimney. The symbol X can be

identified by a recognition algorithm which, together with the projection provided by

the Ordnance Survey, allows us to geolocate each chimney. An identifier, e.g., 00007,

follows the sign. The advantage of such process is that information on industries can

then be retrieved after the recognition algorithm has located a chimney and stored

the associated identifier. For instance, the chimney 00007 belongs to Eastbrook Dye

Works while 00006 belongs to Britannia Saw Mills.

We restrict our analysis to 70 metropolitan areas in England (see the online Ap-

pendix Figure A10). These cities constitute a quasi-exhaustive snapshot of industry

and its associated pollution, and cover between 60% and 66% of the total population

in 1801, 1881 and 2011.

Dispersion modelling Atmospheric dispersion is calculated using the ADMS 5

dispersion modelling software.11 This model is an augmented version of the basic

Gaussian air pollutant dispersion equation known as the Gaussian-Plume model. In

addition to the standard Gaussian-Plume model, ADMS 5 includes a wide variety

of options, some of which are directly useful in our context. ADMS 5 models at-

mospheric dispersion under a large spectrum of meteorological conditions, provides

reliable pollution estimates in coastal areas and incorporates the impact of temper-

ature and humidity. Another feature that is particularly important in our context

is to account for complex terrain and the changes in surface roughness. Since in-

dustrial chimneys during the Industrial Revolution were at a much lower altitude

than modern chimneys, pollution dispersion was heavily influenced by surrounding

topography.

The ADMS 5 model requires a large number of inputs. First, ADMS 5 uses

complex meteorological information for each city. We use the contemporary 10-year

statistical meteorological data as provided by the Met Office for the different cities

in our sample, thereby neglecting potential changes related to climate fluctuations

between the 19th century and today. Second, the model requires complex terrain

data and convective meteorological conditions on land. We use the current topogra-

10On this particular map, chimneys are indicated with a plain white circle and the entire word
Chimney.

11See http://www.cerc.co.uk/environmental-software/ADMS-model.html.
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phy, such as terrain height and roughness which affects wind speed and turbulence,

for cities with high gradients.12 Finally, ADMS 5 requires information on the emis-

sion source. Atmospheric dispersion modelling is usually parameterized on current

chimneys which are high, wide and have high exit velocity. By contrast, chimneys

in the Industrial Revolution were between 10 and 50 meters high, most being lower

than 25 meters. Moreover, the exit velocity and temperature were also lower than

today’s chimneys. After discussing with ADMS 5 modelers, we decided to use a

point source (i.e., an emission from a stack) that is 25-meters high, with an exit

velocity of 4 m/s and an exit temperature of 120 degrees Celsius.

For illustration purposes, we report in Appendix Figure A5 the “wind roses”

which indicate wind provenance and intensity for Northern England and Southern

England. Local wind stability is also important and, as apparent, wind is much less

predictable in Northern England generating more disperse air pollution measures on

average (over a 10-year period). In Appendix Figure A6, we show the differences in

pollutant dispersion implied by topography in Halifax and Oldham.

We report one sensitivity check for illustration purposes in the online Appendix.

In Appendix Figure A7, we plot the air pollution measures as a function of distance

to the source under stable and unstable conditions and for three different chimney

heights. Under stable conditions and high chimneys, the wind carries pollution far

from the origin source while pollution is most intense at the origin under unsta-

ble conditions (i.e., wind does not have a predominant direction). Note that our

benchmark measure uses an average of these conditions over the past 10 years.

We also model pollution related to domestic emissions. To this end, we use a

volume source and we consider the emitters as being uniformly distributed within

the city borders (as drawn in the Ordnance Survey maps). We use the same mete-

orological and topographic inputs as for the industrial emissions.

Aggregation at a given geographical unit Atmospheric dispersion models are

additive. Total Air Pollution measures are computed as the sum of each separate

chimney. To account for sectoral differences in coal use, we employ the map infor-

mation on the industrial site associated with each chimney, and define the following

categories: Brick factories, Foundries, Chemical factories, Mining, Breweries, Tan-

neries, Food processing, Textile production, Paper production, Shipbuilding, Wood

processing, and Other manufactures. We match these categories with national in-

formation on industry-specific coal use per worker (Hanlon, 2016) and weight the

chimney-specific pollution cloud by this industry-specific coefficient to derive an ag-

12Topography and land cover play little role in flat terrains.

13



gregate measure of air pollution. We finally collapse our data at the level of 2001

Lower Super Output Areas to assign our pollution measure to administrative units.

Figure IV displays the industrial sources of pollution for Manchester (left panel) and

the resulting aggregate Air Pollution (right panel). We can see that the pollution

cloud tilts toward the East.

4.2 Geo-locating individuals in census data

In order to measure neighborhood composition at a disaggregated geographic level,

we use individual records from the 1881 census which hold information on the struc-

ture of households, and importantly, the address, age, sex, and occupation of its

members. In this section, we briefly outline our methodology for allocating house-

holds interviewed in the 1881 census to contemporary administrative units. A de-

tailed description can be found in the Appendix B.

The intuition behind our methodology is the following. There are two indicators

of household location: A geo-located parish variable and an unreferenced address.

While the parish variable is consistently referenced, the address is inconsistently re-

ported (surveyors use abbreviations and misspelling is frequent) and poorly digitized

(e.g., due to handwriting). However, there exists another source of information in

the 1881 census that has, to the best of our knowledge, not been exploited so far:

Individual surveyors were given blocks to visit and they filled in enumerator books

while visiting these neighborhoods. As a result, there is a strong clustering among

census entries. If we locate a fraction of households, we can infer the geo-references

of unmatched entries given (i) their location in the census books and (ii) their well-

matched neighbors. In this way, we can assign individual records to smaller spatial

units within parish boundaries.

Address matching In the transcription of the 1881 census enumerators’ books,

we observe the book number, folio number, and page number in addition to the

already-exploited census variables.13

To implement our cluster analysis, we need to geo-locate a non-negligible fraction

of households in our sample. For this purpose, we carefully clean historical addresses

by deleting blanks, normalizing the terms used for the types of roads (e.g., road,

street, avenue, bow, park, square, cottage, villas, etc.) and we create a similar pool

of contemporary geo-located addresses. We then run a fuzzy matching procedure

between the pool of census addresses and the pool of contemporary geo-located

13These variables are: parish, address, surname, first name, relationship to head of household,
marital status, gender, age, occupation, place of birth and disabilities.
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addresses within the same parish of registration. We achieve a perfect match for

about 20% of the total sample, and we match 30% of the total sample with precision

0.90 (i.e. at least 90% of the original string can be found in the matched address).14

Clustering algorithm A precise description of the algorithm is provided in Ap-

pendix B and we only discuss its main steps here. In a first step, we define a cluster

id based on the book, page, and folio numbers for each record. This id will relate

a census entry to its census neighbors. In a second step, we focus on the sample

of well-matched households within each cluster id, analyze the cloud of located ad-

dresses, and identify the major cluster of points, its centroid, and the associated

geographic unit (2011 Lower Super Output Area - LSOA). In a third step, we at-

tribute this geographic unit to all entries with the same cluster id, including entries

that were not matched during the fuzzy matching procedure. We repeat this algo-

rithm with different cluster definitions, compare the resulting LSOA identifier under

the different specifications, and select the most likely LSOA identifier.

Neighborhood composition For 1817, we use “The Occupational Structure of

England and Wales, c.1817-1881” (Shaw-Taylor and Wrigley, 2014) which use bap-

tism records over 1813–20 to reconstruct a quasi-census for 1817. The resulting

834 parishes can be consistently linked with parishes in 1881. For 1881, we use the

census at that year merge with LSOA units.

For recent waves (1971–2011), we use census aggregate data at the 2001 Lower

Super Output Area (LSOA) level to generate persistent geographic units between

census waves. The census data provide consistent measures of occupation, housing,

education level and country of origin for all these years.

One drawback is that we do not directly observe income, arguably the best proxy

for the social composition of neighborhoods within cities. Instead, we observe 3-digit

occupational information present in the recent censuses, and rely on a similar classi-

fication (PST system of classifying occupations; see Wrigley (2010)) constructed by

The Cambridge Group for the History of Population and Social Structure for 19th

century censuses (1817 and 1881).

There exist many proxies for income based on occupational structure. For in-

stance, one could infer the synthetic LSOA income from average occupational wages

and rentiers’ income. However, such inference would require strong assumptions

especially regarding the relative wage per occupation across cities. In order to make

14There are three potential sources of noise when matching historical address with current ad-
dresses: (i) reporting error from past surveyors, (ii) digitizing errors and (iii) finally changes in
street names, e.g., red-light districts. The first two sources of error are the most common.
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our analysis more transparent, we rely in our benchmark analysis on a proxy based

on the raw data, i.e., the LSOA share of low-skilled workers among the working

population.15

For 1817 and 1881, we first collapse 500 occupational categories into 10 categories.

We define low-skilled workers as the Unskilled and Semi-Skilled workers. We classify

Managers, Gentlemen, Rentiers, Clerks, and Manual Skilled workers as high-skilled

workers. Finally, we assign Farmers to a separate category and we drop Soldiers

and the Disabled from our analysis. In order to refine our measure, we restrict

our sample to individuals with the lowest possible measurement error, i.e., males

between 25 and 55.16 This decomposition covers about 60% of low-skills, 30% of

high-skills and 10% of farmers in 1881 (resp. 78%, 12% and 10% in 1817) in our 70

metropolitan areas.

For 1971-2011, the occupational categories are already classified into 1-digit

clusters: Managers; Professionals; Associate Professionals; Administration; Manual

Skilled; Care; Sales; Processing; and, Elementary. We replicate our classification in

the main categories for males between 25 and 55 with two modifications. We group

the first 3 categories as high-skills and the remaining 6 as low-skills to harmonize

shares of low-skills between 1881 and 1971-2011. Clerks and Manual Skilled workers

are thus classified as low-skills, which brings about 62% of low-skills, 38% of high-

skills in 2011. We drop the category “farmers” as it is almost non-existent among

our modern, urban LSOAs. We also consider alternative indicators of neighborhood

composition for the recent period such as house prices or the different components

of deprivation as compiled in the English Indices of Deprivation (2010).

4.3 Descriptive statistics

Table I provides summary statistics for the full sample and, for each variable, a

decomposition of the variance within and between cities.

The clustering process applied to neighborhoods within a buffer of 20 kilometer

around our 70 cities classifies about 12 million individuals in 4, 524 LSOAs in 1881.17

As these LSOAs are the 2001 census units, we can associate contemporary measures

for all 4, 524 observations, and we only lose 5 LSOAs when we create topographic

controls.

15We can alternatively normalize this share by the share of low skilled workers in the city. Doing
so does not affect our results.

16Our results are robust to (i) adding female workers, and (ii) widening the age interval (e.g.,
15-65).

17Large cities such as Bristol, Liverpool or Manchester are covered by almost 100 LSOAs each.
With fewer restrictions on the clustering process or the fuzzy matching, our sample size would
slightly increase at the expense of including LSOAs with higher measurement error.
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In the first lines of Table I, we report summary statistics for our normalized

pollution measure. As apparent from the last columns, a very large share of the

variance in the pollution measure is within cities. Our empirical strategy hinges on

such within-city variation and is mostly orthogonal to between-cities variation. The

share of low-skilled decreased from 78% in 1817 to 61% in 1881 and, as before, a

significant share of the variance is within cities. Finally, we also report descriptive

statistics for our most important geographic and topographic controls.

To better understand the extent to which cities were polluted at the end of

the nineteenth century, we provide the cumulative distribution for non-normalized

pollution in our sample of LSOAs. Figure A9 shows that about 10% of our sample

LSOAs display air pollution above the National Ambient Air Quality Standards

(SO2 concentration above 12−15µg/m3). About 2% of our sample LSOAs – mostly

in Manchester, Oldham and Liverpool – have indices of pollution above the peaks

recorded in contemporary Beijing (40µg/m3).

We also provide in Table A8 an illustration of the within-city variation in air

pollution. We compare our estimates to a sample of deposits collected in Manch-

ester by the First Annual Report of the Sanitary Committee on the Work of the Air

Pollution Advisory Board, 1915.18 We observe a very large variation across neigh-

borhoods for both measures, illustrating that distance to chimneys, topography and

wind directions generate very large within-city dispersion in pollution. Reassuringly,

our estimates strongly correlate with the deposit measure (correlation of 0.92).

5 Empirical strategy

Benchmark specification To estimate the impact of pollution on neighborhood

sorting within cities, we would ideally use a difference-in-difference specification

and identify the sorting in response to pollution from differences between the pre-

treatment period (1817) and the post-treatment one (1881).

However, our unit of analysis in 1817 is the parish and a proper difference-in-

difference specification would therefore require using the parish as the unit of ob-

servation throughout. Since cities like Bristol, Liverpool or Manchester are covered

by about 10 parishes, we would lose a lot of information. Therefore, we leave the

difference-in-difference specification with all variables collapsed at the parish level

as a robustness check and use simple difference specification at the LSOA level in

t = 1881, . . . , 2011 where we control for parish-level characteristics in 1817 as our

benchmark. Reassuringly, the two specifications provide very similar results.

18This first report happened to be the last one as well, such that these numbers are the only
available elements of comparison for our pollution estimates.
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Letting i denote a LSOA, p a parish, c a city, and t a particular census wave

(t = 1881, . . . , 2011), we estimate the following equation:

Yit = α + βPi + γXi + νYp + δc + εict (6)

where Yit is a measure of occupational structure, Pi is the pollution predicted by

chimney locations and the dispersion model, Xi are geographic controls (elevation,

distance to the town hall, latitude and longitude, etc.), Yp is the occupational struc-

ture in 1817 at the parish level and δc are city Fixed-Effects.

A concern with specification (6) is that the treatment may not be exogenous

because some unobserved amenities may explain both the presence of industries and

the occupational structure in some neighborhoods. For instance, neighborhoods

with low amenities may attract large polluting factories together with low-skilled

migrants. In a robustness check, we will estimate a variation of (6) controlling for a

proxy for distance to industries, i.e., the synthetic pollution generated by a “static”

wind (or the density of chimneys in the LSOA). The identification then only relies

on the asymmetry between neighborhoods equidistant from factories, some of them

being located downwind or upwind. This specification will account for direct effects

associated with proximity to factories.

There remains a threat to identification. For instance, factories may have been

strategically placed upwind of poor neighborhoods such as to minimize political or

economic costs associated with environmental disamenities in richer neighborhoods.

Controlling for non-random industry location In order to clean our variation

in pollution from the variation due to non-random industry location, we construct

synthetic pollution imprints that draw on some exogenous variation in pollution

sources. In other words, we interact an exogenous variation underlying the choice of

industry location with the atmospheric dispersion due to wind flows and topography.

We suggest two different ways to obtain exogenous variation in industry loca-

tion. In a first specification, we exploit the fact that large boilers required a con-

stant stream of water for cooling. As a result, all mills were located along rivers

or canals. We locate synthetic chimneys uniformly along all existing canals and

rivers in 1827, before the rise of coal as the main energy source, and we model at-

mospheric dispersion from these counterfactual pollution sources.19 These synthetic

19The Appendix Figure A2 describes our approach. In panel (a), we see the cities of Manchester
(left) and Oldham (right) with the associated 1827 canals and rivers. Panel (b) displays the
counterfactual chimney locations and panel (c) the resulting air pollution. Finally, panel (d) shows
the actual pollution.
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industry locations were not susceptible of being selectively placed upwind of poor

neighborhoods because of resulting pollution. However, this variation also correlates

with distance to waterways which may itself affect the attractiveness of a neighbor-

hood. We thus control separately for this distance and only use the asymmetric

atmospheric dispersion as predicted by the existing meteorological conditions and

topography.

In a second specification, we create a pollution prediction cleaned from any vari-

ation in pollution sources within cities. We locate synthetic chimneys uniformly

within the 1890 city borders such that the resulting pollution prediction only relies

on variations in the urban shape, topography and wind patterns.

We then use following two-stage specification to isolate the residual air pollution

predicted by the synthetic air pollution imprint to estimate its effect on sorting:{
Pi = b0 + b1PPi + cXi + dc + fYp + eict

Yit = β0 + β1P̂i + γXi + δc + νYp + εict
(7)

where Yit is a measure of occupational structure, PPi is one of the two synthetic

treatments predicted by chimneys located along the 1827 canals or a uniform distri-

bution of chimneys, Pi is the pollution as predicted with actual chimney locations,

Xi are geographic controls (elevation, distance to the town hall, distance to water-

ways, geographic coordinates etc.), Yp is the occupational structure in 1817 at the

parish level and {δc, dc}c are city Fixed-Effects.

6 Historical pollution and neighborhood sorting

In this section, we document a negative correlation between air pollution and neigh-

borhood income as proxied by the share of low-skilled workers. The negative cor-

relation is both economically and statistically significant at the peak of pollution

in 1881: pollution explains at least 15% of the social composition across neighbor-

hoods of the same city. While we control for important neighborhood characteristics

in our benchmark specification (longitude and latitude, distance to main amenities

including waterways or neighborhood characteristics in 1817), we provide robustness

checks on one potential shortcoming of our benchmark approach: The non-random

location of industries. We first show a balance test, i.e., that atmospheric pollution

is not correlated with the 1817 neighborhood average income. Second, we control

for counterfactual atmospheric pollution clouds to condition our analysis on neigh-

borhoods being on the same ring around a factory. Third, we run our two-stage

specification to isolate exogenous variations in chimney locations.
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Benchmark results In Table II, we report the estimates for our baseline specifi-

cation (6) with t = 1881: As can be seen in the first column, air pollution and the

share of low-skilled workers in 1881 are positively correlated, and the correlation is

both statistically and economically significant. The coefficient is precisely estimated

and the 95%-confidence interval is [.028, .055]. One additional standard deviation in

air pollution increases the prevalence of low-skilled workers by 4.2 percentage points,

which is about 15% of a standard deviation in their prevalence across LSOAs. A

differential in pollution equivalent to the one between the first and last deciles in

Manchester would be associated with a differential of 18 percentage points in the

share of low-skilled workers.

Controlling for a large sets of covariates does not affect our baseline estimates.

In the second column of Tables II, we add city fixed-effects to control for variation

in atmospheric pollution and occupations between cities. In the third column, we

condition our estimates on elevation and distance to rivers or canals to control for

potential confounders between neighborhood sorting and pollution. In the fourth

column, we add the parish-level shares of low-skilled workers, high skilled workers

and farmers in 1817 to clean for potentially unobserved LSOA fixed characteristics.

In the fifth column, we control for proximity to the city hall. In the sixth column, we

add latitude and longitude of the LSOA centroids to control for potential Western or

Southern preferences in locations. As apparent from Table II, none of these controls

affects our estimates.20

Figure V illustrates the estimated relationship between the shares of low-skilled

workers in 1881 and the atmospheric pollution during the Industrial Revolution. On

the y-axis, we plot the residuals from a regression of the (standardized) shares of low-

skilled workers in 1881 on the same set of controls as in column 4 of Table II. On the

x-axis, we plot the regression-adjusted residual of standardized air pollution. The

relationship between the share of low-skilled workers and standardized air pollution

flattens at both extremes, i.e., for very high and very low within-city pollution levels.

One threat to identification is that controls may not fully account for the po-

tentially non-random location of industries within cities. In the next section, we

address this issue and present other robustness checks.

Robustness checks We run a series of robustness checks to control for pre-

pollution neighborhood composition and distance to factories, and to ensure that our

estimates are not driven by non-random and strategic location of industries within

cities.

20The first column of Appendix Table A1 reports coefficients on the covariates.
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First, we show in Panel A of Table III a “balance test”. We estimate the cor-

relation between atmospheric pollution and the 1817 neighborhood average income

as proxied by the share of low-skilled workers at the parish level. In all five speci-

fications, the coefficient is not different from 0 statistically and economically. This

placebo check is reassuring since it suggests that potentially unobserved, pre-existing

neighborhood characteristics are not driving our results. We also use property tax

data from 1815 to infer the average wealth at the parish level, and run a similar

balance test in Panel B of Table III.

Second, we run difference-in-difference specifications either at the LSOA-level

(attributing the average parish-level share of low-skills in 1817 to LSOAs) or at the

parish-level. As shown in Panel A of Appendix Table A2, the difference-in-difference

estimates at the LSOA-level are very similar to the simple difference estimates of Ta-

ble II. The estimates for the difference-in-difference specification at the parish-level

(see Panel B of Appendix Table A2) are slightly larger, but less precisely estimated.

This approach, along with the balancing test, reduces concerns about biasing ef-

fects from fixed unobserved LSOA characteristics. However, the location decision of

polluting industries in the early nineteenth century may have been associated with

future city development. We tackle this issue in the following tests.

Third, we generate three counterfactual pollution imprints from actual industry

locations but alternative air pollution profiles.21 In order to show that our estimates

are not reflecting the mere distance to factories, we generate an index of pollution

constructed from running the ADMS 5 model on existing chimneys but with a

Mirror wind profile (rotation of 180o around the source, going on average from the

North-West to the South-East). Note that the large number of chimneys across

the city implies that a measure like the distance to the closest chimney carries

little information.22 Instead, we construct the synthetic atmospheric pollution from

existing chimneys under a static wind profile, symmetric in all directions (Static

pollution). This measure is additive in the number of chimneys and thus captures

the proximity to a dense cluster of factories. As shown in Table IV—columns 1 and 2,

none of these counterfactual atmospheric pollution measures affect our estimates.23

21In an unreported robustness check, we verify that a measure of air pollution based on a uni-
form weight for each chimney as opposed to weighting depending on the sector of the factory
gives the same results. Our estimates are quantitatively and qualitatively similar with these more
conservative chimney weights.

22We can, however, control for the number of chimneys in each LSOA. As for the two counter-
factual pollution patterns, this control does not change the baseline estimates at all (unreported
specification).

23As the measure of static pollution is positively correlated with the share of low-skilled workers
when we do not control for actual pollution, these findings indicate that (i) there are more low-
skilled workers close to factories but (ii) they are mostly located downwind of factories.
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In column 3, we control for domestic pollution as predicted by the location of private

residential buildings across the city, which does not affect our estimates. We also

add pollution in 2011, constructed by the Department for Environment, Food and

Rural Affairs (DEFRA). Due to deindustrialization and new sources of emissions,

the within-city correlation between past and contemporary pollution is low.

Fourth, we present in Appendix Table A3 a sensitivity analysis for three elements

of our baseline specification: the choice of fixed effects, clusters, and sample selection.

In Panel A, we report the results of our baseline specification (Table II—column 4)

with parish-fixed effects (column 1) instead of city-fixed effects. We further expand

our set of fixed effects in column 2 to electoral wards (1270 in our sample) and in

column 3 to Medium Lower Super Output Areas (1600 in our sample). While the cor-

relation slightly decreases with this largest set of fixed effects, the estimates remain

non-negligible even when identification comes from a within-MSOA comparison.24

In Panel B, we report standard errors clustered at three different levels, electoral

ward, MSOA and city. Standard errors increase by about 40% between the least

and most conservative choice, and our baseline analysis clustered at the parish-level

is at the center of this interval. In conclusion, our findings do not disappear once

accounting for spatial auto-correlation in atmospheric pollution. In Panel C, we

estimate the baseline specification on alternative samples. In column 1, we exclude

the London region. We exclude the North-West including Manchester and Liverpool

in column 2, and the North-East in column 3. In all cases, the estimates slightly

fluctuate around the baseline but these variations are not quantitatively relevant.

Finally, we present in Table V the results of our 2-stage strategy, that uses 1827

canals as a source of exogenous variation for chimney location (columns 1 and 2)

and a random allocation of chimneys within 1890 city boundaries (columns 3 and

4). The first stage is very strong in both cases given that (i) many industries tend to

locate around canals, and (ii) wind patterns interacted with topography play a major

role in the atmospheric dispersion of pollutants. Both instruments generate similar

estimates: the 2-stage estimates tend to be larger than the OLS estimates whether we

control for geographic coordinates (columns 2 and 4) or not (columns 1 and 3). One

additional standard deviation in air pollution increases the prevalence of low-skilled

workers by about 10 percentage points in the 2-stage strategy with 1827 canals, and

6.5 percentage points in the 2-stage strategy with uniformly-distributed factories.

These results may indicate that the non-random component of industry location is

associated with positive neighborhood sorting in the late nineteenth century.

24There are 3 Lower Super Output Areas on average within each MSOA in our sample.
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7 Dynamics of persistence after the Clean Air Acts (1971-2011)

This section focuses on the relationship between historical atmospheric pollution

and neighborhood composition in recent years and shows that the effect is of similar

magnitude in 2011, almost 60 years after the first Clean Air Act and the subsequent

drastic reduction in pollution. We then analyze the dynamics of persistence between

1971 and 2011.

7.1 Historical pollution and contemporary neighborhood segregation

In a first step, we expand on our previous analysis of neighborhood sorting in 1881

to recent waves in 1971, 1981, 1991, 2001 and 2011. Table VI reports the slopes

between the shares of low-skilled workers for the different waves and historical pol-

lution. One additional standard deviation in historical air pollution increases the

prevalence of low-skilled workers by 3 to 3.5 percentage points, and the standard-

ized effects range between .18 and .22 without a clear time pattern. A differential

in pollution equivalent to the one between the first and last deciles in Manchester is

still associated with a differential of 14 percentage points in the share of low-skilled

workers, thereby explaining the persistence of the social gradient between West and

East often evoked in popular culture.

We present in the Appendix two robustness checks with (i) alternative mea-

sures of deprivation and (ii) house prices. In Panel A of Appendix Table A4, we

use deprivation indices (income, employment, education, health, barriers to housing

and crime).25 The estimates are very large and significant: one additional standard

deviation in air pollution increases the deprivation scores by .20 to .30 standard

deviations for the income, employment and education sub-indices. The only index

that is not correlated with past pollution is the one capturing physical and financial

accessibility of housing and local services. In Appendix Table A5, we use transac-

tions in England and Wales between 2009 and 2013 as recorded by Nationwide (a

major mortgage provider) or Land Registry (an administrative registry of all house

transactions) and create the (logarithm of the) average transaction prices and num-

ber of transactions between 2000 and 2011. The first (resp. last) columns of Table

A5 report estimates for house prices (resp. transactions) and we present two spec-

ifications, one without house controls and one controlling for house characteristics.

We find that one additional standard deviation in past pollution is associated with

an unconditional price drop of about 10% (19% of a standard deviation). Con-

trolling for house types provides a conditional price malus of about 5 to 8% (9 to

25See a description of data sources in Appendix C.
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12% of a standard deviation). Looking at the number of transactions, we find that

an additional standard deviation in past pollution is associated with a 8% (14%

of a standard deviation) decrease in the number of transactions and 15% (28% of

a standard deviation) when controlling for house characteristics. We illustrate the

relationship between house prices and pollution (as estimated in Table A5–column

1) in the Appendix Figure A3.

The persistence of the relationship between historical pollution and neighborhood

composition cannot be mechanically attributed to the collapse of industries in the

former cottonopolis. Indeed, our estimates are identified within cities, and are robust

to controlling for distance to former factories, a larger set of fixed effects or the 2-

stage specification (unreported specifications).26

In order to visualize non-linearities in the persistence of neighborhood sorting,

we display in Figure VI the relation between the shares of low-skilled workers in

1881, 1971, 1981, 1991, 2001 and 2011 and the temporary disamenity. As apparent,

there are no signs of returns to the mean for extreme values of pollution, i.e., one

standard deviation above or below average within-city pollution. The gap with

average neighborhood composition remains constant at the extremes. By contrast,

we observe a reversion to the mean for intermediate values of within-city pollution.

This pattern would be consistent with the existence of tipping points leading to a

higher persistence in neighborhoods with the most extreme pollution exposure.

The remainder of this section will build on a quantitative model to characterize

the non-linear persistence between past disamenity and neighborhood composition,

and we use the model to better understand the dynamics of segregation across cities.

7.2 A quantitative and dynamic model of sorting

In Section 2, we laid the foundations of the quantitative model in a static framework

of neighborhood sorting. We extend the model to a dynamic framework where the

persistence of sorting is rationalized by an endogenous amenity.27

Workers are infinitely-lived and choose their location in each period to maximize,

V (j, `, t) = A(j, `, t)c(j, `, t) subject to c(j, `, t) +R(j, `, t) = θ,

where A(j, `, t) = a(j, t) + x(`, j) + d(j, t) and t is a calendar year. The location

factor x(`, j), constant over time, captures the fixed LSOA effect while d(j, t) is an

26Note that contemporary pollution has a relatively small impact on contemporary neighborhood
composition (5% of a standard deviation) and does not affect the predictive power of past pollution.

27In the model, workers can move freely across neighborhoods in any period, such that the
persistence of sorting does not derive from frictional housing markets.
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endogenous amenity that encompasses persistent neighborhood effects.28

The purpose of the quantitative model is not to posit micro-foundations for per-

sistent neighborhood effects but rather to estimate their structure from the data. We

assume that d(j, t) follows an AR(1) process with persistence 1−δ (to be estimated),

and we allow for two types of endogenous perturbations. The first perturbation is

a continuous neighborhood effect, e(j, t), which increases in neighborhood j average

income relative to the city-wide average income, θ̄(j, t)29. Motivated by the possibil-

ity of tail effects, we model a component, b(j, t), that reduces the attractiveness of

neighborhoods beyond a threshold level of low-skill share. We estimate the deprecia-

tion parameter, the characteristics of the endogenous perturbations and, if it exists,

the threshold. As our framework has symmetric properties, amenities only matter

through the implied difference between East and West neighborhoods and we will,

without loss of generality, only load these neighborhood effects to one neighborhood.

The endogenous amenity, d(j, t), is defined for t > 1 as,

d(j, t) = (1− δ)d(j, t− 1) + e(j, t)− b(j, t), (8)

with an initial endogenous amenity that is constant across all neighborhoods, d(j, 1) =

d, and where the continuous effect is,

e(j, t) = φe1
[
θ̄(j, t− 1)− 1

]φe2 , (9)

if θ̄(j, t − 1) > 1 and 0 otherwise. The tail effect captures a discontinuity in neigh-

borhood income,

b(j, t) = φb1
[
1− θ̄(j, t− 1)

]φb2 , (10)

if Sl(j, t − 1) ≥ S̄ and 0 otherwise. The constants φe1 ≥ 0, φe2 ≥ 0, φb1 ≥ 0, φb2 ≥ 0,

δ ∈ [0, 1] and S̄ > γ̃ are unknown parameters to be estimated.

Before proceeding, Lemma 2 shows that if the initial pollution caused one of the

endogenous amenity perturbation to operate, then the sorting of neighborhoods will

persist. If neither channel operates, there is no sorting once pollution ceases.

28Durlauf (2004) and Rosenthal and Ross (2015) are excellent overviews of the range of neighbor-
hood effects. If income levels differ, neighborhoods could accumulate amenity differences. These
effects may include differences in school quality (Durlauf, 1996) or in the age of the housing stock
(Rosenthal, 2008). Persistence could also work through peer effects. In this case, workers would
simply have a preference to live among other workers in the same income group (Guerrieri et al.,
2013) or ethnic group (Card et al., 2008). In the context of education, a peer effect may work via
the presence of good role models (Benabou, 1993). Finally, peer and income effects could operate
differently if a neighborhood composition crossed some threshold. Such tail effects would underpin
the existence of poverty traps (Durlauf, 2004).

29In particular, θ̄(j, t) = Sl(j,t)θl+(1−Sl(j,t))θh

γθl+(1−γ)θh .
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Lemma 2. Pollution can cause the accumulation of amenity differences and persis-

tent sorting.

Proof. See Appendix A.

We identify the model in the data using the within-city residuals of low-skill share

between 1881 and 1971 as well as the within-city residuals of atmospheric pollution

for the 4,519 neighborhoods that we treat as independent observations. Let p(j) be

the normalized pollution in neighborhood j at time t1 = tp, i.e., p(j) = ηρ in the

East and p(j) = −ηρ in the West. We can connect the model to the data by writing

down the change in the share of low-skilled workers between t1 = tp and t2 ≥ tc in a

neighborhood j as a function of p(j). This is the sum of the reversion that results

from the pollution now absent at t2 and the persistence in the accumulated d(j, t),30

Sl(j, t2)− Sl(j, t1) = −αp(j)︸ ︷︷ ︸
reversion

+ sign{p(j)} · d(j, t2)/2︸ ︷︷ ︸
persistence

(11)

where α > 0 captures the empirical sensitivity of sorting to the normalized pollution.

With an initial pollution effect (α > 0) but without any neighborhood effects

(φe1 = φb1 = 0), the model predicts full convergence – equation (11) is linearly

decreasing in p(j). In this case, the initial pollution causes sorting but there is later

full reversion to the mean. If instead φe1, φ
e
2 > 0, the continuous neighborhood effect

acts to solidify the initial sorting. If there was less than average historical pollution

in a neighborhood, this effect dampens the long-run reduction in the share of low-

skilled workers. Moreover, if φb1, φ
b
2 > 0, then we may see a discontinuous effect

around S̄. Those neighborhoods most affected by pollution may see an additional

long-run increase in the share of low-skilled workers.

Estimation We use the data to estimate the parameters of the endogenous ameni-

ties e and b. In Table VII, we report the model parameters that are first selected

to match the data. We rely on Williamson (1980) for data on income inequality

in nineteenth century England: We set the ratio of high income to low income at

two.31 Finally, we use the correlation between within-city residuals in low-skills

and atmospheric pollution in 1871 to calibrate the sensitivity of low-skill share to

pollution.

We simulate the model using our pollution estimates for 1881 over a grid of the

six model parameters (φe1, φe2, φb1, φb2, S̄ and δ) and select those parameters that yield

30Lemma 1 shows that the share of low skill at the start of pollution is Sl(j, tp) = γ + p(j).
Lemma 2 shows that the post-pollution share of pollution is Sl(j, tc) = γ + sign{p(j)}d(j, tc)/2.

31The ratio of the highest to lowest decile is just over two; the ratio of the highest quartile to
the lowest quartile is just under two.
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the best fit of the model to the observed change in low-skill share over the period

1881–1971.32 In Table VIII, we report the parameter estimates that minimize the

root mean squared error between the model prediction and the data for the change in

low-skill share between 1881 and 1971. The main parameter commanding the return

to the mean δ = 0.08 implies that half of the gap between neighborhoods would

be bridged after only 9 years. However, the model also estimates the presence of

neighborhood effects counteracting the reversion process. The coefficient φe1 = 0.11

capturing the continuous neighborhood effect is positive and the exponent φe2 = 0.89

is less than one. While the continuous neighborhood effect is positive, it is, outwith

the tail effect, too small to generate persistent sorting that is greater than that

initially caused by the pollution. The estimated model finally captures the existence

of a tail effect. The coefficient φb1 on the tail component is positive and the tail

threshold is 0.76. This implies that the tail effect operates once a neighborhood is

26 percentage points higher in low-skill share than the city average. Finding a value

of the exponent φb2 that is greater than one suggests that the tail costs are convex.

In general, the tail effect is stronger than the reversion process and there is no return

to the mean – once a neighborhood has suffered from enough pollution to cross this

threshold, its long-run outcome in terms of skill-share is worse than that originally

caused by the pollution.

Model fit and over-identification checks To assess the validity of our model,

we simulate the model using parameters estimated from 1881–1971 data and con-

sider its performance in explaining persistence over the period 1971–2011. We use

two statistics based on our observed 4,519 neighborhoods. First, we calculate the

difference between the average low-skill share in areas with above and below within-

city pollution in 1881. This measure is the average spread of low-skill share between

the “East” and the “West”,

spread(t) = E
[
Sl(j, t)

∣∣∣p(j) > 0
]
− E

[
Sl(j, t)

∣∣∣p(j) < 0
]

(12)

where p(j) is the city-normalized pollution level estimated for neighborhood j in

1881. With no persistent effect, this spread is zero. The second statistic is the

correlation between low-skill shares in 1971 and 2011,

ρt2,t1 =

∑
j

(
Sl(j, t2)− γ

) (
Sl(j, t1)− γ

)∑
j (Sl(j, t1)− γ)2 (13)

32We start with a coarse grid over the whole range and then increase accuracy in the grid around
the initial estimates (see Note to Table VIII).
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where t1 = 1971 and t2 = 2011.

The first two columns of Table IX report results on these statistics in the model

and the data. The model performs well in matching the target spread of low-skill

workers in 1971. More interestingly, the model matches quite well the spread in 2011

and the correlation between 1971 and 2011 despite the parameters being estimated

to fit data for 1881-1971.

Note, however, that the 2011 spread of low-skill workers is slightly lower in the

model than in the data, and so the measure of persistence over 1971–2011 also

undershoots. Since the model is estimated on data up to 1971, it does not account

for any policy shifts that occurred after that time. One important policy after 1979

relates to Thatcher’s reform of social housing. We extend the model to incorporate

this.

Liberalization of social housing Before 1979, social housing was distributed

relatively uniformly across neighborhoods (see the online Appendix Figure A4).33

In 1979, Thatcher offered social housing tenants the ‘Right to Buy’ their property,

which endogenizes the distribution of social housing.

We model social housing as a disamenity34 and as being occupied by low-skill

workers. Up to 1979, we assume – as observed in the data – that social housing

is orthogonal to past atmospheric pollution. Since all neighborhoods are equally

affected, there are no consequences for land values and the distribution of low-

skill workers. Once social housing is liberalized, however, that part of the housing

stock can enter the free market. Workers who are initially located in areas with

better (worse) amenities can now ask for high (low) prices for their properties. The

distribution of social housing thus converges to the same distribution as that of

low-skill households (a process which is, in the data, completed by 1991).

The third column of Table IX reports the model output with social housing

liberalization (‘SH-L’ in the Table) against the baseline model and the data. The

liberalization removes support for low-skill workers in otherwise desirable neighbor-

hoods; some low-skilled workers choose to sell the now-valuable housing to high-

skilled workers. The model fit for 1971-2011, either captured by the 2011 spread or

the correlation between 1971 and 2011, substantially improves: the liberalization of

social housing caused greater persistence in the distribution of deprivation because

33The United Kingdom initiated a program of social housing with the Housing of the Working
Classes Acts (circumscribed to London in 1890 and extended to all councils in 1900). Council
housing was the main supply of housing services for the working class, and it was typically managed
by local councils. About 30% of our sample of urban households were living in council houses in
1971.

34We select a coefficient on the social housing share to target the spread in 2011.
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it removed a random component (the location of social housing) which was bringing

neighborhoods closer to the city average.

The analysis of social housing in the data strongly supports this interpretation.

We use the Census in 1971, 1981, 1991, 2001 and 2011 and extract a LSOA-specific

share of households living in council housing. In order to study the realignment of so-

cial housing with deprivation, we analyze the dynamics of social housing in formerly

polluted neighborhoods (see Table A6). While social housing was weakly correlated

with past pollution in 1971, it became increasingly present in formerly-polluted ar-

eas. We find that social housing already appears more in formerly polluted areas

in 1981, two years after the deregulation, and it seems to reach a steady-state after

1991. In parallel, the home-ownership rate experiences a relative decrease in the

areas that were formerly affected by coal pollution.35

While the original intent of Thatcher’s policy was to reduce inequality by pro-

viding a route for working class households to step on the housing ladder, its con-

sequence appears to have been to lengthen the shadow of the Industrial Revolution

and set back the slow decay of neighborhood sorting. Our estimates suggest that

about 20% of the remaining gradient between polluted and spared neighborhoods

can be attributed to this reform.

Counterfactual experiments We now provide two sets of counterfactual exper-

iments to understand the role of non-linearities in the dynamics of segregation.

In a first set of experiments, we use the baseline model and impose a hypothetical

construction boom in social housing in 1979, increasing the social housing stock

from 30% to 40% or 45%. As can be seen in columns 2 and 3 of Table X, even

a substantial investment in social housing would have been ineffective in reducing

significantly the persistence of segregation over the period. With our estimated

neighborhood effects, social housing programs would appear to be a costly means

of reducing spatial inequalities. This result comes from the fact that there are not

many neighborhoods that are just above the tail threshold, and few of them would

revert back to the city average even with a more uniform distribution of low-skilled

workers, as implied by the social housing expansion. This intuition also holds in the

next set of experiments.

In a second set of experiments, we vary the initial pollution exposure for all neigh-

35We also report the correlation between past pollution and the share of immigrants in Table
A6. We find that the share of immigrants steadily increases in formerly-polluted areas with a
sharp acceleration between the last two waves. In 1971, an additional standard deviation in past
pollution increases the share of immigrants by about 1 percentage point against 3.5 percentage
points in 2011 (about .25 of a standard deviation in both cases).
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borhoods by ±25% to explore the quantitative impact of the pollution disamenity

on the subsequent persistence of spatial inequalities.36 As can be seen in columns 4

and 5 of Table X, higher (lower) initial pollution increases (decreases) the spread of

low-skill workers across a city in 1971. More importantly, the initial distribution of

the pollution disamenity plays a role in the subsequent dynamics of persistence: a

25% higher exposure to pollution markedly increases the correlation between 1971

and 2011 (0.59 against 0.40) while a symmetric 25% lower exposure to pollution has

little effect. This result is driven by the tail behavior in the underlying persistence

mechanism and the number of neighborhoods on each side of the tipping threshold.

We can exploit variation across cities in the data to provide an over-identification

test for the last theoretical prediction. Cities in our sample have similar shares

of low-skilled workers but they differ widely in exposure to pollution. We define

sharepolluted as the city-wide share of areas with pollution above the sample average

and divide cities in two groups of equal size: those with a high share of polluted

areas (78%, and the share of low-skilled workers in 1881 is 65%) and cities with a

low share of polluted areas (25%, and the share of low-skilled workers in 1881 is

60%).

We report in Table XI the benchmark measures of persistence across time for the

two sets of cities. As apparent in Panel A, there is reversion to the mean in cities

with a low share of polluted areas. The standardized effects of 16% in 1881 and

24% in 1971 drops to 16% in 1981 and 10% from 1991 onwards. By contrast, cities

with a high share of polluted areas (Panel B) do not experience any reversion to the

mean. The standardized effects are around 13% in 1881 and 25% in 1971, and then

range between 23 and 29% in the following waves. The two sets of cities respectively

show a pollution exposure that is 25% lower and 30% higher than the average, such

that we can compare the persistence in the two sets of cities to columns 4 and 5

of Table X. In Table X, persistence in lowly-exposed cities is 2/3 lower than in

highly-exposed cities while it is half as low in Table XI.

In order to illustrate the dynamics of persistence in the two sets of cities, we

represent graphically the relationship between pollution and indices of deprivation

across time (see Figure ). In Panel (a) (resp. (b)), we display the distribution of

pollution across cities with a high (resp. low) share of polluted areas. In Panel (c)

(resp. (d)), we display the respective evolution of the relationship between depri-

vation and past pollution. There is a clear difference between Panel (c) and (d).

In 1881 or 1971, the relationship between atmospheric pollution and deprivation is

quite comparable in both samples of cities. In recent waves, however, the relation-

36This increases the gap in disamenities between the East and West neighborhoods by ±25%.
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ship is stronger in cities where the distributions of pollution and 1881 deprivation

coincide, and this amplification seems to be driven by the extremes. In contrast, the

relationship is weaker in the other cities (panel (d)), which seems to be essentially

due to a return to the mean for intermediate values of pollution. While this analysis

is not causal – the two sets of cities may differ across different dimensions, these

findings are consistent with the theoretical prediction: cities with a clean initial

sorting are much more rigid.

A shortcoming of our analysis is that we cannot identify the different mechanisms

underlying the estimated neighborhood effects. While a proper analysis of the dif-

ferent channels would go beyond the scope of the present investigation, Appendix

C provides detailed descriptive statistics about the distribution of a wide range of

neighborhood characteristics within cities in 2011. We find that housing character-

istics, schooling outcomes and crime incidence differ markedly in formerly polluted

neighborhoods. However, these patterns cannot be attributed to the mere anchoring

of durable amenities established before the Clean Air acts such as the provision of

some public amenities (parks, public administration or transport), the presence of

private schools, or the heritage of Victorian housing stock.

8 Conclusion

This paper presents a plausible explanation for the anecdotal observation that the

East Sides of formerly-industrial cities in the Western hemisphere tend to be poorer

than the West Sides. With rising coal use in the heyday of the industrialization,

pollution became a major environmental disamenity in cities. A very unequal dis-

tribution of pollution exposure induced a sorting process which left the middle and

upper class in the relatively less polluted neighborhoods. Our empirical analysis

relies on precise pollution estimates, and identifies neighborhood sorting at a highly

local level: the illustrative East/West gradient reflects a global drift in pollution at

the city-level but the relationship between atmospheric pollution and neighborhood

composition materializes at a much more local level.

We first use data from the time before coal became the major energy technology

in 1817 and data around the peak time of coal use in 1881 to show that rising pollu-

tion set off the assumed process of residential sorting. Next, we look at the long-run

consequences of this initial sorting and find that neighborhood segregation is sur-

prisingly persistent. Historical pollution explains 15-20% of the spatial distribution

of deprivation today and our results are robust to a number of alternative samples

and specifications.

Finding these highly persistent effects is remarkable since industrial pollution
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slowed down during the twentieth century and mostly stopped in the late 1960s with

the introduction of a second, stricter Clean Air Act. There exists no correlation

between past industrial pollution and the relatively mild contemporary pollution

in England, suggesting that other forces have sustained the high and low income

equilibrium over time. We use a simple quantitative model to estimate the structure

of neighborhood effects. Our estimates imply large non-linear effects with tipping-

like behavior, and we replicate quite well the subsequent dynamics between 1971

and 2011.

Our findings hold at least two important implications. First, we show that

the success of urban policies to revitalize deprived areas crucially depends on their

position relative to the tipping point. As outlined by our findings, there are non-

linearities in neighborhood effects and very deprived neighborhoods would need a

large push to reach the tipping point. This observation leads to a second implica-

tion for countries like China where pollution currently presents a major challenge.

Beside the well documented short-run effects of pollution exposure on health, there

is a significant long-run consequence of an uneven pollution exposure across space:

pollution may induce large spatial inequalities that survive de-industrialization.
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A Figures and tables

Figure I. Amenities and Neighborhood Sorting: Equilibrium with pollution and γ = 1
2 .

R

A

Rl = θl

θh

Rh

A∗

A(W)

A(E)
low-skilled high-skilled

Notes: the x-axis represents the level of consumptive amenities and the y-axis is the rent. A(W ) and A(E) depict
the distribution of amenities in the two neighborhoods {E,W}. We assume that the amenity levels overlap across
neighborhoods even with pollution and we focus on the cases where a high income agent prefers the nicest location
in the polluted East to the worst location in the non-polluted West.

Figure II. Ordnance Survey maps – chimney symbols.

(a) Example 1. (b) Example 2.

Sources: Ordnance Survey Maps - 25 inch to the mile, 1842-1952. Four different symbols for chimneys are circled.
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Figure III. Ordnance Survey maps – marking and identifying chimneys.

Sources: Ordnance Survey Maps - 25 inch to the mile, 1842-1952. Marks X and the identifiers, e.g., 00007, are used
by a recognition algorithm to locate chimneys and associate a factory name, e.g., Eastbrook Dye Works.

Figure IV. Aggregating pollution sources (Manchester).

(a) Locating chimneys. (b) Pollution imprints.

Sources: Authors’ calculations using Ordnance Survey Maps - 25 inch to the mile, 1842-1952 and the ADMS 5 Air
Pollution Model. Chimneys are indicated with red dots.
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Figure V. Share of low-skilled workers and pollution across neighborhoods in 1881.

Notes: This Figure represents the relationship between the (standardized) shares of low-skilled workers in 1881
and our (standardized) measure of past pollution. We consider the residuals of all measures once cleaned by city
Fixed-Effects, geographic and topographic controls. We create 40 bins of neighborhoods with similar past pollution
and represent the average shares of low-skilled workers within bins. The lines are locally weighted regressions on all
observations.

Figure VI. Share of low-skilled workers (y-axis) and pollution (x-axis) across neighborhoods in
1881, 1971, 1981, 1991, 2001 and 2011.

Notes: This Figure represents the locally weighted regressions on all observations between the (standardized) shares
of low-skilled workers and our (standardized) measure of past pollution. We consider the residuals of all measures
once cleaned by city Fixed-Effects, geographic and topographic controls.
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Figure VII. Importance of the city-wide distribution of deprivation and pollution in sorting across
neighborhoods.

(a) Distribution (high share). (b) Distribution (low share).

(c) Persistence (high share). (d) Persistence (low share).

Notes: This Figure represents the relationship between the shares of low-skilled workers and our (standardized)
measure of past pollution in two sets of cities. In the left panel (resp. right panel), we keep cities for which there is a
low (resp. high) share of polluted areas compared to the share of low-skilled workers, i.e., we keep the observations
with sharepolluted above the median (resp. below the median). sharepolluted is the share of areas with pollution
above the mean. We consider the residuals of all measures once cleaned by city Fixed-Effects, geographic and
topographic controls. For the sake of exposure, we group neighborhoods, create 100 bins of neighborhoods with
similar past pollution and represent the average shares of low-skilled workers within a pollution-bin. The lines are
locally weighted regressions on the observed sample.
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Table I. Descriptive statistics and variance decomposition.

Standard deviation
VARIABLES Obs. Mean total between within

Air pollution
Normalized pollution 4,524 0 1 .542 .774

Segregation measures (shares)
1817 ∗

Low-skilled workers 4,524 .782 .113 .077 .074
High-skilled workers 4,524 .128 .099 .067 .053
Farmers 4,524 .088 .087 .065 .068

1881
Low-skilled workers 4,524 .607 .247 .153 .225
High-skilled workers 4,524 .583 .175 .130 .207
Farmers 4,524 .111 .193 .171 .167

2011
Low-skilled workers 4,524 .583 .175 .121 .119
High-skilled workers 4,524 .416 .175 .121 .119

Geographic controls
Distance town hall (m) 4,524 4823 5334 4754 1487
Share LSOA within city borders 4,524 .356 .435 .269 .299
Area (square km) 4,524 1.64 6.72 7.24 5.69

Topographic controls
Maximum elevation (m) 4,519 72.3 67.4 69.4 34.4
Minimum elevation (m) 4,519 50.2 47.8 44.8 18.55
Mean elevation (m) 4,519 60.5 55.0 54.3 23.3
Distance canals (m) 4,524 5723 14380 17899 1391

Notes: ∗ Shares in 1817 are computed at the parish-level, which explains the lower variance.

Table II. Pollution and shares of low-skilled workers in 1881.

Share of low-skilled (1) (2) (3) (4) (5) (6)
Pollution .0417 .0421 .0385 .0350 .0342 .0327

(.0070) (.0068) (.0066) (.0063) (.0064) (.0065)
[.1686] [.1700] [.1557] [.1415] [.1381] [.1321]

Observations 4,524 4,524 4,519 4,519 4,519 4,519
Fixed effects (city) No Yes Yes Yes Yes Yes
Controls (topography) No No Yes Yes Yes Yes
Controls (1817) No No No Yes Yes Yes
Controls (geography) No No No No Yes Yes
Controls (lat./lon.) No No No No No Yes

Standard errors are reported between parentheses and are clustered at the parish-level. Standardized effects are
reported between square brackets. Each cell is the result of a separate regression. The unit of observation is a Lower
Super Output Area. The set of topographic controls include the average, maximum and minimum elevations for the
LSOA and the distance to waterways as of 1827. The set of 1817 controls include the parish-level shares of farmers,
managers and blue-collar workers. The set of geographic controls include distance to the city hall, share of LSOA
within the city borders in 1890 and the LSOA area.
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Table III. Pollution and shares of low-skilled workers or wealth measures before pollution – balance
tests.

Panel A:
Share of low-skilled in 1817 (1) (2) (3) (4) (5)
Pollution .0000 -.0048 .0123 .0052 .0062

(.0125) (.0196) (.0235) (.0245) (.0241)
[.0004] [-.0427] [.1083] [.0463] [.0549]

Observations 480 480 480 480 480
Fixed effects (city) No Yes Yes Yes Yes
Controls (geography) No No Yes Yes Yes
Controls (topography) No No No Yes Yes
Controls (lat./lon.) No No No No Yes
Panel B:
Wealth in 1815 (1) (2) (3) (4) (5)
Pollution .3795 .2322 .0907 -.0516 -.0583

(.1472) (.1487) (.1318) (.1261) (.1345)
[.3000] [.1838] [.0718] [-.0408] [-.0461]

Observations 450 450 450 450 450
Fixed effects (city) No Yes Yes Yes Yes
Controls (geography) No No Yes Yes Yes
Controls (topography) No No No Yes Yes
Controls (lat./lon.) No No No No Yes

Robust standard errors are reported between parentheses. Standardized effects are reported be-
tween square brackets. Each cell is the result of a separate regression. The unit of observation is a
parish. The set of geographic controls include distance to the city hall, share of of the parish within
the city borders in 1890 and the parish area. The set of topographic controls include the average,
maximum and minimum elevations for the parish and the distance to waterways as of 1827. Wealth
is inferred from property taxes in 1815, and averaged at the parish level (the dependent variable
is the logarithm of the parish average).
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Table IV. Pollution and shares of low-skilled workers in 1881 – placebo checks with mirror, static
and domestic pollution.

Share of low-skilled workers (1) (2) (3) (4)
Pollution .0372 .0322 .0336 .0339

(.0086) (.0108) (.0068) (.0068)
[.1505] [.1302] [.1356] [.1370]

Mirror Pollution -.0030
(.0062)
[-.0123]

Static Pollution .0021
(.0088)
[.0085]

Domestic Pollution .0087
(.0154)
[.0330]

Current Pollution .0106
(.0056)
[.0431]

Observations 4,519 4,519 4,519 4,519
Fixed effects (city) Yes Yes Yes Yes
Controls (geography) Yes Yes Yes Yes
Controls (topography) Yes Yes Yes Yes
Controls (coordinates) Yes Yes Yes Yes

Standard errors are reported between parentheses and are clustered at the parish-level. Each cell
is the result of a separate regression. The unit of observation is a Lower Super Output Area. The
set of geographic controls include distance to the city hall, share of LSOA within the city borders
in 1890 and the LSOA area. The set of topographic controls include the average, maximum and
minimum elevations for the LSOA and the distance to waterways as of 1827.
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Table V. Pollution and shares of low-skilled workers in 1881 – 2-stage specification.

First stage Pollution
(1) (2) (3) (4)

Synthetic pollution (waterways) .3010 .2999
(.0093) (.0094)

Synthetic pollution (uniform) .2497 .2478
(.0090) (.0090)

Observations 4,084 4,084 4,519 4,519
Fixed effects (city) Yes Yes Yes Yes
Controls (topography) Yes Yes Yes Yes
Controls (1817) Yes Yes Yes Yes
Controls (lat./lon.) No Yes No Yes
Second stage Share of low-skilled workers (1881)

(1) (2) (3) (4)
Pollution .1017 .0995 .0683 .0644

(.0169) (.0172) (.0190) (.0194)
[.4107] [.4016] [.2760] [.2599]

Observations 4,084 4,084 4,519 4,519
Fixed effects (city) Yes Yes Yes Yes
Controls (topography) Yes Yes Yes Yes
Controls (1817) Yes Yes Yes Yes
Controls (lat./lon.) No Yes No Yes

Standard errors are reported between parentheses and are clustered at the parish-level. Standard-
ized effects are reported between square brackets. Each cell is the result of a separate regression.
The unit of observation is a Lower Super Output Area. The set of topographic controls include
the average, maximum and minimum elevations and the distance to waterways as of 1827. The
variable Synthetic pollution (waterways) is only constructed for cities with some waterways in 1827.

Table VI. Pollution and shares of low-skilled workers in 1971, 1981, 1991, 2001 and 2011.

Share of low-skilled workers 1971 1981 1991 2001 2011
Pollution .0309 .0321 .0349 .0368 .0311

(.0044) (.0064) (.0070) (.0068) (.0064)
[.2397] [.2239] [.1841] [.2278] [.1776]

Observations 4,517 4,519 4,519 4,519 4,519
Fixed effects (city) Yes Yes Yes Yes Yes
Controls (topography) Yes Yes Yes Yes Yes
Controls (1817) Yes Yes Yes Yes Yes

Standard errors are reported between parentheses and are clustered at the parish-level. Standardized effects are
reported between square brackets. Each cell is the result of a separate regression. The unit of observation is a Lower
Super Output Area. The set of topographic controls include the average, maximum and minimum elevations for the
LSOA and the distance to waterways as of 1827. The set of 1817 controls include the parish-level shares of farmers,
managers and blue-collar workers.
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Table VII. Selected parameters (see Section 7).

Parameter Value Rationale
θh High income 2 Williamson (1980), highest quartile to the lowest
θl Low income 1 Williamson (1980)
γ̃ Low-skill share 0.50 Normalization
α Pollution sensitivity 0.102 Correlation pollution/occupation in 1881
d Initial amenity 1 Normalization

Note: The sensitivity α of low-skill share to pollution is calibrated using the correlation between within-city residuals
in low-skills and atmospheric pollution in 1881.

Table VIII. Estimated parameters (see Section 7).

Parameter Description Estimate
φe1 Coefficient for the continuous effect 0.11
φe2 Curvature for the continuous effect 0.89
φb1 Coefficient for the tail effect 0.10
φb2 Curvature for the tail effect 1.45
S̄ Tail point 0.76
δ Depreciation factor 0.08

Note: The initial grid search is over the following ranges: φe1 = [0, 0.3]; φe2 = [0, 1.5]; φb1 = [0, 0.3]; φb2 = [0, 2.5];
S̄ = [0.50, 0.90]; δ = [0, 0.15].

Table IX. Baseline model and model with social housing liberalization against data.

Data Baseline SH-L

Spread in 1971 .0550 .0555 .0555
Spread in 2011 .0278 .0235 .0281
Correlation ρ2011,1971 .4337 .4010 .4331
Note: SH-L is the baseline model augmented by the social housing liberalization of the Thatcher government in
1979 (See Section 7).

Table X. Counterfactual experiments (alternative social housing and pollution exposure).

Social housing Pollution
Baseline SH-40 SH-45 −25% +25%

Spread in 1971 .0555 .0555 .0555 .0421 .0737
Spread in 2011 .0235 .0229 .0218 .0183 .0358
Correlation ρ2011,1971 .4010 .3698 .3167 .3885 .5944

Note: In columns 2 and 3, SH-N are experiments where we introduce a N% (N = 40, 45) social housing supply at
all locations. In columns 4 and 5, we vary the initial pollution estimates for all neighborhoods by ±25%.
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Table XI. Pollution and shares of low-skilled workers in 1881, 1971, 1981, 1991, 2001 and 2011 in
cities with low share of polluted areas versus cities with low share of polluted areas.

Panel A: Low share of polluted areas
Share of low-skilled 1881 1971 1981 1991 2001 2011

Pollution .0398 .0311 .0243 .0205 .0188 .0175
(.0115) (.0105) (.0155) (.0123) (.0105) (.0123)
[.1610] [.2415] [.1699] [.1082] [.1163] [.0999]

Observations 2,596 2,595 2,596 2,596 2,596 2,596
Fixed effects (city) Yes Yes Yes Yes Yes Yes
Controls (topography) Yes Yes Yes Yes Yes Yes
Controls (1817) Yes Yes Yes Yes Yes Yes

Panel B: High share of polluted areas
Share of low-skilled 1881 1971 1981 1991 2001 2011

Pollution .0314 .0330 .0386 .0443 .0472 .0409
(.0074) (.0045) (.0048) (.0062) (.0061) (.0044)
[.1270] [.2558] [.2693] [.2336] [.2925] [.2334]

Observations 1,923 1,922 1,923 1,923 1,923 1,923
Fixed effects (city) Yes Yes Yes Yes Yes Yes
Controls (topography) Yes Yes Yes Yes Yes Yes
Controls (1817) Yes Yes Yes Yes Yes Yes

Standard errors are reported between parentheses and are clustered at the parish-level. Standardized effects are
reported between square brackets. Each cell is the result of a separate regression. The unit of observation is a Lower
Super Output Area. The set of topographic controls include the average, maximum and minimum elevations for the
LSOA and the distance to waterways as of 1827. The set of 1817 controls include the parish-level shares of farmers,
managers and blue-collar workers.
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Online Appendix

A Proofs

Proof of Proposition 1. Recall that the total mass of land equals the total mass

of workers equals 2. Let F (A) be the cumulative density of land with amenity

level less than or equal to A within the city. Clearly, F (A) = 0 for A < Amin ≡
minj∈W,E

{
min`∈Ω(j) A(j, `)

}
and F (A) = 2 forA > Amax ≡ maxj∈W,E

{
max`∈Ω(j) A(j, `)

}
.

Suppose that amenity levels across neighborhoods overlap in the sense that,

max
j∈W,E

{
min
`∈Ω(j)

A(j, `)

}
< min

j∈W,E

{
max
`∈Ω(j)

A(j, `)

}
. (14)

Since amenities overlap, F (A) is monotonically increasing and continuous in A over

the interval [Amin, Amax]. As such, there is an A∗ ∈ [Amin, Amax] such that F (A∗) =

2γ. From equation (4), landlords are indifferent to high- and low-skilled workers

at A∗ if high-skilled worker utility is V̄ h∗ = A∗(θh − θl). By (3) and (4), with

V̄ h∗ = A∗(θh − θl) we have Rh > Rl for all A > A∗ and Rh ≤ Rl for all A ≤ A∗.

Since F (A∗) = 2γ, the mass of land rented to low-skilled workers in the city satisfies

(5).

The cumulative land density in the overlapping interval of amenities is,37

F (A) =
∑

j∈{W,E}

A− min
`∈Ω(j)

A(j, `), (15)

for A ∈
[

max
j∈W,E

{
min
`∈Ω(j)

A(j, `)

}
, min
j∈W,E

{
max
`∈Ω(j)

A(j, `)

}]
.

Suppose that the A∗ such that F (A∗) = 2γ is in this interval. The equilibrium

is characterized by imperfect sorting in the sense that neither neighborhood fully

specializes in high- or low-skilled workers.

Proof of Lemma 1. With pollution emissions, in the overlapping interval of ameni-

ties we have,

F (A) = 2(A− d+ ρ). (16)

In equilibrium, where F (A) = 2γ so A∗ = d+γ−ρ. The share of low-skilled workers

37The full expression is F (A) =
∑
j∈{W,E}

A−min`∈Ω(j) A(j,`)

max`∈Ω(j) A(j,`)−min`∈Ω(j) A(j,`) , but note that the de-

nominator is equal to 1 by assumption that x(`, j) is distributed uniformly over [φ(j), φ(j) + 1].

47



in each neighborhood is,

Sl(W ) = γ − ηρ, (17)

Sl(E) = γ + ηρ. (18)

Since ηρ > 0, the share of low-skilled workers in the West is less than the share

in the East. Moreover, the greater the pollution intensity, ρ, or the stronger is

the wind, η, the larger is the difference in the shares of low-skilled workers across

neighborhoods.

Proof of Lemma 2. After t = tp, pollution causes θ̄(W, t) > θ̄ by Lemma 1 and so

accumulation of amenities by equation (9). The pollution, and consequent general

amenities, may then cause b(j, t) to accumulate by (10). That is, d(W, t) may

increase and d(E, t) may decrease as a result of pollution. Let d(t) = d(W, t)+d(E, t)

be the spread of endogenous amenities. We can write for t ≥ tc, F (A) = 2A− d(t),

and,

A∗ = γ + d(t)/2. (19)

The share of low-skilled workers in each neighborhood is,

Sl(W, t) = γ − d(t)/2, (20)

Sl(E, t) = γ + d(t)/2. (21)

Since d(j, t) amenities are persistent, d(t) > 0 permanently unless depreciation ex-

ists. Equations (20)-(21) then show that sorting persists even after t = tc.

B Geo-locating individuals in census data

This section describes the census structure, the fuzzy matching procedure, the clus-

tering algorithm and some sensitivity tests.

Census structure There is a strong but imperfect relationship between census

neighbors and true geographic neighbors that we clarify below. As we observe the

parish, all our analysis will be for individuals of the same observed parish.

Let i denote a transformation of the book/folio/line numbers in alphabetical

order. Let n : i 7→ n(i) denote the unobserved neighborhood for individual i. We

assume a monotonicity property for n reflecting that enumerators were recording

households in a sequential manner: If i < j < k and n(i) = n(k), then n(i) =
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n(j) = n(k). If two entries are in the same block, all entries appearing between

these entries also belong to the same block.

For each entry, we observe the index i and we can define a step function f : i 7→
f(i) ∈ N, monotonous in this index.38 The function f will define clusters among

census entries.

The monotonicity property is not fully sufficient to match households. Indeed,

it does not allow us to observe the relationship between the values taken by blocks

{nj}j and census clusters {fj}j, and this is due to the fact that breaks in blocks

cannot be observed. For instance, within a single parish, a list of entries can be:

idi foliof(i) blockn(i) break

1. f1 n1

...
...

...

45. f1 n1

46. f1 n2 B1

...
...

...

78. f1 n2

79. f2 n2 B2

As can be seen in the previous example, there are two types of breaks in the data, one

associated with a change in blocks B1 that cannot be observed and one associated

with a change in books B2 which is observed.

Our true measure of geographic cluster is n and one observed counterfactual is

f . In what follows, we will describe our strategy as if census clusters were a perfect

identifier for geographic proximity n and we will discuss sensitivity analyses in a

separate subsection.

Fuzzy matching of addresses We clean addresses by deleting blanks, normal-

izing terms used to indicate types of roads (e.g., road, street, avenue, bow, park,

square, cottage, villas, etc.) and separating the road denomination from the at-

tributed name.

We reduce the probability of attributing a census address to the wrong geo-

reference by limiting the pool of potential matches (the contemporary geo-located

addresses) to those which are located in the registered parish of census observations.

The fuzzy matching procedure generates perfect matches for 20% of the total

sample, and we match 30% of the total sample with precision 0.90 (at least 90% of

38For instance, we can group lines of the same folio/book by groups of 10, or group all entries of
the same folio together.
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the original string can be found in the matched address).

The covariation among census entries in unmatched addresses is small which

indicates that most of the matching error comes from idiosyncratic sources. However,

there remains some covariation, e.g. when some big streets are not found in the

contemporary directories or when a very large “census household”, e.g., a jail, a

boarding school or a guesthouse, has a poorly reported address.

For our geo-localization algorithm, we only keep matches with a higher score

than 0.90 and consider the others as being unmatched. We describe in the follow-

ing section how we account for potential errors in the already-matched household

addresses and geolocate remaining households.

Recognizing clusters and inference We need to infer the geo-location of all

households of the same census cluster from the geo-location of a subsample (with

potential measurement error). We first focus on the sample of well-matched house-

holds. We then apply the following algorithm to detect geographic clusters.

1. We geolocate all geo-referenced households.

2. We then divide a parish into 4 equal regions, depending on their position

relative to the maximum and minimum latitudes and the the maximum and

minimum longitudes in the sample.

3. We select the region with the largest number of observations, and temporarily

drop the other observations.

4. We go back to point 2 with the newly selected region and newly selected

observations, and we iterate.

5. After a given number of iterations, we stop, generate the average latitude

and longitude among the remaining households and we attribute them to all

households of the census with the same census identifier including thus the

already-matched households.

A graphical illustration of this algorithm is provided in Figure A1 with 2 iterations.

Two (resp. three) iterations already divide a parish into 16 (resp. 64) small regions.

Note that we can always generate a dispersion of geo-references at each step of

the algorithm and keep track of problematic situations, e.g., the existence of two

separate and equally numerous clusters.

The advantage of this process is not only to infer geo-references for unmatched

households but also to smooth geo-references among already-matched units.
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We then use these newly-identified blocks, overlay them with our base geographic

units (LSOAs) and attribute a unique LSOA identifier to all households in the 1881

Census.

Figure A1. Finding clusters among geo-referenced households with the same identifier.

Sensitivity analysis The previous methodology relies on two approximations.

First, census clusters are assumed to reflect underlying geographic identifiers.

However, there is a tension when aggregating entries together. On the one hand,

having more households per census cluster raises the probability to detect the geo-

graphic location. On the other hand, there exist breaks within a book, and the first

households may be interviewed in a neighborhood while the last households may

correspond to a new interviewer and a new neighborhood. In order to alleviate this

issue, we repeat our algorithm by generating many different census clusters (group-

ing 1, 2, 5 or 10 folios together, drawing new breaks) and compare the resulting

LSOA identifier under the different specifications.

Second, the exact number of iterations in the previous algorithm or the 0.90

precision threshold to exclude poorly-matched addresses may matter. In particular,

when two clusters coexist within a same group of households, the previous algorithm

will select one of the two clusters and ignore the presence of the other. In order to

identify these outliers, we keep track of the number of households located in the right

quarters, and when this number is lower than 1/2, we generate a dummy indicating

that the solution to the algorithm may be subject to noise.

C Additional evidence on the nature of neighborhood effects

The theoretical analysis developed in Section 7 is silent about the nature of the

neighborhood effects that may operate, e.g., peer effects, inertia in the housing stock
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or the accumulation of durable public amenities constructed during the Industrial

Revolution such as parks or public services.

This Appendix provides a large set of descriptive statistics about formerly pol-

luted neighborhoods in 2011. While this analysis is not causal and cannot be used as

hard evidence in favor of one particular channel of persistence, it helps understand

the within-city distribution of consumptive amenities and its relationship with past

atmospheric pollution.

We use various data sources to construct indicators of consumptive amenities

at the 2001 LSOA resolution. First, we compute the density of different public

services (schools and universities, theaters, museums and libraries, parks, churches

and hospitals) in 1881 and 2011. In 1881, we digitize this information from the

same set of 1880-1900 Ordnances Survey maps that we use to detect chimneys. In

2011, we use the Point of Interest (POI) data provides by the Ordinance Survey to

determine the local provision of amenities, i.e. public transport, health, education

and leisure services.39 Second, we collect a snapshot of housing characteristics:

house ages from the Consumer Data Research Centre and house characteristics from

transaction data (Land Registry and Nationwide). Third, we gather school outcomes

for all primary schools from the Ministry of Education and generate LSOA measures

of school supply (private schools, school value-added, teacher-pupil ratio, teacher

salary, spending per student), school composition (disadvantaged pupils: defined

as being either eligible for Free Schools Meals in the last six years; or looked after

continuously for 1 day or more), or outcomes (student test score).40 Fourth, we

collect records of all criminal incidents in 2011 and their coordinates as reported

by the police, and classify them into 4 categories: anti-social behaviors including

nuisance, vandalism, street drinking, littering, or vagrancy; burglary; drug-related

crimes; and violent crimes.41 Finally, we collect sub-indices of the 2010 English

Indices of Deprivation (Income; Employment; Health and Disability; Education,

Skills and Training; Barriers to Housing and Services; Crime; Living Environment).42

We then rely on two specifications to better understand the correlation between

the within-city distribution of consumptive amenities, past atmospheric pollution

39In 1880-1900, we observe schools, hospitals, parks or public administration. In 2011, we add
to the previous list: local and national government buildings, courts and police stations, bus or
train stations, botanical gardens and zoos.

40In order to collapse school-level indicators at the LSOA level, we proceed as follows. We
compute the distance between every LSOA centroid and all the neighboring schools. We then
aggregate all measures weighting each school by the inverse of the distance to the LSOA centroid.

41See http://data.police.uk. Note that we treat these incidents irrespectively of the outcome
(court decision), and compute the number of such incidents in 2011 per 100 inhabitants.

42The English Indices of Deprivation (2010), The Social Disadvantage Research Centre at the
Department of Social Policy and Social Work, University of Oxford.
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and neighborhood composition.

In a first specification (see Table A4), we report the estimates for specification

(6) where we replace our benchmark indicator of neighborhood composition by (i)

deprivation sub-indices (Panel A), (ii) a selected set of schooling and crime indicators

(Panel B), (iii) characteristics of the housing stock (Panel C), and (iv) selected city

amenities (Panel D).

Formerly polluted neighborhoods are consistently ranked as more deprived areas

across all sub-indices of deprivation. Note, however, that the measures Income,

Employment and Education are the most correlated with past pollution. These

measures capture the incidence of low earnings, involuntarily exclusion from the

labor market and a lack of attainment and skills in the local population. By contrast,

the correlation between the domain Housing, measuring the limited physical and

financial access to housing and local services, and past pollution is quantitatively

small.

We then exploit more precise measures of schooling quality and crime incidence

in Panel B. While the presence of private schools and the school value-added are

negatively correlated with past pollution, the effects are quantitatively small. More

generally, we verify in unreported tests that all measures of school supply (e.g.,

teacher-pupil ratio, teacher salary, spending per student) are not strongly correlated

with past pollution. Instead, measures capturing directly or indirectly school compo-

sition (disadvantaged students or scores) are markedly different in formerly-polluted

neighborhoods. Along the same lines, burglary, drug-related and violent crimes,

that tend to happen in poorest areas, are more frequent in these formerly-polluted

neighborhoods in contrast to anti-social behaviors (see columns 5 to 8).

Panel C reports the correlation between past pollution and house age (columns

1 to 4). Formerly-polluted neighborhoods are not more likely to have houses con-

structed before 1970, 1940 or 1900, as confirmed by the average year of construction

for transactions recorded by Nationwide. However, the housing supply remains dif-

ferent in these areas–as also shown by the prevalence of social housing in Table A6:

one standard deviation in past pollution is associated with a 5 p.p. higher prevalence

of flats and a 2 p.p. lower prevalence of villas. There is also a small difference in

the number of bedrooms or square meters across neighborhoods.

Finally, as shown in Panel D, formerly polluted neighborhoods have more parks,

recreational areas and transport facilities, and less hospitals, botanical gardens or

conference centers but the estimates are quite small in magnitude. The demand

for high-quality amenities in good neighborhoods may be counteracted by high land
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prices.43 Note that we do not observe a systematic correlation between pollution

and public amenities in 1881 (unreported tests).

In a second specification (see Table A7), we run specification (6) with our bench-

mark indicator of neighborhood composition in 2011 and we sequentially control for

public amenities (Panel A), housing supply (Panel B) and an extended set of school-

ing and crime indicators (Panel C). This approach complements the previous one,

and implicitly provides a decomposition of the correlation between neighborhood

composition and past pollution.

Panel A shows that controlling for public amenities (in 1881 or 2011) does not

affect the gradient between neighborhood composition and past pollution in a sig-

nificant manner as expected from the results presented in Table A4. By contrast,

half of the correlation between neighborhood composition and past pollution is cap-

tured by social housing and an additional quarter disappears once we control for

other observable indicators of housing supply (flats, villas, square meters, number of

bedrooms etc.). Interestingly, controlling for building age or limiting the sample to

areas with a majority of houses constructed after 1940 does not affect our benchmark

relationship. Finally, we control for (i) schooling supply, (ii) school composition, (iii)

the presence of police forces and (iv) crime incidence in Panel C. While indicators of

schooling supply and the presence of police forces do not seem to alter the benchmark

relationship, adding indicators of school composition and crime incidence captures

between 20 and 40% of the initial relationship.

These descriptive statistics indicate that the persistence in segregation does not

relate to rigid consumptive amenities (e.g., provision of public services, Victorian

housing stock or old private schools constructed during industrialization) which

would anchor neighborhoods in a certain equilibrium for decades. Instead, some

consumptive amenities that correlate with past pollution could rapidly change with

the composition of residents (e.g., school composition, crime incidence). While our

data do not allow us to estimate the role of the different neighborhood effects (in-

formation on consumptive amenities would be needed along the whole process of

segregation), such investigation would be essential to derive policy implications that

rely on targeting the provision of these amenities instead of the initial distribution

of pollution.

43The presence of parks and recreation areas in formerly polluted neighborhoods may not only
be due to low land prices but also to former industrial sites being destroyed and reclaimed in the
second half of the twentieth century.
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D Additional figures and tables

Figure A2. An illustration of the 2-stage empirical approach in Manchester (synthetic chimneys
located along 1827 waterways).

(a) City Map (b) Locating chimneys along canals.

(c) Synthetic pollution. (d) Actual pollution.

Sources: Authors’ calculations using Ordnance Survey Maps - 25 inch to the mile, 1842-1952 and the ADMS 5 Air
Pollution Model. Chimneys are indicated with a red dot, and 1817 canals with blue lines.
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Figure A3. House transaction prices (y-axis) and pollution (x-axis) across neighborhoods – aver-
age and evolution between 1995 and 2011.

(a) Average (b) Evolution

Notes: The left (resp. right) panel represents the relationship between the (logarithm of the) average transaction
prices between 2000 and 2011 (resp. in 1995, 2000, and 2011) and our (standardized) measure of past pollution.
We consider the residuals of all measures once cleaned by city Fixed-Effects, geographic and topographic controls.
For the sake of exposure, we group neighborhoods, create 100 bins of neighborhoods with similar past pollution
and represent the average house prices within a pollution-bin. The lines are locally weighted regressions on all
observations.

Figure A4. Social housing (y-axis) and pollution (x-axis) across neighborhoods in 1971, 1981,
1991, 2001 and 2011.

Notes: The figure represents the locally weighted regressions on all observations between the shares of social housing
and our (standardized) measure of past pollution. We consider the residuals of all measures once cleaned by city
Fixed-Effects, geographic and topographic controls.
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Table A1. Pollution and shares of low-skilled workers in 1881 and 2011 – the role of covariates.

Share of low-skilled workers 1881 2011
Pollution .0327 .0322

(.0065) (.0067)
Distance hall (inverse) 3.29 -2.92

(3.26) (3.53)
Share area (city) .0084 -.0159

(.0144) (.0130)
Area -.0030 -.0009

(.0006) (.0004)
Maximum elevation .0001 -.0005

(.0003) (.0002)
Minimum elevation -.0012 .0000

(.0004) (.0004)
Average elevation .0002 -.0004

(.0006) (.0004)
Distance canals (inverse) .0700 .0293

(.0152) (.0362)
Share low-skills (1817) .1237 .0773

(.072) (.0747)
Share farmers (1817) -.1479 -.0343

(.0755) (.0780)
Longitude .0386 .0804

(.0224) (.0226)
Latitude .0006 .0084

(.0239) (.0184)
Observations 4,519 4,519

Standard errors are reported between parentheses and are clustered at the parish-level. Standardized effects are
reported between square brackets. Each cell is the result of a separate regression. The unit of observation is a Lower
Super Output Area. Low-skilled workers are defined as manual unskilled and semi-skilled workers, and job seekers.
Managers, rentiers, clerks, manual skilled workers and farmers are not included. The average share of low-skilled
workers in 1881 is .61.
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Table A2. Pollution and shares of low-skilled workers – difference-in-difference specifications.

Panel A: LSOA, 1817-1881
Share of low-skilled workers (1) (2) (3) (4)
Pollution .0355 .0338 .0320 .0316

(.0057) (.0058) (.0063) (.0064)
[.1863] [.1774] [.1681] [.1662]

Observations 8,696 8,696 8,696 8,696
Fixed effects (LSOA) Yes Yes Yes Yes
Trends (city) Yes Yes Yes Yes
Trends (geography) No Yes Yes Yes
Trends (topography) No No Yes Yes
Trends (coordinates) No No No Yes

Panel B: parish, 1817-1881
Share of low-skilled workers (1) (2) (3) (4)
Pollution .0535 .0520 .0350 .0332

(.0171) (.0173) (.0192) (.0194)
[.3076] [.2993] [.2012] [.1913]

Observations 1,034 1,034 1,034 1,034
Fixed effects (parish) Yes Yes Yes Yes
Trends (city) Yes Yes Yes Yes
Trends (geography) No Yes Yes Yes
Trends (topography) No No Yes Yes
Trends (coordinates) No No No Yes

Standard errors are reported between parentheses and are clustered at the parish-level. Each cell is
the result of a separate regression. The unit of observation is a Lower Super Output Area/year. In
Panel A (resp. Panel B), the basic specification is a panel specification with LSOA (resp. parish)
fixed-effects and city-specific trends. The set of geographic controls include distance to the city
hall, share of LSOA (resp. parish) within the city borders in 1890 and the area for the LSOA (resp.
parish). The set of topographic controls include the average, maximum and minimum elevations
for the LSOA (resp. parish) and the distance to canals as of 1817.
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Table A3. Pollution and shares of low-skilled workers in 1881 – sensitivity analysis to fixed effects,
clusters and sample selection.

Panel A: Fixed effects Share of low-skilled workers (1881)
(1) (2) (3)

Pollution .0391 .0364 .0303
(.0079) (.0088) (.0090)
[.1580] [.1471] [.1225]

Observations 4,519 4,519 4,519
Fixed effects Parish Ward MSOA
Panel B: Clusters Share of low-skilled workers (1881)

(1) (2) (3)
Pollution .0350 .0350 .0350

(.0052) (.0057) (.0076)
[.1415] [.1415] [.1415]

Observations 4,519 4,519 4,519
Clusters MSOA Ward City
Panel C: Sample Share of low-skilled workers (1881)

(1) (2) (3)
Pollution .0329 .0558 .0358

(.0061) (.0116) (.0064)
[.1328] [.2255] [.1447]

Observations 3,056 3,533 4,285
Excluding... London NW NE

Standard errors are reported between parentheses and are clustered at the parish-level. Standardized effects are
reported between square brackets. Each cell is the result of a separate regression. The unit of observation is a Lower
Super Output Area. The set of topographic controls include the average, maximum and minimum elevations for
the LSOA and the distance to canals as of 1817. The set of 1817 controls include the parish-level shares of farmers,
managers and blue-collar workers. Low-skilled workers are defined as manual workers and employees (categories 4
to 9 in the 2011 Census – see section 4). A MSOA (Medium Super Output Area) is the second smallest unit in the
census, and there are 1600 MSOAs in our sample. A ward is an electoral ward (election for local councils): there
are 1200 wards in our sample. London is Greater London and thus include 33 districts in addition to the City of
London. NW is the North-Western region while NE is the North-Eastern region.
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Table A5. Pollution, house prices and transactions (Nationwide and Land registry, 2009-2013).

Nationwide Land registry
House prices House prices Transactions

VARIABLES (1) (2) (3) (4) (5) (6)
Pollution -.1042 -.0801 -.1067 -.0513 -.0781 -.1515

(.0190) (.0147) (.0185) (.0109) (.0226) (.0248)
[-.1668] [-.1282] [-.1888] [-.0908] [-.1421] [-.2757]

Observations 4,519 4,519 4,519 4,519 4,519 4,519
Fixed effects (city) Yes Yes Yes Yes Yes Yes
Controls (house ch.) No Yes No Yes No Yes
Controls (topography) Yes Yes Yes Yes Yes Yes
Controls (1817) Yes Yes Yes Yes Yes Yes

Standard errors are reported between parentheses and are clustered at the parish-level. Each
column is the result of a separate regression. The unit of observation is a Lower Super Output
Area. The dependent variables are the (logarithm of the) average house prices (from Nationwide
in columns 1 and 2, and Land registry in columns 3 and 4) and number of transactions (Land
registry) between 2009 and 2013. In columns 1 and 2, controls for house types include the average
shares of new houses, the average square meters, number of bedrooms and the year of construction
for the Nationwide transactions. In columns 3 to 6, controls for house types include the average
shares of detached, semi-detached, terraced houses and new houses for all transactions.

Table A6. Pollution and social housing/migrant shares (1971-2011).

Effect of pollution on ... 1971 1981 1991 2001 2011
Social housing .0089 .0504 .0659 .0597 .0572

(.0072) (.0099) (.0084) (.0071) (.0073)
.287 .358 .297 .260 .232

Owners -.0413 -.0543 -.0694 -.0720 -.0740
(.0072) (.0083) (.0085) (.0086) (.0095)

.429 .494 .580 .583 .535

Migrants (New Commonwealth) .0129 .0189 .0173 .0195 .0307
(.0034) (.0046) (.0046) (.0054) (.0073)

.041 .060 .064 .085 .128

Migrants (Other) .0012 .0008 .0006 .0028 .0061
(.0010) (.0008) (.0008) (.0009) (.0013)

.034 .035 .043 .053 .075

Observations 4,517 4,519 4,519 4,519 4,519
Fixed effects (city) Yes Yes Yes Yes Yes

Standard errors are reported between parentheses and are clustered at the parish-level. The average value for the
explained variable is reported in italic. Each coefficient is the estimate for pollution in a separate regression. The
unit of observation is a Lower Super Output Area. The set of controls include geographic coordinates, the average,
maximum and minimum elevations for the LSOA and the distance to waterways as of 1827. Social housing (resp.
Owners) are the shares of households in a social housing (resp. owners) as captured in the Census (the unit of
calculation is the 2011 LSOA).
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Table A7. Pollution and shares of low-skilled workers – controlling for amenities, housing char-
acteristics and crime and education indicators.

Panel A: Amenities 1881 2011
Share of low-skilled workers (1) (2) (3) (4)
Pollution .0309 .0285 .0339 .0280

(.0065) (.0066) (.0071) (.0065)
[.1250] [.1153] [.1933] [.1599]

Observations 3,814 3,814 3,814 3,814
Controls (amenities 1881) Yes Yes Yes Yes
Controls (amenities 2011) No Yes No Yes
Panel B: Housing characteristics 2011
Share of low-skilled workers (1) (2) (3) (4)
Pollution .0545 .0380 .0203 .0114

(.0102) (.0080) (.0056) (.0041)
[.3109] [.2167] [.1161] [.0650]

Observations 995 4,228 4,228 4,228
Sample New housing All All All
Controls (building age) Yes Yes Yes Yes
Controls (social housing) No No No Yes
Controls (house characteristics) No No Yes Yes
Panel C: Education and crime 2011
Share of low-skilled workers (1) (2) (3) (4)
Pollution .0313 .0219 .0356 .0276

(.0059) (.0056) (.0070) (.0057)
[.1788] [.1251] [.1933] [.1599]

Observations 4,519 1,792 4,519 4,519
Controls (school supply) Yes Yes No No
Controls (composition/scores) No Yes No No
Controls (police station) No No Yes Yes
Controls (crime) No No No Yes

Standard errors are reported between parentheses and are clustered at the parish-level. Each
column is the result of a separate regression. The unit of observation is a Lower Super Output
Area. The basic set of controls correspond to the ones used in column 5 of Table II. Controls for
amenities in 1881 include the number of parks, schools, theaters, museums, churches, hospitals per
100 inhabitants at the LSOA level. Controls for amenities in 2011 include the number of parks,
schools, theaters, museums, churches, hospitals, public buildings (e.g., town halls), courts, police
stations, bus or train stations, botanical gardens, banks and conference centers per 100 inhabitants
at the LSOA level.
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E Atmospheric Dispersion Model

Figure A5. Wind roses differences across two sets of meteorological conditions.

(a) North England. (b) South England.

Sources: Met Office – 10-year statistical meteorological data. We use 5 different sets of meteorological conditions
across England that we associate to our 70 metropolitan areas.

Figure A6. Topography and industrial air pollution.

(a) Halifax. (b) Olham.

Sources: ADMS 5. These maps shows the level lines for elevation (from green to brown) and aggregate industrial
pollution in Halifax and Oldham.
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Figure A7. Wind patterns and industrial air pollution – stable and unstable conditions.

(a) Unstable conditions.

(b) Stable conditions.

Sources: ADMS 5. The y-axis is the ground-level concentration for 1g/s emission rate (µg/m3, logarithmic scale),
and the x-axis is the downwind distance (m).
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F Descriptive statistics

Figure A8. Migration and coal consumption during the Industrial Revolution.

(a) Population Growth Rates in cities (1801-
1891)

(b) Coal consumption in million tons (1560–
2001)

Notes: The left panel plots the average decadal population growth rate for the period 1801-1891 in our sample
cities. The right panel illustrates the increase in coal consumption over the period 1560–2001. The figure is based
on Warde (2007) who reports coal consumption in petajoule. To convert numbers from petajoule to tons, we use a
conversion factor of 1:34,140. The two solid grey lines indicate the years 1817 and 1881 for which we have detailed
occupational information within cities. The dashed grey lines mark the introduction of the 1956 Clean Air Act and
the stricter 1968 Clean Air Act. Sources: Warde, 2007.

Figure A9. Cumulative of pollution in our sample of 10000 parishes and National Ambient Air
Quality Standards (12-15 µg/m3).

Sources: Authors’ calculations.

65



Table A8. Air Pollution measures in the neighborhoods of Manchester.

Deposits Model estimates
Station m.tons/m2 µg/m3

Ancoats hospital 30.59 119.95
Philips Park 22.59 74.49
Whitworth Street 22.51 102.47
Queen’s Park 20.18 70.00
Moss Side 18.69 29.11
Whitefield 15.53 11.92
Fallowfield 13.24 17.69
Davyhulme 12.68 6.93
Cheadle 10.63 9.40
Bowdon 6.25 0.02

Source: First Annual Report of the Sanitary Committee on the Work of the Air Pollution Advisory Board, 1915

and authors’ calculation.

Figure A10. Cities in our sample.
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